EP2255137A1 - Dispositif et procédé de prélèvement de gaz hors d'un contenant - Google Patents

Dispositif et procédé de prélèvement de gaz hors d'un contenant

Info

Publication number
EP2255137A1
EP2255137A1 EP09718174A EP09718174A EP2255137A1 EP 2255137 A1 EP2255137 A1 EP 2255137A1 EP 09718174 A EP09718174 A EP 09718174A EP 09718174 A EP09718174 A EP 09718174A EP 2255137 A1 EP2255137 A1 EP 2255137A1
Authority
EP
European Patent Office
Prior art keywords
gas
heat exchanger
container
heated
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09718174A
Other languages
German (de)
English (en)
Inventor
Paul Grohmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH filed Critical Messer Group GmbH
Publication of EP2255137A1 publication Critical patent/EP2255137A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications

Definitions

  • the invention relates to a device for removing gas from a container in which gas is stored in the liquid phase, with a fluidically connected to the liquid phase of the gas in the container outlet and with an evaporator unit connected to the discharge. Furthermore, the invention relates to a method for removing gas from a container.
  • air evaporators For the evaporation of cryogenic media, which are stored in a liquid phase in a container, are used by ambient air heated evaporators, so-called “air evaporators” . These usually consist of metal finned tubes through which the cryogenic medium is passed Ribs are deprived of heat from the ambient air and released into the cryogenic medium inside the tube, which then passes into the gas phase within the finned tubes, due to the rugged heat transfer that occurs in those evaporator sections where the cryogenic medium is still in the liquid phase This leads to freezing of humidity and thus to a strong icing of the outer surface of the finned tubes in this area, as a result of which the effective evaporator surface becomes smaller and smaller and there is a risk that the vaporizer can no longer fulfill its intended purpose this problem too
  • the air evaporators are designed to be oversized for the evaporation task, or two air evaporators are used, which are operated in an alternating circuit, whereby the air evaporator not used for
  • the system is very susceptible to pressure fluctuations: If the heat content absorbed in the outer heat exchanger increases (for example, when the medium used to introduce the heat is heated), more gas is vaporized in the container. As a result, the pressure in the container and thus also the flow rate of the withdrawn gas increases sharply. This can lead to an uncontrollable increase in pressure in the tank, which makes it necessary to blow off the gas via safety valves. Conversely, by a too low heat input, the situation may arise that the pressure in the container collapses and no gas sampling is possible.
  • the object of the present invention is to overcome the disadvantages of the prior art in the removal of gas from a container in which the gas is stored in the liquid phase.
  • the evaporator unit comprises a heated with own medium evaporation heat exchanger in which the gas evaporates at least partially.
  • the at least partial evaporation of the gas thus takes place in the evaporation unit, which is usually located outside the container, in a heat exchanger in which the gas to be evaporated enters into heat exchange with its own medium, ie, with the heated gas phase of the gas stored in the container.
  • the liquid gas phase itself does not come into direct thermal contact with the outside air. In this way, the icing of the evaporative heat exchanger is effectively prevented.
  • the container, the gas is removed in the liquid state and correspondingly small volume; the influence of removal on the container pressure is therefore low.
  • the heat input via the evaporating heat exchanger has no influence on the tank pressure.
  • the flow rate of the withdrawn gas is subject to only small pressure fluctuations.
  • An advantageous embodiment of the evaporative heat exchanger operating with own medium provides that the evaporator unit comprises a heating device in which the gas evaporated in the evaporating heat exchanger is at least partially heated and the heated gas is returned to the evaporating heat exchanger for evaporation of the liquefied gas.
  • the evaporation of the liquefied gas thus takes place by means of the heat absorbed in the heater.
  • an additional heat input can be set so that the vaporized gas leaves the evaporating heat exchanger at a certain temperature.
  • the heating device is, for example, an electric heating device, but it is preferably a second heat exchanger in which the gas, which is at least partially vaporized in the evaporation heat exchanger, can be brought into thermal contact with a heating medium.
  • the second heat exchanger comprises an air evaporator, so ambient air is used as the heating medium in the second heat exchanger. Since the ambient air does not come into direct thermal contact with the liquid phase of the gas there, the risk of icing is low.
  • a again expedient embodiment of the invention is characterized in that the first and the second heat exchanger, a gas heater is connected downstream, in which the gas can be brought to a temperature above a certain value.
  • the gas heater also includes, for example, an electric heater or a heat exchanger operated, for example, with ambient air as the heating medium.
  • the evaporating gas in the evaporative heat exchanger is guided in an upward movement. This makes it possible to keep the location of the phase transition between liquid phase and gas phase largely within the evaporative heat exchanger even with changing heat inputs.
  • the evaporation heat exchanger is a tubular heat exchanger that operates on the DC, countercurrent or crossflow principle.
  • the heat exchanger is equipped with finned tubes through which the liquefied gas is passed during operation and which are surrounded by gaseous own medium within a shell shielding the ambient air.
  • the object according to the invention is also achieved by a method for removing gas from a container, wherein liquefied gas stored in the container is removed, at least partially evaporated in an evaporation heat exchanger, the vaporized gas is heated and the heated gas is fed to the evaporation heat exchanger for heat exchange with the liquefied gas becomes.
  • the evaporation of the liquefied gas is carried out according to the invention at least partially in a largely shielded from the ambient air, operated with own medium heat exchanger.
  • the at least partially vaporized gas is heated by thermal contact with a heating medium, for example ambient air.
  • a heating medium for example ambient air.
  • a particularly advantageous embodiment of the method according to the invention is characterized in that the evaporation of the liquefied gas takes place within the evaporative heat exchanger. In this way, any direct thermal contact of the liquefied gas with ambient air is safely avoided.
  • the method is particularly suitable for the removal of stored in the container in the liquid state cryogenic media, in particular liquefied nitrogen, oxygen, hydrogen, natural gas or a noble gas, or a mixture of these gases.
  • FIG. 1 shows schematically a device 1 according to the invention for removing gas from a container 2.
  • gas is stored in the liquid phase 3 up to a certain level above which a gas phase 4 is located.
  • the container is, for example, a stationary tank for a cryogenic medium, for example for a liquefied air gas.
  • the container is equipped in a conventional manner with a pressure build-up evaporator 5, which is arranged in a line connecting the liquid phase 3 with the gas phase 4 line.
  • a removal line 7 is arranged on the container 2, which is fluidly connected to the liquid phase 3 of the gas stored in the container 2.
  • the removal line 7 leads out of the container 2 and leads into an evaporation heat exchanger 8, in which the liquid phase is indirectly heated by gaseous own medium.
  • 8 heat exchanger surfaces are provided in the heat exchanger, where the inflowing liquid phase is brought into thermal contact with the own medium.
  • the heat exchanger surfaces are, for example, tube coils or finned tubes 9, which are flowed around within a container casing 10 by the gaseous own medium, but are not in direct thermal contact with the ambient air.
  • the gaseous intrinsic medium can come into thermal contact with the ambient air on the container shell wall and can therefore be additionally heated.
  • the liquefied gas is preferably directed in an upward flow to ensure that the boundary between liquid and gaseous phases is always within the finned tubes 9.
  • heat exchanger instead of a working with finned tubes heat exchanger, however, other suitable heat exchangers can be used.
  • the gas is at least partially evaporated.
  • the vaporized gas passes into a second heat exchanger 1 1, in which the gas is heated by thermal contact with a heating medium, for example ambient air.
  • the vaporized gas heated in this manner is introduced into the tank shell 10 of the evaporative heat exchanger 8 to contact there in the manner described as gaseous own medium in thermal contact with the guided through the finned tubes 9 liquefied gas.
  • the heat absorbed by the gas in the second heat exchanger 1 1 at least partially to the discharged liquefied gas, whereby this at least partially evaporated.
  • the gas used for evaporating the liquid gas is then removed from the evaporating heat exchanger 8 and passes through a third heat exchanger 12, which acts as a gas warmer and in which the gas is brought to a certain predetermined temperature value.
  • a heating medium for heating the gas in the third heat exchanger 12 for example, ambient air is again used.
  • other heating devices can be used, for example, electric heaters, or the gas can be heated by other media than ambient air, for example by a process gas with a suitable temperature and suitable flow rate.
  • the gas is supplied in the now heated state via a feed line 14 to a consumer.
  • the volume flow of gas supplied to the consumer is set in the usual way via a flow control valve 13.
  • the flow rate can be regulated in a manner not shown here with a suitable control device as a function of the requirements of a consumer.
  • An additional, not shown heater in the region of the second heat exchanger 1 1, the heat input in the evaporating heat exchanger 8 can be regulated even better and thereby ensure that the boundary between the liquid phase and the gas phase of the uprights in an upward flow of the finned tubes 9 passing Gas is also present at different flow rates and / or temperatures of the ambient air within the finned tubes 9.
  • the risk of icing of the heat exchanger used for vaporizing the liquefied gas is reduced to a minimum. At the same time it allows a uniform flow of the vaporized gas even under changing conditions.
  • Changing heat inputs on the heat exchanger 1 1 are expressed in the device according to the invention only in the temperature of the gas supplied to the consumer, but not in a change in pressure or the flow rate in the supply line. 7 LIST OF REFERENCES

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un dispositif et un procédé de prélèvement de gaz hors d'un contenant dans lequel le gaz est stocké en phase liquide. Le prélèvement du gaz fait aujourd'hui essentiellement appel à des évaporateurs à air, ceux-ci présentent toutefois un risque de givrage. Selon l'invention, le gaz prélevé à l'état liquide est guidé dans un échangeur thermique à évaporation et évaporé dans celui-ci avec du fluide propre. Le gaz au moins partiellement évaporé dans l'échangeur thermique à évaporation est employé après chauffage ultérieur dans un deuxième échangeur thermique ou dans un dispositif de chauffage pour l'évaporation du gaz liquide. Le gaz liquéfié n'entre donc plus en contact thermique, ou uniquement partiellement en contact thermique avec l'air ambiant. Le risque de givrage de l'échangeur thermique à évaporation est donc réduit considérablement.
EP09718174A 2008-03-07 2009-02-26 Dispositif et procédé de prélèvement de gaz hors d'un contenant Withdrawn EP2255137A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008013084A DE102008013084A1 (de) 2008-03-07 2008-03-07 Vorrichtung und Verfahren zum Entnehmen von Gas aus einem Behälter
PCT/EP2009/052260 WO2009109505A1 (fr) 2008-03-07 2009-02-26 Dispositif et procédé de prélèvement de gaz hors d'un contenant

Publications (1)

Publication Number Publication Date
EP2255137A1 true EP2255137A1 (fr) 2010-12-01

Family

ID=40908576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09718174A Withdrawn EP2255137A1 (fr) 2008-03-07 2009-02-26 Dispositif et procédé de prélèvement de gaz hors d'un contenant

Country Status (3)

Country Link
EP (1) EP2255137A1 (fr)
DE (1) DE102008013084A1 (fr)
WO (1) WO2009109505A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999874B2 (ja) * 2011-02-28 2016-09-28 三菱重工業株式会社 液化ガスの再ガス化装置および再ガス化ガス製造方法
JP2016503858A (ja) * 2012-12-28 2016-02-08 ゼネラル・エレクトリック・カンパニイ タービンエンジン組立体及び二元燃料航空機システム
WO2016048162A1 (fr) * 2014-09-23 2016-03-31 Naturgass Möre As Procédé et appareil pour le traitement de récipients sous pression
DE102016009922A1 (de) * 2016-08-16 2018-02-22 Linde Aktiengesellschaft Verdampfungseinrichtung zum Verdampfen eines flüssigen Gases

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943459A (en) * 1958-04-07 1960-07-05 Fairchild Engine & Airplane Air conditioning system
US3319435A (en) * 1966-03-28 1967-05-16 John A Boyd Liquefied petroleum gas vaporization system
US3492831A (en) * 1968-07-01 1970-02-03 Union Carbide Corp Meat refrigeration and dehumidification system
US3866427A (en) * 1973-06-28 1975-02-18 Allied Chem Refrigeration system
DE2554906A1 (de) * 1975-12-06 1977-06-16 Linde Ag Verfahren und vorrichtung zum kuehlen von gegenstaenden mit einem im kreislauf gefuehrten kuehlgas
JPS5366044A (en) * 1976-11-24 1978-06-13 Teikoku Sanso Kk Cold evaporator
DE2753496A1 (de) 1977-12-01 1979-06-07 Linde Ag Waermetauscher
FR2582785B1 (fr) * 1985-04-26 1989-04-28 Agliani Philippe Installation autonome de refroidissement de fluide gazeux tel que de l'air
US5163303A (en) * 1990-03-30 1992-11-17 Tokyo Gas Co. Ltd. Double-walled tube type open rack evaporating device
US5373701A (en) * 1993-07-07 1994-12-20 The Boc Group, Inc. Cryogenic station
DE19506486C2 (de) * 1995-02-24 2003-02-20 Messer Griesheim Gmbh Vorrichtung zum Verdampfen kryogener Medien
FR2736423B1 (fr) * 1995-06-08 1997-08-14 Air Liquide Procede et dispositif de refrigeration d'ecran(s) thermique(s)
GB2355511A (en) * 1999-07-15 2001-04-25 Air Prod & Chem Freezing products
US6505469B1 (en) * 2001-10-15 2003-01-14 Chart Inc. Gas dispensing system for cryogenic liquid vessels
DE10217092A1 (de) * 2002-04-17 2003-11-06 Linde Ag Kühlung von Hochtemperatursupraleitern
US6732536B1 (en) * 2003-03-26 2004-05-11 Praxair Technology, Inc. Method for providing cooling to superconducting cable
US8015993B2 (en) * 2004-10-18 2011-09-13 GM Global Technology Operations LLC Heatable hydrogen pressure regulator
DE102005004665A1 (de) * 2005-02-02 2006-08-10 Messer Group Gmbh Verfahren und Vorrichtung zum Befüllen von Druckbehältern mit nicht verflüssigten Gasen oder Gasgemischen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009109505A1 *

Also Published As

Publication number Publication date
DE102008013084A1 (de) 2009-09-24
WO2009109505A1 (fr) 2009-09-11

Similar Documents

Publication Publication Date Title
DE60302768T2 (de) Ein verfahren zur kontinuierlichen abgabe von unterkühlten karbondioxid mit einem konstanten druck über 40 bar sowie anlage zur durchführung des verfahrens
EP0895045B1 (fr) Procédé de séparation d'air
DE2733745A1 (de) Verfahren zum kondensieren von daempfen einer fluechtigen fluessigkeit
EP2255137A1 (fr) Dispositif et procédé de prélèvement de gaz hors d'un contenant
EP3658816B1 (fr) Installation de production de froid accouplée au dispositif de regasification d'un terminal de gaz naturel liquifié
WO2021165123A1 (fr) Appareil et procédé permettant de générer un flux de gaz froid à température contrôlée
EP2515057B1 (fr) Procédé et dispositif destinés à la régulation de la température d'un milieu fluidique
DE2753495A1 (de) Verfahren und vorrichtung zur entnahme von gasen aus einem geschlossenen behaelter
DE3731356C2 (fr)
DE19645492C1 (de) System und Verfahren zum Aufrechterhalten oder Erhöhen des Drucks in einem Kryotank
EP1846691B1 (fr) Procede et dispositif pour remplir des reservoirs sous pression avec des gaz ou des melanges de gaz non liquefies
DE102009014682B4 (de) Wärmepumpe für einen Warmwasserbereiter
EP1030135B1 (fr) Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide
DE102017007031B3 (de) Vorrichtung und Verfahren zum Abscheiden von Dämpfen aus einem Gasstrom
EP0922916A2 (fr) Procédé et dispositif de refroidissement d'un caloporteur
DE4202468C2 (de) Verfahren zur Gewinnung von Xenon
EP0491338B1 (fr) Procédé et appareil pour la récupération de solvant
CH686743A5 (de) Kaeltemittelverdampfer.
DE102022124518A1 (de) Verfahren und Vorrichtung zur Herstellung von Luftgasen
WO2024013176A1 (fr) Dispositif de génération d'un flux de gaz froid à température régulée
DE19853531C2 (de) Vorrichtung zur Entnahme eines unter Druck stehenden flüssigen Gasstromes aus einem Druckbehälter
AT84708B (de) Verfahren zur Zerlegung von Gemischen aus Gasen, die sich bei sehr verschiedenen Temperaturen verflüssigen.
DE10210324A1 (de) Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer Einsatzfraktion
DE1929046U (de) Einrichtung zum verfluessigen eines gases in einem raum, der kuehlbar und mit einer zu- und ableitung versehen ist.
DE102010021798A1 (de) Verfahren und Vorrichtung zur Trennung eines Stoffgemischs durch Destillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAX Requested extension states of the european patent have changed

Extension state: RS

Payment date: 20101007

Extension state: BA

Payment date: 20101007

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MESSER GROUP GMBH

17Q First examination report despatched

Effective date: 20170411

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170822