EP0411349B1 - Machine for soil compacting - Google Patents

Machine for soil compacting Download PDF

Info

Publication number
EP0411349B1
EP0411349B1 EP90113073A EP90113073A EP0411349B1 EP 0411349 B1 EP0411349 B1 EP 0411349B1 EP 90113073 A EP90113073 A EP 90113073A EP 90113073 A EP90113073 A EP 90113073A EP 0411349 B1 EP0411349 B1 EP 0411349B1
Authority
EP
European Patent Office
Prior art keywords
inertia
soil
pressure
bodies
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113073A
Other languages
German (de)
French (fr)
Other versions
EP0411349A1 (en
Inventor
Hans Ulrich Leibundgut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ammann Verdichtung AG
Original Assignee
Ammann Verdichtung AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH287489A external-priority patent/CH678637A5/en
Priority claimed from CH287589A external-priority patent/CH679051A5/en
Application filed by Ammann Verdichtung AG filed Critical Ammann Verdichtung AG
Publication of EP0411349A1 publication Critical patent/EP0411349A1/en
Application granted granted Critical
Publication of EP0411349B1 publication Critical patent/EP0411349B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/162Making use of masses with adjustable amount of eccentricity
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll

Definitions

  • the invention relates to a device for soil compaction, in particular in earthworks and road construction, according to the preamble of patent claim 1.
  • a similar device is known from DE-OS 1 634 474.
  • the known device is a vibration roller, the vibration of which is generated by two unbalances rotating in the same direction on a shaft.
  • the two imbalances are arranged on the shaft with the same mass and can be rotated from one position in which the two masses are symmetrical to one another to another position in which an eccentricity is generated by the two masses.
  • a switch is made from the maximum of the vibration force to zero in a fraction of a second. This rapid changeover does not create any depressions in the surface of the ground or road when the direction of travel changes while the unbalance is running.
  • DE-OS 1 634 246 Another device is known from DE-OS 1 634 246.
  • This known device has several unbalances rotating in the same direction of rotation, but with different constant frequencies, as a result of which their central angle changes continuously.
  • the frequencies can be changed by mechanical modification.
  • the preferred frequency ratio is 1: 2.
  • the phase positions of the individual rotating unbalances with respect to one another are selected such that the vibrating force pointing to the ground of the unbalance rotating with the faster rotation coincides with the second vibrating force pointing to the ground of the slower rotating unbalance.
  • the periodic vibratory force on the floor is greater than that periodically acting in the opposite direction. It is therefore possible to increase the grip of the roller.
  • DE-PS 1 111 107 Another device of another type is known from DE-PS 1 111 107.
  • the known device has three eccentric inertial bodies which are axially attached to one another on a rotating shaft.
  • the eccentric masses of two to the third adjacent eccentric mass are only half as large as this and can be rotated relative to the third mass when the shaft is stationary.
  • twisting is only possible after loosening the mechanical connections when the shaft is at a standstill.
  • a further soil compaction device is known from AT-A 250 423.
  • the vertical force components are to be avoided when starting. This is achieved by changing the mutual unbalance position of two inertial bodies rotating in the opposite direction with a differential gear. This change sets the position of the amplitude of the resulting inertial force. The magnitude of the resulting inertial force changes twice between the value zero and the scalar sum of the inertial forces of the two inertial bodies during the period of one revolution.
  • EP-A 0 239 561 describes a soil compaction device in which two eccentrics rotate in the same direction, the mutual position of which is manually adjustable.
  • a soil compaction device is known from US Pat. No. 3,721,129, in which an adjustment of the vibration force during operation by bending an eccentric, partially done with oil-filled hollow shaft.
  • the weight of the pressure exerting member to be moved onto the soil to be compacted can be changed by filling with water.
  • a further soil compaction device with three rotating eccentric masses which mesh with one another via gear wheels.
  • the axes of the masses lie in a horizontal plane.
  • the two outer eccentric masses are firmly connected to the shaft; their eccentricity is rectified.
  • the mean eccentric mass is adjustable in such a way that, depending on the direction of rotation, it is in a first or a second position pivoted by a central angle from the first position.
  • the eccentricities are arranged in such a way that in the one direction of rotation all inertial forces overlap once to a right-upward and once more to a left-downward maximum component and that they once in the opposite direction of rotation with a pivoted mean eccentric mass to a left still up and unite again and to a right downward maximum force component.
  • a soil compaction device with the features of the preamble of claim 1 is known from DE-A 35 05 580.
  • a vibration exciter with a continuously adjustable eccentric moment is described there.
  • an inner eccentric is mounted coaxially in an outer eccentric on a shaft.
  • At the end of the shaft there is a gear wheel connected to the outer and the inner eccentric with opposite helical teeth.
  • These gearwheels mesh with a double gearwheel, which has two firmly connected gearwheels with helical teeth adapted to the other gearwheels. Both eccentrics are driven by this double gear.
  • An adjustment of the eccentric against each other takes place by an axial displacement of the double gear due to the opposite helical toothing.
  • the object of the invention is to optimally implement a soil compaction device depending on the nature of the soil.
  • the periodic deflection of the pressure exerting member towards the floor can be changed independently of its vibration frequency.
  • the vibration force, its vibration frequency and the deflection of the pressure-exerting member relative to the floor are freely and independently adjustable via the pressure-exerting member and its adjustable weight.
  • the effective mass of the pressure exerting member mentioned in the claims, which in the detailed description below is a roller body of a road roller, is the sum of those masses which are rigidly and / or articulatedly connected to the pressure exerting member and by the resulting inertial forces of the moving inertial masses be excited synchronously and without a time shift of the deflection maxima with the pressure exerting organ.
  • the effective mass is therefore below
  • the example described describes the sum of the mass of the pressure-exerting element plus its mounting and the associated brackets plus a partial mass of the entire road roller, which is greatly reduced by vibration-damping elements and places a load on the pressure-exerting element, plus a percentage of the additional masses that lie between the center of gravity of the pressure-exerting element and an almost non-oscillating one Part of the machine frame are movable.
  • the additional masses act between zero and one hundred percent of their total weight.
  • Vibration frequency, vibration force and vibration deflection denote the frequency or the frequency mixture, the force and the deflection of the pressure exerting member with which it acts on the soil to be compacted due to the excitation by the resulting inertial force.
  • Unbalanced inertial bodies are understood to mean inertial bodies with an eccentric mass distribution with respect to their axis of rotation, only the centrifugal force caused by the unbalance acting as a so-called inertial force.
  • the inertial force is understood to be only the force acting on the pressure exerting member.
  • the vibratory force transmitted from the pressure exerting member towards the ground can be directed so that it takes any acute angle to the vertical on the ground surface.
  • the pressurizing member shown in Figure 1 is a hollow cylindrical roller body 1, also known as bandage, a road roller not shown and is located on a ground to be compacted 3
  • the roll body 1 is attached with four damping elements 5 on its two end faces in each case one bearing shell 7 of oscillation.
  • Each bearing shell 7 is rotatably mounted in a frame part 9 connected to a chassis of the road roller, not shown.
  • one or more roller bodies 1 which can also be driven, are present.
  • the inertial bodies 11 and 12 are designed as hollow cylinders, each with an eccentric thickening 15 and 16 along one of their surface lines.
  • the length of the hollow cylinder of the inertial body 11 is smaller by a tolerance than the inner length of the hollow cylinder of the roller body 1 , and that of the inertial body 12 by a tolerance smaller than the inner length of the hollow cylinder 11 .
  • the inertial body 11 By means of two hollow shaft pieces 17a and 17b , the inertial body 11 , and by means of one hollow shaft piece 18a and 18b, the inertial body 12 within the hollow shaft pieces 17a and 17b coaxial to the geometric axis 20 of the roller body 1 , each with two bearings 22a and 22b , and 23a and 23b stored in the end faces of the roller body 1 .
  • the inertial body 13 is plate-shaped and is eccentrically fastened to a shaft 27 lying in the geometric axis 20 .
  • the length of the plate 25 is smaller by a tolerance than the inner length of the inertial body 12 .
  • the inertial body 13 is rotatably mounted within the inertial body 12 , this within the inertial body 11 and this within the roller body 1 .
  • the shaft 27 is mounted with two bearings 29 and 30 in the end faces of the hollow cylinder of the inertial body 12 on the shaft 27 and is inside the hollow shaft piece 18a together with it via a planetary gear 31 and this via a shaft 37 from the gear 32 by a drive 33 driven.
  • the gear 32 also drives a gear 35 via a shaft 34 , which meshes with a further gear 36 on the hollow shaft 17a .
  • the gear 32 rotates the inertia body 11 via the shaft 34 , the two gear wheels 35 and 36 and the shaft 17a, and the inertia body 12 and 13 via the planetary gear 31 via the shaft 18a and 27 . Since the mass distribution of the inertial bodies 11 , 12 and 13 , as shown in Figure 2 , is eccentric, this results in circumferential forces (centrifugal forces) to the shaft 27 , which as a result of the bearing 22a / 22b , 23a / 23b , 29 and 30 (Vibration force) act on the roller body 1 .
  • the planetary gear 31 shown schematically in FIG. 4 (a differential gear with bevel gears can also be used) is driven via the shaft 37 .
  • the shaft 37 acts on a gear part 39 and a toothed belt pulley 40 .
  • the gear part 39 has three intermeshing gears 39a , 39b and 39c , the gear 39a sitting on the axis 37 and the gear 39c on the axis 27 , which leaves the planetary gear 31 on the right side in FIG. 4.
  • the axes 37 and 27 lie on a straight line and the axis of the gear 39b intersects this straight line.
  • the toothed belt pulley 40 drives a toothed belt pulley 42 via a toothed belt 41 , which moves a toothed wheel 44 via a shaft 43 , which meshes with a toothed wheel 45 .
  • the gear 45 sits on the hollow shaft 18a and drives the inertial body 12 , as already described above.
  • the axis of the gear 39b is fixed. If the axis of the gearwheel 39b is now rotated about the axis 37 , then the two axes 18a and 27 are against one another, and thus the two eccentric masses 16 and 25 of the two inertial bodies 12 and 13 , ie their center of gravity towards or away from one another depending on the direction of rotation turned.
  • Both inertia bodies 12 and 13 are driven with the same number of revolutions via the shaft 37 . Due to their eccentric design, both inertial bodies 12 and 13 act on the roller body 1 with a resulting inertial force K a formed by the two centrifugal forces via the bearings 29/30 , 23a / 23b and 22a / 22b and steer the latter according to its effective mass (weight of the roller body 1 plus, due to the damping elements 5, the weight of the road roller is very reduced.
  • the gear 32 is now intended to drive the inertial body 11 via the shaft 34 at twice the number of revolutions as the two inertial bodies 12 and 13 via the planetary gear 31 .
  • the value of the simple number of revolutions results from the desired soil compaction, which mainly depends on the nature of the soil 3 .
  • the timing of the rotary movements of the two inertial bodies 11 , 12 and 13 is set by the gear 32 so that the thickening 15 at every second revolution and the thickening 16 and the plate 25 at every revolution at their closest point together on a straight line through the Axis 20 lie.
  • the eccentric mass distribution of the inertial bodies 12 and 13 (plate 25 and thickening 16 ) for the eccentric mass distribution of the inertial body 11 (thickening 15 ) is now selected so that the centrifugal force K b of the inertial body 11 is the same as the resulting centrifugal force at a normal speed Inertia bodies 12 and 13 at twice the normal speed.
  • the mass distributions required for this, as well as their respective eccentric distance from the axis 20, can be determined using the laws of technical mechanics.
  • the resulting force K c directed away from the bottom 3 can be chosen so large that it is smaller to a tolerance than the weight of the roller body 1 , but without the weight of the inertial bodies 11 , 12 and 13 , without lifting the roller body 1 from Soil 3 fear.
  • any number of moving masses can be used depending on the space required, which masses with different numbers of revolutions, which are integer multiples of a desired basic vibration of the pressure exerting element 1 .
  • the optimal number of revolutions, as well as their assignments, can be determined with known mathematical approximation methods, such as e.g. B. an "approximate harmonic analysis", presented in Bronstein-Semendjajew, "Taschenbuch der Mathematik", BG Teubner Verlagsgesellschaft, Leipzig, 1963, page 480 ff.
  • the calculation results in infinitely long trigonometric rows, which can, however, be broken off after the first links with sufficient accuracy for the desired form of movement.
  • a plate or the like can also be used as the pressure exerting element.
  • an arbitrary angle can also be selected.
  • the angle of the maximum force effect only depends on the angle at which the centrifugal forces of the individual revolutions overlap to a maximum. This angle can be set via the gear 32 .
  • FIG. 1 A possible embodiment for changing the mass of the pressure application member, here a roller body 77 , which is designed analogously to the roller body 1 , is shown schematically in FIG .
  • the inertial body 78a is configured analogously to the inertial body 12 and the inertial body 78b is configured analogously to the inertial body 13 .
  • the inertial body 78a is connected directly to the shaft 37 and the shaft 34 of the gear 32 via a hollow shaft 79a and the inertial body 78b via a shaft 79b ; the planetary gear 31 is omitted in the simplified representation.
  • the roller body 77 has on each end face a flange 82a and 82b coaxial with the shaft 79b , with which it is mounted in a yoke 80 via two roller bearings 83a and 83b .
  • the yoke 80 is fastened to the frame part 9 of the road roller via vibration-damping elements 84 .
  • the yoke 80 In the middle between its two flanges 82a and 82b on the side of the yoke 80 facing away from the shaft 79b, the yoke 80 has a support 86 , of which a guide rail 87a and 87b is horizontally connected to the frame part 9 .
  • Both guide rails 87a and 87b are articulated both on the support 86 and on the frame part 9 with joints 89a , 89b , 89c and 89d , as indicated schematically in FIG. 5 .
  • Two additional bodies 91a and 91b are slidably arranged on the guide rails 87a and 87b with a self-contained toothed belt 92 .
  • the toothed belt 92 is deflected via two rollers 94a and 94b fastened to the frame part 9 , one additional body 91a with one part of the toothed belt 92 and the other additional body 91b with the deflected part of the toothed belt 92 is connected.
  • the roller 94a is driven via a further toothed belt 95 by a schematically illustrated adjusting device 97 .
  • the additional bodies 91a and 91b are designed such that they bear with their entire weight on the guide rails 87a and 87b ; the toothed belt 92 is used only for horizontal displacement. They are fastened to the toothed belt 92 in such a way that their movement takes place in opposite directions.
  • the guide rails 87a and 87b are designed in such a way that they do not vibrate naturally during vibration operation.
  • the additional bodies 91a and 91b are pushed against the joints 89a and 89d by means of the adjustment unit 97 , then they act on the roller body 77 only with a negligible weight, whereas they act with their entire weight as an additional mass when the joints 89b and 89c stop . Between these two extremes, all values can be set via the position of the additional bodies 91a and 91b on the guide rails 87a and 87b .
  • the deflection of the roller body 77 is inversely proportional to the effective mass of the roller body 77 and proportional to the inertial force K c acting on it.
  • the effective mass of the roller body 77 (pressure exerting member) is the sum of the masses of the roller body 77 , the yoke 80 , the support 86 , twice half the mass of the guide rails 87a and 87b , and the respective weight of the additional bodies 91a and 91b acting on the roller body 77 .
  • the fastening of the guide rails 87a and 87b can be selected such that they can be moved into the space outside the frame parts 9 . If the additional bodies 91a and 91b are outside, the effective mass of the roller body 77 (pressure exerting member) is thereby reduced.
  • the devices described above make it possible to change the effective centrifugal forces by adjusting the eccentric centers of gravity of several inertial bodies against each other or the center of gravity of the inertial body in relation to its axis of rotation by means of a planetary gear.
  • the magnitude of the vibration force, as well as their direction and their vibration frequency can be set independently of one another; a differently strong vibration force can also be generated in different directions.
  • soil compaction can be optimally achieved depending on the nature of the soil.

Abstract

The magnitude of the force of inertia acting on the pressure-exerting member (1) for soil compacting can be adjusted without changing the vibration frequency by adjusting the position of the unbalances of two inertia elements (12, 13) in operation during rotation. By this means, the magnitude of the vibration force, the direction thereof and the vibration frequency thereof can be adjusted independently of one another; furthermore a vibration force acting at different magnitudes can be generated in different directions. Soil compacting can be optimised as a function of the condition of the soil by means of this diversity of adjustment. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zur Bodenverdichtung, insbesondere im Erd- und Straßenbau, gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for soil compaction, in particular in earthworks and road construction, according to the preamble of patent claim 1.

Eine ähnliche Vorrichtung ist aus der DE-OS 1 634 474 bekannt. Die bekannte Vorrichtung ist eine Vibrationswalze, deren Vibrationsschwingung durch zwei auf einer Welle im gleichen Drehsinn umlaufende Unwuchten erzeugt wird. Die beiden Unwuchten sind massengleich auf der Welle angeordnet und von einer Position, in der die beiden Massen symmetrisch zueinander liegen, zu einer anderen Position, in der durch die beiden Massen eine Exzentrizität erzeugt wird, verdrehbar. Bei dieser Ausbildung der beiden gegeneinander verdrehbaren Unwuchten wird vom Maximum der Vibrationskraft bis auf Null im Bruchteil einer Sekunde umgeschaltet. Dieses schnelle Umschalten läßt beim Wechsel der Fahrtrichtung bei laufender Unwucht keine Vertiefungen in der Oberfläche des Boden bzw. der Straße entstehen.A similar device is known from DE-OS 1 634 474. The known device is a vibration roller, the vibration of which is generated by two unbalances rotating in the same direction on a shaft. The two imbalances are arranged on the shaft with the same mass and can be rotated from one position in which the two masses are symmetrical to one another to another position in which an eccentricity is generated by the two masses. With this design of the two unbalances, which can be rotated relative to one another, a switch is made from the maximum of the vibration force to zero in a fraction of a second. This rapid changeover does not create any depressions in the surface of the ground or road when the direction of travel changes while the unbalance is running.

Bei der bekannten Vorrichtung kann entweder keine Verdichtung oder ein durch die Vorrichtung fest vorgegebener Wert der Verdichtung erzielt werden.In the known device, either no compression or a compression value fixed by the device can be achieved.

Eine weitere Vorrichtung ist aus der DE-OS 1 634 246 bekannt. Diese bekannte Vorrichtung hat mehrere in gleichem Drehsinn, aber mit unterschiedlichen konstanten Frequenzen umlaufende Unwuchten, wodurch sich deren Zentriwinkel fortwährend ändert. Die Frequenzen lassen sich durch mechanischen Umbau verändern. Als bevorzugtes Frequenzverhältnis wird 1 : 2 gewählt. Die Phasenlagen der einzelnen umlaufenden Unwuchten zueinander werden so gewählt, daß die zum Boden zeigende Vibrationskraft der mit der schnelleren Umdrehung umlaufenden Unwucht bei jedem zweiten Umlauf mit der zum Boden zeigenden Vibrationskraft der langsamer umlaufenden Unwucht zusammenfällt. Hierdurch ist die periodisch auf den Boden zeigende Vibrationskraft größer als die periodisch in die entgegengesetzte Richtung wirkende. Es ist somit möglich, die Bodenhaftung der Walze zu erhöhen.Another device is known from DE-OS 1 634 246. This known device has several unbalances rotating in the same direction of rotation, but with different constant frequencies, as a result of which their central angle changes continuously. The frequencies can be changed by mechanical modification. The preferred frequency ratio is 1: 2. The phase positions of the individual rotating unbalances with respect to one another are selected such that the vibrating force pointing to the ground of the unbalance rotating with the faster rotation coincides with the second vibrating force pointing to the ground of the slower rotating unbalance. As a result, the periodic vibratory force on the floor is greater than that periodically acting in the opposite direction. It is therefore possible to increase the grip of the roller.

Bei dieser bekannten Vorrichtung kann die auf den Boden einwirkende Trägheitskraft nur durch Veränderung der Grundumdrehungszahl der Unwuchten geändert werden.In this known device, the inertial force acting on the ground can only be changed by changing the basic number of revolutions of the unbalances.

Eine weitere Vorrichtung anderer Art ist aus der DE-PS 1 111 107 bekannt. Die bekannte Vorrichtung hat drei exzentrische Trägheitskörper, die auf einer rotierenden Welle nebeneinander axial befestigt sind. Die exzentrischen Massen zweier zur jeweils dritten benachbarten exzentrischen Masse sind nur halb so groß wie diese und lassen sich bei Stillstand der Welle gegenüber der dritten Masse verdrehen. Ein Verdrehen ist jedoch nur nach Lösen der mechanischen Verbindungen bei Wellenstillstand möglich.Another device of another type is known from DE-PS 1 111 107. The known device has three eccentric inertial bodies which are axially attached to one another on a rotating shaft. The eccentric masses of two to the third adjacent eccentric mass are only half as large as this and can be rotated relative to the third mass when the shaft is stationary. However, twisting is only possible after loosening the mechanical connections when the shaft is at a standstill.

Aus der AT-A 250 423 ist eine weitere Bodenverdichtungsvorrichtung bekannt. Bei der bekannten Vorrichtung sollen beim Anfahren die lotrechten Kraftkomponenten vermieden werden. Das wird dadurch erreicht, daß gegenseitige Unwuchtlage zweier sich im entgegengesetzten Drehsinn drehender Trägheitskörper mit einem Differentialgetriebe verändert wird. Durch diese Veränderung wird die Lage der Amplitude der resultierenden Trägheitskraft eingestellt. Die Größe der resultierenden Trägheitskraft ändert sich während der Periode einer Umdrehung zweimal zwischen dem Wert Null und der skalaren Summe der Trägheitskräfte der beiden Trägheitskörper.A further soil compaction device is known from AT-A 250 423. In the known device, the vertical force components are to be avoided when starting. This is achieved by changing the mutual unbalance position of two inertial bodies rotating in the opposite direction with a differential gear. This change sets the position of the amplitude of the resulting inertial force. The magnitude of the resulting inertial force changes twice between the value zero and the scalar sum of the inertial forces of the two inertial bodies during the period of one revolution.

In der EP-A 0 239 561 wurde eine Bodenverdichtungsvorrichtung beschrieben, bei der zwei Exzenter gleichsinnig rotieren, deren gegenseitige Lage händisch verstellbar ist.EP-A 0 239 561 describes a soil compaction device in which two eccentrics rotate in the same direction, the mutual position of which is manually adjustable.

Aus der US-A 3,721,129 ist eine Bodenverdichtungsvorrichtung bekannt, bei der eine Verstellung der Vibrationskraft im Betrieb durch Verbiegen einer exzentrischen, teilweise mit Öl gefüllten Hohlwelle erfolgt. Das Gewicht der auf den zu verdichtenden Boden zu bewegenden Druckausübungsorgan kann durch Einfüllen von Wasser verändert werden.A soil compaction device is known from US Pat. No. 3,721,129, in which an adjustment of the vibration force during operation by bending an eccentric, partially done with oil-filled hollow shaft. The weight of the pressure exerting member to be moved onto the soil to be compacted can be changed by filling with water.

Aus der CH-A 425 645 ist eine weitere Bodenverdichtungsvorrichtung mit drei rotierenden exzentrischen Massen bekannt, welche über Zahnräder miteinander kämmen. Die Achsen der Massen liegen in einer horizontalen Ebene. Die beiden äußeren exzentrischen Massen sind fest mit der Welle verbunden; ihre Exzentrizität ist gleichgerichtet. Die mittlere exzentrische Masse ist derart verstellbar, daß sie sich je nach Rotationsrichtung in einer ersten oder einer zweiten um einen Zentriwinkel von der ersten Lage verschwenkten zweiten Lage befindet. Die Exzentrizitäten sind derart angeordnet, daß sich bei der einen Rotationsrichtung sämtliche Trägheitskräfte einmal zu einer rechts nach oben und und ein weiteres Mal zu einer links nach unten gerichteten maximalen Komponente überlagern und daß sie sich bei der entgegengesetzten Rotationsrichtung, bei verschwenkter mittlerer exzentrischer Masse, einmal zu einer links noch oben und und ein weiteres Mal zu einer rechts nach unten gerichteten maximalen Kraftkomponente vereinigen.From CH-A 425 645 a further soil compaction device with three rotating eccentric masses is known, which mesh with one another via gear wheels. The axes of the masses lie in a horizontal plane. The two outer eccentric masses are firmly connected to the shaft; their eccentricity is rectified. The mean eccentric mass is adjustable in such a way that, depending on the direction of rotation, it is in a first or a second position pivoted by a central angle from the first position. The eccentricities are arranged in such a way that in the one direction of rotation all inertial forces overlap once to a right-upward and once more to a left-downward maximum component and that they once in the opposite direction of rotation with a pivoted mean eccentric mass to a left still up and unite again and to a right downward maximum force component.

Eine Bodenverdichtungsvorrichtung mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus des DE-A 35 05 580 bekannt. Dort ist ein Schwingungserreger mit einem stufenlos einstellbaren Exzentermoment beschrieben. Bei dem bekannten Schwingungserreger ist koaxial in einem äußeren Exzenter ein innerer Exzenter auf einer Welle gelagert. Am Ende der Welle ist je ein mit dem äußeren und dem inneren Exzenter verbundenes Zahnrad mit entgegengesetzter Schrägverzahnung angeordnet. Diese Zahnräder kämmen mit einem Doppelzahnrad, welches zwei miteinander fest verbundene Zahnräder mit zu den anderen Zahnrädern angepaßter Schrägverzahnung aufweist. Beide Exzenter werden über dieses Doppelzahnrad angetrieben. Eine Verstellung der Exzenter gegeneinander erfolgt durch eine Axialverschiebung des Doppelzahnrads aufgrund der gegensinnigen Schrägverzahnung.A soil compaction device with the features of the preamble of claim 1 is known from DE-A 35 05 580. A vibration exciter with a continuously adjustable eccentric moment is described there. In the known vibration exciter, an inner eccentric is mounted coaxially in an outer eccentric on a shaft. At the end of the shaft there is a gear wheel connected to the outer and the inner eccentric with opposite helical teeth. These gearwheels mesh with a double gearwheel, which has two firmly connected gearwheels with helical teeth adapted to the other gearwheels. Both eccentrics are driven by this double gear. An adjustment of the eccentric against each other takes place by an axial displacement of the double gear due to the opposite helical toothing.

Aufgabe der Erfindung ist es, eine Bodenverdichtungsvorrichtung in Abhängigkeit der Bodenbeschaffenheit optimal zu verwirklichen.The object of the invention is to optimally implement a soil compaction device depending on the nature of the soil.

Die erfindungsgemäße Lösung dieser Aufgabe ist Gegenstand des Patentanspruchs 1. Bevorzugte Ausführungsformen sind in den Patentansprüchen 2 bis 7 beschrieben.The achievement of this object is the subject of claim 1. Preferred embodiments are described in claims 2 to 7.

Die vorteilhafte Erzeugung großer Vibrationskräfte auf den zu verdichtenden Boden bei einem geringen Gewicht des Druckausübungsorgans ist in den Ansprüchen 3 und 4 beschrieben.The advantageous generation of large vibratory forces on the soil to be compacted with a low weight of the pressure exerting member is described in claims 3 and 4.

Die periodische Auslenkung des Druckausübungsorgans zum Boden ist unabhängig von dessen Vibrationsfrequenz veränderbar. Die Vibrationskraft, deren Vibrationsfrequenz und die Auslenkung des Druckausübungsorgans gegenüber dem Boden sind über die auf das Druckausübungsorgan und dessen einstellbares Gewicht frei und unabhängig voneinander einstellbar.The periodic deflection of the pressure exerting member towards the floor can be changed independently of its vibration frequency. The vibration force, its vibration frequency and the deflection of the pressure-exerting member relative to the floor are freely and independently adjustable via the pressure-exerting member and its adjustable weight.

Die in den Ansprüchen erwähnte wirksame Masse des Druckausübungsorgans, welches in der unten folgenden detaillierten Beschreibung ein Walzenkörper einer Straßenwalze ist, ist die Summe derjenigen Massen, welche starr, und/oder gelenkig mit dem Druckausübungsorgan verbunden sind und durch die resultierenden Trägheitskräfte der sich bewegenden Trägheitsmassen synchron und ohne zeitliche Verschiebung der Auslenkungsmaxima mit dem Druckausübungsorgan angeregt werden. Die wirksame Masse ist somit im unten beschriebenen Beispiel die Summe der Masse des Druckausübungsorgans plus seine Lagerung und die dazu gehörenden Halterungen plus eine durch schwingungsdämpfende Elemente stark reduzierte, auf dem Druckausübungsorgan lastende Teilmasse der gesamten Straßenwalze plus ein prozentualer Anteil der Zusatzmassen, welche zwischen dem Schwerpunkt des Druckausübungsorgans und einem annähernd nicht schwingenden Teil des Maschinengestells bewegbar sind. Je nach dem Ort zwischen dem Maschinengestell und dem Schwerpunkt des Druckausübungsorgans wirken die Zusatzmassen zwischen null und einhundert Prozent ihres Gesamtgewichts.The effective mass of the pressure exerting member mentioned in the claims, which in the detailed description below is a roller body of a road roller, is the sum of those masses which are rigidly and / or articulatedly connected to the pressure exerting member and by the resulting inertial forces of the moving inertial masses be excited synchronously and without a time shift of the deflection maxima with the pressure exerting organ. The effective mass is therefore below The example described describes the sum of the mass of the pressure-exerting element plus its mounting and the associated brackets plus a partial mass of the entire road roller, which is greatly reduced by vibration-damping elements and places a load on the pressure-exerting element, plus a percentage of the additional masses that lie between the center of gravity of the pressure-exerting element and an almost non-oscillating one Part of the machine frame are movable. Depending on the location between the machine frame and the center of gravity of the pressure exerting member, the additional masses act between zero and one hundred percent of their total weight.

Vibrationsfrequenz, Vibrationskraft und Vibrationsauslenkung bezeichnen die Frequenz bzw. das Frequenzgemisch, die Kraft und die Auslenkung des Druckausübungsorgans, mit denen es aufgrund der Anregung durch die resultierende Trägheitskraft auf den zu verdichtenden Boden wirkt.
Unter unwuchtigen Trägheitskörpern werden Trägheitskörper mit exzentrischer Masseverteilung in bezug auf deren Rotationsachse verstanden, wobei nur die durch die Unwucht verursachte Zentrifugalkraft als sog. Trägheitskraft wirkt. Als Trägheitskraft wird nur die auf das Druckausübungsorgan wirkende Kraft verstanden.
Vibration frequency, vibration force and vibration deflection denote the frequency or the frequency mixture, the force and the deflection of the pressure exerting member with which it acts on the soil to be compacted due to the excitation by the resulting inertial force.
Unbalanced inertial bodies are understood to mean inertial bodies with an eccentric mass distribution with respect to their axis of rotation, only the centrifugal force caused by the unbalance acting as a so-called inertial force. The inertial force is understood to be only the force acting on the pressure exerting member.

Die vom Druckausübungsorgan in Richtung zum Boden übertragene Vibrationskraft kann so gerichtet werden, daß sie einen beliebigen spitzen Winkel zur Senkrechten auf der Bodenoberfläche einnimmt.The vibratory force transmitted from the pressure exerting member towards the ground can be directed so that it takes any acute angle to the vertical on the ground surface.

Im folgenden werden Ausführungsbeispiele der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung eines Walzenkörpers einer Straßenwalze,
Fig. 2
einen Schnitt durch den Walzenkörper entlang der Linie II - II in Figur 1,
Fig. 3
eine zeitliche Darstellung der auf den Walzenkörper wirkenden resultierenden Kraft K c , zusammengesetzt aus den Kräften K a und K b von mehreren Trägheitskörpern,
Fig. 4
eine schematische Darstellung eines in Figur 1 verwendeten Planetengetriebes zum Antreiben und Gegeneinanderverdrehen zweier exzentrisch angeordneter Massen der Trägheitskörper, und
Fig. 5
eine schematische Darstellung einer Variante, bei der die wirksame Masse des Druckausübungsorgan verstellbar ist.
Exemplary embodiments of the device according to the invention and of the method according to the invention are explained in more detail below with reference to the drawings. Show it:
Fig. 1
1 shows a schematic representation of a roller body of a road roller,
Fig. 2
2 shows a section through the roller body along the line II-II in FIG. 1 ,
Fig. 3
a time representation of the resulting force K c acting on the roll body, composed of the forces K a and K b of several inertial bodies,
Fig. 4
2 shows a schematic illustration of a planetary gear used in FIG. 1 for driving and rotating two eccentrically arranged masses of the inertial bodies, and
Fig. 5
is a schematic representation of a variant in which the effective mass of the pressure exerting member is adjustable.

Das in Figur 1 dargestellte Druckausübungsorgan ist ein hohlzylindrischer Walzenkörper 1, auch Bandage genannt, einer nicht dargestellten Straßenwalze und liegt auf einem zu verdichtenden Boden 3 Der Walzenkörper 1 ist mit vier Dämpfungselementen 5 an seinen beiden Stirnseiten an je einer Lagerschale 7 schwingungsgedämpft befestigt. Jede Lagerschale 7 ist in einem mit einem nicht dargestellten Chassis der Straßenwalze verbundenen Gestellteil 9 drehbar gelagert. Je nach Ausführungsart der Straßenwalze sind eine oder mehrere Walzenkörper 1, die auch angetrieben werden können, vorhanden.The pressurizing member shown in Figure 1 is a hollow cylindrical roller body 1, also known as bandage, a road roller not shown and is located on a ground to be compacted 3 The roll body 1 is attached with four damping elements 5 on its two end faces in each case one bearing shell 7 of oscillation. Each bearing shell 7 is rotatably mounted in a frame part 9 connected to a chassis of the road roller, not shown. Depending on the design of the road roller, one or more roller bodies 1 , which can also be driven, are present.

Innerhalb des Walzenkörpers 1 befinden sich drei Trägheitskörper 11, 12, und 13 deren Querschnitt in Figur 2 dargestellt ist. Die Trägheitskörper 11 und 12 sind als Hohlzylinder mit je einer exzentrischen Verdickung 15 und 16 entlang jeweils einer ihrer Mantellinien ausgebildet. Die Länge des Hohlzylinders des Trägheitskörpers 11 ist um eine Toleranz kleiner als die Innenlänge des Hohlzylinders des Walzenkörpers 1, und diejenige des Trägheitskörpers 12 um eine Toleranz kleiner als die Innenlänge des Hohlzylinders 11. Mittels zweier hohler Wellenstücke 17a und 17b ist der Trägheitskörper 11, und mittels je eines hohlen Wellenstücke 18a und 18b der Trägheitskörper 12 innerhalb der hohlen Wellenstücke 17a und 17b koaxial zur geometrischen Achse 20 des Walzenkörpers 1 mit jeweils zwei Lagern 22a und 22b, sowie 23a und 23b in den Stirnseiten des Walzenkörpers 1 gelagert. Der Trägheitskörper 13 ist plattenförmig ausgebildet und an einer in der geometrischen Achse 20 liegenden Welle 27 exzentrisch befestigt. Die Länge der Platte 25 ist um eine Toleranz kleiner als die Innenlänge des Trägheitskörpers 12. Der Trägheitskörper 13 ist innerhalb des Trägheitskörpers 12, dieser innerhalb des Trägheitskörpers 11 und dieser innerhalb des Walzenkörpers 1 drehbar gelagert. Die Welle 27 ist mit zwei Lagern 29 und 30 in den Stirnseiten des Hohlzylinders des Trägheitskörpers 12 auf der Welle 27 gelagert und wird innerhalb des hohlen Wellenstücks 18a mit diesem zusammen über ein Planetengetriebe 31 und dieses über eine Welle 37 vom Getriebe 32 durch einen Antrieb 33 angetrieben. Das Getriebe 32 treibt ferner über eine Welle 34 ein Zahnrad 35 an, welches mit einem weiteren Zahnrad 36 auf der hohlen Welle 17a kämmt.Within the roller body 1 there are three inertia bodies 11 , 12 and 13, the cross section of which is shown in FIG. 2 . The inertial bodies 11 and 12 are designed as hollow cylinders, each with an eccentric thickening 15 and 16 along one of their surface lines. The length of the hollow cylinder of the inertial body 11 is smaller by a tolerance than the inner length of the hollow cylinder of the roller body 1 , and that of the inertial body 12 by a tolerance smaller than the inner length of the hollow cylinder 11 . By means of two hollow shaft pieces 17a and 17b , the inertial body 11 , and by means of one hollow shaft piece 18a and 18b, the inertial body 12 within the hollow shaft pieces 17a and 17b coaxial to the geometric axis 20 of the roller body 1 , each with two bearings 22a and 22b , and 23a and 23b stored in the end faces of the roller body 1 . The inertial body 13 is plate-shaped and is eccentrically fastened to a shaft 27 lying in the geometric axis 20 . The length of the plate 25 is smaller by a tolerance than the inner length of the inertial body 12 . The inertial body 13 is rotatably mounted within the inertial body 12 , this within the inertial body 11 and this within the roller body 1 . The shaft 27 is mounted with two bearings 29 and 30 in the end faces of the hollow cylinder of the inertial body 12 on the shaft 27 and is inside the hollow shaft piece 18a together with it via a planetary gear 31 and this via a shaft 37 from the gear 32 by a drive 33 driven. The gear 32 also drives a gear 35 via a shaft 34 , which meshes with a further gear 36 on the hollow shaft 17a .

Das Getriebe 32 dreht über die Welle 34, die beiden Zahnräder 35 und 36 sowie die Welle 17a den Trägheitskörper 11 und über das Planetengetriebe 31 über die Wellen 18a und 27 die Trägheitskörper 12 und 13. Da die Masseverteilung der Trägheitskörper 11, 12 und 13, wie in Figur 2 dargestellt, exzentrisch ist, ergeben sich hierdurch umlaufende Kräfte (Zentrifugalkräfte) zur Welle 27, die über die Lager 22a/22b, 23a/23b, 29 und 30 als resultierende Kraft (Vibrationskraft) auf den Walzenkörper 1 wirken.The gear 32 rotates the inertia body 11 via the shaft 34 , the two gear wheels 35 and 36 and the shaft 17a, and the inertia body 12 and 13 via the planetary gear 31 via the shaft 18a and 27 . Since the mass distribution of the inertial bodies 11 , 12 and 13 , as shown in Figure 2 , is eccentric, this results in circumferential forces (centrifugal forces) to the shaft 27 , which as a result of the bearing 22a / 22b , 23a / 23b , 29 and 30 (Vibration force) act on the roller body 1 .

Das in Figur 4 schematisch dargestellte Planetengetriebe 31 (es kann auch ein Differentialgetriebe mit Kegelrädern verwendet werden) wird über die Welle 37 angetrieben. Die Welle 37 wirkt auf einen Getriebeteil 39 und eine Zahnriemenscheibe 40. Der Getriebeteil 39 besitzt drei miteinander kämmende Zahnräder 39a, 39b und 39c, wobei das Zahnrad 39a auf der Achse 37 sitzt und das Zahnrad 39c auf der Achse 27, welche das Planetengetriebe 31 auf der rechten Seite in Figur 4 verläßt. Die Achsen 37 und 27 liegen auf einer Geraden und die Achse des Zahnrads 39b schneidet diese Gerade. Die Zahnriemenscheibe 40 treibt über einen Zahnriemen 41 eine Zahnriemenscheibe 42, welche über eine Welle 43 ein Zahnrad 44 bewegt, welches mit einem Zahnrad 45 kämmt. Das Zahnrad 45 sitzt auf der hohlen Welle 18a und treibt, wie bereits oben beschrieben den Trägheitskörper 12 an. Während des Betriebs ist die Achse des Zahnrads 39b feststehend. Wird nun die Achse des Zahnrads 39b um die Achse 37 verdreht, so werden die beiden Achsen 18a und 27 gegeneinander, und damit die beiden exzentrischen Massen 16 und 25 der beiden Trägheitskörper 12 und 13, d. h. ihre Masseschwerpunkte je nach Drehrichtung aufeinander zu oder voneinander weg gedreht.The planetary gear 31 shown schematically in FIG. 4 (a differential gear with bevel gears can also be used) is driven via the shaft 37 . The shaft 37 acts on a gear part 39 and a toothed belt pulley 40 . The gear part 39 has three intermeshing gears 39a , 39b and 39c , the gear 39a sitting on the axis 37 and the gear 39c on the axis 27 , which leaves the planetary gear 31 on the right side in FIG. 4. The axes 37 and 27 lie on a straight line and the axis of the gear 39b intersects this straight line. The toothed belt pulley 40 drives a toothed belt pulley 42 via a toothed belt 41 , which moves a toothed wheel 44 via a shaft 43 , which meshes with a toothed wheel 45 . The gear 45 sits on the hollow shaft 18a and drives the inertial body 12 , as already described above. During operation, the axis of the gear 39b is fixed. If the axis of the gearwheel 39b is now rotated about the axis 37 , then the two axes 18a and 27 are against one another, and thus the two eccentric masses 16 and 25 of the two inertial bodies 12 and 13 , ie their center of gravity towards or away from one another depending on the direction of rotation turned.

Über die Welle 37 werden beide Trägheitskörper 12 und 13 mit gleicher Umdrehungszahl angetrieben. Durch ihre exzentrische Ausbildung wirken beide Trägheitskörper 12 und 13 mit einer aus den beiden Zentrifugalkräften gebildeten resultierenden Trägheitskraft K a über die Lager 29/30, 23a/23b und 22a/22b auf den Walzenkörper 1 und lenken diesen entsprechend dessen wirksamer Masse (Gewicht des Walzenkörpers 1 plus durch die Dämpfungselemente 5 sehr stark reduziert wirkendes Gewicht der Straßenwalze) aus.Both inertia bodies 12 and 13 are driven with the same number of revolutions via the shaft 37 . Due to their eccentric design, both inertial bodies 12 and 13 act on the roller body 1 with a resulting inertial force K a formed by the two centrifugal forces via the bearings 29/30 , 23a / 23b and 22a / 22b and steer the latter according to its effective mass (weight of the roller body 1 plus, due to the damping elements 5, the weight of the road roller is very reduced.

Werden nun die beiden Trägheitskörper 12 und 13 über das Planetengetreibe 31 während ihrer Rotation gegeneinander verdreht, so verringert oder vergrößert sich hierdurch die resultierende Trägheitskraft K a zwischen der Summe und der Differenz der Zentrifugalkräfte der einzelnen exzentrischen Masseverteilungen 16 und 25, wie aufgrund der Gesetzmäßigkeiten der technischen Mechanik leicht einzusehen ist.If the two inertial bodies 12 and 13 are now rotated against each other via the planetary gear 31 during their rotation, the resulting inertial force K a between the sum and the difference in the centrifugal forces of the individual eccentric mass distributions 16 and 25 is reduced or increased as a result of the laws of the technical mechanics is easy to see.

Das Getriebe 32 soll nun über die Welle 34 den Trägheitskörper 11 mit der doppelten Umdrehungszahl wie die beiden Trägheitskörper 12 und 13 über das Planetengetriebe 31 antreiben. Der Wert der einfachen Umdrehungszahl ergibt sich aus der gewünschten Bodenverdichtung, welche hauptsächlich von der Beschaffenheit des Bodens 3 abhängt. Die zeitliche Zuordnung der Drehbewegungen der beiden Trägheitskörper 11, 12 und 13 ist durch das Getriebe 32 so eingestellt, daß die Verdickung 15 bei jeder zweiten Umdrehung und die Verdickung 16 und die Platte 25 bei jeder Umdrehung an ihrem bodennächsten Punkt zusammen auf einer Geraden durch die Achse 20 liegen. Die exzentrische Masseverteilung der Trägheitskörper 12 und 13 (Platte 25 und Verdickung 16) zur exzentrischen Masseverteilung des Trägheitskörpers 11 (Verdickung 15) ist nun so gewählt, daß bei einer Normdrehzahl die Zentrifugalkraft K b des Trägheitskörpers 11 gleich groß ist, wie die resultierende Zentrifugalkraft der Trägheitskörper 12 und 13 bei der doppelten Normdrehzahl. Die hierzu benötigten Masseverteilungen, sowie deren jeweiliger exzentrischer Abstand von der Achse 20 lassen sich mit den Gesetzen der technischen Mechanik bestimmen. Die resultierende Zentrifugalkraft K a der beiden Trägheitskörper 12 und 13 überlagern sich, wie in Figur 3 dargestellt, mit der Zentrifugalkraft K b des Trägheitskörpers 11 zu einer gesamten resultierenden Trägheitskraft K c , wobei pro Periode P eine maximale resultierende Kraft K c zum Boden 3 und zwei etwa halb so große resultierende Kräfte K c von ihm weg gerichtet sind.The gear 32 is now intended to drive the inertial body 11 via the shaft 34 at twice the number of revolutions as the two inertial bodies 12 and 13 via the planetary gear 31 . The value of the simple number of revolutions results from the desired soil compaction, which mainly depends on the nature of the soil 3 . The timing of the rotary movements of the two inertial bodies 11 , 12 and 13 is set by the gear 32 so that the thickening 15 at every second revolution and the thickening 16 and the plate 25 at every revolution at their closest point together on a straight line through the Axis 20 lie. The eccentric mass distribution of the inertial bodies 12 and 13 (plate 25 and thickening 16 ) for the eccentric mass distribution of the inertial body 11 (thickening 15 ) is now selected so that the centrifugal force K b of the inertial body 11 is the same as the resulting centrifugal force at a normal speed Inertia bodies 12 and 13 at twice the normal speed. The mass distributions required for this, as well as their respective eccentric distance from the axis 20, can be determined using the laws of technical mechanics. The resulting centrifugal force K a of the two inertial bodies 12 and 13 overlap, as shown in FIG. 3 , with the centrifugal force K b of the inertial body 11 to form a total resulting inertial force K c , with a maximum resulting force K c per floor P 3 and two approximately half the resulting forces K c are directed away from him.

In Figur 3 sind über der Zeitachse t als Abszisse der zeitliche Verlauf während einer Periode P die jeweiligen zum Boden 3 gerichteten Kräfte K a , K b und K c als Ordinate aufgetragen. Eine nach unten, gegen den Boden 3 wirkende Kraft zeigt auch hier nach unten. Die strichpunktierte Linie a gibt den Kraftverlauf der durch die Trägkeitskörper 12 und 13 hervorgerufenen resultierenden Kraft K a , und die gestrichelte Linie b den Kraftverlauf der durch den Trägheitskörper 11 hervorgerufene Kraft K b an. Die ausgezogene Linie c gibt den auf den Walzenkörper 1 wirkenden Kraftverlauf der resultierenden gesamten Kraft K c an, wobei die Kraft K a durch Verdrehen der Trägheitskörper 12 und 13 gegeneinander veränderbar und damit auch wieder der Kraftverlauf der Kraft K c veränderbar ist.In figure 3, over the time axis t as the abscissa the time profile during a period P, the respective forces directed toward the bottom 3 K a, b K and K c plotted as ordinate. A downward force against the floor 3 also points downward here. The dash-dotted line a indicates the force profile of the resulting force K a caused by the inertial bodies 12 and 13 , and the dashed line b indicates the force profile of the force K b caused by the inertial body 11 . The solid line c gives the the force curve of the resulting total force K c acting on the roller body 1 , the force K a being changeable by rotating the inertial bodies 12 and 13 , and thus the force curve of the force K c being changeable again.

Die vom Boden 3 weg gerichtete resultierende Kraft K c kann so groß gewählt werden, daß sie bis auf eine Toleranz kleiner ist als die Gewichtskraft des Walzenkörpers 1, aber ohne das Gewicht der Trägheitskörper 11, 12 und 13, ohne ein Abheben des Walzenkörpers 1 vom Boden 3 befürchten zu müssen.The resulting force K c directed away from the bottom 3 can be chosen so large that it is smaller to a tolerance than the weight of the roller body 1 , but without the weight of the inertial bodies 11 , 12 and 13 , without lifting the roller body 1 from Soil 3 fear.

Anstelle dreier Massen können je nach Platzbedarf beliebig viele bewegte Massen, welche mit unterschiedlichen Umdrehungszahlen, welche ganzzahlige Vielfache einer gewünschten Grundschwingung des Druckausübungsorgan 1 sind, verwendet werden. Die optimalen Umdrehungszahlen, sowie deren Zuordnungen lassen sich bei Vorgabe des gewünschten Kraftzeitdiagramms mit bekannten mathematischen Näherungsverfahren, wie z. B. einer "angenäherten harmonischen Analyse", dargelegt in Bronstein-Semendjajew, "Taschenbuch der Mathematik", B. G. Teubner Verlagsgesellschaft, Leipzig, 1963, Seite 480 ff berechnen. Bei der Berechnung ergeben sich unendlich lange trigonometrische Reihen, welche aber mit hinreichender Genauigkeit für die erstrebte Bewegungsform schon nach den ersten Glieder abgebrochen werden können.Instead of three masses, any number of moving masses can be used depending on the space required, which masses with different numbers of revolutions, which are integer multiples of a desired basic vibration of the pressure exerting element 1 . The optimal number of revolutions, as well as their assignments, can be determined with known mathematical approximation methods, such as e.g. B. an "approximate harmonic analysis", presented in Bronstein-Semendjajew, "Taschenbuch der Mathematik", BG Teubner Verlagsgesellschaft, Leipzig, 1963, page 480 ff. The calculation results in infinitely long trigonometric rows, which can, however, be broken off after the first links with sufficient accuracy for the desired form of movement.

Als Druckausübungsorgan kann außer einem Walzenkörper 1 auch eine Platte oder ähnliches verwendet werden.In addition to a roller body 1 , a plate or the like can also be used as the pressure exerting element.

Anstelle die Kräfte senkrecht auf die Oberfläche des zu verdichtenden Bodens 3 wirken zu lassen, kann auch ein beliebiger Winkel gewählt werden. Der Winkel der maximalen Kraftwirkung hängt nur vom Winkel ab, bei dem sich die Zentrifugalkräfte der einzelnen Umdrehungen maximal überlagern. Über das Getriebe 32 läßt sich dieser Winkel einstellen.Instead of letting the forces act perpendicularly on the surface of the soil 3 to be compacted, an arbitrary angle can also be selected. The angle of the maximum force effect only depends on the angle at which the centrifugal forces of the individual revolutions overlap to a maximum. This angle can be set via the gear 32 .

Soll bei konstanter auf den Boden 3 über das Druckausübungsorgan einwirkender Kraft und konstanter Vibrationsfrequenz die Auslenkung des Druckausübungsorgans geändert werden, so ist die Masse des Druckausübungsorgans zu ändern. Eine derartige Änderung war bisher nicht während des Betriebs möglich; es konnte nur ein anderer Typ einer Walze verwendet werden.If the deflection of the pressure application element is to be changed with constant force acting on the floor 3 via the pressure application element and constant vibration frequency, the mass of the pressure application element is to be changed. Such a change was previously not possible during operation; only another type of roller could be used.

Eine mögliche Ausführungsart zur Veränderung des Masse des Druckausübungsorgan, hier eines Walzenkörpers 77, der analog zum Walzenkörper 1 ausgebildet ist, ist schematisch in Figur 5 dargestellt. Zur Vereinfachung der Darstellung sind nur zwei Trägheitskörper 78a und 78b vorhanden. Der Trägheitskörper 78a ist analog zum Trägheitskörper 12 und der Trägheitskörper 78b analog zum Trägheitskörper 13 ausgebildet. Der Trägheitskörper 78a ist über eine Hohlwelle 79a und der Trägheitskörper 78b über eine Welle 79b direkt mit der Welle 37 bzw. der Welle 34 des Getriebes 32 verbunden; das Planetengetriebe 31 entfällt bei der vereinfachten Darstellung. Der Walzenkörper 77 hat an jeder Stirnseite einen zur Welle 79b koaxialen Flansch 82a und 82b, mit dem er in einem Joch 80 über zwei Wälzlager 83a und 83b gelagert ist. Das Joch 80 ist über schwingungsdämpfende Elemente 84 mit dem Gestellteil 9 der Straßenwalze befestigt. In der Mitte zwischen seinen beiden Flanschen 82a und 82b an der der Welle 79b abgewandten Seite des Jochs 80 hat dieses eine Stütze 86, von der je eine Führungsschiene 87a und 87b horizontal mit dem Gestellteil 9 verbunden ist. Beide Führungsschienen 87a und 87b sind sowohl an der Stütze 86, wie auch am Gestellteil 9 mit Gelenken 89a, 89b, 89c und 89d, wie in Figur 5 schematisch angedeutet, gelenkig befestigt. Zwei Zusatzkörper 91a und 91b sind auf den Führungsschienen 87a und 87b mit einem in sich geschlossenen Zahnriemen 92 verschiebbar angeordnet. Der Zahnriemen 92 wird über zwei an dem Gestellteil 9 befestigten Rollen 94a und 94b umgelenkt, wobei der eine Zusatzkörper 91a mit dem einen Teil des Zahnriemens 92 und der andere Zusatzkörper 91b mit dem umgelenkten Teil des Zahnriemens 92 verbunden ist. Die Rolle 94a wird über einen weiteren Zahnriemen 95 von einer schematisch dargestellten Verstelleinrichtung 97 angetrieben. Die Zusatzkörper 91a und 91b sind derart ausgebildet, daß sie mit ihrem ganzen Gewicht auf den Führungsschienen 87a und 87b lasten; der Zahnriemen 92 dient nur zur horizontalen Verschiebung. Sie sind so am Zahnriemen 92 befestigt, daß ihre Bewegung gegenläufig erfolgt Die Führungsschienen 87a und 87b sind so ausgebildet, daß sie während des Vibrationsbetriebs nicht in Eigenschwingung kommen.A possible embodiment for changing the mass of the pressure application member, here a roller body 77 , which is designed analogously to the roller body 1 , is shown schematically in FIG . To simplify the illustration, there are only two inertial bodies 78a and 78b . The inertial body 78a is configured analogously to the inertial body 12 and the inertial body 78b is configured analogously to the inertial body 13 . The inertial body 78a is connected directly to the shaft 37 and the shaft 34 of the gear 32 via a hollow shaft 79a and the inertial body 78b via a shaft 79b ; the planetary gear 31 is omitted in the simplified representation. The roller body 77 has on each end face a flange 82a and 82b coaxial with the shaft 79b , with which it is mounted in a yoke 80 via two roller bearings 83a and 83b . The yoke 80 is fastened to the frame part 9 of the road roller via vibration-damping elements 84 . In the middle between its two flanges 82a and 82b on the side of the yoke 80 facing away from the shaft 79b, the yoke 80 has a support 86 , of which a guide rail 87a and 87b is horizontally connected to the frame part 9 . Both guide rails 87a and 87b are articulated both on the support 86 and on the frame part 9 with joints 89a , 89b , 89c and 89d , as indicated schematically in FIG. 5 . Two additional bodies 91a and 91b are slidably arranged on the guide rails 87a and 87b with a self-contained toothed belt 92 . The toothed belt 92 is deflected via two rollers 94a and 94b fastened to the frame part 9 , one additional body 91a with one part of the toothed belt 92 and the other additional body 91b with the deflected part of the toothed belt 92 is connected. The roller 94a is driven via a further toothed belt 95 by a schematically illustrated adjusting device 97 . The additional bodies 91a and 91b are designed such that they bear with their entire weight on the guide rails 87a and 87b ; the toothed belt 92 is used only for horizontal displacement. They are fastened to the toothed belt 92 in such a way that their movement takes place in opposite directions. The guide rails 87a and 87b are designed in such a way that they do not vibrate naturally during vibration operation.

Werden die Zusatzkörper 91a und 91b mittels der Verstelleinheit 97 gegen die Gelenke 89a und 89d geschoben, so wirken sie nur mit einer vernachlässigbaren Gewichtskraft auf den Walzenkörper 77, während sie bei einem Anschlag an den Gelenken 89b und 89c mit ihrem gesamten Gewicht als Zusatzmasse wirken. Zwischen diesen beiden Extrema lassen sich alle Werte über die Lage der Zusatzkörper 91a und 91b auf den Führungsschienen 87a und 87b einstellen. Die Auslenkung des Walzenkörpers 77 ist umgekehrt proportional zur wirksamen Masse des Walzenkörpers 77 und proportional zur auf ihn wirkenden Trägheitskraft K c . Die wirksame Masse des Walzenkörpers 77 (Druckausübungsorgan) ist die Summe der Massen des Walzenkörpers 77, des Jochs 80, der Stütze 86, zweimal der halben Masse der Führungsschienen 87a und 87b, sowie der auf den Walzenkörper 77 wirkenden jeweiligen Gewichtskraft der Zusatzkörper 91a und 91b.If the additional bodies 91a and 91b are pushed against the joints 89a and 89d by means of the adjustment unit 97 , then they act on the roller body 77 only with a negligible weight, whereas they act with their entire weight as an additional mass when the joints 89b and 89c stop . Between these two extremes, all values can be set via the position of the additional bodies 91a and 91b on the guide rails 87a and 87b . The deflection of the roller body 77 is inversely proportional to the effective mass of the roller body 77 and proportional to the inertial force K c acting on it. The effective mass of the roller body 77 (pressure exerting member) is the sum of the masses of the roller body 77 , the yoke 80 , the support 86 , twice half the mass of the guide rails 87a and 87b , and the respective weight of the additional bodies 91a and 91b acting on the roller body 77 .

Anstatt die beiden Zusatzkörper 91a und 91b nur im Raum zwischen den beiden Gestellteilen 9 zu bewegen, kann die Befestigung der Führungsschienen 87a und 87b derart gewählt werden, daß sie in den Raum außerhalb der Gestellteile 9 bewegt werden können. Befinden sich die Zusatzkörper 91a und 91b außerhalb, so wird hierdurch die wirksame Masse des Walzenkörpers 77 (Druckausübungsorgan) reduziert.Instead of moving the two additional bodies 91a and 91b only in the space between the two frame parts 9 , the fastening of the guide rails 87a and 87b can be selected such that they can be moved into the space outside the frame parts 9 . If the additional bodies 91a and 91b are outside, the effective mass of the roller body 77 (pressure exerting member) is thereby reduced.

Durch die oben beschriebenen Vorrichtungen ist eine Veränderung der wirksamen Zentrifugalkräfte möglich, indem die exzentrischen Masseschwerpunkte mehrere Trägheitskörper gegeneinander oder der Masseschwerpunkt des Trägheitskörpers in bezug auf dessen Rotationsachse mittels eines Planetengetriebes verstellt werden.The devices described above make it possible to change the effective centrifugal forces by adjusting the eccentric centers of gravity of several inertial bodies against each other or the center of gravity of the inertial body in relation to its axis of rotation by means of a planetary gear.

Ferner ist durch Veränderung der Masse des Druckausübungsorgans dessen Auslenkung gegenüber dem Boden verstellbar.Furthermore, by changing the mass of the pressure exerting member, its deflection relative to the floor can be adjusted.

Mit den oben beschriebenen Ausführungsformen ist unabhängig von einander die Größe der Vibrationskraft, sowie deren Richtung und deren Vibrationsfrequenz einstellbar; auch kann in unterschiedlichen Richtungen eine verschieden stark wirkende Vibrationskraft erzeugt werden. Durch diese Einstellvielfalt ist eine Bodenverdichtung in Abhängigkeit von ihrer Bodenbeschaffenheit optimal zu verwirklichen.With the embodiments described above, the magnitude of the vibration force, as well as their direction and their vibration frequency can be set independently of one another; a differently strong vibration force can also be generated in different directions. With this variety of settings, soil compaction can be optimally achieved depending on the nature of the soil.

Claims (7)

  1. Soil compacting apparatus, in particular for earthwork and road building, having at least two inertia bodies (11, 12, 13; 78a, 78b) which are connected to a pressure-exerting member (1; 77) and which can be set in rotation in an unbalanced manner by a drive device (33), and having a gear unit which transmits the torque of the drive device (33) to a first and to a second inertia body (13, 12; 78a, 78b) in such a manner that the latter rotate in the same sense and by means of which their mutual unbalanced position can be adjusted during rotation in order to be able to adapt the magnitude of the resultant inertia force Ka, which is to be transmitted to the pressure- exerting member (1; 77), to the respective type of soil during the compacting operation, characterised in that the gear unit comprises a planet gear (31) for adjusting the unbalanced position of the inertia bodies (12, 13) rotating in the same sense.
  2. Soil compacting apparatus according to Claim 1, characterised in that the planet gear (31) comprises driving and driven shafts (37, 27), which are aligned with one another, and drives at least one of the two inertia bodies (13) by means of gear wheels (39a, 39b, 39c) which mesh with one another and of which at least two first gear wheels (39a, 39c) comprise shafts which are disposed in the extension of the drive shaft (37) and at least the shaft of a second (39b) of the gear wheels (39a, 39b, 39c) can be rotated about the shaft of the first gears (39a, 39c) for adjusting the mutual unbalanced position of the first inertia body (13) with respect to the second inertia body (12).
  3. Soil compacting apparatus according to Claim 1 or 2, characterised by at least one third inertia body (11) which can be set in rotation in an unbalanced manner, at least one further, second gear unit (32) which is connected to the planet gear (31) and to the drive device (33) and by means of which the third inertia body (11) can be set in rotation relative to the first and second inertia bodies (12, 13) synchronously in such a way at different rotational speeds, which are integral multiples of a basic oscillation of the required, periodic movement of the pressure-exerting member (1), which oscillation is to be transferred thereto, in which, at the moment at which the centrifugal force (Ka) of the inertia body or bodies (12, 13) rotating at the low rotational speed is directed towards the soil (3), the centrifugal force (Kb) of the inertia body or bodies (11) rotating at the higher rotational speed is directed towards the soil (3) in order that the resultant inertia force (Kc) to be transferred from the inertia bodies (11, 12, 13) to the pressure- exerting member (1) is greater in the direction towards the soil (3) than in the opposite direction.
  4. Soil compacting apparatus according to Claim 3, characterised in that at least one first shaft (17a) can be driven with respect to at least one second shaft (18a, 27) by means of the second gear unit (32) at a rotational speed which is an integral multiple of the rotational speed of the second shaft, and in a manner such that they are synchronised relative to one another, and at least one of the inertia bodies (11, 12, 13) is connected to each shaft (17a, 18a, 27).
  5. Soil compacting apparatus according to any one of Claims 1 to 4, characterised in that the effective mass of the pressure-exerting member (1; 77) can be varied in order that the deflection of the pressure-exerting member (1) can be adjusted relative to the soil (3) in accordance with the nature of the soil and independently of the setting of the resultant inertia force of the inertia bodies (11, 12, 13).
  6. Soil compacting apparatus according to Claim 5, characterised by a bearing mounting (80) for mounting the pressure-exerting member (77) which mounting is connected in a movement-damped manner to a supporting frame part (9), and by at least one guide rail (87a, 87b) which is connected in a hinged manner to the frame part (9) and to the bearing mounting (80) and on which at least one additional mass (91a, 91b) is displaceably disposed in order to increase or reduce the effective mass of the pressure-exerting member (77).
  7. Soil compacting apparatus according to Claim 6, characterised by at least two guide rails (87a, 87b) which are mounted on the bearing mounting (80) symmetrically relative to the centre of the pressure-exerting member (77), which are mounted at opposite locations of the frame part (9), and of which each has an additional mass (91a, 91b), and by a displacement device (92, 94a, 94b, 95, 97) by means of which the additional masses (91a, 91b) can be displaced towards or away from one another on the guide rails (87a, 87b) symmetrically relative to the centre of the pressure-exerting member (77) in order to increase or reduce the effective mass of the pressure-exerting member (77).
EP90113073A 1989-08-03 1990-07-09 Machine for soil compacting Expired - Lifetime EP0411349B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH2875/89 1989-08-03
CH287489A CH678637A5 (en) 1989-08-03 1989-08-03 Ground compacting for earth working and road construction
CH287589A CH679051A5 (en) 1989-08-03 1989-08-03 Ground compacting for earth working and road construction
CH287389 1989-08-03
CH2874/89 1989-08-03
CH2873/89 1989-08-03

Publications (2)

Publication Number Publication Date
EP0411349A1 EP0411349A1 (en) 1991-02-06
EP0411349B1 true EP0411349B1 (en) 1995-05-31

Family

ID=27173986

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90113072A Withdrawn EP0411348A1 (en) 1989-08-03 1990-07-09 Method for compacting soil and machine therefor
EP90113073A Expired - Lifetime EP0411349B1 (en) 1989-08-03 1990-07-09 Machine for soil compacting

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP90113072A Withdrawn EP0411348A1 (en) 1989-08-03 1990-07-09 Method for compacting soil and machine therefor

Country Status (3)

Country Link
EP (2) EP0411348A1 (en)
AT (1) ATE123319T1 (en)
DE (1) DE59009174D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATA9792A (en) * 1992-01-22 1994-08-15 Winter Udo Ing Mag METHOD AND DE-CLEANING DEVICE FOR CLEARING TANKS WHICH ARE ADAPTED TO INDIVIDUAL TANK TYPES
US6769838B2 (en) 2001-10-31 2004-08-03 Caterpillar Paving Products Inc Variable vibratory mechanism
DE102008008802B4 (en) * 2008-02-12 2011-12-15 Ammann Verdichtung Gmbh Soil compactor with a vibration exciter
US9926675B2 (en) 2011-05-20 2018-03-27 Volvo Construction Equipment Ab Surface compactor and method of operation
CN110927257A (en) * 2019-11-14 2020-03-27 深圳市土地投资开发中心 Detection system and method for detecting compaction quality of affected area of basic flight area

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1111107B (en) * 1955-03-14 1961-07-13 Dingler Werke Ag Vibrating roller for compacting soil and other debris
CH425648A (en) * 1963-04-19 1966-11-30 Abg Werke Gmbh Vibration device for the compaction of poured soil and other materials
AT250423B (en) * 1963-10-17 1966-11-10 Buckau Wolf Maschf R Automotive compaction machine
DE1634246A1 (en) * 1965-06-08 1970-07-16 Bopparder Maschb Gmbh Vibrating roller
DE1634474A1 (en) * 1966-02-24 1970-08-06 Buckau Wolf Maschf R Vibrating roller
US3721129A (en) * 1971-08-13 1973-03-20 Ato Inc Eccentric system for vibratory earth compactor
US4105356A (en) * 1977-05-19 1978-08-08 Koehring Corporation Vibratory roller
CS244465B1 (en) * 1984-02-23 1986-07-17 Lubos Dolezal Vibrations exciter with continuous variation of eccentric moment
AT389723B (en) * 1986-03-27 1990-01-25 Voest Alpine Ag DEVICE FOR GENERATING VIBRATIONS

Also Published As

Publication number Publication date
EP0411349A1 (en) 1991-02-06
ATE123319T1 (en) 1995-06-15
EP0411348A1 (en) 1991-02-06
DE59009174D1 (en) 1995-07-06

Similar Documents

Publication Publication Date Title
EP0932726B1 (en) Method of measuring mechanical data of a soil, and of compacting the soil, and measuring or soil-compaction device
EP2504490B1 (en) Compaction device and method for compacting ground
EP2881516B1 (en) Road roller
EP1337713B1 (en) Compactor
EP0789801B1 (en) Vibratory roller with at least one tyre having a built-in twin-shaft vibration generator
EP3461952B1 (en) Compressor roller
DE3428553C2 (en)
EP1305121B1 (en) Controllable vibration generator
DE2932287A1 (en) VIBRATION BAR FOR RAMMING AND / OR DRAWING RAMM BODIES
EP0411349B1 (en) Machine for soil compacting
DE2706667A1 (en) VIBRATION DEVICE FOR SOIL COMPACTION
AT389723B (en) DEVICE FOR GENERATING VIBRATIONS
WO2018130262A1 (en) Roller for compacting soil and method for generating an oscillating image of a roller for compacting soil
DE2001987A1 (en) Soil compacting device
EP2242590B1 (en) Unbalance exciter with one or more rotatable unbalances
DE4118069C2 (en) Vibrator for a vibratory hammer
DE10105687A1 (en) Vibro-compacting machinery for ground uses two oppositely coupled disbalancer shafts one with fixed disbalancer weights and second shaft with adjustable and axially offset weights.
EP1040918B1 (en) Method and device for damping the torsional vibrations of a printing machine
CH679051A5 (en) Ground compacting for earth working and road construction
DE19631991B4 (en) Vibrator, especially for a vibration bear
DE3105611C2 (en) Method and device for deep compaction
DE3727742C1 (en) Schuettelbock
DE10041025C2 (en) Device for the eradication of torsional vibrations in the drive of a printing press, in particular a sheet-fed rotary printing press
CH678637A5 (en) Ground compacting for earth working and road construction
DE4439170A1 (en) Ram vibrator to produce harmonised vibrations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19910712

17Q First examination report despatched

Effective date: 19920917

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMMANN VERDICHTUNG AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950531

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950531

REF Corresponds to:

Ref document number: 123319

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009174

Country of ref document: DE

Date of ref document: 19950706

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090629

Year of fee payment: 20

Ref country code: CH

Payment date: 20090623

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090708

Year of fee payment: 20

Ref country code: AT

Payment date: 20090728

Year of fee payment: 20

Ref country code: GB

Payment date: 20090703

Year of fee payment: 20

Ref country code: SE

Payment date: 20090717

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100708

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100709