EP2247418B1 - Method and device for preheating a pressed material mat during manufacture of wood material boards - Google Patents
Method and device for preheating a pressed material mat during manufacture of wood material boards Download PDFInfo
- Publication number
- EP2247418B1 EP2247418B1 EP08869105.0A EP08869105A EP2247418B1 EP 2247418 B1 EP2247418 B1 EP 2247418B1 EP 08869105 A EP08869105 A EP 08869105A EP 2247418 B1 EP2247418 B1 EP 2247418B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressed material
- material mat
- several
- continuous furnace
- microwaves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 89
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000002023 wood Substances 0.000 title claims abstract description 9
- 238000012546 transfer Methods 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 32
- 230000005855 radiation Effects 0.000 claims description 21
- 239000004033 plastic Substances 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 9
- 239000006096 absorbing agent Substances 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 5
- 239000011449 brick Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims 1
- 238000010791 quenching Methods 0.000 claims 1
- 230000000171 quenching effect Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000011093 chipboard Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 241000792859 Enema Species 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000007920 enema Substances 0.000 description 2
- 229940095399 enema Drugs 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 101100495270 Caenorhabditis elegans cdc-26 gene Proteins 0.000 description 1
- 241000294754 Macroptilium atropurpureum Species 0.000 description 1
- 229920000535 Tan II Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 235000012773 waffles Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/08—Moulding or pressing
- B27N3/18—Auxiliary operations, e.g. preheating, humidifying, cutting-off
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/08—Moulding or pressing
- B27N3/24—Moulding or pressing characterised by using continuously acting presses having endless belts or chains moved within the compression zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B17/00—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
- F26B17/02—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
- F26B17/026—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the material being moved in-between belts which may be perforated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/18—Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
- F26B3/20—Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/32—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
- F26B3/34—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
- F26B3/347—Electromagnetic heating, e.g. induction heating or heating using microwave energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B7/00—Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
Definitions
- the invention relates to a method according to claim 1 for preheating a pressed material mat scattered on an endless continuously circulating forming belt and a device according to claim 15 for preheating a pressed material mat scattered on an endless continuously circulating forming belt during the production of wood-based panels.
- the microwave preheating units used are predominantly continuous furnaces. Since in the production of wood-based panels, the plate width is many times greater than the plate thicknesses, the microwaves are radiated perpendicular to the wood material plate plane. The plate widths are usually between 1200 and 3900 mm and the plate thicknesses at 30 to 150 mm. The generation of the microwaves takes place in microwave generators, in which the high-frequency modulation and the magnetron tubes are housed.
- microwaves generated are guided by means of hollow waveguides to the actual heating cell in the production plant, wherein a hollow waveguide is necessary for each generator.
- microwaves are branched coming from the individual generators and thus multiplied by the number of energy-carrying hollow waveguides, thus a narrow grid of feed points below and can be realized above the heating cell.
- the feed into the heating cell takes place by means of round hollow waveguides, which are mounted vertically below and above the heating cell.
- a measuring and control device is required, with which the phase angle of the microwave is tuned.
- the microwave preheating device consists of a heating furnace formed as a continuous furnace, in which the feeding of the microwaves into the pressed material via successively arranged rod antennas with reflection screens, lying horizontally and transversely to the production direction above and / or below the material to be pressed are mounted within the heating cell, wherein the rod antennas are each assigned to the opposite surfaces of the material to be pressed reflection surfaces.
- the supply of microwaves can continue to be done by means of hollow waveguide from the generators to the heating cell, due to the radiation characteristics of the rod antenna, usually no additional branching of the hollow waveguide coming from the generators is necessary, that is, the number of feed points corresponds to the number of generators.
- For the transition from hollow waveguide to rod antenna specially developed waveguide transitions are used. This kind of preheating has indeed Proven in principle, but still suffers disadvantages in terms of the extensive space and the high power consumption of individual components.
- Microwave heaters with a frequency band of 915 MHz are known, in which case the microwaves are introduced directly in the inlet gap (region of the tapered press nip in the inlet of a continuously operating press) in the pressed material mat.
- problems have also shown by uncontrollable reflections on the steel strips in operation.
- the state of the art lacks concrete statements regarding an optimum frequency range in connection with a necessary power consumption or radiation capacity and in conjunction with the necessary number of generators for heating a press material mat with differentiated properties at a given speed.
- the exact equipment of the microwave device for this or that method is left to the skilled person (on site), data on the frequency are limited to the range microwave or contain sizes across several powers.
- These statements do not give the person skilled in the art any indication of the implementation of a teaching with respect to these parameters from the patent literature concerning a optimally usable and useful frequency. It has been found that the skilled person has been virtually left alone and in a range of frequencies when using microwaves over several powers (3x10 2 MHz to 3x10 6 MHz) can decide which frequency could be chosen.
- the object of the present invention is to provide a method and a device which makes it possible to provide a high efficiency for the heating of Pressgutmatten with a suitable frequency, wherein the heating is uniform and energetic as environmentally and economically as possible to make before This press material mat is pressed in a continuously operating press.
- the method and the device make it possible to use components of lower power consumption.
- the apparatus provided in this context is usable with the method as well independent functional and should have easily replaceable components and a high resistance to interference.
- the solution for creating a method is that microwaves are used in a frequency range of 2400 - 2500 MHz for heating the press mat, the microwaves for each press surface side from 20 to 300 microwave generators with a respective power of 3 to 50 kW are generated.
- the solution for a device for carrying out the method or as an independent device is that 20 to 300 microwave generators with magnetrons of a power of 3 to 50 kW and with a frequency range of 2400 - 2500 MHz are arranged in a continuous furnace per press surface side.
- the mat height is after pre-pressing in the MDF board production at 40 to 350 mm and in chipboard production at 30 to 200 mm.
- Orientated scattered chipboard (OSB) can be used without pre-pressing in a height of 50 to 500 mm.
- magnetrons with a power of 6 to 20 kW are particularly suitable for this frame data of the pressed material mat to be heated.
- the frequency used is in the ISM (Industrial Science Medicine Band) band and is an internationally recognized and approval-free frequency band for microwaves.
- the hitherto customary high-frequency devices have the disadvantage that a large amount of radiation comes out of the pressed material mat again or simply passes through without heating the pressed material mat. Therefore, reflectors must be arranged on the other side after the press material mat. Include extensive calculations for the best possible radiation and appropriate control and regulatory effort.
- the microwave radiation has a through Calculation and corresponding experiments surprisingly shown that in a pre-compacted MDF press material mat or similar material, a penetration depth of about 200 mm at a frequency of 2450 MHz is present. In the OSB production, a pre-compaction is not provided.
- the large number of generators that are necessary for the device and the method advantageously result in a small size of the radiation openings at the microwave frequency used. This is approximately at a 2 x 5 cm opening. For this reason, it is also possible to arrange a plurality of generators in width and in a small space.
- the waveguide neck at the exit are preferably covered to be protected from a possible dust.
- 930 MHz required much larger waveguide, so that a larger number of generators or waveguides over the width of a pressed material mat would not be buildable.
- a microwave generator is preferably modular and can be easily disassembled on site into parts for repair or replacement.
- a metal detector may be arranged to examine the pressed material mat before microwave heating to metallic parts.
- metallic parts whose dimensions are greater in length than 1 ⁇ 4 of the wavelength (about 40 mm). Sparks during heating may cause fires in the pressed material mat. Since non-magnetic metal parts can also lead to such reactions and these can not be removed from the press material mat via a conventional magnetic separator, it must be possible to dispose of the press material mat for disposal before heating the press material mat, or the microwave generators are switched off when a detected piece of metal passes through and the discharge of the thus not heated Pressgutmatte can then be done shortly before the press. Nevertheless, it is necessary to check the passing pressed material mat for sparks or fires. This is done with conventional sensors and measuring technology. At the same time, means for extinguishing fires are advantageously present in the device or already integrated in the production hall on site.
- ⁇ 2 corresponds to the efficiency of the magnetrons used in the microwave generators, which convert the high voltage into microwave radiation and ⁇ 3 is the efficiency of converting the microwave radiation into thermal power in the pressed material mat and corresponds to the temperature increase. In this case occur as a loss, for example, the leakage radiation, reflected power, the absorber power and the like.
- ⁇ 3 could be determined in laboratory tests and depends to a great extent on the boundary conditions (eg plastic tapes) and the material to be heated.
- the present material is a mixture of scattered fibers and / or chips which have been precompressed for venting and have a relatively low moisture content.
- the forming belt has a greater width than the microwave belt used in the continuous furnace.
- the latter is preferably made of Kevlar®. This circumstance results from the need to allow a very wide spread, which is then trimmed by 10-20%, since the edges of a scattered press mat usually have inhomogeneities such as scattering errors or unwanted increases in density. For example, a 2500 mm wide Pressgutmatte before the Enema in the pre-press at 2250 mm width trimmed. Accordingly, it is sufficient if the microwave band in the continuous furnace has a width of 2300 mm. This is advantageous in the necessary design of the sealing of edge radiations from the microwave generation in the continuous furnace.
- absorption means or - elements which absorb the edge and scattered radiation.
- the heating by means of the microwaves advantageously causes a uniform temperature distribution of +/- 7 ° C in the pressed material mat 14 over the length and width.
- FIG. 1 is a production plant for the production of material plates from a Pressgutmatte 14 shown schematically in a side view. It consists in its main parts of one or more scattering stations 16, from which a Pressgutmatte 14 is continuously scattered in one or more layers on a forming belt 6.
- a pre-press 17 consisting of an over the forming belt 6 endlessly circulating hold-down belt 19.
- Niederhaltede may be arranged underneath an endless with circumferential guide belt 18.
- a continuously operating press 1 is shown, which is designed as a double belt press with rotating steel bands 7 and heated press / heating plates 2.
- the revolving steel belts 7 are compared to the press / heating plates 2 by means of rolling elements 5, for example, parallel to each other and endlessly guided rolling rods, supported.
- the continuous furnace 4 is arranged immediately in front of the incoming steel strips 5 of the continuously operating press 1.
- the pressed material mat 14 is passed for a passage through the continuous furnace 4 of the forming belt 6 on the lower plastic belt 11 and optionally clamped depending on the type and design of the continuous furnace 4 with a top circumferential plastic belt 8.
- the absorber stones 25 arranged on both sides of the microwave generator 26 can be raised and lowered by means of the height adjustment 12 and are adjusted depending on the height of the pressed material mat passing through.
- the height adjustment for the top circumferential plastic band 8 is not shown.
- the task of the upper plastic belt 8 is to protect the continuous furnace 4 from increased dust formation by the pressed material mat 14 and to prevent the pressed material mat 14 from springing back to its original state during pre-compression through the pre-press 17 during transport. Also, the upper plastic band 8 can prevent escape of moisture during preheating.
- Microwaveable mold or plastic bands 6, 8, 11 are characterized in that they only heat by about 10 ° in a passage through the range of the microwave generator 26. Suitable for this purpose, for example, a microwave band KEVLAR® with a one- or two-sided Teflon coating.
- a simple device of the continuous furnace 4 is constructed as follows. At a lower frame 23 there is the circulation of the lower plastic belt 11 with associated drive 11. In this case, the mold belt 6 passes the Pressgutmatte 14 on the lower plastic belt 11. The gap between the two rotating endless belts can be bridged easily in a Pressgutmatte 14, otherwise means are provided which ensure that a pressed material mat 14 undamaged survives the transition to the lower plastic strip 11 of the continuous furnace 4.
- a height adjustment 12 is arranged for the inlet 27 and outlet 28 of the continuous furnace 4 provided Absorbtionsieri 25 to properly shield the microwave radiation generated by the microwave generator 26 in order to preheat different heights of Pressgutmatten 14 can.
- the inlet 27 and the outlet 28 can be adjusted in width.
- This width adjustment and the height adjustment for the upper circumferentially arranged plastic belt 8 are not shown.
- the absorption elements 25 can be designed, for example, as absorber stones or water containers.
- reflectors such as perforated plates or other suitable means
- the reflectors are arranged such that they reintroduce the scattered radiation directly into the pressed material mat 14.
- sensors 29 can be arranged which detect the height and the width of the pressed material mat 14 and adjust the inlet 27 and the outlet 28 of the pressed material mat 4 accordingly.
- a microwave generator 26 On the support frame 15, the microwave generator 26 are arranged in the middle of the continuous furnace 4.
- a microwave generator 26 consists at least of a magnetron 20, an associated circulator 21 and a tuner 22.
- the tuner 22 takes care of the fine adjustment of the microwave radiation or its orientation, whereas the circulator 21 receives retroreflective microwaves and feeds them to further use. In most cases, water from the water cooling 9 is heated to absorb the excess microwave radiation.
- the metal detector of the device At 13, the metal detector of the device is shown. This can also be arranged depending on the design of the system directly above the forming belt 6 in front of the continuous furnace 4. Preferably, in this case, a discharge or a broaching possibility of an offset with metal pieces Pressgutmatte before the continuous furnace 4 is given.
- the microwave generators 26 are briefly switched off during the passage of a piece of metal and the part of the pressed material mat 14, which has not been heated, over a short in the direction of production disposed of disposed in front of the press 1 drop.
- the individual parts such as Magnetron 20, Circulator 21 and tuner 22, a microwave generator 26 modular build and provide for quick replacement in case of failure or maintenance.
- each microwave generator 26 is constructed as a separate module in the continuous furnace 4 and possibly has quick-release closures for disassembly and assembly.
- sensors for spark and / or fire detection in and / or on the pressed material mat 14 in or on the continuous furnace 4 and / or to provide means for extinguishing a fire.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Forests & Forestry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren gemäß Anspruch 1 zur Vorwärmung einer auf einem endlos kontinuierlich umlaufenden Formband gestreuten Pressgutmatte und eine Vorrichtung gemäß Anspruch 15 zur Vorwarmung einer auf einem endlos kontinuierlich umlaufenden Formband gestreuten Pressgutmatte im Zuge der Herstellung von Holzwerkstoffplatten.The invention relates to a method according to claim 1 for preheating a pressed material mat scattered on an endless continuously circulating forming belt and a device according to
Aus der Patentliteratur und der Industrie ist die Anwendung der Hochfrequenztechnik als Mittel zur Vorwärmung von Span- bzw. Fasergut zwecks der Reduzierung des Pressfaktors während des danach eingeleiteten Pressvorganges zur Erhöhung der Produktionsleistung allgemein bekannt. Bekannt ist aus
Mit der
Aus der Erfahrung und der Patentliteratur finden sich folgende Frequenzbereiche für Hochfrequenz und Mikrowelle in der beschriebenen industriellen Anwendung. Dabei versteht man üblicherweise eine Frequenz von unter 300 MHz als Hochfrequenz, eine Frequenz von 300 MHz bis zu 300.000 MHz als Mikrowellenfrequenz.From the experience and the patent literature, the following frequency ranges for high frequency and microwave can be found in the described industrial application. It is usually understood that a frequency of less than 300 MHz as high frequency, a frequency of 300 MHz to 300,000 MHz as the microwave frequency.
In der
Aus
Grundsätzlich mangelt es dem Stand der Technik an konkreten Aussagen hinsichtlich eines optimalen Frequenzbereiches in Verbindung mit einer notwendigen Leistungsaufnahme bzw. Strahlungskapazität und in Verbindung mit der notwendigen Anzahl von Generatoren zur Erwärmung einer mit vorgegebener Geschwindigkeit laufenden Pressgutmatte differenzierter Eigenschaften. In der Regel liest man in der Patentliteratur: Die genaue Ausstattung der Mikrowellenvorrichtung für dieses oder jenes Verfahren wird dem Fachmann (vor Ort) überlassen, Angaben zur Frequenz beschränken sich auf den Bereich Mikrowelle oder enthalten Größenangaben über mehrere Potenzen hinweg. Durch diese Aussagen ergeben sich für den Fachmann keine Hinweise auf die Umsetzung einer Lehre bezüglich dieser Parameter aus der Patentliteratur betreffend einer optimal verwendbaren und nützlichen Frequenz. Es hat sich gezeigt, dass der Fachmann quasi allein gelassen worden ist und in einem Bereich an Frequenzen bei Verwendung von Mikrowellen über mehrere Potenzen (3x102 MHz bis 3x106 MHz) hinweg entscheiden kann, welche Frequenz gewählt werden könnten.Basically, the state of the art lacks concrete statements regarding an optimum frequency range in connection with a necessary power consumption or radiation capacity and in conjunction with the necessary number of generators for heating a press material mat with differentiated properties at a given speed. In general, one reads in the patent literature: The exact equipment of the microwave device for this or that method is left to the skilled person (on site), data on the frequency are limited to the range microwave or contain sizes across several powers. These statements do not give the person skilled in the art any indication of the implementation of a teaching with respect to these parameters from the patent literature concerning a optimally usable and useful frequency. It has been found that the skilled person has been virtually left alone and in a range of frequencies when using microwaves over several powers (3x10 2 MHz to 3x10 6 MHz) can decide which frequency could be chosen.
Wie bereits angedeutet ist es weiter von Nachteil, dass großer anlagentechnischer Aufwand zur Sicherstellung der Strahlungssicherheit für das Personal und die Maschinen getroffen werden müssen, wenn die Hoch- oder Mikrowellenfrequenzen in separaten Anlagen (meist direkt neben den Hauptstromanschlüssen) generiert werden und mittels Wellenleitern erst zur Anwendung in die Produktionsanlage geführt werden müssen. Neben einer massiven Verschwendung nützlichen Bauraums müssen gegen mögliche Schäden an diesen so genannten Wellenleiter (Waveguides) kostspielige Strahlungsdetektoren in einem Sicherheitsbereich angebracht werden. All dies erschwert die Minimalwartung (auf Sicht) und fördert einen hohen Kostenaufwand bei Reparaturen und Stillstandszeiten. Allein durch den Ausfall einer Vorwärmanlage ergibt sich ein betriebswirtschaftlicher Verlust trotz weiter laufender Produktion von bis zu 30%, da sich der Pressfaktor ohne Vorwärmung signifikant erhöht und die Produktionsgeschwindigkeit um ein Drittel verringert werden muß.As already indicated, it is further disadvantageous that large plant technical effort to ensure the radiation safety for the staff and the machines must be made when the high or microwave frequencies in separate systems (usually next to the main power connections) are generated and waveguides only for Application must be performed in the production plant. In addition to a massive waste of useful space, costly radiation detectors must be installed in a security area against possible damage to these so-called waveguides. All of this complicates the minimum maintenance (on sight) and promotes a high cost of repairs and downtime. The failure of a preheating system alone results in a business loss despite continuing production of up to 30%, since the press factor increases significantly without preheating and the production speed must be reduced by one third.
Die Aufgabe vorliegender Erfindung besteht darin, ein Verfahren und eine Vorrichtung zu schaffen, die es ermöglicht mit einer geeigneten Frequenz einen hohen Wirkungsgrad für die Erwärmung für Pressgutmatten bereit zu stellen, wobei die Erwärmung gleichmäßig und energetisch so ökologisch und ökonomisch wie möglich vorzunehmen ist, bevor diese Pressgutmatte in einer kontinuierlich arbeitenden Presse verpresst wird. Gleichzeitig soll das Verfahren und die Vorrichtung es ermöglichen Bauteile geringerer Leistungsaufnahme zu verwenden. Die in diesem Zusammenhang geschaffene Vorrichtung ist mit dem Verfahren verwendbar aber auch eigenständig funktional und soll leicht austauschbare Komponenten und eine hohe Resistenz gegen Störungen aufweisen.The object of the present invention is to provide a method and a device which makes it possible to provide a high efficiency for the heating of Pressgutmatten with a suitable frequency, wherein the heating is uniform and energetic as environmentally and economically as possible to make before This press material mat is pressed in a continuously operating press. At the same time, the method and the device make it possible to use components of lower power consumption. The apparatus provided in this context is usable with the method as well independent functional and should have easily replaceable components and a high resistance to interference.
Die Lösung zur Schaffung eines Verfahrens besteht darin, dass zur Erwärmung der Pressgutmatte Mikrowellen in einem Frequenzbereich von 2400 - 2500 MHz verwendet werden, wobei die Mikrowellen für jede Pressflächenseite aus 20 bis 300 Mikrowellenerzeugern mit Magnetronen einer jeweiligen Leistung von 3 bis 50 kW erzeugt werden.The solution for creating a method is that microwaves are used in a frequency range of 2400 - 2500 MHz for heating the press mat, the microwaves for each press surface side from 20 to 300 microwave generators with a respective power of 3 to 50 kW are generated.
Die Lösung für eine Vorrichtung zur Durchführung des Verfahrens oder als eigenständige Vorrichtung besteht darin, dass in einem Durchlaufofen je Pressflächenseite 20 bis 300 Mikrowellenerzeuger mit Magnetronen einer Leistung von 3 bis 50 kW und mit einem Frequenzbereich von 2400 - 2500 MHz angeordnet sind.The solution for a device for carrying out the method or as an independent device is that 20 to 300 microwave generators with magnetrons of a power of 3 to 50 kW and with a frequency range of 2400 - 2500 MHz are arranged in a continuous furnace per press surface side.
Bevorzugt werden mit diesem Verfahren und einer geeigneten Anlage Pressgutmatten mit einem Flächengewicht von 2 bis 40 kg/m2 erwärmt, die mit einer Vorschubgeschwindigkeit von 50 bis 2000 m/s verfahren werden. Dabei liegt die Mattenhöhe nach einer Vorpressung bei der MDF-Plattenherstellung bei 40 bis 350 mm und bei der Span-Plattenherstellung bei 30 bis 200 mm. Orientiert gestreutes Spanmaterial (OSB) kann ohne Vorpressung in einer Höhe von 50 bis 500 mm Verwendung finden. In einer bevorzugten Ausführungsform sind für diese Rahmendaten der aufzuwärmenden Pressgutmatte Magnetrone einer Leistung von 6 bis 20 kW besonders geeignet. Die verwendete Frequenz liegt im ISM-Band (Industrial Science Medicine Band) und ist ein international anerkanntes und genehmigungsfreies Frequenzband für Mikrowellen.Preference is given to using this method and a suitable system press material mats with a basis weight of 2 to 40 kg / m 2 heated, which are moved at a feed rate of 50 to 2000 m / s. The mat height is after pre-pressing in the MDF board production at 40 to 350 mm and in chipboard production at 30 to 200 mm. Orientated scattered chipboard (OSB) can be used without pre-pressing in a height of 50 to 500 mm. In a preferred embodiment, magnetrons with a power of 6 to 20 kW are particularly suitable for this frame data of the pressed material mat to be heated. The frequency used is in the ISM (Industrial Science Medicine Band) band and is an internationally recognized and approval-free frequency band for microwaves.
In Versuchen hat sich nun gezeigt, dass in vorteilhafter Weise bei einer Mikrowellenlänge von 12 cm eine große Menge an Mikrowellen in einer Pressgutmatte bis zu einer Eindringtiefe von 200 mm absorbiert wird. Diese physikalischen Gegebenheiten konnten auch rechnerisch überprüft werden; man spricht von einer Eindringtiefe "d", per Definition benannt als der Abstand von der Oberfläche, an der die Energie der Wellen auf 1/e=0,37 abgesunken ist, wobei dies in etwa 37% der in den "äußeren Stoffschichten herrschenden Feldstärke E" entspricht.
Bei folgenden vorhandenen Randbedingungen
f = Frequenz = 2,45 GHz,
c = Lichtgeschwindigkeit ≈ 3*10^8 m/s
ε'r ≈ 3,5
ε"r ≈ 0,4, wobei
f = frequency = 2.45 GHz,
c = speed of light ≈ 3 * 10 ^ 8 m / s
ε ' r ≈ 3.5
ε " r ≈ 0.4, where
Die somit errechenbare Eindringtiefe liegt bei d = 0,183m.The thus calculable penetration depth is d = 0.183m.
Die bisher üblichen Hochfrequenzvorrichtungen weisen den Nachteil auf, dass eine große Menge an Strahlung wieder aus der Pressgutmatte herauskommt bzw. einfach hindurchtritt ohne die Pressgutmatte zu erwärmen. Deshalb müssen nach der Pressgutmatte auf der anderen Seite Reflektoren angeordnet sein. Einher gehen umfangreiche Berechnungen zur bestmöglichen Durchstrahlung und entsprechender Steuer- und Regelungsaufwand. Bei der Mikrowellenstrahlung hat sich durch eine Berechnung und entsprechende Versuche überraschenderweise gezeigt, dass bei einer vorab verdichteten Pressgutmatte aus MDF oder ähnlichem Material eine Eindringtiefe von etwa 200 mm bei einer Frequenz von 2450 MHz vorhanden ist. Bei der OSB-Herstellung ist eine Vorverdichtung nicht vorgesehen. Damit wird bei einer 400 mm hohen Pressgutmatte bei einer zweiseitigen Einstrahlung jeweils auf die ersten 200 mm bereits im ersten Durchgang in etwa 60% der Energie in Wärmeleistung umgewandelt und führt zu einem optimierten Wirkungsgrad während der Erwärmung. Gleichzeitig können halb so hohe und kleinere Pressgutmatten mit deutlich höherer Produktionsgeschwindigkeit gefahren werden, da eine von beiden Seiten eintretende Strahlung optimal absorbiert wird und die doppelte Leistung zur Verfügung steht.The hitherto customary high-frequency devices have the disadvantage that a large amount of radiation comes out of the pressed material mat again or simply passes through without heating the pressed material mat. Therefore, reflectors must be arranged on the other side after the press material mat. Include extensive calculations for the best possible radiation and appropriate control and regulatory effort. In the microwave radiation has a through Calculation and corresponding experiments surprisingly shown that in a pre-compacted MDF press material mat or similar material, a penetration depth of about 200 mm at a frequency of 2450 MHz is present. In the OSB production, a pre-compaction is not provided. With a 400 mm high pressed material mat with a two-sided irradiation on the first 200 mm already in the first round about 60% of the energy is converted into heat output and leads to an optimized efficiency during the heating. At the same time, half as high and smaller press material mats can be run at a significantly higher production speed, as a radiation entering from both sides is optimally absorbed and twice as much power is available.
Die große Anzahl an Generatoren, die für die Vorrichtung und das Verfahren notwendig sind ergeben in vorteilhafter Weise eine geringe Größe der Strahlungsöffnungen bei der verwendeten Mikrowellenfrequenz. Diese liegt in etwa bei einer 2 x 5 cm Öffnung. Aus diesem Grunde ist es auch möglich eine Vielzahl an Generatoren in der Breite und in einem kleinen Bauraum anzuordnen. Die Hohlleiterstutzen beim Austritt sind vorzugsweise abgedeckt um vor einer möglichen Staubentwicklung geschützt zu sein. Bei Verwendung der bisher üblichen Hochfrequenzstrahlung zur Erwärmung von Pressgutmatten, 930 MHz benötigte man viel größere Hohlleiter, so dass eine größere Anzahl an Generatoren bzw. Waveguides über die Breite einer Pressgutmatte auch nicht verbaubar wären. Ein Mikrowellenerzeuger ist vorzugsweise modular aufgebaut und kann ohne weiteres vor Ort in Einzelteile für eine Reparatur oder einen Austausch zerlegt werden. Es ist auch möglich einen ganzen Mikrowellenerzeuger (samt Magnetron, Zirkulator und Tuner usw.) als Modul vorzusehen und diesen mit Schnellverschlüssen zur Montage und Demontage zu versehen. So können ausgefallene Mikrowellenerzeuger schnell und problemlos aus der Vorrichtung entfernt und durch neue ersetzt werden. Ein Austausch von Einzelteilen bei den bisher verwendeten Hochfrequenz-Anlagen beinhaltet eine sehr umfangreiche Reparatur, für die neben hohem Personalaufwand auch große Hub- und Montagegeräte verwendet werden müssen. Allein der Aufwand die notwendigen Materialien oder das Personal in einem Drei-Schicht-Betrieb im Störungsfall vor Ort zu bringen ist aufwendig und kostet viel Zeit. Dagegen ist der Austausch eines modular aufgebauten Mikrowellenerzeugers einfach, durch ein oder zwei Personen problemlos zu bewerkstelligen und nimmt nicht viel Zeit in Anspruch. Es können derartige Module aufgrund ihrer Größe problemlos vorgehalten werden und während des Betriebs der Anlage ist üblicherweise immer ein Monteur vor Ort.The large number of generators that are necessary for the device and the method advantageously result in a small size of the radiation openings at the microwave frequency used. This is approximately at a 2 x 5 cm opening. For this reason, it is also possible to arrange a plurality of generators in width and in a small space. The waveguide neck at the exit are preferably covered to be protected from a possible dust. When using the usual high-frequency radiation for heating Pressgutmatten, 930 MHz required much larger waveguide, so that a larger number of generators or waveguides over the width of a pressed material mat would not be buildable. A microwave generator is preferably modular and can be easily disassembled on site into parts for repair or replacement. It is also possible to provide a whole microwave generator (including magnetron, circulator and tuner, etc.) as a module and to provide it with quick-release fasteners for mounting and dismounting. Thus, failed microwave generators can be quickly and easily removed from the device and replaced with new ones. An exchange of parts in the previously used high-frequency systems includes a very extensive repair, for which in addition to high personnel costs and large lifting and mounting equipment must be used. Just the effort to bring the necessary materials or staff in a three-shift operation in case of failure on site is costly and costs a lot of time. In contrast, the replacement of a modular microwave generator is easy to accomplish by one or two people easily and takes little time. Such modules can easily be kept available due to their size and during operation of the system is usually always a fitter on site.
In der Anlage bzw. in der Vorrichtung kann ein Metalldetektor angeordnet sein, um die Pressgutmatte vor der Mikrowellen-Erwärmung auf metallische Teile zu untersuchen. Besonders kritisch sind metallische Teile, die in ihren Abmessungen in der Länge größer sind als ¼ der Wellenlänge (ungefähr 40 mm). Hier kann es durch Funkenbildung während der Erwärmung zu Bränden in der Pressgutmatte kommen. Da hier auch nicht magnetische Metallteile zu derartigen Reaktionen führen können und diese über einen üblichen Magnetabscheider nicht aus der Pressgutmatte entfernbar sind, muss vor der Erwärmung der Pressgutmatte entweder ein Abwurf für die Pressgutmatte zur Entsorgung möglich sein oder die Mikrowellenerzeuger werden bei Durchlauf eines erkannten Metallstückes ausgeschaltet und der Abwurf der somit nicht erwärmten Pressgutmatte kann anschließend kurz vor der Presse erfolgen. Dennoch ist es notwendig die durchlaufende Pressgutmatte auf Funkenbildung oder Brände zu prüfen. Dies geschieht mit üblicher Sensorik und Messtechnik. Gleichzeitig sind in vorteilhafter Weise in der Vorrichtung Mittel zum Löschen von Bränden vorhanden oder bereits in der Produktionshalle vor Ort integriert.In the plant or in the device, a metal detector may be arranged to examine the pressed material mat before microwave heating to metallic parts. Particularly critical are metallic parts whose dimensions are greater in length than ¼ of the wavelength (about 40 mm). Sparks during heating may cause fires in the pressed material mat. Since non-magnetic metal parts can also lead to such reactions and these can not be removed from the press material mat via a conventional magnetic separator, it must be possible to dispose of the press material mat for disposal before heating the press material mat, or the microwave generators are switched off when a detected piece of metal passes through and the discharge of the thus not heated Pressgutmatte can then be done shortly before the press. Nevertheless, it is necessary to check the passing pressed material mat for sparks or fires. This is done with conventional sensors and measuring technology. At the same time, means for extinguishing fires are advantageously present in the device or already integrated in the production hall on site.
In einem bevorzugten Ausführungsbeispiel für die Vorrichtung ergeben sich folgende technische Rahmenbedingungen:In a preferred embodiment of the device, the following technical conditions result:
Der Gesamtwirkungsgrad eines Durchlaufofens mit Mikrowellenerzeugung ergibt sich aus drei unterschiedlichen Wirkungsgraden. ηges = η1 * η2 * η3 η1 entspricht dabei dem Wirkungsgrad des Transformators, der die Netzspannung vor Ort eine Gleichspannung umwandelt. η2 entspricht dem Wirkungsgrad der verwendeten Magnetrone in den Mikrowellenerzeugern, die die Hochspannung in Mikrowellenstrahlung umwandeln und η3 ist der Wirkungsgrad der Umwandlung der Mikrowellenstrahlung in Wärmeleistung in der Pressgutmatte und entspricht der Temperaturerhöhung. Hierbei treten als Verlust beispielsweise die Leckstrahlung, reflektierte Leistung, die Absorberleistung und dergleichen auf.The overall efficiency of a continuous furnace with microwave generation results from three different efficiencies. η ges = η 1 * η 2 * η 3 η 1 corresponds to the efficiency of the transformer, which converts the mains voltage locally into a DC voltage. η 2 corresponds to the efficiency of the magnetrons used in the microwave generators, which convert the high voltage into microwave radiation and η 3 is the efficiency of converting the microwave radiation into thermal power in the pressed material mat and corresponds to the temperature increase. In this case occur as a loss, for example, the leakage radiation, reflected power, the absorber power and the like.
Üblicherweise werden η1 und η2 von den jeweiligen Herstellern angegeben und weisen im bevorzugten Ausführungsbeispiel die Werte η1 = 0,95 und η2 = 0,70 auf. η3 konnte in Laborversuchen ermittelt werden und ist im großen Maß abhängig von den Randbedingungen (z. B. Kunststoffbänder) und dem zu erwärmenden Material. Das vorliegende Material ist ein Gemenge aus gestreuten Fasern und/oder Spänen, die zur Entlüftung vorverdichtet worden sind und eine relativ geringe Feuchte aufweisen.Usually η 1 and η 2 are specified by the respective manufacturers and in the preferred embodiment have the values η 1 = 0.95 and η 2 = 0.70. η 3 could be determined in laboratory tests and depends to a great extent on the boundary conditions (eg plastic tapes) and the material to be heated. The present material is a mixture of scattered fibers and / or chips which have been precompressed for venting and have a relatively low moisture content.
In den Versuchen hat sich unter Laborbedingungen bei einem Durchsatz von 1 kg/s und einer Erwärmung um 20 K eine Wärmeleistung im Produkt von 36 kW gezeigt, was einem Wirkungsgrad η3 = 0,60 entspricht. Bei einem weiteren Versuch mit 0,5 kg/s konnte eine Erwärmung um 40 K bei gleich bleibender Wärmeleistung erreicht werden, was den Wirkungsgrad bestätigt hat. Umgereichnet auf eine Großanlage mit einer Durchsatzleistung von 18 t/h atro und einer Mattenbreite nach einer Seitenbesäumung von 1850 bis 2150 mm ergibt sich die Vorgabe, dass 18 t des Rohmaterials in den Streumaschinen pro Stunde von einer Durchschnittstemperatur von 30° Celsius auf 60° C durch die Vorrichtung aufgewärmt werden müssen.In the experiments, under laboratory conditions at a throughput of 1 kg / s and a heating by 20 K, a heat output in the product of 36 kW has been shown, which corresponds to an efficiency η 3 = 0.60. In a further experiment with 0.5 kg / s, a warming of 40 K with constant heat output was achieved, which confirmed the efficiency. Surrounded by a large plant with a throughput of 18 t / h atro and a mat width after side trimming from 1850 to 2150 mm, the requirement is that 18 t of the raw material in the spreading machines per hour from an average temperature of 30 ° Celsius to 60 ° C have to be warmed up by the device.
Es ergibt sich also bei einem Durchsatz von 5 kg/s und einer gewünschten Erwärmung T = 30K eine Wärmeleistung im Produkt von 270 kW. Bei einer Annahme von einem Wirkungsgrad η3 = 0,60 ergibt sich ein Gesamtwirkungs-grad von ηges = 0,40 und eine Gesamtanschlussleistung von 675 kW. Die erforderliche Anzahl an Magnetronen und deren Leistung ergibt sich sodann in einer weiteren Umrechnung mit 450 kW. Aufgeteilt auf eine ausgewählte Anzahl an Magnetronen ergeben sich beispielsweise 50 Magnetrone mit einer jeweiligen Leistung von 9kW. In der Vorrichtung werden demgemäß je Pressflächenseite 25 Magnetrone in entsprechenden Mikrowellenerzeugern verbaut. Der Bauraum ist erfahrungsgemäß dafür bei weitem ausreichend, so dass sogar noch Erweiterungsmöglichkeiten gegeben sind um die Kapazität beispielsweise zu verdoppeln und/oder um Mikrowellenerzeuger bzw. Magnetrone als Reserve vor Ort zu verbauen um abwechselnd einen Satz zu verwenden. Damit können unvorhergesehene Überhitzungszustände in der Vorrichtung und übliche Geräteprobleme einhergehend in einem 24/7-Dauerbetrieb vermieden werden.Thus, at a throughput of 5 kg / s and a desired heating T = 30K, a heat output in the product of 270 kW results. Assuming an efficiency η 3 = 0.60 results in a total efficiency of η ges = 0.40 and a total connected load of 675 kW. The required number of magnetrons and their power then results in a further conversion to 450 kW. Divided into a selected number of magnetrons, for example, there are 50 magnetrons with a respective power of 9 kW. Accordingly, 25 magnetrons are installed in respective microwave generators in the device per press surface side. Experience has shown that the installation space is by far sufficient, so that even expansion possibilities are given to double the capacity, for example, and / or to install microwave generators or magnetrons in reserve in order to alternately use a set. Thus, unforeseen overheating conditions in the device and common equipment problems associated with 24/7 continuous operation can be avoided.
Dem Fachmann ist vermittelbar, dass für eine derartige Vorrichtung entsprechende Steuer- und Regelmechanismen und Fernwartung vorgesehen sein sollten. Sinnvoll ist es auch einen Regelkreis vorzusehen, der entsprechend des Durchsatzes n kg/s die Leistung der Mikrowellenerzeuger anpasst und für eine optimale und energiesparende Anwendung sorgt. In diesen Regelkreis müssen daneben Werte über die Feuchtigkeit der Pressgutmatte, Dichte, Geschwindigkeit und dergleichen einfließen um eine sinnvolle Regelung zu ermöglichen. Entsprechende Messtechnik kann dann in der Vorrichtung vorgesehen sein.The person skilled in the art can communicate that appropriate control and regulating mechanisms and remote maintenance should be provided for such a device. It is also sensible to provide a control circuit which, in accordance with the throughput n kg / s, adapts the power of the microwave generators and ensures optimum and energy-saving use. In addition, values about the moisture content of the pressed material mat, density, speed and the like must be included in this control loop in order to enable meaningful control. Corresponding measurement technology can then be provided in the device.
In einer weiteren bevorzugten Ausführungsform ist folgender Aufbau der Vorrichtung gegeben.In a further preferred embodiment, the following structure of the device is given.
Das Formband weist eine größere Breite als das im Durchlaufofen verwendete Mikrowellenband auf. Letzteres besteht vorzugsweise aus Kevlar®. Dieser Umstand ergibt sich aus der Notwendigkeit eine sehr breite Streuung zu ermöglichen, die anschließend um 10 - 20% besäumt wird, da die Ränder einer gestreuten Pressgutmatte in der Regel Inhomogenitäten wie zum Beispiel Streufehler oder ungewollte Erhöhungen der Dichte aufweisen. Beispielsweise wird eine 2500 mm breite Pressgutmatte vor dem Einlauf in die Vorpresse auf 2250 mm Breite besäumt. Demnach ist es ausreichend, wenn das Mikrowellenband in dem Durchlaufofen eine Breite von 2300 mm aufweist. Dies ist von Vorteil bei der notwendigen Gestaltung der Abdichtung von Randstrahlungen aus der Mikrowellenerzeugung im Durchlaufofen. In vorteilhafter Weise sind an den Längsseiten stationäre und im Ein- bzw. Auslauf des Durchlaufofens bewegliche Absorbtionsmittel bzw. - elemente vorgesehen, die die Rand- und Streustrahlung auffangen. Besonderes Augenmerk muss der Feuchtigkeitserhaltung in der Pressgutmatte gelten und um Feuchtigkeitsverlust während der Erwärmung durch Ausdampfen der Feuchte zu vermeiden kann es notwendig sein auch ein auf der Pressgutmatte aufliegendes endlos umlaufendes Kunststoffband vorzusehen. Die Erwärmung mittels der Mikrowellen bewirkt in vorteilhafter Weise eine gleichmäßige Temperaturverteilung von +/- 7° C in der Pressgutmatte 14 über die Länge und Breite.The forming belt has a greater width than the microwave belt used in the continuous furnace. The latter is preferably made of Kevlar®. This circumstance results from the need to allow a very wide spread, which is then trimmed by 10-20%, since the edges of a scattered press mat usually have inhomogeneities such as scattering errors or unwanted increases in density. For example, a 2500 mm wide Pressgutmatte before the Enema in the pre-press at 2250 mm width trimmed. Accordingly, it is sufficient if the microwave band in the continuous furnace has a width of 2300 mm. This is advantageous in the necessary design of the sealing of edge radiations from the microwave generation in the continuous furnace. Advantageously, on the longitudinal sides of stationary and movable in the inlet and outlet of the continuous furnace absorption means or - elements are provided which absorb the edge and scattered radiation. Particular attention must be paid to the moisture retention in the pressed material mat and in order to avoid moisture loss during heating by evaporation of the moisture, it may be necessary to provide an endless circulating plastic strip resting on the pressed material mat. The heating by means of the microwaves advantageously causes a uniform temperature distribution of +/- 7 ° C in the pressed
Weitere vorteilhafte Maßnahmen und Ausgestaltungen des Gegenstandes der Erfindung gehen aus den Unteransprüchen und der folgenden Beschreibung mit der Zeichnung hervor.Further advantageous measures and embodiments of the subject matter of the invention will become apparent from the dependent claims and the following description with the drawing.
Es zeigen:
- Figur 1
- eine schematische Seitenansicht einer Anlage zur Herstellung von Werkstoffplatten von der Streuung einer Pressgutmatte auf ein Formband bis hin zum Beginn einer kontinuierlich arbeitenden Doppelbandpresse,
Figur 2- eine vergrößerte Darstellung einer Vorrichtung zur Vorwärmung einer Pressgutmatte mittels Mikrowellen nach
Figur 1 und Figur 3- eine Draufsicht auf eine Vorrichtung zur Vorwärmung einer Pressgutmatte mit schematischer Anordnung der Mikrowellenerzeuger.
- FIG. 1
- a schematic side view of a plant for the production of material plates from the dispersion of a pressed product mat on a forming belt to the beginning of a continuous double belt press,
- FIG. 2
- an enlarged view of a device for preheating a Pressgutmatte by means of microwaves
FIG. 1 and - FIG. 3
- a plan view of a device for preheating a pressed material mat with a schematic arrangement of the microwave generator.
In
Der Durchlaufofen 4 ist unmittelbar vor den einlaufenden Stahlbändern 5 der kontinuierlich arbeitenden Presse 1 angeordnet. Dabei wird die Pressgutmatte 14 für einen Durchlauf durch den Durchlaufofen 4 von dem Formband 6 auf das untere Kunststoffband 11 übergeben und je nach Art und Ausführung des Durchlaufofens 4 optional mit einem oben umlaufenden Kunststoffband 8 eingeklemmt. Die beidseitig zum Mikrowellenerzeuger 26 angeordneten Absorbersteine 25 sind über die Höhenverstellung 12 hebund senkbar angeordnet und werden je nach Höhe der durchfahrenden Pressgutmatte eingestellt. Die Höhenverstellung für das oben umlaufende Kunststoffband 8 ist nicht dargestellt. Das obere Kunststoffband 8 hat die Aufgabe den Durchlaufofen 4 vor erhöhter Staubentwicklung durch die Pressgutmatte 14 zu schützen und zu verhindern, dass die Pressgutmatte 14 während des Transports wieder in den Ausgangszustand vor der Vorverdichtung durch die Vorpresse 17 zurückfedert. Auch kann das obere Kunststoffband 8 ein entweichen der Feuchtigkeit während der Vorwärmung verhindern.The
Je nach Gesamtaufbau der Produktionsanlage kann besteht die Möglichkeit das Formband 6 als mikrowellengeeignetes Formband 6 auszuführen und die Pressgutmatte 14 ohne eine Übergabe durch den Durchlaufofen 4 zu fahren. Mikrowellengeeignete Form- oder Kunststoffbänder 6, 8, 11 sind dadurch charakterisiert, dass sie sich bei einem Durchlauf durch den Bereich der Mikrowellenerzeuger 26 nur um etwa 10° erwärmen. Geeignet sind hierzu beispielsweise ein Mikrowellenband aus KEVLAR® mit einer ein- oder beidseitigen Teflonbeschichtung.Depending on the overall structure of the production plant, it is possible to execute the forming
Wie
Auf dem Halterahmen 15 sind in der Mitte des Durchlaufofens 4 die Mikrowellenerzeuger 26 angeordnet. Ein Mikrowellenerzeuger 26 besteht zumindest aus einem Magnetron 20, einem zugehörigen Zirkulator 21 und einem Tuner 22. Der Tuner 22 übernimmt die Feineinstellung der Mikrowellenstrahlung bzw. deren Ausrichtung, wogegen der Zirkulator 21 rückstrahlende Mikrowellen aufnimmt und einer weiteren Verwendung zuführt. Meist wird primär Wasser aus der Wasserkühlung 9 dabei erwärmt um die überschüssigen Mikrowellenstrahlen zu absorbieren. Mit 13 ist der Metalldetektor der Vorrichtung dargestellt. Dieser kann auch je nach Ausführung der Anlage direkt über dem Formband 6 vor dem Durchlaufofen 4 angeordnet sein. Vorzugsweise ist in diesem Fall eine Abwurf- oder eine Räummöglichkeit einer mit Metallstücken versetzten Pressgutmatte vor dem Durchlaufofen 4 gegeben. Alternativ oder auch wenn der Metalldetektor 13 innerhalb des Umlaufes der Kunststoffbänder 8, 11 vor den Absorbersteinen angeordnet ist, werden die Mikrowellenerzeuger 26 während des Durchlaufes eines Metallstückes kurz abgeschaltet und der Teil der Pressgutmatte 14, der nicht erwärmt worden ist, über einen in Produktionsrichtung kurz vor der Presse 1 angeordneten Abwurf entsorgt.On the
In der Draufsicht aus
Hinsichtlich der Wartungsfreundlichkeit der Anlage ist es bevorzugt vorgesehen im Durchlaufofen 4 die einzelnen Teile, wie Magnetron 20, Zirkulator 21 und Tuner 22, eines Mikrowellenerzeugers 26 modular aufzubauen und zum schnellen Austausch bei Defekt oder zur Wartung vorzusehen.With regard to the ease of maintenance of the system, it is preferably provided in the
Alternativ oder in Kombination wäre es von Vorteil, wenn im Durchlaufofen 4 jeder Mikrowellenerzeuger 26 als eigenes Modul aufgebaut ist und ggf. Schnellverschlüsse zur Demontage und zur Montage aufweist. Zur Erhöhung der Betriebssicherheit ist es bevorzugt möglich im oder am Durchlaufofen 4 Sensoren zur Funken- und/oder Branderkennung in und/oder an der Pressgutmatte 14 anzuordnen und/oder Mittel zur Löschung eines Brandes vorzusehen.Alternatively or in combination, it would be advantageous if each
- 1.1.
- kontinuierlich arbeitende Pressecontinuously working press
- 2.Second
- Press-/Heizplatte in 1Press / heating plate in 1
- 3.Third
- Produktionsrichtungproduction direction
- 4.4th
- DurchlaufofenContinuous furnace
- 5.5th
- Wälzkörperrolling elements
- 6.6th
- Formbandforming belt
- 7.7th
- Stahlbändersteel strips
- 8.8th.
- oberes KunststoffbandUpper plastic band
- 9.9th
- Wasserkühlungwater cooling
- 10.10th
- Antrieb für 11Drive for 11
- 11.11th
- unteres Kunststoffbandlower plastic band
- 12.12th
- Höhenverstellungheight adjustment
- 13.13th
- Metalldetektormetal detector
- 14.14th
- Pressgutmattepress material mat
- 15.15th
- Halterahmen für 26Support frame for 26
- 16.16th
- Streustationspreading station
- 17.17th
- Vorpressepre-press
- 18.18th
- Führungsband untenGuide band below
- 19.19th
- NiederhaltebandHold down belt
- 20.20th
- Magnetronmagnetron
- 21.21st
- Zirkulatorcirculator
- 22.22nd
- Tunertuner
- 23.23rd
- Rahmen untenFrame below
- 24.24th
- Rahmen obenFrame above
- 25.25th
- Absorptionselementeabsorbing elements
- 26.26th
- Mikrowellenerzeugermicrowave generator
- 27.27th
- Einlaufenema
- 28.28th
- Auslaufoutlet
- 29.29th
- Sensorensensors
Claims (25)
- A method for preheating a pressed material mat (14) scattered onto an endless, continuously revolving continuous forming conveyor (6) in the course of the production of wood-based panels, with microwaves being radiated from one or both sides of the press surface into the pressed material mat (14) for preheating the pressed material mat (14), and with the pressed material mat (14) being pressed and hardened under application of pressure and heat after transfer to a continuously working press (1), that for heating the pressed material mat (14) microwaves are used in a frequency range of 2400 to 2500 MHz, characterized in that microwaves for each side of the press surface are generated by 20 to 300 microwave generators (26) with magnetrons (20) of a respective power of 3 to 50 kW.
- A method according to claim 1, characterized in that the heating by means of microwaves produces an even temperature distribution of +/- 7°C in the pressed material mat (14) over the length and width.
- A method according to claim 1, characterized in that the pressed material mat (14) is examined for metallic parts prior to heating, with especially metallic parts being sought which are larger in their dimensions than ¼ of the wavelength.
- A method according to one or several of the preceding claims, characterized in that inlet (27) and/or the outlet (28) of the continuous furnace (4) are adjusted automatically in respect of height and width to the pressed material mat (14).
- A method according to one or several of the preceding claims, characterized in that the continuous forming conveyor (6) is compatible with microwaves and guides the pressed material mat (14) directly through the continuous furnace (4).
- A method according to one or several of the preceding claims, characterized in that the plastic belt (6, 8, 11) used in the continuous furnace (4) heats up less than 10°C in one passage through the machine.
- A method according to one or several of the preceding claims, characterized in that an escape of the humidity from the pressed material mat (14) is prevented by using an upper, endlessly revolving plastic belt (8) in the continuous furnace (4).
- A method according to one or several of the preceding claims, characterized in that the absorption elements (25) in the continuous furnace (4) are moved as closely as possible to the pressed material mat (14) during passage.
- A method according to one or several of the preceding claims, characterized in that absorber bricks or water containers are used as absorber elements.
- A method according to one or several of the preceding claims, characterized in that reflectors introduce excess scattered radiation back into the pressed material mat (14).
- A method according to one or several of the preceding claims, characterized in that the microwave generators (26) are automatically deactivated in regions of the continuous furnace (14) in which no pressed material mat (14) is conveyed and/or in which metallic foreign bodies are determined.
- A method according to one or several of the preceding claims, characterized in that the necessary cooling power is converted via heat recovery for long-distance heating.
- A method according to one or several of the preceding claims, characterized in that during the passage of the pressed material mat (14) through the continuous furnace (4) it is checked for sparks or fires.
- A method according to one or several of the preceding claims, characterized in that occurring sparks and/or fires are quenched automatically.
- An apparatus for preheating a pressed material mat (14) scattered onto an endless, continuously revolving continuous forming conveyor (6) in the course of the production of wood-based panels, with the apparatus being arranged as a continuous furnace (4) in which microwave generators (26) are arranged for the generation of directed microwaves with a frequency range of 2400 to 2500 MHz onto one or both surface sides of the pressed material mat (14) for preheating the pressed material mat (14), characterized in that 20 to 300 microwave generators (26) with magnetrons (20) with a power of 3 to 50 kW are arranged per press surface side in the continuous furnace (4).
- An apparatus according to claim 15, characterized in that a metal separator (13) is arranged in the direction of production (3) before the continuous furnace (4).
- An apparatus according to claim 15 or 16, characterized in that sensors (29) for determining the width and/or the height of the pressed material mat (14) are arranged in or before the continuous furnace (4).
- An apparatus according to one or several of the preceding claims 15 to 17, characterized in that the inlet (27) and/or the outlet (28) of the continuous furnace (4) is variably arranged in respect of height and/or width.
- An apparatus according to one or several of the preceding claims 15 to 18, characterized in that movable absorption elements (25) are arranged for changing the inlet (27) or the outlet (28).
- An apparatus according to one or several of the preceding claims 15 to 19, characterized in that absorber bricks and/or water containers are arranged as absorption elements (25).
- An apparatus according to one or several of the preceding claims 15 to 20, characterized in that reflectors are arranged in the continuous furnace (4) in addition to or instead of the absorption elements (25).
- An apparatus according to one or several of the preceding claims 15 to 21, characterized in that the individual parts such as magnetron (20), circulator (21) and tuner (22) of a microwave generator (26) are modularly arranged in the continuous furnace (4) and are suitable for rapid exchange in case of defect or maintenance.
- An apparatus according to one or several of the preceding claims 15 to 22, characterized in that each microwave generator (26) is arranged as a separate module in the continuous furnace (4).
- An apparatus according to one or several of the preceding claims 15 to 23, characterized in that sensors for recognizing sparks and/or fires in and/or on the pressed material mat (14) are arranged in or on the continuous furnace (4).
- An apparatus according to one or several of the preceding claims 15 to 24, characterized in that means for quenching a fire are provided in or on the continuous furnace (4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08869105T PL2247418T3 (en) | 2007-12-30 | 2008-12-27 | Method and device for preheating a pressed material mat during manufacture of wood material boards |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007063374A DE102007063374A1 (en) | 2007-12-30 | 2007-12-30 | Method and device for preheating a pressed material mat in the course of the production of wood-based panels |
PCT/EP2008/011122 WO2009083247A1 (en) | 2007-12-30 | 2008-12-27 | Method and device for preheating a pressed material mat during manufacture of wood material boards |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2247418A1 EP2247418A1 (en) | 2010-11-10 |
EP2247418B1 true EP2247418B1 (en) | 2013-05-22 |
Family
ID=40457135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08869105.0A Active EP2247418B1 (en) | 2007-12-30 | 2008-12-27 | Method and device for preheating a pressed material mat during manufacture of wood material boards |
Country Status (9)
Country | Link |
---|---|
US (1) | US8540924B2 (en) |
EP (1) | EP2247418B1 (en) |
CN (1) | CN101932413B (en) |
BR (1) | BRPI0821620B1 (en) |
CA (1) | CA2713382C (en) |
DE (1) | DE102007063374A1 (en) |
PL (1) | PL2247418T3 (en) |
RU (1) | RU2493959C2 (en) |
WO (1) | WO2009083247A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202015102417U1 (en) | 2015-05-11 | 2016-06-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus for the continuous production of materials |
DE202015102422U1 (en) | 2015-05-11 | 2016-08-15 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus for continuous heating of material |
DE102015107374A1 (en) | 2015-05-11 | 2016-11-17 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus and process for the continuous production of materials |
DE102015107380A1 (en) | 2015-05-11 | 2016-11-17 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus for continuous heating of material |
DE102016110808A1 (en) | 2016-06-13 | 2017-12-14 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Process for the continuous heating of a material web and continuous furnace |
DE102016119463A1 (en) | 2016-10-12 | 2018-04-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace for continuous heating of a pressed material mat |
DE202017104748U1 (en) | 2017-08-08 | 2018-10-11 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Preheating device for a continuous press |
WO2019030310A1 (en) | 2017-08-08 | 2019-02-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Preheating device for a continuously operating press and method for preheating a pressed material mat |
WO2019170300A1 (en) | 2018-03-08 | 2019-09-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and system for producing wooden composite boards |
WO2019170299A1 (en) | 2018-03-08 | 2019-09-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and system for producing wooden composite boards |
DE102018133294A1 (en) | 2018-12-21 | 2020-06-25 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Device and method for the continuous heating of a pressed material mat |
WO2021001572A1 (en) | 2019-07-04 | 2021-01-07 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Device and method for transporting a nonwoven |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2555412T3 (en) | 2010-01-18 | 2015-12-30 | Enwave Corporation | Microwave vacuum drying of organic materials |
US8414720B2 (en) | 2010-06-21 | 2013-04-09 | Weyerhaeuser Nr Company | Systems and methods for manufacturing composite wood products to reduce bowing |
DE102011003318B4 (en) * | 2010-10-07 | 2016-06-23 | Institut Für Holztechnologie Dresden Gemeinnützige Gmbh | Fibreboard with functional density profile and process for its production |
CN102729313B (en) * | 2011-04-11 | 2015-07-29 | 李苏扬 | Be provided with the extrusion equipment of the plant fiber products of microwave heating equipment |
CN102335947A (en) * | 2011-09-21 | 2012-02-01 | 福建省永安林业(集团)股份有限公司 | Method for preparing medium density fiberboard by using microwave to pre-heat |
CN102528890B (en) * | 2011-12-12 | 2014-02-19 | 宁波大世界家具研发有限公司 | Manufacturing method for non-adhesive wood fiber part |
CN102756414B (en) * | 2012-06-29 | 2014-03-12 | 宁波大世界家具研发有限公司 | Equipment and method for manufacturing wood fiber abnormal-shaped die pressing piece |
CN103991111B (en) * | 2014-06-03 | 2017-04-05 | 天津华林沙柳科技有限公司 | The glued manufacture method of a kind of big specification high density wood-base materials and its microwave heating compacting |
UA119483C2 (en) | 2014-11-06 | 2019-06-25 | Флурінг Текнолоджис Лтд. | Wooden material panel, in particular in the form of a wood-plastic composite material, and a method for producing the same |
US10029435B2 (en) * | 2015-01-22 | 2018-07-24 | Idris Ahmed ALI | Microwave press extraction apparatus |
CN105157072A (en) | 2015-08-31 | 2015-12-16 | 小米科技有限责任公司 | Microwave oven and microwave oven control method |
US20220242007A1 (en) * | 2016-03-21 | 2022-08-04 | Bondcore öU | Composite wood panels with corrugated cores and method of manufacturing same |
DE102016110075A1 (en) * | 2016-05-31 | 2017-11-30 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Forming station and method for producing a multi-layer spreading material mat for pressing to material plates and a spreading material mat |
CN106003362A (en) * | 2016-07-21 | 2016-10-12 | 绿洲森工股份有限公司 | Plate laying forming room |
CN106903761B (en) * | 2017-03-08 | 2019-05-24 | 中国福马机械集团有限公司 | The preparation method of glued board |
CN108724425B (en) * | 2018-06-13 | 2021-04-16 | 苏州苏福马机械有限公司 | Pre-pressing equipment, paving system comprising equipment and paving method |
CN109262795A (en) * | 2018-11-05 | 2019-01-25 | 嘉木远景(北京)科技有限公司 | A kind of particieboard preparation method using microwave preheating |
CN110405872A (en) * | 2019-06-28 | 2019-11-05 | 中南林业科技大学 | A kind of quick hot-press molding method of integrated timber |
DE102020105205A1 (en) | 2020-02-27 | 2021-09-02 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts | Use of electromagnetic radiation in the manufacture of molded parts containing popcorn |
DE102020113284A1 (en) * | 2020-05-15 | 2021-11-18 | Homann Holzwerkstoffe GmbH | Method and system for making a three-dimensionally deformed panel |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570280A (en) * | 1951-04-26 | 1951-10-09 | Roffman Eugene | Automatic fire-detecting and extinguishing apparatus |
DE2113763B2 (en) | 1971-03-22 | 1976-04-15 | Bison-Werke Bahre und Greten GmbH & Co KG, 3257 Springe | DEVICE FOR THE CONTINUOUS PRODUCTION OF CHIPBOARD |
US4018642A (en) | 1975-09-08 | 1977-04-19 | Macmillan Bloedel Limited | Microwave curing of alkaline phenolic resins in wood-resin compositions |
US4038531A (en) * | 1976-05-18 | 1977-07-26 | Weyerhaeuser Company | Process control apparatus for controlling a particleboard manufacturing system |
JPS5593862A (en) * | 1978-12-29 | 1980-07-16 | Sadaaki Takagi | Method and appartus for producing filament lock material |
EP0109456B1 (en) * | 1982-11-20 | 1986-09-03 | Carl Schenck Ag | Method of and apparatus for equalizing the density distribution in an artificial-wood panel |
US4771156A (en) * | 1986-10-20 | 1988-09-13 | Micro Dry Incorporated | Method and apparatus for heating and drying moist articles |
DE3819883A1 (en) * | 1988-06-03 | 1989-12-07 | Rieter Ag Maschf | METHOD AND DEVICE FOR TREATING COTTON INFECTED WITH HONEY DEW |
RU2040498C1 (en) * | 1992-12-22 | 1995-07-25 | Будянский фаянсовый завод "Серп и Молот" | Method of production of gypsum binder and shf-furnace for production of gypsum binder |
EP0611638B1 (en) | 1993-02-18 | 1999-07-28 | Eidai Co. Ltd. | Process for stabilizing lignocellulosic material and device therefor |
DE4412515A1 (en) | 1994-04-12 | 1995-10-19 | Fritz Egger Gmbh | Method of manufacturing single or multiple ply panels esp. chipboard or hard fibreboard |
US5641449A (en) * | 1995-09-15 | 1997-06-24 | Owens; Thomas L. | Method and apparatus for high-speed drying and consolidating of structural fiberboard |
DE19627024B4 (en) * | 1996-07-04 | 2007-08-02 | Dieffenbacher Gmbh + Co. Kg | Method and plant for the continuous folding and gluing of veneer sheets to veneer layer boards |
US6242726B1 (en) * | 1996-11-21 | 2001-06-05 | George M. Harris | Adjustable microwave field stop |
US5756975A (en) * | 1996-11-21 | 1998-05-26 | Ewes Enterprises | Apparatus and method for microwave curing of resins in engineered wood products |
DE19718772B4 (en) | 1997-05-03 | 2015-08-20 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Process and plant for the production of wood-based panels |
DE10101981B4 (en) | 2001-01-18 | 2006-06-01 | Linn High Therm Gmbh | Apparatus for producing agglomerate bodies |
DE10157601B4 (en) | 2001-11-26 | 2011-06-01 | Dieffenbacher Gmbh + Co. Kg | Device for heating pressed material in the manufacture of material plates |
US20030227101A1 (en) * | 2002-04-04 | 2003-12-11 | Christoffersen William E. | Manufacturing methods for producing particleboard, OSB, MDF and similar board products |
US7048825B2 (en) * | 2002-10-03 | 2006-05-23 | Weyerhaeuser Company | Microwave preheat press assembly |
JP4387237B2 (en) * | 2004-04-23 | 2009-12-16 | 株式会社トピア | Plastic fiber molded body, plastic fiber molded body manufacturing method, plastic fiber board manufacturing apparatus |
DE102004056795B4 (en) * | 2004-11-24 | 2006-10-12 | Lindauer Dornier Gmbh | Multi-day microwave continuous dryers for plate-shaped products, in particular fibreboards |
ITMI20052359A1 (en) * | 2005-12-09 | 2007-06-10 | Italcementi Spa | PROCESS FOR THE PRODUCTION AND MAINTENANCE OF THE FOREMA OF AN EXTRUDED CEMENTITIOUS MATERIAL |
KR20090080528A (en) * | 2006-10-16 | 2009-07-24 | 스트랜덱스 코포레이션 | Puller speed control device for monitoring the dimensions of an extruded synthetic wood composition |
DE102006059564B4 (en) * | 2006-12-16 | 2009-06-18 | Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg | Method and device for pressing pressed material mats |
-
2007
- 2007-12-30 DE DE102007063374A patent/DE102007063374A1/en not_active Withdrawn
-
2008
- 2008-12-27 RU RU2010132157/13A patent/RU2493959C2/en not_active IP Right Cessation
- 2008-12-27 CA CA2713382A patent/CA2713382C/en not_active Expired - Fee Related
- 2008-12-27 PL PL08869105T patent/PL2247418T3/en unknown
- 2008-12-27 EP EP08869105.0A patent/EP2247418B1/en active Active
- 2008-12-27 BR BRPI0821620-7A patent/BRPI0821620B1/en not_active IP Right Cessation
- 2008-12-27 US US12/811,109 patent/US8540924B2/en active Active
- 2008-12-27 WO PCT/EP2008/011122 patent/WO2009083247A1/en active Application Filing
- 2008-12-27 CN CN200880126125.1A patent/CN101932413B/en active Active
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10967538B2 (en) | 2015-05-11 | 2021-04-06 | Dieffenbacher GmbH Maschinen-und Anlagenbau | Apparatus and method for continuous production of materials |
DE202015102422U1 (en) | 2015-05-11 | 2016-08-15 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus for continuous heating of material |
DE102015107374A1 (en) | 2015-05-11 | 2016-11-17 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus and process for the continuous production of materials |
DE102015107380A1 (en) | 2015-05-11 | 2016-11-17 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus for continuous heating of material |
WO2016180886A1 (en) | 2015-05-11 | 2016-11-17 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus and method for continuous prouction of materials |
DE102015107380B4 (en) | 2015-05-11 | 2022-11-10 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Device for continuous heating of material |
DE202015102417U1 (en) | 2015-05-11 | 2016-06-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Apparatus for the continuous production of materials |
DE102016110808A1 (en) | 2016-06-13 | 2017-12-14 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Process for the continuous heating of a material web and continuous furnace |
DE102016119463A1 (en) | 2016-10-12 | 2018-04-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace for continuous heating of a pressed material mat |
WO2019030310A1 (en) | 2017-08-08 | 2019-02-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Preheating device for a continuously operating press and method for preheating a pressed material mat |
DE102017118016A1 (en) | 2017-08-08 | 2019-02-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Preheating device for a continuous press and method for preheating a pressed material mat |
DE202017104748U1 (en) | 2017-08-08 | 2018-10-11 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Preheating device for a continuous press |
WO2019170300A1 (en) | 2018-03-08 | 2019-09-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and system for producing wooden composite boards |
WO2019170299A1 (en) | 2018-03-08 | 2019-09-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and system for producing wooden composite boards |
DE102018105390B4 (en) * | 2018-03-08 | 2020-08-20 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and plant for the production of wood-based panels |
DE102018133294A1 (en) | 2018-12-21 | 2020-06-25 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Device and method for the continuous heating of a pressed material mat |
WO2021001572A1 (en) | 2019-07-04 | 2021-01-07 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Device and method for transporting a nonwoven |
Also Published As
Publication number | Publication date |
---|---|
WO2009083247A1 (en) | 2009-07-09 |
US20110089611A1 (en) | 2011-04-21 |
DE102007063374A1 (en) | 2009-07-02 |
PL2247418T3 (en) | 2013-10-31 |
CA2713382A1 (en) | 2009-07-09 |
BRPI0821620A2 (en) | 2015-06-16 |
EP2247418A1 (en) | 2010-11-10 |
CN101932413A (en) | 2010-12-29 |
CA2713382C (en) | 2016-07-05 |
RU2493959C2 (en) | 2013-09-27 |
US8540924B2 (en) | 2013-09-24 |
CN101932413B (en) | 2014-07-16 |
RU2010132157A (en) | 2012-02-10 |
BRPI0821620B1 (en) | 2019-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2247418B1 (en) | Method and device for preheating a pressed material mat during manufacture of wood material boards | |
DE19718772B4 (en) | Process and plant for the production of wood-based panels | |
DE2722356C2 (en) | Method and device for the continuous production of chipboard, fiber or the like. plates | |
DE102016110808A1 (en) | Process for the continuous heating of a material web and continuous furnace | |
EP0820371B1 (en) | Method and device for the continuous production of panels of lignocellulose-containing particles | |
EP3294512B1 (en) | Apparatus and method for continuous prouction of materials | |
DE3107589C2 (en) | Device for the continuous production of chipboard, fiberboard or similar boards | |
EP3310130B1 (en) | Continuous furnace for the continuous heating of a compressed material mat | |
DE202015102417U1 (en) | Apparatus for the continuous production of materials | |
DE102008011445B4 (en) | Process for separating continuously moving pressed material mats in the course of the production of material panels and a plant for the continuous production of material panels | |
WO2016180889A1 (en) | Device for continuous heating of material | |
DE102006028392A1 (en) | Multilayered pressed material mat dispersing method, involves sealing and guiding upper area of dispersed mat by dispersion walls into adjacent dispersion machines along longitudinal edges after dispersion of mat on molded strap in machines | |
WO2018154094A1 (en) | Method for operating a continuous furnace, and continuous furnace | |
EP2767389B1 (en) | Double strip heating press | |
DE202015102422U1 (en) | Apparatus for continuous heating of material | |
DE202017101105U1 (en) | Continuous furnace for heating material by means of microwaves | |
WO2018154093A1 (en) | Conveyor furnace for heating material by means of microwaves | |
DE102018105385B4 (en) | Continuous furnace and plant for the production of wood-based panels | |
DE10037508B4 (en) | Process and plant for the production of wood-based panels | |
DE102018105390B4 (en) | Continuous furnace and plant for the production of wood-based panels | |
DE202017101106U1 (en) | Continuous furnace for heating material by means of microwaves | |
DE102018133294A1 (en) | Device and method for the continuous heating of a pressed material mat | |
DE102017118016A1 (en) | Preheating device for a continuous press and method for preheating a pressed material mat | |
DE202017104748U1 (en) | Preheating device for a continuous press | |
DE3815227A1 (en) | Process and apparatus for producing wood-based material panels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100730 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HOFFMANN, WERNER Inventor name: HAAS, GERNOT VON Inventor name: KOENEKAMP, ULF |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502008010001 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B27N0003180000 Ipc: F26B0003347000 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DIEFFENBACHER GMBH MASCHINEN- UND ANLAGENBAU |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B27N 3/24 20060101ALI20121112BHEP Ipc: F26B 17/02 20060101ALI20121112BHEP Ipc: F26B 7/00 20060101ALI20121112BHEP Ipc: B27N 3/18 20060101ALI20121112BHEP Ipc: F26B 3/20 20060101ALI20121112BHEP Ipc: F26B 3/347 20060101AFI20121112BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 613437 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008010001 Country of ref document: DE Effective date: 20130718 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130902 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130822 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130823 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130923 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130922 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008010001 Country of ref document: DE Effective date: 20140225 |
|
BERE | Be: lapsed |
Owner name: DIEFFENBACHER G.M.B.H. MASCHINEN- UND ANLAGENBAU Effective date: 20131231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131227 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131227 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20141124 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20161223 Year of fee payment: 9 Ref country code: CH Payment date: 20161223 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20161223 Year of fee payment: 9 Ref country code: PL Payment date: 20161221 Year of fee payment: 9 Ref country code: SE Payment date: 20161223 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171227 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171228 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20181221 Year of fee payment: 11 Ref country code: AT Payment date: 20181227 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171227 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 613437 Country of ref document: AT Kind code of ref document: T Effective date: 20191227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171227 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221222 Year of fee payment: 15 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230603 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 16 |