EP2257364A1 - Membrane perméable à l'oxygène et son procédé de fabrication - Google Patents

Membrane perméable à l'oxygène et son procédé de fabrication

Info

Publication number
EP2257364A1
EP2257364A1 EP09724584A EP09724584A EP2257364A1 EP 2257364 A1 EP2257364 A1 EP 2257364A1 EP 09724584 A EP09724584 A EP 09724584A EP 09724584 A EP09724584 A EP 09724584A EP 2257364 A1 EP2257364 A1 EP 2257364A1
Authority
EP
European Patent Office
Prior art keywords
layer
composite membrane
range
intermediate layer
membrane according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09724584A
Other languages
German (de)
English (en)
Inventor
Stefan Baumann
José Manuel SERRA ALFARO
Wilhelm Albert Meulenberg
Hans Peter Buchkremer
Detlev STÖVER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP2257364A1 publication Critical patent/EP2257364A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the invention relates to an oxygen-permeable membrane, in particular for use for CO 2 -Atrennung in power plants, and a method for its preparation.
  • low-concentration CO 2 is removed from the low-temperature exhaust gas stream of the energy conversion plants (separation task: CO 2 / N 2 ).
  • the fossil fuel before the actual combustion of the carbon is removed by the fuel is converted by a partial oxidation or reforming in CO 2 and hydrogen gas (separation task: CO 2 / H 2 ), combustion of hydrogen.
  • the CO 2 can be washed out by physical or chemical washing solutions. Again, the separation of CO 2 from the designed Gas mixture easier than described under point a), since there are also significantly higher concentrations and pressures for the CO 2 .
  • Ceramic membranes have high chemical and thermal stability and can be used in all three power plant routes. However, existing ceramic membranes have insufficient permeation or separation rates or are not stable under process conditions.
  • the permeation rate represents the volume flow per unit time of the permeating component, based on the membrane surface, [ml / (cm 2 min)].
  • the selectivity is described by the so-called separation factor, which is given by the ratio of the permeation rate of the gases to be separated, and is infinite in dense, but oxygen-semipermeable membranes.
  • the asymmetric membranes In the case of membranes, a distinction is also made between the so-called bulk membranes and the asymmetric membranes. While the bulk membrane (monolithic membrane) has a single material layer, the asymmetric membrane has a layer structure with at least two different layers, a release layer and a porous support layer.
  • Conceivable is the production of asymmetric membranes with separation layer thicknesses of less than 100 microns from materials that have the highest permeation rates, such as Bao. 5 sro. 5 CO. 8 Fe 0 . 2 0 3 . ⁇ ).
  • these materials due to their exceptional thermal and chemical expansion behavior, these materials necessarily require a support of the same material as the release layer. However, this material often has only low chemical and mechanical stability, and is also relatively expensive.
  • the invention has for its object to provide a semipermeable membrane, in particular an oxygen-permeable membrane, for use for gas separation, which overcomes the prescribed disadvantages of the prior art. Furthermore, it is the object of the invention to provide a corresponding manufacturing method for such a membrane.
  • a thin membrane with a total layer thickness of less than 1 mm comprising a porous support layer, one or more porous intermediate layers and a functional layer having a layer thickness of less than 1 ⁇ m arranged thereon has an effective separation efficiency for the oxygen separation having.
  • the carrier layer advantageously effects the mechanical stability of the membrane.
  • it can be made of a steel, for. B. 316 L stainless steel, a structural ceramic (eg Al 2 O 3 or ZrO 2 ) or a cermet (mixture of ceramic and metal) exist.
  • the thickness of the carrier layer depends on the separation problem, and may vary between 100 ⁇ m and 1 mm.
  • the thickness of the carrier layer influences the degree of permeation, and should therefore be designed in principle as thin as possible, in particular smaller than 1 mm.
  • layer thicknesses of at least 100 ⁇ m, better 200 ⁇ m are desirable.
  • metallic carrier layers generally have better mechanical stability than ceramic layers with a comparable layer thickness.
  • the carrier layer itself is designed to be porous throughout and has pores in the ⁇ m range on average. The determination of this average pore diameter can be in particular by SEM (scanning electron microscopy) or with smaller pore diameter via TEM (transmission electron microscopy). The pores are chosen to be significantly larger than those of the adjacent intermediate layer.
  • the carrier layer should provide for the mechanical stability, but if possible no flow resistance.
  • the carrier can also be designed graded if necessary.
  • this intermediate layer comprises oxide systems, in particular ceramics.
  • Advantageous materials for the intermediate layer are, for example, TiO 2 , ZrO 2 or doped CeO 2 .
  • the materials of the intermediate layer are said to undergo neither chemical reactions with the carrier material nor with the functional layer, which could adversely affect the functionality of the overall system in long-term operation.
  • the intermediate layer has essentially the task to adjust the pore structure and surface quality (roughness, etc.) of the carrier to the needs of the release layer.
  • a catalytically active layer for example, has only a limited Mischleitrichrange, but a high catalytic activity for oxygen incorporation.
  • a suitable material would be, for example, Cei-x Gd x O 2 (CGO), Lai-x Sr x -y Coi Feyo 3- ⁇ (LSCF) or a mixture thereof, which may additionally with a noble metal, such. B. Pt, Pd is impregnated.
  • the total layer thickness of the intermediate layer or all intermediate layers should not be thicker than 30 .mu.m, in particular not thicker than 20 .mu.m, to ensure maximum fürström- availability.
  • the intermediate layer is also designed to be porous throughout.
  • the average pore diameter of the intermediate layer is advantageously between 2 and 200 nm, in particular between 10 and 100 nm.
  • the intermediate layers are graduated and the pore diameter gradually decreases from the carrier layer toward the functional layer as a result of the arrangement of the plurality of intermediate layers ,
  • the functional layer arranged on the intermediate layer effects the actual separation the gas molecules.
  • the functional layer itself is gas-tight, which means impermeable to gases.
  • the oxygen transport through this layer takes place exclusively via the incorporation and further transport of oxygen in ionic form and the simultaneous return transport of the corresponding electrons. Therefore, this functional layer must have a mixed conductive material, such as perovskite, a fluorite or a K 2 Ni 0 4 structure.
  • the total layer thickness of this functional layer is advantageously less than 1 .mu.m, in particular less than 500 nm, and particularly advantageously between 25 and 400 nm. The small layer thickness advantageously leads to a saving in material costs.
  • the functional layer is so elastic that even the different thermal expansions of the various layers involved regularly cause no problems.
  • the maximum permeation rate can be realized in this way for the respective material.
  • perovskite materials such as Ba 1-x Sr x Co 1 "yFe y O 3- s (BSCF) or La 1-x Sr x Coi-yFe y O 3-8 (LSCF) mentioned .
  • materials with K 2 Ni 0 4 -structure for example based on La 2 NiO 4 + S are applicable.
  • the functional layer is in the form of a graded layer.
  • the properties of the abovementioned intermediate layer are then present in particular at the carrier layer / graded layer interface, while the properties of the abovementioned functional layer, in particular on the free surface of the layer system, are present. This means that the average pore diameter of the carrier layer towards the free surface gas / functional layer decreases in principle continuously or else in a stepped manner.
  • a further thin protective layer can also be arranged on the separating layer.
  • the protective layer generally has a layer thickness of less than 50 nm, advantageously even less than 25 nm, depending on the porosity.
  • a porous, catalytically active layer in order to overcome kinetic obstacles in oxygen incorporation or expansion.
  • a porous ceramic or metallic foil having a layer thickness between 200 and 1000 ⁇ m in thickness is firstly provided as the carrier layer.
  • a cermet is also conceivable as a carrier layer. The pore sizes of this carrier layer are in the micron range.
  • one or more intermediate ceramic layers with pores in the range from 1 to 200 nm, in particular with pores in the range from 2 to 100 nm, are applied to the carrier layer on one side.
  • the coating with the intermediate layer is particularly useful if a delay of a very thin designed carrier layer to be prevented during the heat treatment.
  • different intermediate layers may be arranged such that a decreasing degree of porosity in the direction of the functional layer is achieved.
  • the intermediate layer or layers can advantageously be applied to the carrier by conventional application methods, for example by wet powder spraying or else by screen printing.
  • Sol-gel processes, in which a sol-gel precursor is first applied and subsequently pyrolyzed, are also particularly suitable for layers with small pores.
  • the functional layer required for the actual gas separation can also advantageously be applied by means of a sol-gel method.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the adjustment of the porosity in the functional layer is achieved by the sol composition, the pyrolysis condition, that is, the burnout of the organic components, and the sintering condition.
  • a single or multi-layer application using sol-gel method may prove necessary.
  • the sol usually consists of stabilized particles of an O 2 -permeable, crystalline phase, such as a perovskite, or a precursor of this phase with an average particle size between 5 and 200 nm.
  • the small particle size increases the sintering activity such that a densification of the Layer at even low sintering temperatures (600 - 900 ° C) is made possible.
  • the small layer thickness of the functional layer ensures sufficient elasticity, so that the differences in the thermal expansion do not play a disadvantageous role.
  • the maximum permeation rate can be realized in this way for the respective material.
  • the ceramic membrane has stability problems under normal operating conditions, for example because it reacts with constituents of the adjacent gas phase, or if it decomposes at a low partial pressure of oxygen, an additional, very thin protective layer of another mixed-conducting material can optionally be applied to the functional layer become.
  • this protective layer are also methods such as the sol-gel process or a deposition from the gas phase, for. B. via PVD, CVD or PLD (Pulsed Laser Deposition) possible and suitable.
  • a further, porous, catalytically active, thin layer can be applied to the functional layer, which has the function of overcoming kinetic obstacles in the incorporation and removal of oxygen ions from the adjacent gas phase into the material .
  • a layer would be advantageous by screen printing, spraying, sol-gel process or PVD / CVD can be applied.
  • a material with the aforementioned desirable catalytic properties for example, Ce 1-x Gd x O 2 (CGO) / La 1-x Sr ⁇ Co 1-y FeyO 3- s (LSCF) would be mentioned, which additionally with a noble metal, eg. B. Pt, Pd is impregnated.
  • the ceramic membranes according to the invention regularly have high permeability, high selectivity and good stability under use conditions. It is particularly suitable for gas separation of oxygen from gas mixtures. Special description part
  • FIGS. 1 to 3 show schematically three different embodiments of the membrane according to the invention. In this mean:
  • a second intermediate layer of ZrO 2 , TiO 2 or Cei -x Gd x ⁇ 2 (CGO) is applied.
  • a sol-gel precursor of an organic precursor, z As titanium propylate, zirconium propylate, and acetylacetone and an ⁇ -carboxylic acid used which is applied by spin coating or a dipping process. This is followed by pyrolysis (eg at 600 ° C./1 hour) of the organic constituents of the sol.
  • the functional layer sol eg Laj x Sr x Coj y y Fe y Os-a, LSCF
  • a solution of the corresponding metal nitrates, sodium linolate and ethanol is prepared.
  • autoclaving for example at 80 ° C./24 h
  • a liquid / liquid extraction with xylene is carried out.
  • the result is a sol of LSCF particles in xylene.
  • the application of the functional layer takes place by means of spin coating or a dipping process.
  • a sintering of the sample is carried out at temperatures up to 900 0 C, which ensures sufficient compaction and crystallinity of the layer.
  • Embodiment 2 Embodiment 2:
  • a presintered porous substrate of ZrO 2 or alternatively Al 2 O 3 is prepared.
  • a second intermediate layer of ZrO 2 , TiO 2 or Cei -x Gd x O 2 (CGO) is applied by means of sol-gel V experienced.
  • a sol-gel precursor of an organic precursor, z As titanium propylate, zirconium propylate and acetylacetone and an ⁇ -standing carboxylic acid used, which is applied by spin coating or a dipping process.
  • a thin catalytically active layer eg, perovskite
  • the particle size is chosen sufficiently large so that the layer does not sinter tightly in the further course of the process.
  • porous layer impregnated with Pt Lai-x Sr x Fe y Coi y O 3- ⁇ is applied by means of sol-gel process and sintered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne une membrane composite pour la séparation sélective de gaz. Cette membrane comprend un système de couches comportant une couche support poreuse mécaniquement stable à pores traversants, présentant une taille moyenne de pores de l'ordre du μm, au moins une couche intermédiaire poreuse à pores traversants disposée sur la couche support, présentant une taille moyenne de pores comprise entre 2 et 200 nm, ainsi qu'une couche fonctionnelle étanche aux gaz disposée sur la couche intermédiaire, cette couche fonctionnelle étant composée d'une matière à conductivité mixte et présentant une épaisseur maximale de 1 μm. La couche support se compose d'une céramique structurale, d'un métal ou d'un cermet et présente une épaisseur inférieure ou égale à 1 mm. La couche intermédiaire présente une épaisseur totale inférieure ou égale à 100 μm et une taille moyenne de pores comprise entre 10 et 100 nm. La couche fonctionnelle se compose d'une perovskite, d'une fluorine ou d'un matériau à structure K2NiF4, comme par exemple La1-xSrxCo1-yFeyO3-8 (LSCF). L'épaisseur de la couche fonctionnelle est inférieure ou égale à 50 nm, en particulier comprise entre 25 et 400 nm. Cette membrane composite est fabriquée par application d'au moins une couche intermédiaire poreuse présentant une taille moyenne de pores comprise entre 2 et 200 nm sur une couche support poreuse mécaniquement stable à pores traversants présentant une taille moyenne de pores de l'ordre du μm, puis par application d'une couche fonctionnelle étanche aux gaz additionnelle, composée d'une matière à conductivité mixte et présentant une épaisseur maximale de 1 μm, sur la couche intermédiaire.
EP09724584A 2008-03-28 2009-02-21 Membrane perméable à l'oxygène et son procédé de fabrication Withdrawn EP2257364A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008016158A DE102008016158A1 (de) 2008-03-28 2008-03-28 Sauerstoff durchlässige Membran sowie Verfahren zu dessen Herstellung
PCT/DE2009/000256 WO2009117978A1 (fr) 2008-03-28 2009-02-21 Membrane perméable à l'oxygène et son procédé de fabrication

Publications (1)

Publication Number Publication Date
EP2257364A1 true EP2257364A1 (fr) 2010-12-08

Family

ID=40802233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09724584A Withdrawn EP2257364A1 (fr) 2008-03-28 2009-02-21 Membrane perméable à l'oxygène et son procédé de fabrication

Country Status (4)

Country Link
US (1) US8486184B2 (fr)
EP (1) EP2257364A1 (fr)
DE (1) DE102008016158A1 (fr)
WO (1) WO2009117978A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030673A1 (fr) * 2007-08-31 2009-03-04 The Technical University of Denmark (DTU) Membranes d'oxygène à couche mince réductrices
EP2374526A1 (fr) * 2010-03-29 2011-10-12 Centre National de la Recherche Scientifique (C.N.R.S) Membrane composite solide démontrant une bonne conductivité de l'oxygène et interface de catalyseur de substrat
US8834604B2 (en) * 2010-09-16 2014-09-16 Volt Research, Llc High temperature gas processing system and method for making the same
US8741029B2 (en) * 2011-06-30 2014-06-03 United Technologies Corporation Fuel deoxygenation using surface-modified porous membranes
DE102012006744A1 (de) * 2012-04-04 2013-10-10 Forschungszentrum Jülich GmbH Gemischt Ionen und Elektronen leitende Membran zur Gastrennung sowie Verfahren zur Herstellung derselben
KR101471615B1 (ko) * 2012-12-11 2014-12-11 한국에너지기술연구원 수소 분리막 및 그의 제조 방법
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9776153B2 (en) 2013-10-07 2017-10-03 Praxair Technology, Inc. Ceramic oxygen transport membrane array reactor and reforming method
US9731249B2 (en) 2014-04-15 2017-08-15 Ut-Battelle, Llc Polymeric molecular sieve membranes for gas separation
WO2015160609A1 (fr) 2014-04-16 2015-10-22 Praxair Technology, Inc. Procédé et système pour cycle combiné à gazéificateur intégré (igcc) amélioré par une membrane de transport d'oxygène
ES2558183B1 (es) * 2014-07-01 2016-11-11 Consejo Superior De Investigaciones Científicas (Csic) Capa catalítica y su uso en membranas permeables al oxigeno
WO2016057164A1 (fr) 2014-10-07 2016-04-14 Praxair Technology, Inc Membrane de transport d'ion oxygène composite
DE102015005732A1 (de) 2015-05-07 2016-11-10 Forschungszentrum Jülich GmbH Kohlenstoffhaltige Membrane für die Wasser- und Gastrennung
US10441922B2 (en) * 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
US11052353B2 (en) 2016-04-01 2021-07-06 Praxair Technology, Inc. Catalyst-containing oxygen transport membrane
WO2018042392A1 (fr) * 2016-09-04 2018-03-08 Ariel Scientific Innovations Ltd. Membrane sélectivement perméable
US11136238B2 (en) 2018-05-21 2021-10-05 Praxair Technology, Inc. OTM syngas panel with gas heated reformer
CN112569686B (zh) * 2019-09-30 2022-08-09 成都易态科技有限公司 复合多孔薄膜的制备方法
CN112138548A (zh) * 2020-08-27 2020-12-29 兰州铁道设计院有限公司 负载有纳米铁氧体的陶瓷膜、制备方法及污水处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032230A1 (fr) * 2004-09-24 2006-03-30 Forschungszentrum Jülich GmbH Dispositif de separation de gaz et procede pour produire un tel dispositif

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534471A (en) * 1994-01-12 1996-07-09 Air Products And Chemicals, Inc. Ion transport membranes with catalyzed mixed conducting porous layer
US5599383A (en) * 1995-03-13 1997-02-04 Air Products And Chemicals, Inc. Tubular solid-state membrane module
US6368383B1 (en) * 1999-06-08 2002-04-09 Praxair Technology, Inc. Method of separating oxygen with the use of composite ceramic membranes
US6514314B2 (en) * 2000-12-04 2003-02-04 Praxair Technology, Inc. Ceramic membrane structure and oxygen separation method
JP4485794B2 (ja) * 2001-11-09 2010-06-23 株式会社ノリタケカンパニーリミテド 酸素イオン伝導性セラミック材およびその利用
US6565632B1 (en) * 2001-12-17 2003-05-20 Praxair Technology, Inc. Ion-transport membrane assembly incorporating internal support
DE10208883A1 (de) 2002-03-01 2003-09-18 Forschungszentrum Juelich Gmbh Sauerstoffmembran für den Einsatz bei hohen Temperaturen
US7125528B2 (en) * 2002-05-24 2006-10-24 Bp Corporation North America Inc. Membrane systems containing an oxygen transport membrane and catalyst
US7279027B2 (en) * 2003-03-21 2007-10-09 Air Products And Chemicals, Inc. Planar ceramic membrane assembly and oxidation reactor system
EP1644183A4 (fr) * 2003-07-10 2008-07-23 Praxair Technology Inc Element composite de transport d'ions d'oxygene
US7279025B2 (en) * 2004-12-21 2007-10-09 Praxair Technology, Inc. Separation and reaction method utilizing an oxygen ion transport element
US7556676B2 (en) * 2006-08-22 2009-07-07 Praxair Technology, Inc. Composite oxygen ion transport membrane
US7927405B2 (en) * 2007-04-23 2011-04-19 Gore Enterprise Holdings, Inc Porous composite article
WO2009067171A1 (fr) * 2007-11-20 2009-05-28 Corning Incorporated Structure membranaire conductrice d'ions oxygène

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032230A1 (fr) * 2004-09-24 2006-03-30 Forschungszentrum Jülich GmbH Dispositif de separation de gaz et procede pour produire un tel dispositif

Also Published As

Publication number Publication date
US8486184B2 (en) 2013-07-16
DE102008016158A1 (de) 2009-10-01
WO2009117978A1 (fr) 2009-10-01
US20110020192A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
EP2257364A1 (fr) Membrane perméable à l'oxygène et son procédé de fabrication
EP3291912B1 (fr) Membrane carbonée pour la séparation d'eau et de gaz
DE69619003T3 (de) Rohrförmiges monolithisches Membranmodul
EP2183043B1 (fr) Membrane avec microstructure de taille stable et son procédé de production
DE60103911T3 (de) Zusammengesetzte leitende membranen für die synthesegas produktion
DE112012003921T5 (de) Verfahren zur Herstellung einer Trägertyp-Überzugsmembran unter Anwendung des Foliengießverfahrens
DE102009039149A1 (de) Katalytische Membranmaterial-Beschichtung
CN101795756B (zh) 廉价的薄层氧膜
US20140010953A1 (en) SINTERING ADDITIVES FOR CERAMIC DEVICES OBTAINABLE IN A LOW pO2 ATMOSPHERE
DE102011081553A1 (de) Inert geträgerte tubulare Brennstoffzelle
EP3000149B1 (fr) Ensemble multicouche pour électrolyte solide
DE60123839T2 (de) Gestapelte mikrostrukturen leitender, keramischer oxidionenmembranen; verwendung zur trennung von sauerstoff von luft
WO2008151614A2 (fr) Procédé de production d'une microstructure métallique pour un microréacteur
KR19980064774A (ko) 기계적 특성 및 촉매 특성의 개선성분을 갖는 고상 전해질막
EP2595729B1 (fr) Oxyde mixte conducteur tolérant au co2 et son utilisation pour la séparation d'hydrogène
DE69600851T3 (de) Neue Zusammensetzungen mit der Fähigkeit zu funktionieren unter hohem Kohlendioxidpartialdrucken zur Verwendung in Feststoffvorrichtungen zur Herstellung von Sauerstoff
EP1110594B1 (fr) Utilisation et préparation d'une membrane mixte conductrice
DE102006005194A1 (de) Protonen leitendes Schichtsystem und Herstellungsverfahren desselben
DE102004046310A1 (de) Vorrichtung zur Gasseparation sowie Verfahren zur Herstellung einer solchen Vorrichtung
EP2647419A1 (fr) Membrane de séparation de gaz conduisant à la fois les ions et les électrons et procédé de fabrication de celle-ci
EP3459908B1 (fr) Procédé de fabrication d'une membrane de perméation
DE102018101446A1 (de) Helium-selektive Membran, Verfahren zu deren Herstellung und diese enthaltender Helium-Sensor und Helium-Leck-Detektor
DE112018005572T5 (de) Zeolith-Membrankomplex und Verfahren zur Herstellung eines Zeolith-Membrankomplexes
DE102009033716B4 (de) Verfahren für die Herstellung einer offenporigen von einem Fluid durchströmbaren Struktur sowie eine Verwendung der mit dem Verfahren hergestellten Struktur
DE102013200594A1 (de) Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130813

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150609