EP1030135B1 - Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide - Google Patents

Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide Download PDF

Info

Publication number
EP1030135B1
EP1030135B1 EP19990125892 EP99125892A EP1030135B1 EP 1030135 B1 EP1030135 B1 EP 1030135B1 EP 19990125892 EP19990125892 EP 19990125892 EP 99125892 A EP99125892 A EP 99125892A EP 1030135 B1 EP1030135 B1 EP 1030135B1
Authority
EP
European Patent Office
Prior art keywords
temperature
intermediate medium
liquid nitrogen
process according
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990125892
Other languages
German (de)
English (en)
Other versions
EP1030135A1 (fr
Inventor
Alfred Semrau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lauda Dr R Wobser GmbH and Co KG
Original Assignee
Lauda Dr R Wobser GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lauda Dr R Wobser GmbH and Co KG filed Critical Lauda Dr R Wobser GmbH and Co KG
Priority to EP19990125892 priority Critical patent/EP1030135B1/fr
Publication of EP1030135A1 publication Critical patent/EP1030135A1/fr
Application granted granted Critical
Publication of EP1030135B1 publication Critical patent/EP1030135B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the invention relates to a method for controlled cooling by evaporating liquid nitrogen according to the generic term of claim 1. Such a method is e.g. from EP-A-0922916 known. The invention further relates to a method according to claim 3.
  • cooling is usually carried out with liquid nitrogen (LN 2 ).
  • LN 2 liquid nitrogen
  • the liquid nitrogen is stored in tanks, removed for cooling and evaporated, using the evaporation enthalpy of the liquid nitrogen.
  • the resulting gaseous nitrogen is usually released into the environment. Additional measures must be taken because the evaporation temperature of the liquid nitrogen can be influenced only slightly by pressure changes in the technically feasible range, so that they are in the range from -196 ° C to -185 ° C and thus far below many required application temperatures lies.
  • the temperature of the heat transfer fluid through a temperature controller regulated, which the actual temperature with a Temperature sensors detected in their flow path and its output Control valves for the supply of liquid nitrogen to the Evaporator controls that in heat transfer connection stand the heat transfer circuit.
  • a heated heat transfer medium in a first heat exchanger cooled, which operated with an intermediate medium is, in particular methane (EP 0 922 916 A2). That essentially liquid intermediate medium is in the first heat exchanger, at least for the most part, evaporated under controlled pressure, whereby the heat of the heat carrier at least partially on the Intermediate medium is transferred.
  • the intermediate medium is then a second heat exchanger supplied with liquid nitrogen is operated, which is essentially vaporous intermediate medium is liquefied again and the At least a large part of nitrogen evaporates. This will the heat of the intermediate medium, at least in part, on the Transfer nitrogen.
  • An intermediate medium is used here, whose boiling temperature is higher than the temperature for the melting or pour point of the heat transfer medium and its Melting or pour point at a lower temperature is the boiling point of liquid nitrogen.
  • the liquid nitrogen evaporated under increased pressure. This is a complex one Vaporising nitrogen pressure regulation required.
  • a corresponding known device for controllable Liquid nitrogen cooling is the first heat exchanger and the second heat exchanger within a common housing arranged an apparatus.
  • the known method can also be considered a disadvantage that the Selection of the intermediate medium limited by the requirement is that the boiling point of liquid nitrogen is higher than the temperature for the melting or pour point of the intermediate medium should be. Therefore, an optimal selection cannot be made with regard to other requirements, for example with regard to on environmental compatibility in the event of a leak, a risk of ignition or aging of the intermediate medium become.
  • the two Heat exchanger not easily constructive in other ways, optimized in terms of materials and thermodynamics become.
  • the pressure of the nitrogen in the second heat exchanger is via a complex pressure measuring and control device set to a value of 3 to 16 bar overpressure.
  • a method is primarily part of the prior art to generate the gaseous phase from one in its liquid Phase stored gas supply in a desired amount of electricity and a device for performing such Process (EP 0 427 112 A1).
  • a liquid gas flow corresponding to the desired gas flow evaporator in heat exchange with the ambient air fed.
  • a portion of the liquefied gas stream supplied to the evaporator with a buffer medium or intermediate medium brought a share of a heat transfer medium in heat exchange.
  • the temperature of the intermediate medium is controlled the proportion of the liquefied gas stream fed to the intermediate medium and the heat transfer medium at the transition temperature held.
  • the intermediate medium used has a phase transition whose transition temperature is at least preferably above the vaporization temperature of the liquid gas lies.
  • the temperature curve of the intermediate medium in the range of its transition temperature depending on that prevailing at a phase transition characteristic pressure or temperature curve of the Intermediate medium detected.
  • Control valves controlled so that regardless of which from the Evaporator gas flow removed the temperature of the intermediate medium on the one hand, does not drop below a transition temperature and on the other hand the heat transfer medium its desired Cooling temperature does not exceed by the temperature of the intermediate medium is determined.
  • the present invention is based on the object To improve methods of the type mentioned at the outset by that in the cycle of the intermediate medium is a relative low vapor pressure at a given temperature occurs and that no high security requirements to be met are. Nevertheless, a good one on the heat transfer side Heat transfer can be achieved. The procedure should go through distinguish an economical use of liquid nitrogen and no regulation of the pressure of the evaporating nitrogen require.
  • an intermediate medium with a boiling curve other than gaseous nitrogen i.e. dependence of the boiling point of the pressure used, whereby it is essential that the solidification point or melting point of the Intermediate medium at a temperature higher than the evaporation temperature of liquid nitrogen.
  • It can be a chemically stable intermediate medium, namely a refrigerant, be used, which is not subject to aging, which a device driven with such an intermediate medium insofar as it makes no maintenance claims.
  • the nitrogen will evaporates at atmospheric pressure, for which the technical effort is low.
  • a refrigerant for example, can be used as the intermediate medium Designation R 134a, R 404a, R 23, R 14 of the ASHRAE classification to be selected; Experiments were carried out in particular with R 23 and R 14 performed.
  • the cooled by targeted evaporation of liquid nitrogen Intermediate medium in the liquid phase for cooling the heat transfer medium or the direct heat consumer goes through heat absorption by the heat transfer medium or the heat consumer by boiling in the gaseous phase over.
  • the pressure in the evaporator of the intermediate medium becomes a boiling point of the Intermediate medium set that of the desired temperature corresponds to the heat transfer medium, its temperature largely exactly regardless of load and volume flow fluctuations can be met.
  • water could be up close be cooled to freezing. So it can largely freely selectable liquid, but also gaseous heat transfer media steadily or intermittently through the cooler of the heat transfer medium in heat-conducting contact with the evaporator of the intermediate medium be directed. This results in good heat transfer to the boiling intermediate medium.
  • An intermediate medium can be used which is chemical is stable, making one with such an intermediate medium the device being driven is maintenance-free at least insofar.
  • further development of the method according to the invention includes that a command variable or a setpoint of the pressure control in the evaporator of the intermediate medium is set to a pressure at which a boiling point of the intermediate medium is essentially equal to the desired temperature of the heat transfer medium or of the direct consumer is reached.
  • the process can be carried out without additional Drives are carried out by the according to claim 5 cooled and condensed intermediate medium by gravity the evaporator is routed by being in thermal contact evaporates with the heat transfer medium or direct consumer and from which it rises to the condenser in the vapor phase, passing through the evaporating liquid nitrogen is cooled.
  • the cascade control formed with it also enables regulation of the temperature difference between the intermediate medium and the heat transfer medium or direct Consumer. Especially with enamelled reactors in the chemical industry, it is advantageous the temperature difference keep controlled to avoid thermal shock.
  • a temperature setpoint a temperature can be set which is the solidification temperature or the freezing point of the liquid heat transfer medium exceeds. This causes the liquid to solidify Reliably avoided heat transfer medium. So any Heat transfer fluids continuously or discontinuously in Heat exchange with the intermediate medium through the corresponding one Coolers are conveyed and very precise to close to freezing point be cooled. Thereby the pressure control the boiling temperature of the intermediate medium above the solidification temperature of the liquid heat transfer medium.
  • the intermediate medium is in a fluid-tight Circulated with an expansion tank.
  • the latter ensures that the intermediate medium at normal ambient temperature quickly evaporates completely, a high security.
  • the compensation pressure can be relatively low being held.
  • the process for controlled cooling is versatile industrial applicable:
  • Exhaust air purification can be a very often undesirable aerosol formation through gradual cooling the exhaust air with a defined temperature difference according to the invention Procedures to be avoided. This method becomes advantageous, for example, in the condensation of organic solvents from inertized, i.e. nitrogen contents having exhaust gases provided.
  • the solvent recovery process can also be used provide for general process engineering application.
  • Materials testing technology is an additional application at specified temperatures of the material as well as environmental simulation systems.
  • recycling processes for example Components of used tires, paints, refrigerators certain temperatures are to be cooled or warmed, the method according to the invention can be used.
  • a device for carrying out the method comprises an evaporator essentially liquid nitrogen, at atmospheric pressure with a condenser of the intermediate medium is thermally connected, the evaporator of the essentially liquid nitrogen on the inlet side of a diffuser element for two-phase flow and one directly attached to it has a subsequent venturi chamber and wherein one outlet of the venturi chamber a manifold with several Connected outlets that are designed as nozzles.
  • the evaporator of the intermediate medium and the condenser of the intermediate medium as separate devices, the over lines of the intermediate medium in a closed Circuit are arranged.
  • the evaporator of the intermediate medium is in heat exchange with a cooler of the heat transfer medium or any product, e.g. for cleaning the exhaust gas.
  • the evaporator of the intermediate medium Because of its extensive independence from the capacitor of the intermediate medium can be the evaporator of the intermediate medium in terms of design, material and engineering and be optimized thermodynamically. Are against the boundary conditions at the condenser of the intermediate medium always similar, which makes plant construction easier.
  • the condenser is caused by the large driving temperature difference between the evaporating nitrogen and the intermediate medium in the in most cases turn out to be essentially more compact than that Evaporator of the intermediate medium that is in contact with the heat transfer medium Heat exchange or cold exchange is available.
  • a simple design with a small footprint is sufficient. there conventional components can be used.
  • a pressure regulator belonging to the device which is suitable is the pressure in the evaporator of the intermediate medium to the Setting the desired boiling temperature is in a cascade control arrangement coupled with a temperature controller whose actual value input is a temperature sensor. On The output of the temperature controller is with a reference variable input of the pressure regulator in connection.
  • the intermediate medium is a liquid
  • the cascade control arrangement in a line of the liquid Heat carrier can be arranged, wherein the temperature setpoint of Temperature controller a value above the solidification temperature of the liquid heat transfer medium is set.
  • the pressure regulator can control the pressure in the evaporator the intermediate medium in a simple manner with other conventional Influencing components by having an output of the pressure regulator a regulating valve regulating the nitrogen inflow is connected, which in a feed line of the liquid Nitrogen is arranged in the evaporator with which the condenser of the intermediate medium is thermally connected is.
  • a pressure value input of the pressure regulator is in the pressure signal transmitting Connection with the circuit of the intermediate medium, especially the evaporator of the intermediate medium.
  • FIG. 1 An overall diagram of such a device is shown in FIG. 1
  • Fig. 2 is a detail of the device, namely a Distributor in the evaporator of the liquid nitrogen schematically shown.
  • the device for controllable cooling is generally 1 designated. It is an external circuit of a heat transfer fluid connected to which a consumer 2 who is to be tempered, a pump 3 of the heat transfer fluid and an expansion vessel 4 for the heat transfer fluid belong.
  • This circuit of the heat transfer fluid is in the device 1 via a cooler 5 of the heat transfer fluid closed with an evaporator 6 of an intermediate medium is in a thermally conductive connection and with this a structural unit a heat exchanger.
  • the evaporator 6 of the The intermediate medium is in a cycle of the intermediate medium arranged a condenser 7 of the intermediate medium, but from this spatially and constructively separated.
  • the capacitor 7 the intermediate medium is in a thermally conductive connection with an evaporator 8 liquid nitrogen and forms with this again a structural unit of a heat exchanger.
  • the two Heat exchangers are separate devices.
  • An expansion tank 9 is still connected between the intermediate medium, here to the part of the circuit in which the intermediate medium is gaseous.
  • the liquid nitrogen LN 2 is fed into the evaporator liquid nitrogen 8, the features of which are described below in connection with FIG. 2, via a control valve 10. It evaporates under atmospheric pressure and escapes in gaseous form as GN 2 .
  • the control valve is connected to the output of a pressure regulator 11, the actual value input 12 of which is acted upon by the pressure of the intermediate medium in its circuit, as shown.
  • a reference variable input or setpoint input 13 of the pressure regulator is controlled by a temperature regulator 14.
  • An actual value input 14 of the temperature controller is connected to a temperature sensor 15, which detects the temperature at an outlet of the coolant of the heat transfer fluid which is not designated.
  • a setpoint input of the temperature controller 14 is not shown; it is set to a value which the heat transfer fluid can assume for the temperature control and, for example, is slightly above the solidification temperature of the heat fluid.
  • the latter is the minimum limit value for the pressure control with the pressure controller 11.
  • the temperature control with the temperature controller 14 is therefore upstream of the pressure controller, forming a controller cascade, with which constant temperature control of the heat transfer fluid can be achieved.
  • the heat transfer fluid can thus be freely selected and passed continuously or intermittently through the cooler 5 become. It can get close to its freezing or freezing point be cooled.
  • the heat transfer medium is cooled by means of the intermediate medium, which with regard to one for the tempering task suitable boiling characteristic is selected so that Heat transfer fluid at the desired temperature and the determined by the pressure in the evaporator of the intermediate medium Boiling point is cooled.
  • the intermediate medium evaporates.
  • the steam rising in the circuit arrives into the condenser 7, in which it passes through in the evaporator 8 evaporating liquid nitrogen is cooled and condensed.
  • the liquid intermediate medium runs into by gravity the evaporator 6 of the intermediate medium back, so a natural circulation Completing.
  • the evaporation temperature in the evaporator 6 of the intermediate medium and thus the temperature in the cooler 5 of the heat transfer fluid according to the boiling curve of the intermediate medium be managed.
  • Temperatures from approx. -180 ° C to + 20 ° C can be regulated.
  • the intermediate medium Ambient temperature quickly evaporates completely. It can thereby expand into the expansion tank 9 without risk.
  • Fig. 2 is the inside of the evaporator 8 of the represented liquid nitrogen, which over the the flow determining control valve 10 is passed into the evaporator.
  • the essentially liquid nitrogen initially flows through a diffuser element 17 for two-phase flow to which immediately connects a venturi chamber 18 downstream.
  • the Venturi chamber exit goes into a spider-shaped manifold 19 over, the ends of which are designed as nozzles 20 to 24 are.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Claims (13)

  1. Procédé destiné à refroidir de façon contrôlée par l'évaporation d'azote liquide grâce à un agent intermédiaire refroidissant un porteur de chaleur; l'agent intermédiaire utilisé ayant une courbe d'ébullition différente de celle de l'azote; l'agent intermédiaire étant refroidi avec l'azote liquide qui s'évapore au sein d'un évaporateur (8) dans un condensateur (7) et lequel agent intermédiaire est dirigé à partir du condensateur sous une forme liquide dans un évaporateur dans lequel ledit agent intermédiaire est évaporé sous une pression contrôlée en absorbant de la chaleur provenant du porteur de chaleur; l'agent intermédiaire évaporé étant reconduit vers le condensateur (7) dans lequel il est à nouveau refroidi et condensé par l'azote qui s'évapore; le régulateur de la pression (11) intervient dans l'alimentation en azote liquide vers l'évaporateur (8) d'azote liquide, lequel évaporateur est en liaison de conductivité thermique avec le condensateur (7) de l'agent intermédiaire,
    caractérisé en ce qu'on utilise un agent intermédiaire dont la température du point de solidification est supérieure à la température d'évaporation de l'azote liquide et en ce que l'évaporation de l'azote liquide a lieu à la pression atmosphérique avec un échange de chaleur avec l'agent intermédiaire.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on utilise un porteur de chaleur sous la forme d'un gaz.
  3. Procédé selon la revendication 1 doté d'un échange de chaleur direct entre l'agent intermédiaire qui s'évapore et un utilisateur direct qui peut être un objet ou un produit liquide à la place du porteur de chaleur.
  4. Procédé selon une des revendications 1-3, caractérisé en ce qu'une grandeur de conduite du régulateur de la pression (11) est réglée avec celle de la pression présente dans l'évaporateur (6) de l'agent intermédiaire et en ce que ladite grandeur de conduite est réglée à une valeur de consigne de pression à laquelle on atteint le point d'ébullition de l'agent intermédiaire, ou essentiellement, à la température souhaitée du porteur de chaleur ou de l'utilisateur direct.
  5. Procédé selon une des revendications 1-4, caractérisé en ce que l'agent intermédiaire refroidi et condensé est conduit par l'attraction terrestre dans l'évaporateur (1) de l'agent intermédiaire dans lequel ledit agent intermédiaire est évaporé par un contact thermique avec le porteur de chaleur ou l'utilisateur dans le condensateur et monte sous forme de vapeur à partir dudit évaporateur dans le condensateur (7) où il est refroidi par l'azote liquide et qui s'évapore.
  6. Procédé selon les revendications 4 ou 5, caractérisé en ce que la température du porteur de chaleur ou de l'utilisateur direct est détectée en tant que valeur réelle de température d'un régulateur de température (14) qui transmet la grandeur de conduite de la pression au régulateur de pression (11); une valeur de consigne de température du régulateur de température (14) étant réglée à une température souhaitée ou critique du porteur de chaleur ou de l'utilisateur direct.
  7. Procédé selon la revendication 6, caractérisé en ce qu'en utilisant un porteur de chaleur liquide, la valeur de consigne de température dépasse la température de solidification ou le point de congélation du porteur de chaleur liquide.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'agent intermédiaire est conduit dans un circuit étanche aux fluides à l'aide d'un réservoir de compensation.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que celui-ci est utilisé pour cristalliser à basse température dans des liquides.
  10. Procédé selon une des revendications 1-8, caractérisé en ce qu'il est utilisé pour une utilisation pour le nettoyage de l'air d'échappement.
  11. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la température du porteur de chaleur ou de l'utilisateur direct est détectée et est rentrée en tant que valeur réelle dans une entrée de valeurs réelles (15) d'un régulateur de température (14) dont la grandeur de sortie est appliquée en tant que grandeur de conduite dans une entrée de grandeur de conduite (13) du régulateur de pression de manière à former une régulation en cascades; ce qui permet le réglage d'une différence de température entre le porteur de chaleur ou l'utilisateur direct et l'agent intermédiaire.
  12. Procédé selon la revendication 11, caractérisé en ce que la température dans une conduite d'un porteur de chaleur liquide ou du produit liquide est détectée avec un capteur de température (16) et en ce qu'une valeur de consigne de température du régulateur de température (14) est réglée à une température située au-dessus de la température de solidification du porteur de chaleur liquide ou du produit liquide.
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce qu'une soupape de réglage (10) est actionnée à partir de la sortie du régulateur de pression (11) dans une conduite d'alimentation d'azote conduisant vers l'évaporateur (8) de l'azote; lequel évaporateur est en liaison de conductivité thermique avec le condensateur (7) de l'agent intermédiaire.
EP19990125892 1999-02-20 1999-12-24 Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide Expired - Lifetime EP1030135B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19990125892 EP1030135B1 (fr) 1999-02-20 1999-12-24 Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP99103355 1999-02-20
EP99103355 1999-02-20
EP19990125892 EP1030135B1 (fr) 1999-02-20 1999-12-24 Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide

Publications (2)

Publication Number Publication Date
EP1030135A1 EP1030135A1 (fr) 2000-08-23
EP1030135B1 true EP1030135B1 (fr) 2002-09-11

Family

ID=26152900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990125892 Expired - Lifetime EP1030135B1 (fr) 1999-02-20 1999-12-24 Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide

Country Status (1)

Country Link
EP (1) EP1030135B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940367A1 (de) * 1999-08-25 2001-03-08 Messer Griesheim Gmbh Verfahren und Vorrichtung zur Kälteübertragung
EP3361187A1 (fr) * 2017-02-08 2018-08-15 Linde Aktiengesellschaft Procédé et dispositif de refroidissement d'un consommateur et système comprenant un dispositif correspondant et consommateur
FR3079923B1 (fr) 2018-04-05 2020-05-29 Waga Energy Procede de liquefaction de methane gazeux par vaporisation d'azote, installation de liquefaction du methane gazeux mettant en œuvre le procede

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES349137A1 (es) * 1968-01-11 1969-04-01 Catalana De Gas Perfeccionamientos en el transporte de frio desde fuentes industriales suministradoras de frio como subproducto hasta instalaciones utilizadoras del frio.
DE3317510A1 (de) * 1983-05-13 1984-11-15 Thermal-Werke, Wärme-, Kälte-, Klimatechnik GmbH, 6909 Walldorf Verdampfer mit mehreren entsprechend der verteilung der durch den verdampfer stroemenden luft abgestimmten kaeltemittelkreislaeufen
DE3936940A1 (de) * 1989-11-06 1991-05-08 Westfalen Ag Verfahren und vorrichtung zur erzeugung der gasfoermigen phase aus einem in seiner fluessigen phase gelagerten gasvorrat
DE4438874A1 (de) * 1994-10-31 1996-05-02 Bayer Ag Verfahren zur Reinigung von Abluftströmen durch Kristallisation oder Kondensation aus der Dampfphase
US5694776A (en) * 1996-01-30 1997-12-09 The Boc Group, Inc. Refrigeration method and apparatus
DE29617526U1 (de) * 1996-10-12 1997-02-13 Stalke Dietmar Prof Dr Elektrisch betriebener Flüssigstickstoffverdampfer zur Kühlung temperaturempfindlicher Kristallproben während der Präparation für die Röntgenstrukturanalyse unter Anwendung der Öltropfenmethode
DE19654542C2 (de) * 1996-12-27 2000-08-17 Albert Bauer Klimatisierungsvorrichtung
DE19755286C2 (de) * 1997-12-12 2002-06-20 Messer Griesheim Gmbh Verfahren zum Kühlen eines Wärmeträgers

Also Published As

Publication number Publication date
EP1030135A1 (fr) 2000-08-23

Similar Documents

Publication Publication Date Title
EP0701096A2 (fr) Procédé de fonctionnement d'une installation productrice de froid pour la climatisation de véhicules et installation productrice de froid pour sa mise en oeuvre
EP3417213B1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
DE69917722T2 (de) Gefriertrocknung mit reduziertem Kryogenmittelverbrauch
DE3229779C2 (fr)
DE102022002696B3 (de) Kühlsystem zur Flüssigkeitsimmersionskühlung von elektronischen Bauteilen
EP2667116B1 (fr) Procédé et dispositif destinés au refroidissement
EP0715870A1 (fr) Procédé et dispositif de déparation de masse d'un mélange liquide par cristallisation fractionnée
EP1030135B1 (fr) Procédé pour le refroidissement controlé utilisant l'evaporation d'azote liquide
DE102006000147A1 (de) Kühleinheit
DE2624714A1 (de) Verfahren und vorrichtung zur erzeugung von kaelte
DE102020117235A1 (de) Kryogene Analysesysteme und Verfahren
DE19908506A1 (de) Verfahren und Anlage zur Kälteerzeugung, ausgehend von einem thermischen Zyklus für ein Fluid mit niedrigem Siedepunkt
EP0866291B1 (fr) Pompe de chaleur à compression ou machine de refroidissement à compression et sa méthode de régulation
EP0427112A1 (fr) Procédé et dispositif de production de la phase gazeuse d'un volume de liquide stocké dans la phase liquide
DE3541375C2 (fr)
DE19755286C2 (de) Verfahren zum Kühlen eines Wärmeträgers
DE19620105A1 (de) Verfahren zum Betrieb einer Kälteanlage
EP4107422A1 (fr) Appareil et procédé permettant de générer un flux de gaz froid à température contrôlée
DE2753495A1 (de) Verfahren und vorrichtung zur entnahme von gasen aus einem geschlossenen behaelter
EP0232746A2 (fr) Procédé et dispositif pour maintenir économiquement et automatiquement la concentration de mélanges de réfrigérants s'evaporant
DE3726669A1 (de) Apparatur zur erzeugung von kaelte, vakuum und waerme
EP0417592A2 (fr) Dispositif et procédé de récupération de solvants
DE102015120138B4 (de) Umgebungs-Testvorrichtung, Kühleinrichtung und Umgebungs-Testverfahren
EP4078045B1 (fr) Système frigorifique à compression pour chambre frigorifique électrique
DE3833666C2 (de) Verbundsysteme aus normaler und inverser Rektifikation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010116

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010404

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR CONTROLED COOLING BY EVAPORATING LIQUID NITROGEN

RTI1 Title (correction)

Free format text: PROCESS FOR CONTROLED COOLING BY EVAPORATING LIQUID NITROGEN

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

REF Corresponds to:

Ref document number: 224034

Country of ref document: AT

Date of ref document: 20020915

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902641

Country of ref document: DE

Date of ref document: 20021017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021217

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030328

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030612

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LAUDA DR. R. WOBSER GMBH & CO. KG

Free format text: LAUDA DR. R. WOBSER GMBH & CO. KG#PFARRSTRASSE 41/43#97922 LAUDA-KOENIGSHOFEN (DE) -TRANSFER TO- LAUDA DR. R. WOBSER GMBH & CO. KG#PFARRSTRASSE 41/43#97922 LAUDA-KOENIGSHOFEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151221

Year of fee payment: 17

Ref country code: CH

Payment date: 20151221

Year of fee payment: 17

Ref country code: IE

Payment date: 20151221

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20151223

Year of fee payment: 17

Ref country code: BE

Payment date: 20151217

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 224034

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161224

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161224

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161224

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161224

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59902641

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171221

Year of fee payment: 19

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171229

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59902641

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702