EP2242590B1 - Unbalance exciter with one or more rotatable unbalances - Google Patents

Unbalance exciter with one or more rotatable unbalances Download PDF

Info

Publication number
EP2242590B1
EP2242590B1 EP08783460.2A EP08783460A EP2242590B1 EP 2242590 B1 EP2242590 B1 EP 2242590B1 EP 08783460 A EP08783460 A EP 08783460A EP 2242590 B1 EP2242590 B1 EP 2242590B1
Authority
EP
European Patent Office
Prior art keywords
tool
working surface
frequency
force
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08783460.2A
Other languages
German (de)
French (fr)
Other versions
EP2242590A1 (en
Inventor
Ulrich Andreas Ammann
Kuno Kaufmann
Roland Anderegg
Jochen Hörster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ammann Schweiz AG
Original Assignee
Ammann Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ammann Schweiz AG filed Critical Ammann Schweiz AG
Publication of EP2242590A1 publication Critical patent/EP2242590A1/en
Application granted granted Critical
Publication of EP2242590B1 publication Critical patent/EP2242590B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/167Orbital vibrators having masses being driven by planetary gearings, rotating cranks or the like

Definitions

  • the invention relates to a method for operating a machine with an unbalance exciter with one or more rotatable imbalances and a machine for carrying out the method according to the preambles of the independent claims.
  • Unbalance exciters with rotatable imbalances are used to generate time-varying excitation forces and are used in many areas of technology, for example in vibration conveyors, in vibrating screens, in compactors such as vibratory plates and vibratory rollers, in vibratory rams and in vibration-excited drilling and milling machines.
  • the currently known monofrequent unbalance exciters, in which all imbalances rotate at the same speed, can basically be classified according to the excitation principle in the circular oscillator and the directional oscillator.
  • Monofrequency circular oscillators produce an exciter force which is temporally variable only with regard to their direction.
  • Monofrequency directional oscillators generate an exciter force, the amount of which changes with time along with its effective direction, such that seen over a full rotation of the imbalance masses two excitation force maxima are formed with opposite directions of action. While the circular oscillator manages with a rotating imbalance mass, the directional oscillator system requires at least two counter-rotating unbalanced masses. Since such unbalance exciters generate in each case in opposite directions of action the magnitude equal excitation force components that is with them when used in compactors and rams depending on whether work must be carried out in on-load operation or operation with temporary lifting of the tool from the work surface is permitted or desired.
  • Another object is to provide a machine for carrying out the method, which can be used to ensure that the machine is always operated in a good range or in the optimum range, i. always a relatively large or the maximum possible force can be transferred from the tool to the work surface.
  • a first aspect of the invention relates to a method for operating a machine comprising an unbalance exciter with one or more rotatable imbalance masses for generating a multi-frequency time-varying excitation force.
  • an unbalance exciter For a single imbalance mass, it performs several superimposed rotations, e.g. can be rotationally rectified or rotationally opposite.
  • these preferably each perform a single rotation, wherein it is provided that identical and / or opposite directions of rotation are used.
  • the excitation force is generated by the superposition of a basic exciter force, which is time-variable with a fundamental frequency, with one or more additional excitation forces which are time-variable with additional frequencies greater than the fundamental frequency.
  • the unbalance exciter is designed such that the phase position between the time-varying basic excitation force and at least one of the time-varying auxiliary excitation forces is adjustable, preferably continuously.
  • the machine comprises a tool coupled to the unbalance exciter for the purpose of vibrational excitation for acting on a work surface.
  • the machine is operated in such a way that the tool, which is excited to vibrate with the unbalance exciter, acts as intended on a working surface, that is, performs a work as intended.
  • the vibration response of the tool to the vibration excitation of the unbalance exciter and / or the course of the working surface reaction force is determined and compared this or with a desired target vibration response or a desired target working surface reaction force profile. How the vibration response or the working surface reaction force profile can be determined by measurement is known to the person skilled in the art and therefore need not be explained in more detail here.
  • the phase position between the time-varying basic excitation force and at least one of the time-varying additional excitation forces for changing the total excitation force and thus the vibration excitation is set such that a vibration response of the tool or a progression of the working surface reaction force results, which or which an improved and preferably the greatest possible match has the desired vibration response and the desired working surface reaction force curve.
  • the phase position between the time-variable basic exciter force and at least one of the time-varying additional excitation forces is set or changed during operation of the machine, which enables interruption-free operation and preferably as automatic control intervention with a renewed one Comparison of the resulting vibration response or the resulting course of the working surface reaction force with the desired vibration response or the target working surface reaction force course takes place.
  • the phase position is adjusted such that a vibration response of the tool or a work surface reaction force curve results, at which or which the quotient of the maximum amplitude of the vibration response of the tool in the tool working direction and the maximum amplitude of the vibration response of the tool in the direction opposite to the tool working direction or the quotient of the maximum force of the work surface reaction force curve in the tool working direction and the maximum force of the work surface reaction force curve in the direction opposite to the tool working direction for given frequencies and amplitudes of the basic and additional exciter forces.
  • the phase position, the frequency and / or the amplitude of the basic exciter force and / or one or more of the additional excitation forces are preferably adjusted independently of one another such that a vibration response of the tool or a progression of the working surface reaction force results in which the maximum amplitude of the vibration response of the tool in a direction opposite to the pressing direction of the tool against the working surface or the maximum force of the working surface reaction force course in a direction opposite to the pressing direction of the tool on the working surface does not exceed a certain maximum value, for preventing a temporary loss of contact between the tool and the work surface when intended operation.
  • This is, as already mentioned, particularly important in vibratory rollers for the compaction of asphalt, since these must be operated in on-load operation in order to reliably prevent a temporary lifting of the roller from the asphalt surface to be compacted.
  • the resonant frequency of the machine-tool-work surface system during normal operation is determined in particular continuously and set the fundamental frequency in particular continuously to a frequency slightly above the determined resonant frequency, preferably to a frequency typically in the range between 105% and 130%, preferably between 110% and 120% of the determined resonant frequency.
  • the determination of the vibration response and / or the working surface reaction force curve and optionally the resonance frequency, the comparison with a desired target vibration response and / or a desired working surface reaction force curve and the adjustment of the phase position and optionally the Frequency and / or amplitude carried out automatically by means of a machine control, preferably continuously during operation of the machine. This can be ensured at any time operation with optimal operating parameters.
  • a second aspect of the invention relates to a machine comprising an unbalance exciter with one or more rotatable imbalance masses for generating a multi-frequency time-varying excitation force.
  • this performs several superimposed rotations which, for example, are rotationally rectified or rotationally opposite.
  • these preferably each perform a single rotation, wherein it is provided that identical and / or opposite directions of rotation are used.
  • the excitation force is generated by the superposition of a basic exciter force, which is time-variable with a fundamental frequency, with one or more additional excitation forces which are time-variable with additional frequencies greater than the fundamental frequency.
  • the unbalance exciter is designed such that the phase position between the time-varying basic exciter force and at least one of the time-varying additional excitation forces during operation is adjustable, preferably continuously.
  • the machine comprises a tool coupled to the unbalance exciter for the purpose of vibrational excitation for acting on a work surface.
  • the machine comprises means for determining the vibration response of the tool to the vibration excitation of the unbalance exciter during normal operation of the machine and / or means for determining the course of the working surface reaction force during normal operation of the machine, which consists of a superposition of the from the vibration response of the tool and the oscillating mass of which results in the resulting movement force course of the tool with the exciter force profile of the exciter (s) and the static weight force of the machine
  • the means for determining the vibration response of the tool typically comprise acceleration sensors and a computer-aided processing unit which evaluates the signals supplied by the sensors. This makes it possible, the effects of a change in the phase angle between the basic excitation force and the at least one additional excitation force, which leads to a change in the resulting total exciter force leads to objectively assessing the vibration response of the tool, ie its course of motion, and thus to specifically influence this important operating parameter by deliberately adjusting the phase position.
  • the working surface reaction force is also referred to as the soil reaction force.
  • the means for determining the progression of the work surface reaction force typically comprise acceleration sensors, positional sensors for rotating imbalances and a computer-aided processing unit which evaluates the signals supplied by the sensors. This makes it possible to objectively assess the effects of a change in the phase position between the basic excitation force and the at least one additional excitation force, which leads to a change in the resulting total excitation force on the force exerted by the tool on the work surface and thus optimize this force and thus the Performing work of the machine by targeted adjustment of the phase position.
  • the machine additionally comprises a machine controller, by means of which the phase position between the basic excitation force and the at least one additional excitation force is automatically and preferably continuously adjustable during operation such that a vibration response of the tool or a progression of the working surface reaction force results, in which or which the quotient of the maximum amplitude of the vibration response in the tool working direction and the maximum amplitude of the vibration response in the direction opposite to the tool working direction or the quotient of the maximum force of the course of the working surface reaction force in the tool working direction and the maximum force of the course of the working surface reaction force in the direction opposite tool working direction is maximum for given frequencies and amplitudes of the fundamental and auxiliary excitation forces.
  • the machine is preferably a vibration-activated drilling machine, road milling machine or tunneling machine, a vibration rammer or a soil compaction machine, in particular a vibrating plate or a vibrating roller.
  • a vibration-activated drilling machine road milling machine or tunneling machine
  • a vibration rammer or a soil compaction machine in particular a vibrating plate or a vibrating roller.
  • the unbalance exciter is designed such that at least one of the additional exciter forces is time-variable with an additional frequency corresponding to an integer multiple of the fundamental frequency, preferably with a frequency corresponding to twice the fundamental frequency. It has been shown that at integer frequency ratios the greatest performance gains are possible.
  • the unbalance exciter is designed in such a way that it has separate imbalance masses for generating the basic excitation force and the additional exciter forces, which each perform separate rotational movements.
  • Such solutions are based on relatively simple and proven design principles and can also be retrofitted to existing multi-wave unbalance exciters.
  • the unbalance exciter is designed in such a way that, in order to generate the basic exciter force and at least one of the additional excitation forces, it has a common imbalance mass, which has at least two superimposed rotational movements performs.
  • Such a construction method has as potential advantages a compact design, a simple phase position adjustment and minimum bearing speeds.
  • the unbalance exciter has a counterweight, which reduces the imbalance generated by the imbalance mass in the rotation with the fundamental frequency and thus reduces the basic exciter force. This makes it possible to influence the relationship between the basic exciter force and the or the additional excitation forces by structural measures in many areas.
  • the unbalance exciter is designed such that the fundamental frequency and / or the additional frequencies are preferably infinitely adjustable, preferably during operation. Usually, their ratio to each other is fixed, i. that a change in the fundamental frequency automatically leads to a corresponding change in the additional frequencies, as is the case with a forced coupling via gears. However, it is also intended to allow variable frequency ratios for specific applications.
  • the unbalance exciter is designed in such a way that the amplitude of the basic exciter force and / or the amplitude of one or more of the additional excitation forces are preferably infinitely adjustable, and to advantage during operation. Moreover, it is further preferred that the amplitudes are adjustable independently of the respective exciter frequency, e.g. by the center of gravity of the respective unbalanced mass is changed by the center of rotation or by superimposing equally fast and gleichsinning rotating imbalances.
  • the machine comprises a machine control, by means of which the phase position, the frequency and / or the amplitude of the basic exciter force and / or one or more of the additional exciter forces are automatically and preferably continuously adjustable during operation such that a vibration response of the tool, or a progression of the work surface reaction force, yields at or the maximum amplitude of the vibrational response in a direction opposite to the pressing direction of the tool on the work surface or the maximum force of the work surface reaction force path in a direction opposite to the pressing direction of the tool against the work surface does not exceed a certain maximum value to prevent temporary loss of contact between the tool and the work surface during normal operation.
  • This is particularly important in vibratory rollers for the compaction of asphalt, which must be operated in on-load operation, since a temporary lifting of the roller from the asphalt surface to be compacted would lead to poor surface quality (chatter marks), which should be avoided.
  • the machine also has means for in particular continuous determination of the resonance frequency of the machine-tool-work surface system during normal operation.
  • These means typically comprise acceleration sensors, sensors for position detection of the pathogen (s) and a computer-aided processing unit which evaluates the signals supplied by the sensors and are preferably together with means for determining the vibration response of the tool and / or for determining the course of the working surface. Reaction force formed.
  • the machine further comprises a machine control, with which the fundamental frequency automatically and preferably continuously is adjustable during operation to a frequency slightly above the determined resonant frequency, preferably to a frequency in the range between 105% and 130%, more preferably between 110% and 120% of the determined resonant frequency.
  • a machine control with which the fundamental frequency automatically and preferably continuously is adjustable during operation to a frequency slightly above the determined resonant frequency, preferably to a frequency in the range between 105% and 130%, more preferably between 110% and 120% of the determined resonant frequency.
  • FIG. 1 The operating principle shown is based on the use of two rotating shafts 1, 2, each carrying an imbalance weight 3 and synchronized about parallel axes of rotation r1, r2 around, for example via a toothed belt or a toothed belt 4, are driven at different speeds f1, f2.
  • the phase position between the two rotating shafts 1, 2 is adjustable, for example via a differential gear fifth
  • FIG. 2 The operating principle shown is based on the use of a single guided mass 3, which performs two superimposed rotations.
  • the mass 3 is rotated at a first rotational speed f1 spaced around a first rotational axis r1, simultaneously rotating at a second rotational speed f2, which is greater than and synchronized with the first rotational speed f1, about a second rotational axis r2, which in turn is rotated rotated at the first rotational speed f1 and at a fixed distance about the first rotational axis r1. Due to the second superimposed rotation, the distance changes the mass 3 to the first axis of rotation r1 running.
  • the rotation about the second axis of rotation r2 is caused by the fact that a component carrying the mass 3 and rotatable about the second axis of rotation r2 with a toothed wheel 6 engages with a fixed toothed wheel 7 arranged concentrically with the first axis of rotation r1 and unrolls on its outer circumference.
  • the phase position between the first and the second rotation can be changed by rotating the gear 7 concentric with the first axis of rotation r1.
  • Fig. 3 shows a perspective schematic representation of a further developed unbalance exciter according to the in Fig. 2 shown construction principle.
  • the unbalance exciter on a crankshaft-like main body 8 which is rotatably mounted about two end-mounted bearing pin 10 about a first axis of rotation r1 and connected to a drive motor 9, with which it is drivable at a first speed f1.
  • the crank pin is formed by a shaft 11 which carries an imbalance weight 3.
  • the shaft 11 is rotatably supported at its ends about a second axis of rotation r2.
  • the shaft 11 has a projection with a pinion 6, which runs on the outer circumference of a fixed and concentric with the rotation axis r1 of the main body 8 gear 7.
  • the shaft 11 with the imbalance mass 3 attached thereto is rotated at a fixed distance about the axis of rotation r1.
  • the shaft 11 is simultaneously rotated about the second axis of rotation r2, so that the imbalance weight 3 performs a movement of two superimposed rotations.
  • Fig. 4 shows a side view of a trench roller according to the invention with an unbalance exciter, which according to the construction principle Fig. 1 realized.
  • the trench roller consists of an undercarriage 14 with the rollers 15 and the unbalance exciter 16 and a superstructure 17 with the drive motor (not shown), which is isolated in terms of vibration with respect to the undercarriage.
  • Fig. 5 shows a perspective top view of the unbalance exciter of the trench roller Fig. 4 ,
  • the unbalance exciter 16 has two imbalance waves (not visible) arranged one above the other, which are respectively rotated about their own axes of rotation r1, r2.
  • a hydraulic motor 9 is arranged, with which the lower imbalance shaft with the fundamental frequency f1 can be rotated about the rotation axis r1.
  • FIG. 6 A longitudinal section through the unbalance exciter Fig. 5 is in Fig. 6 shown.
  • the two unbalanced shafts 1, 2 of the unbalance exciter 16 which carry the imbalance masses 3, rotatably coupled to each other via a toothed belt transmission comprising a lower toothed belt pulley 18, an upper toothed belt pulley 19 and a toothed belt 4, such that the upper unbalanced shaft 2 with rotation of the lower imbalance shaft 1 with the fundamental frequency f1 zwangsssynchron and in the same direction with a frequency f2, which corresponds to twice the fundamental frequency f1, is driven.
  • Fig. 7 shows the principle of the toothed belt coupling between the two unbalanced shafts 1, 2 greatly simplified
  • the phase position of the rotations f1, f2 of the two shafts 1, 2 can be adjusted to each other that an arrangement of two auxiliary pulleys 28a, 28b, their bearings are interconnected by a bridge 29, in a direction V transverse to a straight line through the centers of rotation of the lower 18 and the upper toothed belt pulley 19 by means of a drive, for example a hydraulic cylinder 13, is moved.
  • the ratio of the free timing belt length between the upper and lower timing pulleys 18, 19 on the load side changes to the free timing belt length between the lower and upper timing pulleys 18, 19 on the load-free side (side on which the auxiliary pulley 28a engages the toothed belt 4), so that the lower and the upper pulley 18, 19 and thus the unbalanced shafts 1, 2 are rotated relative to each other.
  • pulleys 30 are additionally provided here, which can also serve as tension rollers.
  • Fig. 8a shows the upper and the lower unbalance shaft of the unbalance exciter from the Figures 5 and 6 during rotation with a first phase position to each other.
  • the imbalance masses of the two unbalanced shafts 1, 2 in the illustrated situation have a twist angle ⁇ of 105 ° with respect to one another.
  • the unbalanced shafts 1, 2 generate the in Fig. 8b shown exciter force curves (excitation force Ferr in kN over the time t shown), which together give the total exciter force curve (not shown).
  • exciter force curves excitation force Ferr in kN over the time t shown
  • FIGS. 9a to 9d show representations like the FIGS. 8a to 8d with the difference that here there is a second phase position of the unbalanced shafts, in which the imbalance masses of the two unbalanced shafts 1, 2 in the illustrated situation have a twist angle ⁇ of only 15 ° to each other.
  • Fig. 9b With Fig. 8b can be seen, the courses of the excitation forces Ferr are shifted accordingly, so that a different total exciter force curve (not shown) results.
  • Fig. 10 shows a perspective top view of an unbalance exciter, which according to the construction principle Fig. 2 according to the concept Fig. 3 realized.
  • the main body 8 has two circular disks 20, which can be rotated about their center around a first axis of rotation r1.
  • the bearings are not visible here.
  • the discs 20 each form a bearing point 21, on each of which one of the ends of an imbalance shaft consisting of a shaft 11 and an imbalance mass 3 is rotatably mounted about a second axis of rotation r2.
  • the discs 20 counterweights 31, which reduce the imbalance generated by the imbalance masses 3 during rotation with the fundamental frequency about the first axis of rotation r1 and thereby deliberately reduce the Grunderregerkraft such that during normal operation, a certain ratio between the Basic excitation force and the additional excitation force is present.
  • the shaft 11 has a pinion 6, which runs on the outer circumference of a stationary during operation, with the rotation axis r1 of the main body 8 and with the center of the discs 20 concentric gear 7.
  • the shaft 11 with the imbalance mass 3 attached thereto is rotated at a fixed distance about the axis of rotation r1.
  • the shaft 11 is rotated about the second axis of rotation r2.
  • the shaft 11 rotates here with a speed f2, which corresponds to twice the drive speed f1.
  • FIGS. 11a and 11b schematically show the position of the imbalance mass of the unbalance exciter Fig. 8 in different angular positions with respect to the basic rotation at two different phase angles, wherein Fig. 11a shows a first phase position and Fig. 11b a second, compared to the first rotated by 45 ° phase angle.
  • the imbalance weight 3 in each case performs a rotation of 180 ° about the second rotation axis r2 around a first rotation axis r1 at a basic rotation of the exciter of 90 ° about the second rotation axis r1 and a resulting total rotation of 270 °.
  • FIG. 12 shows a schematic plan view of the lower part of a two unbalance exciters 16 according to Fig. 10 equipped vibration plate.
  • the upper part with the drive motor is not shown.
  • the housing 27 of the exciter assembly is rigidly connected to the work plate 26 of the vibrating plate.
  • the discs 20 of the unbalance exciter 16 are rotatably mounted about the first axis of rotation r1 and each unbalance exciter 16 via a central sleeve 22 torsionally rigidly interconnected.
  • One of the two sleeves 22 is penetrated by an axle (not shown), which carries the gear 7 and connects it with an external gear 24.
  • the unbalanced masses 3 of both unbalance exciters 16 are carried by a common shaft 11, which carries the pinion 6 at a central position, which runs on rotation of the unbalance exciter 16 on the circumference of the gear 7.
  • a common shaft 11 which carries the pinion 6 at a central position, which runs on rotation of the unbalance exciter 16 on the circumference of the gear 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Road Paving Machines (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung betrifft ein Verfahren zum Betrieb einer Maschine mit einem Unwuchterreger mit einer oder mehreren rotierbaren Unwuchten sowie eine Maschine zur Durchführung des Verfahrens gemäss den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a method for operating a machine with an unbalance exciter with one or more rotatable imbalances and a machine for carrying out the method according to the preambles of the independent claims.

STAND DER TECHNIKSTATE OF THE ART

Unwuchterreger mit rotierbaren Unwuchten dienen der Erzeugung zeitveränderlicher Erregerkräfte und kommen in vielen Bereichen der Technik zum Einsatz, z.B. in Vibrationsförderern, in Schwingsiebmaschinen, in Verdichtungsgeräten wie Rüttelplatten und Vibrationswalzen, in Vibrationsrammen und in vibrationserregten Bohr- und Fräsgeräten. Die heute bekannten monofrequenten Unwuchterreger, bei denen sämtliche Unwuchten mit der gleichen Drehzahl rotieren, lassen sich grundsätzlich nach dem Erregerprinzip einteilen in Kreisschwinger und Richtschwinger. Monofrequente Kreisschwinger erzeugen eine Erregerkraft, welche ausschliesslich hinsichtlich ihrer Richtung zeitlich veränderlich ist. Monofrequente Richtschwinger erzeugen eine Erregerkraft, deren Betrag sich zusammen mit ihrer Wirkrichtung zeitlich verändert, derart, dass über eine volle Drehung der Unwuchtmassen gesehen zwei Erregerkraftmaxima mit entgegengesetzten Wirkrichtungen ausgebildet werden. Während der Kreisschwinger mit einer rotierenden Unwuchtmasse auskommt, benötigt der Richtschwinger systembedingt mindestens zwei gegenläufig rotierende Unwuchtmassen. Da solche Unwuchterreger jeweils in entgegen gesetzten Wirkrichtungen dem Betrag nach gleich grosse Erregerkraftkomponenten erzeugen, ist die mit ihnen beim Einsatz in Verdichtungsgeräten und Rammen bereitstellbare maximale Verdichtungs- bzw. Rammkraft auf das 2- bis 3-Fache des Maschinengewichts begrenzt, je nachdem, ob im Auflastbetrieb gearbeitet werden muss oder ein Betrieb mit vorübergehendem Abheben des Werkzeugs von der Arbeitsfläche zulässig bzw. gewünscht ist.Unbalance exciters with rotatable imbalances are used to generate time-varying excitation forces and are used in many areas of technology, for example in vibration conveyors, in vibrating screens, in compactors such as vibratory plates and vibratory rollers, in vibratory rams and in vibration-excited drilling and milling machines. The currently known monofrequent unbalance exciters, in which all imbalances rotate at the same speed, can basically be classified according to the excitation principle in the circular oscillator and the directional oscillator. Monofrequency circular oscillators produce an exciter force which is temporally variable only with regard to their direction. Monofrequency directional oscillators generate an exciter force, the amount of which changes with time along with its effective direction, such that seen over a full rotation of the imbalance masses two excitation force maxima are formed with opposite directions of action. While the circular oscillator manages with a rotating imbalance mass, the directional oscillator system requires at least two counter-rotating unbalanced masses. Since such unbalance exciters generate in each case in opposite directions of action the magnitude equal excitation force components that is with them when used in compactors and rams depending on whether work must be carried out in on-load operation or operation with temporary lifting of the tool from the work surface is permitted or desired.

Neben den weitverbreiteten monofrequenten Unwuchterregern sind auch bifrequente Unwuchterreger bekannt, bei denen die zeitveränderliche Erregerkraft durch Überlagerung der Erregerkraft einer mit einer Grunddrehzahl rotierenden ersten Unwuchtmasse mit der Erregerkraft einer phasengleich mit der doppelten Drehzahl rotierenden zweiten Unwuchtmasse erzeugt wird. Diese Unwuchterreger erzeugen eine Erregerkraft mit einem einzigen Kraftmaximum in einer bestimmten Richtung.In addition to the widespread monofrequency unbalance exciters and bifrequent unbalance exciters are known in which the time-varying excitation force is generated by superimposing the excitation force of a rotating at a basic speed first imbalance mass with the exciter force of a phase in phase with twice the speed rotating second imbalance mass. These unbalance exciters generate an exciter force with a single maximum force in a particular direction.

Die Dokumente SU 1 119 738 A , GB 1 439 455 , EP 0 411 349 A1 , DE 10 2005 009 095 A1 und US 2 309 172 offenbaren verschiedene Bauarten von mehrfrequenten Unwuchterregern.The documents SU 1 119 738 A . GB 1 439 455 . EP 0 411 349 A1 . DE 10 2005 009 095 A1 and US 2,309,172 disclose various types of multi-frequency unbalance exciters.

In der Praxis haben sich derartige bifrequente Unwuchterreger in Vibrationsrammen für Spundwände bewährt, wo mit ihnen deutlich grössere Rammkräfte erzeugt werden können als mit vergleichbaren monofrequenten Unwuchterregern. Bei anderen Anwendungen hingegen, insbesondere bei Rüttelplatten und Vibrationswalzen zur Boden- und Asphaltverdichtung, konnten mit den bekannten bifrequenten Unwuchterregern bisher nur geringe Verbesserungen der Verdichtungsleistung gegenüber monofrequent erregten Vedichtungsgeräten erzielt werden, weshalb im Lichte des deutlich höheren apparatetechnischen Aufwands auf einen Einsatz solcher Unwuchterreger in der Verdichtungstechnik bisher weitgehend verzichtet wurde. Aus EP 0 411 349 A1 ist eine Bodenverdichtungsvorrichtung mit einem bifrequenten Unwuchterreger bekannt.In practice, such bifrequent unbalance exciters have been proven in vibratory rams for sheet piles, where they can be generated with significantly greater ramming forces than comparable monofrequenten unbalance exciters. In other applications, however, especially in vibratory plates and vibratory rollers for soil and asphalt compaction, could be achieved with the known bifrequenten unbalance exciters only small improvements in compression performance over monofrequently energized Vessichtungsgeräten, which is why in the light of the much higher apparatus engineering effort to use such imbalance exciters in the Compaction technology has been largely dispensed with. Out EP 0 411 349 A1 is a soil compacting device with a bifrequenten unbalance exciter known.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es stellt sich die Aufgabe, ein Verfahren zum Betrieb einer Maschine mit einem mehrfrequenten Unwuchterreger und einem mit dem Unwuchterreger zwecks Schwingungsanregung gekoppelten Werkzeug zur Einwirkung auf eine Arbeitsfläche zur Verfügung zu stellen, welches eine Optimierung der Bewegung des Werkzeugs bzw. der vom Werkzeug auf die Arbeitsfläche ausgeübten Kraft und damit der Arbeitsleistung der Maschine erzielt.It turns the task, a method for operating a machine with a multi-frequency unbalance exciter and to provide a tool coupled to the unbalance exciter for vibrational excitation to act on a working surface, which achieves an optimization of the movement of the tool or the force exerted by the tool on the working surface and thus the working power of the machine.

Weiter stellt sich die Aufgabe, eine Maschine zur Durchführung des Verfahrens zur Verfügung zu stellen, bei der sichergestellt werden kann, dass die Maschine jederzeit in einem guten Bereich oder im optimalen Bereich betrieben wird, d.h. immer eine relativ grosse bzw. die maximal mögliche Kraft vom Werkzeug auf die Arbeitsfläche übertragen werden kann.Another object is to provide a machine for carrying out the method, which can be used to ensure that the machine is always operated in a good range or in the optimum range, i. always a relatively large or the maximum possible force can be transferred from the tool to the work surface.

Diese Aufgaben werden durch die Gegenstände der unabhängigen Patentansprüche gelöst.These objects are achieved by the subject-matter of the independent claims.

Demgemäss betrifft ein erster Aspekt der Erfindung ein Verfahren zum Betrieb einer Maschine umfassend einen Unwuchterreger mit einer oder mehreren rotierbaren Unwuchtmassen zur Erzeugung einer mehrfrequenten zeitveränderlichen Erregerkraft. Bei einer einzigen Unwuchtmasse vollführt diese mehrere überlagerte Rotationen, welche z.B. rotatorisch gleichgerichtet oder rotatorisch entgegengesetzt sein können. Bei mehreren Unwuchtmassen vollführen diese bevorzugterweise jeweils eine Einzelrotation, wobei es vorgesehen ist, dass gleiche und/oder entgegen gesetzte Rotationsrichtungen zum Einsatz kommen.Accordingly, a first aspect of the invention relates to a method for operating a machine comprising an unbalance exciter with one or more rotatable imbalance masses for generating a multi-frequency time-varying excitation force. For a single imbalance mass, it performs several superimposed rotations, e.g. can be rotationally rectified or rotationally opposite. In the case of a plurality of imbalance masses, these preferably each perform a single rotation, wherein it is provided that identical and / or opposite directions of rotation are used.

Die Erregerkraft wird durch die Überlagerung einer Grunderregerkraft, welche mit einer Grundfrequenz zeitveränderlich ist, mit einer oder mehreren Zusatzerregerkräften, welche mit Zusatzfrequenzen grösser als die Grundfrequenz zeitveränderlich sind, erzeugt. Dabei ist der Unwuchterreger derartig ausgebildet, dass die Phasenlage zwischen der zeitveränderlichen Grunderregerkraft und zumindest einer der zeitveränderlichen Zusatzerregerkräfte einstellbar ist, bevorzugterweise stufenlos.The excitation force is generated by the superposition of a basic exciter force, which is time-variable with a fundamental frequency, with one or more additional excitation forces which are time-variable with additional frequencies greater than the fundamental frequency. In this case, the unbalance exciter is designed such that the phase position between the time-varying basic excitation force and at least one of the time-varying auxiliary excitation forces is adjustable, preferably continuously.

Weiter umfasst die Maschine ein mit dem Unwuchterreger zwecks Schwingungsanregung gekoppeltes Werkzeug zur Einwirkung auf eine Arbeitsfläche.Furthermore, the machine comprises a tool coupled to the unbalance exciter for the purpose of vibrational excitation for acting on a work surface.

Erfindungsgemäss wird die Maschine derartig betrieben, dass das mit dem Unwuchterreger zu Schwingungen angeregte Werkzeug bestimmungsgemäss auf eine Arbeitsfläche einwirkt, also eine bestimmungsgemässe Arbeit ausführt. Dabei wird die Schwingungsantwort des Werkzeugs auf die Schwingungsanregung des Unwuchterregers und/oder der Verlauf der Arbeitsflächen-Reaktionskraft ermittelt und diese bzw. dieser mit einer angestrebten Soll-Schwingungsantwort bzw. einem angestrebten Soll-Arbeitsflächen-Reaktionskraftverlauf verglichen. Wie die Schwingungsantwort bzw. der Arbeitsflächen-Reaktionskraftverlauf messtechnisch ermittelt werden kann, ist dem Fachmann bekannt und muss deshalb hier nicht genauer erläutert werden.According to the invention, the machine is operated in such a way that the tool, which is excited to vibrate with the unbalance exciter, acts as intended on a working surface, that is, performs a work as intended. In this case, the vibration response of the tool to the vibration excitation of the unbalance exciter and / or the course of the working surface reaction force is determined and compared this or with a desired target vibration response or a desired target working surface reaction force profile. How the vibration response or the working surface reaction force profile can be determined by measurement is known to the person skilled in the art and therefore need not be explained in more detail here.

Weiter wird die Phasenlage zwischen der zeitveränderlichen Grunderregerkraft und zumindest einer der zeitveränderlichen Zusatzerregerkräfte zur Veränderung der Gesamterregerkraft und damit der Schwingungsanregung derart eingestellt, dass sich eine Schwingungsantwort des Werkzeugs oder ein Verlauf der Arbeitsflächen-Reaktionskraft ergibt, welche oder welcher eine verbesserte und bevorzugterweise grösstmögliche Übereinstimmung mit der Soll-Schwingungsantwort bzw. dem Soll-Arbeitsflächen-Reaktionskraftverlauf aufweist.Furthermore, the phase position between the time-varying basic excitation force and at least one of the time-varying additional excitation forces for changing the total excitation force and thus the vibration excitation is set such that a vibration response of the tool or a progression of the working surface reaction force results, which or which an improved and preferably the greatest possible match has the desired vibration response and the desired working surface reaction force curve.

Auf diese Weise wird eine Optimierung der Bewegung des Werkzeugs bzw. der vom Werkzeug auf die Arbeitsfläche ausgeübten Kraft und damit der Arbeitsleistung der Maschine erzielt.In this way, an optimization of the movement of the tool or the force exerted by the tool on the work surface and thus the performance of the machine is achieved.

In einer bevorzugten Ausführungsform des erfindungsgemässen Verfahrens wird die Phasenlage zwischen der zeitveränderlichen Grunderregerkraft und zumindest einer der zeitveränderlichen Zusatzerregerkräfte während dem Betrieb der Maschine eingestellt bzw. verändert, was einen unterbruchsfreien Betrieb ermöglicht und bevorzugterweise als automatisierter Regeleingriff mit einem erneuten Vergleich der resultierenden Schwingungsantwort oder des resultierenden Verlaufs der Arbeitsflächen-Reaktionskraft mit der Soll-Schwingungsantwort bzw. dem Soll-Arbeitsflächen-Reaktionskraftverlauf erfolgt.In a preferred embodiment of the method according to the invention, the phase position between the time-variable basic exciter force and at least one of the time-varying additional excitation forces is set or changed during operation of the machine, which enables interruption-free operation and preferably as automatic control intervention with a renewed one Comparison of the resulting vibration response or the resulting course of the working surface reaction force with the desired vibration response or the target working surface reaction force course takes place.

In einer weiteren bevorzugten Ausführungsform des Verfahrens wird die Phasenlage derartig eingestellt, dass sich eine Schwingungsantwort des Werkzeugs oder ein Arbeitsflächen-Reaktionskraftverlauf ergibt, bei welcher oder welchem der Quotient aus der maximalen Amplitude der Schwingungsantwort des Werkzeugs in Werkzeugarbeitsrichtung und der maximalen Amplitude der Schwingungsantwort des Werkzeugs in Richtung entgegen der Werkzeugarbeitsrichtung oder der Quotient aus der maximalen Kraft des Arbeitsflächen-Reaktionskraftverlaufs in Werkzeugarbeitsrichtung und der maximalen Kraft des Arbeitsflächen-Reaktionskraftverlaufs in Richtung entgegen der Werkzeugarbeitsrichtung für gegebene Frequenzen und Amplituden der Grund- und Zusatzerregerkräfte maximal ist. Hierdurch kann sichergestellt werden, dass die Maschine jederzeit in einem guten bzw. im optimalen Bereich betrieben wird, also immer eine relativ grosse bzw. die maximale Kraft vom Werkzeug auf die Arbeitsfläche übertragen wird.In a further preferred embodiment of the method, the phase position is adjusted such that a vibration response of the tool or a work surface reaction force curve results, at which or which the quotient of the maximum amplitude of the vibration response of the tool in the tool working direction and the maximum amplitude of the vibration response of the tool in the direction opposite to the tool working direction or the quotient of the maximum force of the work surface reaction force curve in the tool working direction and the maximum force of the work surface reaction force curve in the direction opposite to the tool working direction for given frequencies and amplitudes of the basic and additional exciter forces. In this way it can be ensured that the machine is operated at all times in a good or optimal range, that is always a relatively large or the maximum force is transmitted from the tool to the work surface.

In noch einer weiteren bevorzugten Ausführungsform des Verfahrens werden die Phasenlage, die Frequenz und/oder die Amplitude der Grunderregerkraft und/- oder einer oder mehrerer der Zusatzerregerkräfte bevorzugterweise unabhängig voneinander derartig eingestellt, dass sich eine Schwingungsantwort des Werkzeugs oder ein Verlauf der Arbeitsflächen-Reaktionskraft ergibt, bei der oder dem die maximale Amplitude der Schwingungsantwort des Werkzeugs in einer Richtung entgegen der Anpressrichtung des Werkzeugs an die Arbeitsfläche oder die maximale Kraft des Arbeitsflächen-Reaktionskraftverlaufs in einer Richtung entgegen der Anpressrichtung des Werkzeugs an die Arbeitsfläche einen bestimmten Maximalwert nicht übersteigt, zur Verhinderung eines zeitweiligen Kontaktverlusts zwischen dem Werkzeug und der Arbeitsfläche beim bestimmungsgemässen Betrieb. Dies ist, wie bereits erwähntwurde, insbesondere bei Vibrationswalzen für die Verdichtung von Asphalt wichtig, da diese im Auflastbetrieb betrieben werden müssen, um ein zeitweiliges Abheben der Walze von der zu verdichtenden Asphaltoberfläche sicher zu verhindern.In yet another preferred embodiment of the method, the phase position, the frequency and / or the amplitude of the basic exciter force and / or one or more of the additional excitation forces are preferably adjusted independently of one another such that a vibration response of the tool or a progression of the working surface reaction force results in which the maximum amplitude of the vibration response of the tool in a direction opposite to the pressing direction of the tool against the working surface or the maximum force of the working surface reaction force course in a direction opposite to the pressing direction of the tool on the working surface does not exceed a certain maximum value, for preventing a temporary loss of contact between the tool and the work surface when intended operation. This is, as already mentioned, particularly important in vibratory rollers for the compaction of asphalt, since these must be operated in on-load operation in order to reliably prevent a temporary lifting of the roller from the asphalt surface to be compacted.

In noch einer weiteren bevorzugten Ausführungsform des Verfahrens wird die Resonanzfrequenz des Systems Maschine-Werkzeug-Arbeitsfläche beim bestimmungsgemässen Betrieb insbesondere fortlaufend ermittelt und die Grundfrequenz insbesondere fortlaufend auf eine Frequenz geringfügig oberhalb der ermittelten Resonanzfrequenz eingestellt, bevorzugterweise auf eine Frequenz typischerweise im Bereich zwischen 105 % und 130 %, bevorzugterweise zwischen 110 % und 120% der ermittelten Resonanzfrequenz. Hierdurch ergibt sich der Vorteil, dass die Grundfrequenz gezielt in einem Bereich geringfügig oberhalb der Resonanzfrequenz gehalten werden kann, was eine weitere Leistungsoptimierung ermöglicht.In yet another preferred embodiment of the method, the resonant frequency of the machine-tool-work surface system during normal operation is determined in particular continuously and set the fundamental frequency in particular continuously to a frequency slightly above the determined resonant frequency, preferably to a frequency typically in the range between 105% and 130%, preferably between 110% and 120% of the determined resonant frequency. This results in the advantage that the fundamental frequency can be kept selectively in a range slightly above the resonance frequency, which allows a further performance optimization.

In noch einer weiteren bevorzugten Ausführungsform des Verfahrens wird das Ermitteln der Schwingungsantwort und/oder des Arbeitsflächen-Reaktionskraftverlaufs und gegebenenfalls der Resonanzfrequenz, das Vergleichen mit einer angestrebten Soll-Schwingungsantwort und/oder einem Soll-Arbeitsflächen-Reaktionskraftverlauf und das Einstellen der Phasenlage und gegebenenfalls der Frequenz und/oder Amplitude automatisiert mittels einer Maschinensteuerung durchgeführt, und zwar bevorzugterweise fortlaufend während dem Betrieb der Maschine. Hierdurch kann zu jederzeit ein Betrieb mit optimalen Betriebsparametern sichergestellt werden.In yet another preferred embodiment of the method, the determination of the vibration response and / or the working surface reaction force curve and optionally the resonance frequency, the comparison with a desired target vibration response and / or a desired working surface reaction force curve and the adjustment of the phase position and optionally the Frequency and / or amplitude carried out automatically by means of a machine control, preferably continuously during operation of the machine. This can be ensured at any time operation with optimal operating parameters.

Ein zweiter Aspekt der Erfindung betrifft eine Maschine umfassend einen Unwuchterreger mit einer oder mehreren rotierbaren Unwuchtmassen zur Erzeugung einer mehrfrequenten zeitveränderlichen Erregerkraft. Bei einer einzigen Unwuchtmasse vollführt diese mehrere überlagerte Rotationen, welche z.B. rotatorisch gleichgerichtet oder rotatorisch entgegengesetzt sein können. Bei mehreren Unwuchtmassen vollführen diese bevorzugterweise jeweils eine Einzelrotation, wobei es vorgesehen ist, dass gleiche und/oder entgegen gesetzte Rotationsrichtungen zum Einsatz kommen.A second aspect of the invention relates to a machine comprising an unbalance exciter with one or more rotatable imbalance masses for generating a multi-frequency time-varying excitation force. In the case of a single imbalance mass, this performs several superimposed rotations which, for example, are rotationally rectified or rotationally opposite. In the case of a plurality of imbalance masses, these preferably each perform a single rotation, wherein it is provided that identical and / or opposite directions of rotation are used.

Die Erregerkraft wird durch die Überlagerung einer Grunderregerkraft, welche mit einer Grundfrequenz zeitveränderlich ist, mit einer oder mehreren Zusatzerregerkräften, welche mit Zusatzfrequenzen grösser als die Grundfrequenz zeitveränderlich sind, erzeugt. Dabei ist der Unwuchterreger derartig ausgebildet, dass die Phasenlage zwischen der zeitveränderlichen Grunderregerkraft und zumindest einer der zeitveränderlichen Zusatzerregerkräfte während dem Betrieb einstellbar ist, bevorzugterweise stufenlos.The excitation force is generated by the superposition of a basic exciter force, which is time-variable with a fundamental frequency, with one or more additional excitation forces which are time-variable with additional frequencies greater than the fundamental frequency. In this case, the unbalance exciter is designed such that the phase position between the time-varying basic exciter force and at least one of the time-varying additional excitation forces during operation is adjustable, preferably continuously.

Weiter umfasst die Maschine ein mit dem Unwuchterreger zwecks Schwingungsanregung gekoppeltes Werkzeug zur Einwirkung auf eine Arbeitsfläche.Furthermore, the machine comprises a tool coupled to the unbalance exciter for the purpose of vibrational excitation for acting on a work surface.

Auch umfasst die Maschine Mittel zur Ermittelung der Schwingungsantwort des Werkzeugs auf die Schwingungsanregung des Unwuchterregers beim bestimmungsgemässen Betrieb der Maschine und/oder Mittel zur Ermittlung des Verlaufs der Arbeitsflächen-Reaktionskraft beim bestimmungsgemässen Betrieb der Maschine, welcher sich aus einer Überlagerung des aus der Schwingungsantwort des Werkzeugs und dessen schwingender Masse sich ergebenden Bewegungskraftverlaufs des Werkzeugs mit dem Erregerkraftverlauf des oder der Erreger und der statischen Gewichtskraft der Maschine ergibtAlso, the machine comprises means for determining the vibration response of the tool to the vibration excitation of the unbalance exciter during normal operation of the machine and / or means for determining the course of the working surface reaction force during normal operation of the machine, which consists of a superposition of the from the vibration response of the tool and the oscillating mass of which results in the resulting movement force course of the tool with the exciter force profile of the exciter (s) and the static weight force of the machine

Die Mittel zur Ermittelung der Schwingungsantwort des Werkzeugs umfassen typischerweise Beschleunigungssensoren und eine computergestützte Recheneinheit, welche die von den Sensoren gelieferten Signale auswertet. Hierdurch wird es möglich, die Auswirkungen einer Veränderung der Phasenlage zwischen der Grunderregerkraft und der mindestens einen Zusatzerregerkraft, welche zu einer Veränderung der resultierenden Gesamterregerkraft führt, auf die Schwingungsantwort des Werkzeugs, also auf dessen Bewegungsverlauf, objektiv zu beurteilen und so gezielt Einfluss auf diesen wichtigen Betriebsparameter durch gezieltes Verstellen der Phasenlage zu nehmen.The means for determining the vibration response of the tool typically comprise acceleration sensors and a computer-aided processing unit which evaluates the signals supplied by the sensors. This makes it possible, the effects of a change in the phase angle between the basic excitation force and the at least one additional excitation force, which leads to a change in the resulting total exciter force leads to objectively assessing the vibration response of the tool, ie its course of motion, and thus to specifically influence this important operating parameter by deliberately adjusting the phase position.

Bei Maschinen zur Bodenverdichtung wird die Arbeitsflächen-Reaktionskraft auch als Bodenreaktionskraft bezeichnet.In soil compaction machines, the working surface reaction force is also referred to as the soil reaction force.

Die Mittel zur Ermittlung des Verlaufs der Arbeitsflächen-Reaktionskraft umfassen typischerweise Beschleunigungssensoren, Sensoren zur Positionserfassung der rotierenden Unwuchten und eine computergestützte Recheneinheit, welche die von den Sensoren gelieferten Signale auswertet. Hierdurch wird es möglich, die Auswirkungen einer Veränderung der Phasenlage zwischen der Grunderregerkraft und der mindestens einen Zusatzerregerkraft, welche zu einer Veränderung der resultierenden Gesamterregerkraft führt, auf die vom Werkzeug auf die Arbeitsfläche ausgeübte Kraft objektiv zu beurteilen und so eine Optimierung dieser Kraft und damit der Arbeitsleistung der Maschine durch gezieltes Verstellen der Phasenlage vorzunehmen.The means for determining the progression of the work surface reaction force typically comprise acceleration sensors, positional sensors for rotating imbalances and a computer-aided processing unit which evaluates the signals supplied by the sensors. This makes it possible to objectively assess the effects of a change in the phase position between the basic excitation force and the at least one additional excitation force, which leads to a change in the resulting total excitation force on the force exerted by the tool on the work surface and thus optimize this force and thus the Performing work of the machine by targeted adjustment of the phase position.

Zudem umfasst die Maschine zusätzlich eine Maschinensteuerung, mittels welcher die Phasenlage zwischen der Grunderregerkraft und der mindestens einen Zusatzerregerkraft automatisch und bevorzugterweise fortlaufend während dem Betrieb derart einstellbar ist, dass sich eine Schwingungsantwort des Werkzeugs oder ein Verlauf der Arbeitsflächen-Reaktionskraft ergibt, bei welcher oder welchem der Quotient aus der maximalen Amplitude der Schwingungsantwort in Werkzeugarbeitsrichtung und der maximalen Amplitude der Schwingungsantwort in Richtung entgegen der Werkzeugarbeitsrichtung oder der Quotient aus der maximalen Kraft des Verlaufs der Arbeitsflächen-Reaktionskraft in Werkzeugarbeitsrichtung und der maximalen Kraft des Verlaufs der Arbeitsflächen-Reaktionskraft in Richtung entgegen der Werkzeugarbeitsrichtung für gegebene Frequenzen und Amplituden der Grund- und Zusatzerregerkräfte maximal ist.In addition, the machine additionally comprises a machine controller, by means of which the phase position between the basic excitation force and the at least one additional excitation force is automatically and preferably continuously adjustable during operation such that a vibration response of the tool or a progression of the working surface reaction force results, in which or which the quotient of the maximum amplitude of the vibration response in the tool working direction and the maximum amplitude of the vibration response in the direction opposite to the tool working direction or the quotient of the maximum force of the course of the working surface reaction force in the tool working direction and the maximum force of the course of the working surface reaction force in the direction opposite tool working direction is maximum for given frequencies and amplitudes of the fundamental and auxiliary excitation forces.

Hierdurch kann sichergestellt werden, dass die Maschine jederzeit in einem guten Bereich oder im optimalen Bereich betrieben wird, d.h. immer eine relativ grosse bzw. die maximal mögliche Kraft vom Werkzeug auf die Arbeitsfläche übertragen werden kann.This can ensure that the machine is always operated in a good range or in the optimum range, i. always a relatively large or the maximum possible force can be transferred from the tool to the work surface.

Bevorzugterweise handelt es sich bei der Maschine um eine vibrationsaktivierte Bohrmaschine, Strassenfräse oder Tunnelfräse, eine Vibrationsramme oder eine Maschine zur Bodenverdichtung, insbesondere eine Vibrationsplatte oder eine Vibrationswalze. Bei solchen Maschinen treten die Vorteile der Erfindung besonders deutlich zu Tage.The machine is preferably a vibration-activated drilling machine, road milling machine or tunneling machine, a vibration rammer or a soil compaction machine, in particular a vibrating plate or a vibrating roller. In such machines, the advantages of the invention are particularly evident.

In einer bevorzugten Ausführungsform der Maschine ist der Unwuchterreger derartig ausgebildet, dass zumindest eine der Zusatzerregerkräfte mit einer einem ganzzahligen Vielfachen der Grundfrequenz entsprechenden Zusatzfrequenz zeitveränderlich ist, und zwar bevorzugterweise mit einer Frequenz entsprechend dem Zweifachen der Grundfrequenz. Es hat sich gezeigt, dass bei ganzzahligen Frequenzverhältnissen die grössten Leistungsgewinne möglich sind.In a preferred embodiment of the machine, the unbalance exciter is designed such that at least one of the additional exciter forces is time-variable with an additional frequency corresponding to an integer multiple of the fundamental frequency, preferably with a frequency corresponding to twice the fundamental frequency. It has been shown that at integer frequency ratios the greatest performance gains are possible.

In noch einer weiteren bevorzugten Ausführungsform der Maschine ist der Unwuchterreger derartig ausgebildet, dass dieser zur Erzeugung der Grunderregerkraft und der Zusatzerregerkräfte separate Unwuchtmassen aufweist, welche jeweils separate Rotationsbewegungen vollführen. Derartige Lösungen basieren auf relativ einfachen und erprobten Konstruktionsprinzipien und können zudem auch bei existierenden Mehrwellen-Unwuchterregern nachgerüstet werden.In yet another preferred embodiment of the machine, the unbalance exciter is designed in such a way that it has separate imbalance masses for generating the basic excitation force and the additional exciter forces, which each perform separate rotational movements. Such solutions are based on relatively simple and proven design principles and can also be retrofitted to existing multi-wave unbalance exciters.

In einer alternativen Ausführungsform der Maschine ist der Unwuchterreger derartig ausgebildet, dass dieser zur Erzeugung der Grunderregerkraft und zumindest einer der Zusatzerregerkräfte eine gemeinsame Unwuchtmasse aufweist, welche zumindest zwei überlagerte Rotationsbewegungen vollführt. Eine derartige Konstruktionsweise weist als potentielle Vorteile eine kompakte Bauweise, eine einfache Phasenlagenverstellung und minimale Lagerdrehzahlen auf.In an alternative embodiment of the machine, the unbalance exciter is designed in such a way that, in order to generate the basic exciter force and at least one of the additional excitation forces, it has a common imbalance mass, which has at least two superimposed rotational movements performs. Such a construction method has as potential advantages a compact design, a simple phase position adjustment and minimum bearing speeds.

Dabei kann es bevorzugt sein, dass der Unwuchterreger ein Gegengewicht aufweist, welches die durch die Unwuchtmasse bei der Rotation mit der Grundfrequenz erzeugten Unwucht verringert und somit die Grunderregerkraft reduziert. Hierdurch ist es möglich, das Verhältnis zwischen der Grunderregerkraft und der oder den Zusatzerregerkräften durch bauliche Massnahmen in weiten Bereichen zu beeinflussen. In noch einer weiteren bevorzugten Ausführungsform der Maschine ist der Unwuchterreger derartig ausgebildet, dass die Grundfrequenz und/oder die Zusatzfrequenzen bevorzugterweise stufenlos einstellbar sind, bevorzugterweise während dem Betrieb. Üblicherweise ist deren Verhältnis zueinander fix, d.h. dass eine Veränderung der Grundfrequenz automatisch zu einer entsprechenden Veränderung der Zusatzfrequenzen führt, wie sich dies bei einer Zwangkopplung über Zahnräder ergibt. Es ist jedoch ebenso vorgesehen, für spezifische Anwendungen variable Frequenzverhältnisse zu ermöglichen.It may be preferred that the unbalance exciter has a counterweight, which reduces the imbalance generated by the imbalance mass in the rotation with the fundamental frequency and thus reduces the basic exciter force. This makes it possible to influence the relationship between the basic exciter force and the or the additional excitation forces by structural measures in many areas. In yet another preferred embodiment of the machine, the unbalance exciter is designed such that the fundamental frequency and / or the additional frequencies are preferably infinitely adjustable, preferably during operation. Usually, their ratio to each other is fixed, i. that a change in the fundamental frequency automatically leads to a corresponding change in the additional frequencies, as is the case with a forced coupling via gears. However, it is also intended to allow variable frequency ratios for specific applications.

In noch einer weiteren bevorzugten Ausführungsform der Maschine ist der Unwuchterreger derartig ausgebildet, dass die Amplitude der Grunderregerkraft und/oder die Amplitude einer oder mehrerer der Zusatzerregerkräfte bevorzugterweise stufenlos einstellbar sind, und zwar mit Vorteil während dem Betrieb. Zudem ist es weiter bevorzugt, dass die Amplituden unabhängig von der jeweiligen Erregerfrequenz einstellbar sind, z.B. indem der Schwerpunktsabstand der jeweiligen Unwuchtmasse vom Rotationszentrum verändert wird oder durch Überlagerung gleich schnell und gleichsinning rotierender Unwuchten.In yet another preferred embodiment of the machine, the unbalance exciter is designed in such a way that the amplitude of the basic exciter force and / or the amplitude of one or more of the additional excitation forces are preferably infinitely adjustable, and to advantage during operation. Moreover, it is further preferred that the amplitudes are adjustable independently of the respective exciter frequency, e.g. by the center of gravity of the respective unbalanced mass is changed by the center of rotation or by superimposing equally fast and gleichsinning rotating imbalances.

Durch diese Massnahmen wird eine weitere Optimierung der Verdichtungsleistung möglich, insbesondere fortlaufend und automatisiert während dem Betrieb.Through these measures, a further optimization of the compaction performance is possible, in particular continuously and automatically during operation.

Weiter ist es von Vorteil, dass die Maschine eine Maschinensteuerung umfasst, mittels welcher die Phasenlage, die Frequenz und/oder die Amplitude der Grunderregerkraft und/oder einer oder mehrerer der Zusatzerregerkräfte automatisch und bevorzugterweise fortlaufend während dem Betrieb derartig einstellbar sind, dass sich eine Schwingungsantwort des Werkzeugs oder ein Verlauf der Arbeitsflächen-Reaktionskraft ergibt, bei der oder dem die maximale Amplitude der Schwingungsantwort in einer Richtung entgegen der Anpressrichtung des Werkzeugs an die Arbeitsfläche oder die maximale Kraft des Arbeitsflächen-Reaktionskraftverlaufs in einer Richtung entgegen der Anpressrichtung des Werkzeugs an die Arbeitsfläche einen bestimmten Maximalwert nicht übersteigt, zur Verhinderung eines zeitweiligen Kontaktverlusts zwischen dem Werkzeug und der Arbeitsfläche beim bestimmungsgemässen Betrieb. Dies ist insbesondere bei Vibrationswalzen für die Verdichtung von Asphalt wichtig, welche im Auflastbetrieb betrieben werden müssen, da ein zeitweilige Abheben der Walze von der zu verdichtenden Asphaltoberfläche zu einer schlechten Oberflächenqualität (Rattermarken) führen würde, was es zu vermeiden gilt.Further, it is advantageous that the machine comprises a machine control, by means of which the phase position, the frequency and / or the amplitude of the basic exciter force and / or one or more of the additional exciter forces are automatically and preferably continuously adjustable during operation such that a vibration response of the tool, or a progression of the work surface reaction force, yields at or the maximum amplitude of the vibrational response in a direction opposite to the pressing direction of the tool on the work surface or the maximum force of the work surface reaction force path in a direction opposite to the pressing direction of the tool against the work surface does not exceed a certain maximum value to prevent temporary loss of contact between the tool and the work surface during normal operation. This is particularly important in vibratory rollers for the compaction of asphalt, which must be operated in on-load operation, since a temporary lifting of the roller from the asphalt surface to be compacted would lead to poor surface quality (chatter marks), which should be avoided.

In noch einer weiteren bevorzugten Ausführungsform weist die Maschine zudem Mittel zur insbesondere fortlaufenden Ermittlung der Resonanzfrequenz des Systems Maschine-Werkzeug-Arbeitsfläche beim bestimmungsgemässen Betrieb auf. Diese Mittel weisen typischerweise Beschleunigungssensoren, Sensoren zur Positionserfassung des oder der Erreger und eine computergestützte Recheneinheit auf, welche die von den Sensoren gelieferten Signale auswertet, und sind bevorzugterweise gemeinsam mit Mitteln zur Ermittlung der Schwingungsantwort des Werkzeugs und/oder zur Ermittlung des Verlaufs der Arbeitsflächen-Reaktionskraft ausgebildet.In yet another preferred embodiment, the machine also has means for in particular continuous determination of the resonance frequency of the machine-tool-work surface system during normal operation. These means typically comprise acceleration sensors, sensors for position detection of the pathogen (s) and a computer-aided processing unit which evaluates the signals supplied by the sensors and are preferably together with means for determining the vibration response of the tool and / or for determining the course of the working surface. Reaction force formed.

Dabei ist es weiter bevorzugt, dass die Maschine zudem eine Maschinensteuerung umfasst, mit welcher die Grundfrequenz automatisch und bevorzugterweise fortlaufend während dem Betrieb auf eine Frequenz geringfügig oberhalb der ermittelten Resonanzfrequenz einstellbar ist, und zwar bevorzugterweise auf eine Frequenz im Bereich zwischen 105% und 130%, noch bevorzugter zwischen 110% und 120% der ermittelten Resonanzfrequenz. Hierdurch ergibt sich der Vorteil, dass die Grundfrequenz fortlaufend in einem Bereich geringfügig oberhalb der Resonanzfrequenz gehalten werden kann, was eine weitere Leistungsoptimierung ermöglicht.It is further preferred that the machine further comprises a machine control, with which the fundamental frequency automatically and preferably continuously is adjustable during operation to a frequency slightly above the determined resonant frequency, preferably to a frequency in the range between 105% and 130%, more preferably between 110% and 120% of the determined resonant frequency. This results in the advantage that the fundamental frequency can be kept continuously in a range slightly above the resonance frequency, which enables further performance optimization.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figuren. Dabei zeigen:

  • die Figuren 1 und 2 zwei grundlegende Konstruktionsprinzipien für Unwuchterreger;
  • Fig. 3 eine perspektivische Prinzipdarstellung eines Unwuchterregers gemäss dem in Fig. 2 gezeigten Konstruktionsprinzips;
  • Fig. 4 eine Seitenansicht einer erfindungsgemässen Vibrationswalze;
  • Fig. 5 eine perspektivische Draufsicht auf den Unwuchterreger der Vibrationswalze aus Fig. 4;
  • Fig. 6 einen Längsschnitt durch den Unwuchterreger aus Fig. 5;
  • Fig. 7 eine Prinzipdarstellung der Phasenverstellung des Unwuchterregers aus den Figuren 5 und 6;
  • die Figuren 8a bis 8d die Position der rotierenden Unwuchten und den Verlauf der Erregerkraft des Unwuchterregers, die Schwingungsantwort der Walzen sowie den Verlauf der Bodenreaktionskraft beim schwingungsantwortoptimierten Betrieb der Grabenwalze aus Fig. 4;
  • die Figuren 9a bis 9d die Phasenlage der rotierenden Unwuchten und den Verlauf der Erregerkraft des Unwuchterregers, die Schwingungsantwort der Walzen sowie den Verlauf der Bodenreaktionskraft bei einem bodenreaktionskraftoptimierten Betrieb der Grabenwalze aus Fig. 4;
  • Fig. 10 eine perspektivische Draufsicht auf einen Unwuchterreger gemäss der Prinzipdarstellung in Fig. 3;
  • die Figuren 11a und 11b die Position der Unwuchtmasse des Unwuchterregers aus Fig. 10 in verschiedenen Winkelpositionen der Grundrotation bei zwei verschiedenen Phasenlagen; und
  • Fig. 12 eine Draufsicht auf das Unterteil einer mit zwei Unwuchterregern gemäss Fig. 10 ausgerüsteten Vibrationsplatte.
Further embodiments, advantages and applications of the invention will become apparent from the dependent claims and from the following description with reference to FIGS. Showing:
  • the Figures 1 and 2 two basic design principles for unbalance exciters;
  • Fig. 3 a perspective schematic representation of an imbalance exciter according to the in Fig. 2 shown construction principle;
  • Fig. 4 a side view of an inventive vibration roller;
  • Fig. 5 a perspective top view of the unbalance exciter of the vibratory roller Fig. 4 ;
  • Fig. 6 a longitudinal section through the unbalance exciter Fig. 5 ;
  • Fig. 7 a schematic diagram of the phase adjustment of the unbalance exciter from the Figures 5 and 6 ;
  • the FIGS. 8a to 8d the position of the rotating imbalances and the course of the exciter force of the unbalance exciter, the vibration response of the rollers and the course of the ground reaction force in the vibration-response optimized operation of the trench roller Fig. 4 ;
  • the FIGS. 9a to 9d the phase of the rotating imbalances and the course of the exciter force of the unbalance exciter, the vibration response of the rollers and the course of the floor reaction force in a ground reaction force optimized operation of the trench roller Fig. 4 ;
  • Fig. 10 a perspective plan view of an unbalance exciter according to the schematic diagram in Fig. 3 ;
  • the Figures 11a and 11b the position of the imbalance mass of the unbalance exciter Fig. 10 in different angular positions of the basic rotation at two different phase angles; and
  • Fig. 12 a plan view of the lower part of a with two unbalance exciters according Fig. 10 equipped vibration plate.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Zwei grundlegende Konstruktionsprinzipien für Unwuchterreger für eine erfindungsgemässe Maschine sind in den Figuren 1 und 2 in perspektivischer Darstellung gezeigt.Two basic design principles for unbalance exciters for a machine according to the invention are described in US Pat Figures 1 and 2 shown in perspective.

Das in Fig. 1 gezeigte Funktionsprinzip beruht auf der Verwendung zweier rotierender Wellen 1, 2, welche jeweils ein Unwuchtgewicht 3 tragen und um parallele Rotationsachsen r1, r2 herum synchronisiert, z.B. über ein Zahnradgetriebe oder einen Zahnriemen 4, mit unterschiedlichen Drehzahlen f1, f2 angetrieben werden. Dabei ist die Phasenlage zwischen den beiden rotierenden Wellen 1, 2 einstellbar, z.B. über ein Differentialgetriebe 5.This in Fig. 1 The operating principle shown is based on the use of two rotating shafts 1, 2, each carrying an imbalance weight 3 and synchronized about parallel axes of rotation r1, r2 around, for example via a toothed belt or a toothed belt 4, are driven at different speeds f1, f2. In this case, the phase position between the two rotating shafts 1, 2 is adjustable, for example via a differential gear fifth

Das in Fig. 2 gezeigte Funktionsprinzip beruht auf der Verwendung einer einzigen geführten Masse 3, welche zwei überlagerte Drehungen vollführt. Die Masse 3 wird mit einer ersten Drehzahl f1 beabstandet um eine erste Rotationsachse r1 rotiert, wobei sie gleichzeitig mit einer zweiten Drehzahl f2, welche grösser ist als die erste Drehzahl f1 und mit dieser synchronisiert ist, um eine zweite Rotationsachse r2 rotiert wird, welche ihrerseits mit der ersten Drehzahl f1 und mit einem festen Abstand um die erste Rotationsachse r1 rotiert. Aufgrund der zweiten überlagerten Rotation ändert sich der Abstand der Masse 3 zur ersten Rotationsachse r1 laufend. Die Rotation um die zweite Rotationsachse r2 wird dadurch hervorgerufen, dass ein die Masse 3 tragendes und um die zweite Rotationsachse r2 rotierbares Bauteil mit einem Zahnrad 6 im Eingriff mit einem feststehenden, konzentrisch zur ersten Rotationsachse r1 angeordneten Zahnrad 7 steht und an dessen Aussenumfang abrollt. Die Phasenlage zwischen der ersten und der zweiten Rotation kann durch ein Verdrehen des mit der ersten Rotationsachse r1 konzentrischen Zahnrads 7 verändert werden.This in Fig. 2 The operating principle shown is based on the use of a single guided mass 3, which performs two superimposed rotations. The mass 3 is rotated at a first rotational speed f1 spaced around a first rotational axis r1, simultaneously rotating at a second rotational speed f2, which is greater than and synchronized with the first rotational speed f1, about a second rotational axis r2, which in turn is rotated rotated at the first rotational speed f1 and at a fixed distance about the first rotational axis r1. Due to the second superimposed rotation, the distance changes the mass 3 to the first axis of rotation r1 running. The rotation about the second axis of rotation r2 is caused by the fact that a component carrying the mass 3 and rotatable about the second axis of rotation r2 with a toothed wheel 6 engages with a fixed toothed wheel 7 arranged concentrically with the first axis of rotation r1 and unrolls on its outer circumference. The phase position between the first and the second rotation can be changed by rotating the gear 7 concentric with the first axis of rotation r1.

Fig. 3 zeigt eine perspektivische Prinzipdarstellung eines weiterentwickelten Unwuchterregers gemäss dem in Fig. 2 gezeigten Konstruktionsprinzip. Wie zu erkennen ist, weist der Unwuchterreger einen kurbelwellenartigen Hauptkörper 8 auf, der um zwei endseitig angeordneten Lagerzapfen 10 rotierbar um eine erste Rotationsachse r1 herum gelagert ist und mit einem Antriebsmotor 9 verbunden ist, mit welchem er mit einer ersten Drehzahl f1 antreibbar ist. Der Kurbelzapfen wird von einer Welle 11 gebildet, die ein Unwuchtgewicht 3 trägt. Die Welle 11 ist an ihren Enden rotierbar um eine zweite Rotationsachse r2 gelagert. An einem Ende weist die Welle 11 einen Überstand mit einem Ritzel 6 auf, welches am Aussenumfang eines feststehenden und mit der Rotationsachse r1 des Hauptkörpers 8 konzentrischen Zahnrads 7 abläuft. Wie zu erkennen ist, wird bei einer Rotation des Hauptkörpers 8 um die erste Rotationsachse r1 herum die Welle 11 mit der daran befestigten Unwuchtmasse 3 mit einem festen Abstand um die Rotationsachse r1 herum rotiert. Dabei wird infolge des Ablaufens des Ritzels 6 am Umfang des Zahnrads 7 die Welle 11 gleichzeitig um die zweite Rotationsachse r2 rotiert, so dass das Unwuchtgewicht 3 eine Bewegung aus zwei überlagerten Rotationen vollführt. Infolge der unterschiedlichen Umfänge von Ritzel 6 und Zahnrad 7 rotiert die Welle 11 hier mit einer Drehzahl f2, welche grösser ist als die Antriebsdrehzahl f1 des Hauptkörpers 8. Zur Verstellung der Phasenlage zwischen den beiden Rotationen um die Rotationsachsen r1, r2 herum kann das Zahnrad 7 mittels eines Betätigungshebels 12 und eines zugeordneten Antriebs, z.B ein Hydraulikzylinder 13, um sein Zentrum und damit um die erste Rotationsachse r1 herum um einen bestimmten Winkel α verdreht werden. Fig. 3 shows a perspective schematic representation of a further developed unbalance exciter according to the in Fig. 2 shown construction principle. As can be seen, the unbalance exciter on a crankshaft-like main body 8 which is rotatably mounted about two end-mounted bearing pin 10 about a first axis of rotation r1 and connected to a drive motor 9, with which it is drivable at a first speed f1. The crank pin is formed by a shaft 11 which carries an imbalance weight 3. The shaft 11 is rotatably supported at its ends about a second axis of rotation r2. At one end, the shaft 11 has a projection with a pinion 6, which runs on the outer circumference of a fixed and concentric with the rotation axis r1 of the main body 8 gear 7. As can be seen, upon rotation of the main body 8 about the first axis of rotation r1, the shaft 11 with the imbalance mass 3 attached thereto is rotated at a fixed distance about the axis of rotation r1. In this case, due to the running of the pinion 6 on the circumference of the gear 7, the shaft 11 is simultaneously rotated about the second axis of rotation r2, so that the imbalance weight 3 performs a movement of two superimposed rotations. As a result of the different circumferences of pinion gear 6 and 7 shaft 11 rotates here with a speed f2, which is greater than the input speed f1 of the main body 8. To adjust the phase angle between the two Rotations about the axes of rotation r1, r2 around the gear 7 by means of an actuating lever 12 and an associated drive, such as a hydraulic cylinder 13, around its center and thus around the first axis of rotation r1 around a certain angle α are rotated.

Fig. 4 zeigt eine Seitenansicht einer erfindungsgemässen Grabenwalze mit einem Unwuchterreger, welcher das Konstruktionsprinzip gemäss Fig. 1 verwirklicht. Die Grabenwalze besteht aus einem Unterwagen 14 mit den Walzen 15 und dem Unwuchterreger 16 und einem Oberwagen 17 mit dem Antriebsmotor (nicht gezeigt), welcher gegenüber dem Unterwagen schwingungsmässig isoliert ist. Fig. 4 shows a side view of a trench roller according to the invention with an unbalance exciter, which according to the construction principle Fig. 1 realized. The trench roller consists of an undercarriage 14 with the rollers 15 and the unbalance exciter 16 and a superstructure 17 with the drive motor (not shown), which is isolated in terms of vibration with respect to the undercarriage.

Fig. 5 zeigt eine perspektivische Draufsicht auf den Unwuchterreger der Grabenwalze aus Fig. 4. Der Unwuchterreger 16 weist zwei übereinander angeordnete Unwuchtwellen (nicht sichtbar) auf, welche jeweils um eigene Rotationsachsen r1, r2 rotiert werden. An einem Ende des Unwuchterregers 16 ist ein Hydromotor 9 angeordnet, mit welchem die untere Unwuchtwelle mit der Grundfrequenz f1 um die Rotationsachse r1 rotiert werden kann. Fig. 5 shows a perspective top view of the unbalance exciter of the trench roller Fig. 4 , The unbalance exciter 16 has two imbalance waves (not visible) arranged one above the other, which are respectively rotated about their own axes of rotation r1, r2. At one end of the unbalance exciter 16, a hydraulic motor 9 is arranged, with which the lower imbalance shaft with the fundamental frequency f1 can be rotated about the rotation axis r1.

Ein Längsschnitt durch den Unwuchterreger aus Fig. 5 ist in Fig. 6 gezeigt. Wie hier zu erkennen ist, sind die beiden Unwuchtwellen 1, 2 des Unwuchterreger 16, welche die Unwuchtmassen 3 tragen, über ein Zahnriemengetriebe umfassend eine untere Zahnriemenscheibe 18, eine obere Zahnriemenscheibe 19 und einen Zahnriemen 4 rotatorisch miteinander gekoppelt, derart, dass die obere Unwuchtwelle 2 bei Rotation der unteren Unwuchtwelle 1 mit der Grundfrequenz f1 zwangssynchron und gleichsinnig mit einer Frequenz f2, welche der doppelten Grundfrequenz f1 entspricht, angetrieben wird.A longitudinal section through the unbalance exciter Fig. 5 is in Fig. 6 shown. As can be seen here, the two unbalanced shafts 1, 2 of the unbalance exciter 16, which carry the imbalance masses 3, rotatably coupled to each other via a toothed belt transmission comprising a lower toothed belt pulley 18, an upper toothed belt pulley 19 and a toothed belt 4, such that the upper unbalanced shaft 2 with rotation of the lower imbalance shaft 1 with the fundamental frequency f1 zwangsssynchron and in the same direction with a frequency f2, which corresponds to twice the fundamental frequency f1, is driven.

Wie in Zusammenschau mit Fig. 7 ersichtlich wird, welche das Prinzip der Zahnriemenkopplung zwischen den beiden Unwuchtwellen 1, 2 stark vereinfacht zeigt, kann die Phasenlage der Rotationen f1, f2 der beiden Wellen 1, 2 zueinander dadurch verstellt werden, dass eine Anordnung aus zwei Hilfsriemenscheiben 28a, 28b, deren Lagerstellen über eine Brücke 29 miteinander verbunden sind, in einer Richtung V quer zu einer Geraden durch die Rotationszentren der unteren 18 und der oberen Zahnriemenscheibe 19 mittels eines Antriebs, z.B. eines Hydraulikzylinders 13, verschoben wird. Durch diese Verschiebung ändert sich das Verhältnis von der freien Zahnriemenlänge zwischen der oberen und der unteren Zahnriemenscheibe 18, 19 auf der Lastseite (Seite, an welcher die Hilfsriemenscheibe 28b am Zahnriemen 4 angreift) zu der freien Zahnriemenlänge zwischen der unteren und der oberen Zahnriemenscheibe 18, 19 auf der lastfreien Seite (Seite, an welcher die Hilfsriemenscheibe 28a am Zahnriemen 4 angreift), so dass die untere und die obere Riemenscheibe 18, 19 und damit die Unwuchtwellen 1, 2 relativ zueinander verdreht werden. Damit der Zahnriemen 4 einen möglichst grossen Umschlingungswinkel an der unteren und der oberen Riemenscheibe 18, 19 bildet, was wünschenswert ist um die Zahnbelastung möglichst gering zu halten, sind hier zusätzlich Umlenkrollen 30 vorgesehen, welche zudem auch als Spannrollen dienen können. Ebenso ist es aber auch vorgesehen, die Brücke 29 als Spannelement auszubilden, welches im Betrieb zusätzlich die beiden Hilfsriemenscheiben mit einer bestimmten Vorspannkraft voneinander weg und gegen den Zahnriemen 4 drückt.As in synopsis with Fig. 7 can be seen, which shows the principle of the toothed belt coupling between the two unbalanced shafts 1, 2 greatly simplified, the phase position of the rotations f1, f2 of the two shafts 1, 2 can be adjusted to each other that an arrangement of two auxiliary pulleys 28a, 28b, their bearings are interconnected by a bridge 29, in a direction V transverse to a straight line through the centers of rotation of the lower 18 and the upper toothed belt pulley 19 by means of a drive, for example a hydraulic cylinder 13, is moved. By this displacement, the ratio of the free timing belt length between the upper and lower timing pulleys 18, 19 on the load side (side where the auxiliary pulley 28b engages the timing belt 4) changes to the free timing belt length between the lower and upper timing pulleys 18, 19 on the load-free side (side on which the auxiliary pulley 28a engages the toothed belt 4), so that the lower and the upper pulley 18, 19 and thus the unbalanced shafts 1, 2 are rotated relative to each other. In order for the toothed belt 4 to form the largest possible angle of wrap on the lower and upper pulleys 18, 19, which is desirable for keeping the tooth load as low as possible, pulleys 30 are additionally provided here, which can also serve as tension rollers. Likewise, however, it is also provided to form the bridge 29 as a clamping element, which in operation additionally pushes the two auxiliary pulleys away from one another and against the toothed belt 4 with a specific prestressing force.

Fig. 8a zeigt die obere und die untere Unwuchtwelle des Unwuchterregers aus den Figuren 5 und 6 bei der Rotation mit einer ersten Phasenlage zueinander. Wie zu erkennen ist, weisen die Unwuchtmassen der beiden Unwuchtwellen 1, 2 in der dargestellten Situation einen Verdrehwinkel ϕ von 105° zueinander auf. Bei dieser Phasenlage erzeugen die Unwuchtwellen 1, 2 die in Fig. 8b dargestellten Erregerkraftverläufe (Erregerkraft Ferr in kN über der Zeit t dargestellt), welche zusammen den Gesamterregerkraftverlauf (nicht dargestellt) ergeben. Die sich bei entsprechendem Betrieb der Grabenwalze gemäss Fig. 4 mit diesem Unwuchterreger auf sandigem Boden ergebende Schwingungsantwort der Walzen (Schwingungsamplitude der Walzen Amp in mm über der Zeit t dargestellt) ist in Fig. 8c dargestellt und der sich ergebende Verlauf der Bodenreaktionskraft (Bodenreaktionskraft Frea in kN über der Zeit t) in Fig. 8d. Fig. 8a shows the upper and the lower unbalance shaft of the unbalance exciter from the Figures 5 and 6 during rotation with a first phase position to each other. As can be seen, the imbalance masses of the two unbalanced shafts 1, 2 in the illustrated situation have a twist angle φ of 105 ° with respect to one another. In this phase position, the unbalanced shafts 1, 2 generate the in Fig. 8b shown exciter force curves (excitation force Ferr in kN over the time t shown), which together give the total exciter force curve (not shown). In accordance with the operation of the trench roller according to Fig. 4 with this unbalance exciter on sandy soil resulting vibration response of the rollers (oscillation amplitude the rollers Amp in mm over the time t shown) is in Fig. 8c and the resulting progression of the floor reaction force (floor reaction force Frea in kN over time t) in FIG Fig. 8d ,

Wie zu erkennen ist, ergibt sich bei dieser Phasenlage auf sandigem Boden eine Schwingungsantwort der Walzen 15, bei welcher der Quotient aus der maximalen Amplitude Amp der Schwingungsantwort der Walzen in Arbeitsrichtung (hier Schwerkraftrichtung) zur maximalen Amplitude Amp der Schwingungsantwort der Walzen in Richtung entgegen der Arbeitsrichtung maximal ist. Es handelt sich also um einen schwingungsantwortoptimierten Betrieb der Grabenwalze, bei welchem im vorliegenden Fall, wie aus Fig. 8d hervorgeht, ein Bodenreaktionskraftverlauf resultiert, der sowohl in Arbeitrichtung der Walzen als auch entgegengesetzt etwa gleich grosse Kraftmaxima aufweist.As can be seen, results in this phase on sandy soil an oscillation response of the rollers 15, in which the quotient of the maximum amplitude Amp of the vibration response of the rollers in the working direction (in this direction of gravity) to the maximum amplitude Amp of the vibration response of the rollers in the direction opposite Working direction is maximum. It is therefore a vibration-optimized operation of the trench roller, wherein in the present case, as from Fig. 8d shows a Bodenreaktionskraftverlauf results, which has approximately the same magnitude of maximum force both in the working direction of the rollers and opposite.

Die Figuren 9a bis 9d zeigen Darstellungen wie die Figuren 8a bis 8d mit dem Unterschied, dass hier eine zweite Phasenlage der Unwuchtwellen vorliegt, bei der die Unwuchtmassen der beiden Unwuchtwellen 1, 2 in der dargestellten Situation einen Verdrehwinkel ϕ von lediglich 15° zueinander aufweisen. Wie aus einem Vergleich von Fig. 9b mit Fig. 8b zu erkennen ist, sind die Verläufe der Erregerkräfte Ferr entsprechend verschoben, so dass ein anderer Gesamterregerkraftverlauf (nicht gezeigt) resultiert.The FIGS. 9a to 9d show representations like the FIGS. 8a to 8d with the difference that here there is a second phase position of the unbalanced shafts, in which the imbalance masses of the two unbalanced shafts 1, 2 in the illustrated situation have a twist angle φ of only 15 ° to each other. As if from a comparison of Fig. 9b With Fig. 8b can be seen, the courses of the excitation forces Ferr are shifted accordingly, so that a different total exciter force curve (not shown) results.

Wie aus den Figuren 9c und 9d zu erkennen ist, ergibt sich bei dieser Phasenlage auf sandigem Boden eine Schwingungsantwort der Walzen 15, bei welcher sowohl in Arbeitrichtung der Walzen als auch entgegengesetzt praktisch gleich grosse Schwingungsamplitudenmaxima resultieren, während sich ein Bodenreaktionskraftverlauf einstellt, bei welchem der Quotient aus der maximalen Kraft des Verlaufs der Bodenreaktionskraft in Arbeitsrichtung zur maximalen Kraft des Verlaufs der Bodenreaktionskraft in Richtung entgegen der Arbeitsrichtung maximal ist. Es handelt sich hier also um einen bodenreaktionskraftoptimierten Betrieb der Grabenwalze.Like from the FIGS. 9c and 9d can be seen, results in this phase on sandy soil an oscillation response of the rollers 15, in which both in the working direction of the rollers and opposite result practically equal magnitude vibration amplitudes, while a Bodenreaktionskraftverlauf sets, in which the quotient of the maximum force of the course the floor reaction force in the working direction to the maximum force of the course of the floor reaction force in the direction opposite to the working direction is maximum. It So here is a ground reaction force optimized operation of the trench roller.

Fig. 10 zeigt eine perspektivische Draufsicht auf einen Unwuchterreger, welcher das Konstruktionsprinzip gemäss Fig. 2 in der Konzeption gemäss Fig. 3 verwirklicht. Wie zu erkennen ist, weist hier der Hauptkörper 8 zwei kreisrunde Scheiben 20 auf, welche um ihr Zentrum herum um eine erste Rotationsachse r1 herum rotiert werden können. Die Lagerstellen sind hier nicht sichtbar. An einer Position an ihrem Umfang bilden die Scheiben 20 jeweils eine Lagerstelle 21, an welcher jeweils eines der Enden einer Unwuchtwelle bestehend aus einer Welle 11 und einer Unwuchtmasse 3 rotierbar um eine zweite Rotationsachse r2 gelagert ist. An diesen Lagerstellen gegenüberliegenden Umfangspositionen weisen die Scheiben 20 Gegengewichte 31 auf, welche die durch die Unwuchtmassen 3 bei der Rotation mit der Grundfrequenz um die erste Rotationsachse r1 erzeugten Unwucht verringern und dadurch gezielt die Grunderregerkraft derart reduzieren, dass bei bestimmungsgemässem Betrieb ein bestimmtes Verhältnis zwischen der Grunderregerkraft und der Zusatzerregerkraft vorliegt. Fig. 10 shows a perspective top view of an unbalance exciter, which according to the construction principle Fig. 2 according to the concept Fig. 3 realized. As can be seen, here the main body 8 has two circular disks 20, which can be rotated about their center around a first axis of rotation r1. The bearings are not visible here. At a position on its circumference, the discs 20 each form a bearing point 21, on each of which one of the ends of an imbalance shaft consisting of a shaft 11 and an imbalance mass 3 is rotatably mounted about a second axis of rotation r2. At these bearing points opposite circumferential positions, the discs 20 counterweights 31, which reduce the imbalance generated by the imbalance masses 3 during rotation with the fundamental frequency about the first axis of rotation r1 and thereby deliberately reduce the Grunderregerkraft such that during normal operation, a certain ratio between the Basic excitation force and the additional excitation force is present.

An einem ihrer Enden weist die Welle 11 ein Ritzel 6 auf, welches am Aussenumfang eines im Betrieb feststehenden, mit der Rotationsachse r1 des Hauptkörpers 8 bzw. mit dem Zentrum der Scheiben 20 konzentrischen Zahnrads 7 abläuft. Wie zu erkennen ist, wird beim Rotieren des Hauptkörpers 8 um die erste Rotationsachse r1 herum die Welle 11 mit der daran befestigten Unwuchtmasse 3 mit einem festen Abstand um die Rotationsachse r1 herum rotiert. Gleichzeitig wird infolge des Ablaufens des Ritzels 6 am Umfang des Zahnrads 7 die Welle 11 um die zweite Rotationsachse r2 rotiert. Infolge der unterschiedlichen Umfänge von Ritzel 6 und Zahnrad 7 rotiert die Welle 11 hier mit einer Drehzahl f2, welche der doppelten Antriebsdrehzahl f1 entspricht. Zur Verstellung der Phasenlage zwischen den beiden Rotationen um die Rotationsachsen r1, r2 herum kann das Zahnrad 7, z.B. mittels einer Zahnstange (nicht gezeigt), um sein Zentrum und damit um die erste Rotationsachse r1 herum verdreht werden.At one of its ends, the shaft 11 has a pinion 6, which runs on the outer circumference of a stationary during operation, with the rotation axis r1 of the main body 8 and with the center of the discs 20 concentric gear 7. As can be seen, as the main body 8 is rotated about the first axis of rotation r1, the shaft 11 with the imbalance mass 3 attached thereto is rotated at a fixed distance about the axis of rotation r1. At the same time as a result of the running of the pinion 6 on the circumference of the gear 7, the shaft 11 is rotated about the second axis of rotation r2. As a result of the different circumferences of pinion 6 and gear 7, the shaft 11 rotates here with a speed f2, which corresponds to twice the drive speed f1. For adjusting the phase angle between the two rotations about the axes of rotation r1, r2 around the gear 7, for example by means of a rack (not shown) to be rotated about its center and thus about the first axis of rotation r1 around.

Die Figuren 11a und 11b zeigen schematisch die Position der Unwuchtmasse des Unwuchterregers aus Fig. 8 in verschiedenen Winkelpositionen bezüglich der Grundrotation bei zwei verschiedenen Phasenlagen, wobei Fig. 11a eine erste Phasenlage zeigt und Fig. 11b eine zweite, gegenüber der ersten um 45° verdrehte Phasenlage. Wie zu erkennen ist, vollführt das Unwuchtgewicht 3 jeweils bei einer Grundrotation des Erregers von 90° um die erste Rotationsachse r1 herum eine Rotation von 180° um die zweite Rotationsachse r2 herum und eine resultierende Gesamtrotation von 270°.
Fig. 12 zeigt eine schematische Draufsicht auf das Unterteil einer mit zwei Unwuchterregern 16 gemäss Fig. 10 ausgerüsteten Vibrationsplatte. Das Oberteil mit dem Antriebsmotor ist nicht dargestellt. Das Gehäuse 27 der Erregeranordnung ist starr mit der Arbeitsplatte 26 des Vibrationsplatte verbunden. Die Scheiben 20 der Unwuchterreger 16 sind rotierbar um die erste Rotationsachse r1 gelagert und je Unwuchterreger 16 über eine zentrale Hülse 22 drehsteif miteinander verbunden. Eine der beiden Hülsen 22 ist von einer Achse (nicht gezeigt) durchsetzt, die das Zahnrad 7 trägt und dieses mit einem aussen liegenden Zahnrad 24 verbindet. Die Unwuchtmassen 3 beider Unwuchterreger 16 werden von einer gemeinsamen Welle 11 getragen, welche an zentraler Position das Ritzel 6 trägt, welches bei Rotation der Unwuchterreger 16 am Umfang des Zahnrads 7 abläuft. Auf einer Seite der Anordnung erfolgt der Antrieb der Unwuchterreger 16 über eine Riemenscheibe 23 und auf der anderen Seite erfolgt die Verdrehung des Zahnrads 7 zwecks Verstellung der Phasenlage über eine Zahnstange 25, die in das Zahnrad 24 eingreift.
The Figures 11a and 11b schematically show the position of the imbalance mass of the unbalance exciter Fig. 8 in different angular positions with respect to the basic rotation at two different phase angles, wherein Fig. 11a shows a first phase position and Fig. 11b a second, compared to the first rotated by 45 ° phase angle. As can be seen, the imbalance weight 3 in each case performs a rotation of 180 ° about the second rotation axis r2 around a first rotation axis r1 at a basic rotation of the exciter of 90 ° about the second rotation axis r1 and a resulting total rotation of 270 °.
Fig. 12 shows a schematic plan view of the lower part of a two unbalance exciters 16 according to Fig. 10 equipped vibration plate. The upper part with the drive motor is not shown. The housing 27 of the exciter assembly is rigidly connected to the work plate 26 of the vibrating plate. The discs 20 of the unbalance exciter 16 are rotatably mounted about the first axis of rotation r1 and each unbalance exciter 16 via a central sleeve 22 torsionally rigidly interconnected. One of the two sleeves 22 is penetrated by an axle (not shown), which carries the gear 7 and connects it with an external gear 24. The unbalanced masses 3 of both unbalance exciters 16 are carried by a common shaft 11, which carries the pinion 6 at a central position, which runs on rotation of the unbalance exciter 16 on the circumference of the gear 7. On one side of the arrangement, the drive of the unbalance exciter 16 via a pulley 23 and on the other hand, the rotation of the gear 7 for the purpose of adjusting the phase position via a rack 25 which engages the gear 24.

Claims (17)

  1. Method for operating a machine comprising an unbalance exciter with one or more rotatable unbalances (3) for generating a time-varying multiple-frequency excitation force which is generated by overlapping a time-varying base excitation force of a base frequency (f1) with one or more additional time-varying excitation forces of additional frequencies (f2) which are greater than the base frequency, wherein the phase between the base excitation force and at least one of the additional excitation forces is adjustable particularly continuously and further comprising a tool (15, 26) for acting on a working surface, which is coupled to the unbalance exciter for vibration stimulation, comprising the step
    a) operating the machine such that the tool (15, 26) stimulated to vibrate by the unbalance exciter (16) acts on a working surface in operation as intended, the method being characterized by the steps
    b) determining the vibration response of the tool to the vibration stimulation of the unbalance exciter (16) or of the course of the working surface reaction force in operation as intended;
    c) comparing the determined vibration response of the tool (15, 26) with a desired target vibration response or of the determined working surface reaction force course with a desired target working surface reaction force course; and
    d) adjusting the phase between the base excitation force and at least one of the additional excitation forces for varying the vibration excitation such that a vibration response of the tool (15, 26) results, which has an improved, particularly an as great as possible match with the target vibration response or that a working surface reaction force course results, which has an improved, particularly an as great as possible match with the target working surface reaction force course.
  2. Method according to claim 1, characterized in that the phase is adjusted during operation.
  3. Method according to one of the preceding claims, characterized in that the phase is adjusted in such a way that a vibration response of the tool (15, 26) or a working surface reaction force course results, for which the ratio between the maximum amplitude of the vibration response of the tool in tool working direction and the maximum amplitude of the vibration response of the tool in a direction opposite to the tool working direction or the ratio between the maximum force of the working surface reaction force course in working direction of the tool and the maximum force of the working surface reaction force course in a direction opposite to the working direction of the tool for given frequencies (f1, f2) and amplitudes of the base and additional excitation forces is maximal.
  4. Method according to one of the preceding claims, characterized in that the phase, the frequency (f1, f2) and/or the amplitude of the base excitation force and/or of one or more of the additional excitation forces are adjusted particularly independently from one another in such a way that a vibration response of the tool (15, 26) or a course of the working surface reaction force results, in case of which the maximum amplitude of the vibration response of the tool or the maximum force of the working surface reaction force course doesn't exceed a certain maximum value in a direction opposite to the pressing direction of the tool (15, 26) on the working surface, in order to avoid a temporary contact loss between the tool (15, 26) and the working surface in operation as intended.
  5. Method according to one of the preceding claims, characterized in that the resonance frequency of the system machine-tool-working surface is particularly determined continuously in operation as intended and the base frequency (f1) is set particularly continuously to a frequency which is a little above the determined resonance frequency, particularly to a frequency in the range between 105 % and 130 %, particularly between 110 % and 120 % of the determined resonance frequency.
  6. Method according to one of the preceding claims, characterized in that the determination of the vibration response of the tool or the course of the working surface reaction force and potentially of the resonance frequency, the comparison with a desired target vibration response or with a desired target working surface reaction force course and the setting of the phase and potentially of the frequency (f1, f2) and/or the amplitude is carried out automatically by means of a machine control, particularly continuously during operation of the machine.
  7. Machine for carrying out the method according to one of the preceding claims, comprising
    an unbalance exciter (16) with one or more rotatable unbalances (3) for generating a time-varying multiple-frequency excitation force which is generated by overlapping a time-varying base excitation force of a base frequency (f1) with one or more additional time-varying excitation forces of additional frequencies (f2) which are greater than the base frequency, wherein the phase between the base excitation force and at least one of the additional excitation forces is adjustable during operation particularly continuously, and
    a tool (15, 26) for acting on a working surface, which is coupled to the unbalance exciter for vibration stimulation, characterized in that
    the machine comprises means for determining the vibration response of the tool (15, 26) to the vibration stimulation of the unbalance exciter (16) in operation as intended of the machine and/or means for determining the course of the working surface reaction force in operation as intended of the machine,
    and the machine comprises a machine control, by means of which the phase between the base excitation force and at least one of the additional excitation forces is determined in operation automatically and particularly continuously in such a way that a vibration response of the tool (15, 26) or a course of the working surface reaction force results, for which the ratio between the maximum amplitude of the vibration response of the tool in tool working direction and the maximum amplitude of the vibration response of the tool in a direction opposite to the tool working direction or the ratio between the maximum force of the working surface reaction force course in working direction of the tool and the maximum force of the working surface reaction force course in a direction opposite to the working direction of the tool for given frequencies (f1, f2) and amplitudes of the base and additional excitation forces is maximal.
  8. Machine according to claim 7, further comprising a machine control by means of which the phase, the frequency (f1, f2) and/or the amplitude of the base excitation force and/or of one or more of the additional excitation forces are adjusted automatically and particularly continuously during operation in such a way that a vibration response of the tool (15, 26) or a course of the working surface reaction force results, in case of which the maximum amplitude of the vibration response of the tool or the maximum force of the working surface reaction force course doesn't exceed a certain maximum value in a direction opposite to the pressing direction of the tool (15, 26) on the working surface, in order to avoid a temporary contact loss between the tool (15, 26) and the working surface in operation as intended.
  9. Machine according to one of the claims 7 to 8, further comprising means for particularly continuously determining the resonance frequency of the system machine-tool-working surface in operation as intended.
  10. Machine according to claim 9, further comprising a machine control by means of which the base frequency (f1) is set automatically during operation and particularly continuously to a frequency which is a little above the determined resonance frequency, particularly to a frequency in the range between 105 % and 130 %, particularly between 110 % and 120 % of the determined resonance frequency.
  11. Machine according to one of the claims 7 to 10, characterized in that the machine is a drilling machine, a road milling machine, a tunnel milling machine, a ram or a machine for soil compaction, particularly a vibration plate or a vibration roller.
  12. Machine according to one of the claims 7 to 11, characterized in that the unbalance exciter is formed in such a way that at least one of the additional excitation forces is varied over time with an additional frequency (f2) corresponding to an integral factor of the base frequency (f1), particularly with a frequency (f2) corresponding to the double base frequency.
  13. Machine according to one of the claims 7 to 12, characterized in that the unbalance exciter is formed in such a way that separate unbalance masses (3) carrying out each a separate rotation movement are present for generating the base excitation force and the additional excitation forces.
  14. Machine according to one of the claims 7 to 12, characterized in that the unbalance exciter is formed in such a way that a common unbalance mass (3) carrying out at least two overlapping rotation movements is present for generating the base excitation force and at least one additional excitation force.
  15. Machine according to claim 14, characterized in that the unbalance exciter is formed in such a way that the exciter (16) has a counter weight (31) for decreasing the unbalance generated by the unbalance mass (3) during rotation with the base frequency (f1).
  16. Machine according to one of the claims 7 to 15, characterized in that the unbalance exciter is formed in such a way that the base frequency (f1) and/or the additional frequencies (f2) are set particularly continuously and particularly during operation.
  17. Machine according to one of the claims 7 to 16, characterized in that the unbalance exciter is formed in such a way that the amplitude of the base excitation force and/or the amplitude of the one or more of the additional excitation forces are set particularly continuously and particularly during operation, particularly independently from the respective frequency.
EP08783460.2A 2008-02-12 2008-08-27 Unbalance exciter with one or more rotatable unbalances Not-in-force EP2242590B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008008802A DE102008008802B4 (en) 2008-02-12 2008-02-12 Soil compactor with a vibration exciter
PCT/CH2008/000360 WO2009100543A1 (en) 2008-02-12 2008-08-27 Unbalance exciter with one or more several rotatable unbalances

Publications (2)

Publication Number Publication Date
EP2242590A1 EP2242590A1 (en) 2010-10-27
EP2242590B1 true EP2242590B1 (en) 2019-02-27

Family

ID=40512411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08783460.2A Not-in-force EP2242590B1 (en) 2008-02-12 2008-08-27 Unbalance exciter with one or more rotatable unbalances

Country Status (3)

Country Link
EP (1) EP2242590B1 (en)
DE (1) DE102008008802B4 (en)
WO (1) WO2009100543A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107181B (en) * 2011-03-24 2012-10-10 潘国梁 Gear shock excitation mechanism
EP2732100B1 (en) 2011-07-15 2015-07-29 Ammann Schweiz AG Unbalance exciter for a ground compaction device
CN105064180B (en) * 2015-07-29 2017-08-11 洛阳理工学院 A kind of device of excitation of road roller
CN112213060B (en) * 2020-09-25 2022-11-04 中国直升机设计研究所 Rotor wing overall vibration mode excitation method for rotor wing aeroelastic stability test

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2309172A (en) * 1940-04-03 1943-01-26 Kanski Leon M De Vibrating processing machine
DE1758996A1 (en) * 1968-09-13 1971-04-08 Eberhard Borsutzki Multi-shaft circular oscillator with planetary, steplessly and directionally adjustable unbalances to change the size or direction of the centrifugal force
GB1439455A (en) * 1972-05-04 1976-06-16 Secretary Industry Brit Vibratory force-applying devices
SU1119738A1 (en) * 1980-01-03 1984-10-23 Одесский Государственный Педагогический Институт Им.К.Д.Ушинского Vibration exciter
SE426719B (en) * 1980-12-03 1983-02-07 Thurner Geodynamik Ab PROCEDURE AND DEVICE FOR PACKING A MATERIAL LAYER
EP0411348A1 (en) * 1989-08-03 1991-02-06 Ammann-Duomat Verdichtung Ag Method for compacting soil and machine therefor
DE29723617U1 (en) 1997-05-27 1998-11-26 Ammann Verdichtung Gmbh Vibration plate to compact the soil
EP1516961B1 (en) * 2003-09-19 2013-12-25 Ammann Aufbereitung AG Method for determining soil rigidity and soil compaction device
DE102005009095A1 (en) * 2005-02-22 2006-08-31 Institut für Fertigteiltechnik und Fertigbau Weimar e.V. Device for generation of three-dimensional oscillations in rigid vibration table has six unbalanced shafts whereby each of two counter rotating unbalanced shafts of oriented exciter represents one coordinate axis
DE202006004707U1 (en) 2005-04-29 2006-06-22 Ammann Verdichtung Gmbh Vibration generator used in a machine comprises outer unbalanced shafts and a central unbalanced shaft having unbalanced weights and pivots in the peripheral direction relative to the weights using an adjusting device
DE202006004706U1 (en) 2005-04-29 2006-06-22 Ammann Verdichtung Gmbh Vibration stimulator for compression device has imbalance weight of central imbalance shaft differing from half total imbalance weight of three imbalance shafts by at least 10 and preferably at least 20 per cent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2009100543A1 (en) 2009-08-20
EP2242590A1 (en) 2010-10-27
DE102008008802B4 (en) 2011-12-15
DE102008008802A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
EP2504490B1 (en) Compaction device and method for compacting ground
DE3239266C2 (en)
EP1337713B1 (en) Compactor
EP2881516B1 (en) Road roller
EP2740846B1 (en) Compacting machine
DE102010056531A1 (en) Vibration system for a compressor
DE2304942A1 (en) VIBRATING ROLLER
EP2564943A2 (en) Oscillation exciter for creating an aligned excited oscillation
EP3450631B1 (en) Deep vibration apparatus with an adjustable unbalance mass body
EP2242590B1 (en) Unbalance exciter with one or more rotatable unbalances
EP1305121B1 (en) Controllable vibration generator
EP2732100B1 (en) Unbalance exciter for a ground compaction device
WO2016102432A1 (en) Depth vibrator
DE10147957A1 (en) Vibration exciter for a soil compaction device
DE2001987A1 (en) Soil compacting device
EP1534439B1 (en) Vibration exciter for soil compacting devices
DE102019124415A1 (en) BALANCING SYSTEM WITH REDUCED ROTATIONAL INERTIA FOR VIBRATION COMPRESSORS
EP3165290B1 (en) Vibration generator and method for inserting a pile element into the ground
EP3934816B1 (en) Vibration generator and construction machine having such a vibration generator
EP1212148B1 (en) Vibration exciter for ground compacting devices
WO2018098599A1 (en) Method and device for milling stone material or stone-like material
EP0411349B1 (en) Machine for soil compacting
EP3384096B1 (en) Arrangement for providing a pulsing compressive force
AT523034A2 (en) Machine and method for stabilizing a track
DE19631991B4 (en) Vibrator, especially for a vibration bear

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180625

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: AMMANN, ULRICH, ANDREAS

Inventor name: KAUFMANN, KUNO

Inventor name: ANDEREGG, ROLAND

Inventor name: HOERSTER, JOCHEN

INTG Intention to grant announced

Effective date: 20181017

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1100572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016614

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 12

Ref country code: CZ

Payment date: 20190813

Year of fee payment: 12

Ref country code: FR

Payment date: 20190822

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016614

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190821

Year of fee payment: 12

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190813

Year of fee payment: 12

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190827

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1100572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008016614

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080827

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200827