EP2232147B1 - Brûleur et procédé pour réduire des oscillations de flammes autoinduites - Google Patents

Brûleur et procédé pour réduire des oscillations de flammes autoinduites Download PDF

Info

Publication number
EP2232147B1
EP2232147B1 EP08749689.9A EP08749689A EP2232147B1 EP 2232147 B1 EP2232147 B1 EP 2232147B1 EP 08749689 A EP08749689 A EP 08749689A EP 2232147 B1 EP2232147 B1 EP 2232147B1
Authority
EP
European Patent Office
Prior art keywords
fluid
jet nozzle
fluid inlet
burner
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08749689.9A
Other languages
German (de)
English (en)
Other versions
EP2232147A1 (fr
Inventor
Matthias Hase
David Barkowski
Werner Krebs
Berthold Köstlin
Martin Lenze
Martin Stapper
Jaap Van Kampen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08749689.9A priority Critical patent/EP2232147B1/fr
Publication of EP2232147A1 publication Critical patent/EP2232147A1/fr
Application granted granted Critical
Publication of EP2232147B1 publication Critical patent/EP2232147B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03282High speed injection of air and/or fuel inducing internal recirculation

Definitions

  • the present invention relates to a method for reducing self-induced flame vibrations and a burner with which this method can be carried out.
  • Self-induced flame vibrations often occur in combustion chambers and are referred to in this context as Brennschbrummen.
  • a feedback between pressure changes in the combustion chamber and mass flow fluctuations of fuel and air are responsible.
  • the combustion chamber vibrations are an undesirable side effect of the combustion process, since they cause an increased mechanical and thermal loading of the burner components and the combustion chamber components.
  • the combustion chamber hum caused an increased noise in the environment of the respective combustion chamber.
  • a burner in which, in view of stable combustion of a lean premix gas, the fuel and the air are mixed prior to combustion such that separately supplied fuel is mixed with air having a first air ratio in a first device and in a second device for premixing fuel with air to an additional gas mixture having a smaller air ratio than the first air ratio is mixed and the additional gas mixture is annularly injected around the first gas mixture in the combustion chamber.
  • the DE 28 56 399 A1 discloses a burner in which fuel is injected into an air supply pipe to achieve a very fine fuel mist and a controlled distribution of the fuel in the air and immediately downstream of this fuel injection air is injected under high pressure.
  • a method and apparatus for mixing two gaseous reactants are known.
  • a first gas is injected via a nozzle at one end of the mixer.
  • a second gas is introduced into the mixer, the further openings being mounted in different rings on the mixer.
  • a reduction in the combustion chamber humming or a minimization of self-induced flame vibrations has been achieved in part by using Helmholtz resonators.
  • Another possibility is to supply the burner used an increased pilot gas quantity. Pilot gas or pilot fuel is usually used to stabilize the flame. However, an increased supply of pilot gas also leads to increased NO x emissions.
  • the first object is achieved by a method according to claim 1 and claim 2.
  • the second task is by a Burner according to claim 11 and 12 solved.
  • the dependent claims contain further, advantageous embodiments of the invention.
  • a second fluid mass flow is injected into a first fluid mass flow which flows through a jet nozzle from a fluid inlet opening to a fluid outlet opening at at least one axial flow position of the jet nozzle downstream of the fluid inlet opening.
  • a third fluid mass flow branched off in advance from the first fluid mass flow is injected into the first fluid mass flow at a plurality of positions of the circumference of the jet nozzle which are offset relative to one another in the axial direction.
  • the other fluid mass flow includes a fuel.
  • the response behavior for example of the fuel mass flow
  • resonance can only occur for a small proportion of the mass flow.
  • the inventive method can be implemented in particular in the operation of a jet burner, wherein the positive properties of a jet burner are maintained.
  • the second fluid mass flow is injected at at least one radial position of the jet nozzle with respect to the circumference of the jet nozzle. This achieves, as already described above, also the smearing of the delay time between injection and combustion.
  • different radial fuel distributions are realized.
  • the inner areas ie the areas which show to the center of a case to go fatter.
  • flame extinction and CO emissions can be prevented.
  • the fluid mass flow comprising a fuel can be, for example, an air-fuel mixture.
  • the fuel used may in particular be gaseous fuel, for example natural gas or a synthesis gas. Since for natural gas, the fuel mass flows are significantly lower than the air mass flows, even in the case of injection perpendicular to the flow direction of the air is not expected to increase significantly the pressure loss. Furthermore, the method can also be applied to liquid fuels.
  • the second and / or the third fluid mass flow can be injected into the first fluid mass flow at an angle between 0 ° and 90 °.
  • the second fluid mass flow may be injected into the first fluid mass flow at an angle of 90 ° and the third fluid mass flow may be injected into the first fluid mass flow at an angle of 45 °.
  • the advantage of jet-in-cross flow injection is a contribution to increased mixing of the air-fuel mixture, while wall film formation is primarily a measure against flashback.
  • the burner according to the invention comprises at least one jet nozzle with a fluid main inlet opening and a fluid outlet opening, the main fluid inlet opening being connected to a first fluid supply line, at least one fluid secondary inlet opening being connected to a second fluid supply line at at least one axial axial position of the jet nozzle relative to the main fluid inlet opening , is arranged.
  • the burner according to the invention is characterized in that secondary fluid inlet openings are connected to the first fluid line and arranged at a plurality of positions offset in the axial direction relative to one another along the circumference of the jet nozzle.
  • the burner according to the invention comprises at least one jet nozzle having a main fluid inlet opening and a fluid outlet opening, the main fluid inlet opening being connected to a first fluid supply line, at least one fluid secondary inlet opening being connected to a second fluid supply line at at least one radial position of the jet nozzle relative to the circumference of the jet nozzle is connected, is arranged.
  • the alternative form of the burner according to the invention is likewise characterized in that secondary fluid inlet openings are connected to the first fluid line and are arranged at a plurality of positions arranged offset to one another in the axial direction along the circumference of the jet nozzle.
  • the fluid sub-inlet openings and the main fluid inlet opening can each have a central axis.
  • the center axes of the fluid sub-inlet openings may have an angle between 0 ° and 90 ° to the central axis of the main fluid inlet opening and / or to the center axis of the jet nozzle.
  • the center axes of a first part of the fluid sub-inlet ports may be at 90 ° to the central axis of the main fluid inlet port and / or the central axis of the jet nozzle and the central axes of a second portion of the fluid sub-inlet ports may be at 45 ° to the central axis of the main fluid inlet port and / or the central axis of the Have jet nozzle.
  • the fluid sub-inlet openings and the main fluid inlet opening may each have a central axis and the central axes of the fluid sub-inlet openings may have an angle between 0 ° and 90 ° to a radial direction with respect to the central axis of the main fluid inlet opening.
  • This can be injected tangentially along the circumference of the jet nozzle and in this way a wall film can be produced on the inner surface of the jet nozzle.
  • An injection along the circumference of the jet nozzle can also be used to generate vortices in the jet nozzle.
  • a plurality of fluid supply lines connected to fluid side inlet openings may be connected to one another via a ring distributor arranged along the circumference of the jet nozzle.
  • a fuel nozzle can be arranged in the main fluid inlet opening or directly in front of the main fluid inlet opening.
  • the fuel nozzle may include a fuel distributor disposed in or immediately in front of the main fluid inlet port.
  • At least one secondary fluid inlet opening may be designed as an annular gap extending along the circumference of the jet nozzle.
  • the burner according to the invention may comprise a plurality of jet nozzles, wherein the annular gaps of the various jet nozzles are arranged at respectively different axial positions.
  • the burner according to the invention may comprise a plurality of, for example, annularly arranged with respect to the central axis of the burner, jet nozzles. It may further include one or more pilot burners.
  • the burner according to the invention is preferably used in a gas turbine.
  • FIG. 1 schematically shows a section through a jet burner 1 perpendicular to a central axis 4 of the burner 1.
  • the burner 1 comprises a housing 6 which has a circular cross-section. Within the housing 6 a certain number of jet nozzles 2 is arranged substantially annular. Each jet nozzle 2 has a circular cross section.
  • the burner 1 may comprise a pilot burner.
  • FIG. 2 schematically shows a section through a jet burner 101, wherein the section perpendicular to the central axis of the burner 101 runs.
  • the burner 101 also has a housing 6, which has a circular cross section and in which a number of inner and outer jet nozzles 2, 3 is arranged.
  • the jet nozzles 2, 3 each have a circular cross-section, wherein the outer jet nozzles 2 have an equal or larger cross-sectional area than the inner jet nozzles 3.
  • the outer jet nozzles 2 are arranged substantially annularly within the housing 6 and form an outer ring.
  • the inner jet nozzles 3 are also arranged annularly within the housing 6.
  • the inner jet nozzles 3 form an inner ring, which is arranged concentrically to the outer jet nozzle ring.
  • FIGS. 1 and 2 merely show examples of the arrangement of jet nozzles 2, 3 within a jet burner 1, 101. Of course, alternative arrangements, as well as the use of a different number of jet nozzles 2, 3 are possible.
  • FIG. 3 schematically shows a section through a portion of a jet burner 1 in the longitudinal direction, ie along the central axis 4 of the burner 1.
  • the burner 1 has at least one arranged in a housing 6 jet nozzle 2.
  • the central axis of the jet nozzle 2 is indicated by the reference numeral 5.
  • the jet nozzle 2 comprises a main fluid inlet opening 8 and a fluid outlet opening 9.
  • the combustion chamber 18 adjoins the fluid outlet opening 9.
  • the jet nozzle 2 is arranged in the housing 6 such that the main fluid inlet opening 8 faces the rear wall 24 of the burner 1.
  • the housing 6 further comprises a radially outer housing part 27 with respect to the central axis 4 of the burner 1.
  • the jet nozzle 2 is fluidically connected to a compressor. Coming from the compressor compressed air is passed through an annular gap 22 to the main fluid inlet 8 and / or radially via an air inlet opening 23 in relation directed to the central axis 5 of the jet nozzle 2 to the fluid main inlet 8.
  • the compressed air flows through the annular gap 22 in the direction of the arrow indicated by the reference numeral 15, ie parallel to the central axis 5 of the jet nozzle 2.
  • the in the direction of arrow 15th flowing air is then deflected at the rear wall 24 of the burner 1 by 180 ° and then flows through the main fluid inlet 8 into the jet nozzle 2.
  • the flow direction of the air within the jet nozzle 2 is indicated by an arrow 10.
  • the compressed air coming from the compressor can also be supplied through an opening 23 which is arranged in the housing 6 of the burner 1 radially with respect to the central axis 5 of the jet nozzle 2.
  • the flow direction of the compressed air flowing through the opening 23 is indicated by an arrow 26.
  • the compressed air is then deflected by 90 ° and then flows through the main fluid inlet 8 into the jet nozzle. 2
  • the burner 1 can also be designed without the outer housing part 27 or without the outer housing 27.
  • the compressed air can flow directly into the "plenum", ie the area between the rear wall 24 and the main fluid inlet opening 8.
  • the burner 1 according to the invention can furthermore be designed without the rear wall 24.
  • the jet nozzle 2 is surrounded radially by a ring distributor 7, which is supplied with fuel 12 via a fuel feed line 13.
  • the annular distributor 7 has a number of fluid secondary inlet openings 14, through which fuel can be injected into the air mass flow flowing through the jet nozzle 2.
  • the fluid sub-inlet openings 14 may be designed as a slot or oval nozzle. This is particularly advantageous from synthesis gas injection, since thus the air flow a smaller inflow area is offered. This also results in a lower tendency for recirculation behind the fuel injection.
  • the direction of flow of the fuel 12 injected into the jet nozzle 2 through the fluid sub-inlet openings 14 is indicated by arrows 17.
  • the flow direction 17 of the injected fuel 12 extends perpendicular to the central axis 5 of the jet nozzle 2 and thus also perpendicular to the main flow direction 10 of the compressed air 11 flowing through the jet nozzle 2.
  • Fluid side inlet openings 14 are arranged at three different axial positions, wherein at each axial position in each case two fluid side inlet openings 14 are arranged opposite to each other.
  • a number of fluid sub-inlet openings 14 are arranged along the circumference of the jet nozzle 2. These can in particular also be arranged axially offset from one another.
  • secondary fluid inlet openings 14 may be arranged at only one or at further axial positions along the circumference of the jet nozzle 2.
  • FIG. 4 schematically shows a section through a burner 201 according to the invention, which is a further development of in the FIG. 3 shown burner 1 represents.
  • the compressed air 11 coming from a compressor can in turn be supplied to the jet nozzle 2 either via an annular gap 22 or, as shown in FIG. 3, via an air inlet opening perpendicular to the central axis 5 of the jet nozzle.
  • the compressed air 11 is supplied via an annular gap 22 of the jet nozzle 2.
  • the injection perpendicular to the central axis 5 is therefore indicated only by a dashed arrow 26.
  • burner 201 in addition to the fluid sub-inlet openings 14, is injected through the fuel in the jet nozzle 2, further fluid side inlet openings 25, is injected through the additional compressed air in the flow direction indicated by arrows 16 in the jet nozzle 2.
  • additional fluid sub-inlet openings 25 are connected to the annular gap 22. This means that part of the compressed air coming from the compressor 11 is passed through the annular gap 22 to the rear wall 24 of the burner, where it is deflected by 180 ° and then passes through the main fluid inlet opening 8 into the jet nozzle 2. This air mass flow flows through the jet nozzle 2 in the direction indicated by an arrow 10 direction.
  • the fluid sub-inlet openings 25 can be arranged at different axial positions of the jet nozzle 2.
  • the fluid secondary inlet openings 25, through which compressed air is injected into the jet nozzle 2 are arranged such that a fluid secondary inlet opening 25 is arranged downstream of a fluid secondary inlet opening 14 through which fuel 12 is injected into the jet nozzle 2 in the flow direction 10 downstream.
  • the fluid sub-inlet openings 25 are arranged offset radially along the circumference of the jet nozzle 2. In this way, the flow is not always weakened at the same circumferential position.
  • the fluid side inlet openings 14 and 25 are arranged such that the fuel 12 is injected through the fluid secondary inlet openings 14 perpendicular to the flow direction 10 of the compressed air 11 flowing through the main fluid inlet opening 8 into the jet nozzle 2. Further compressed air is injected into the jet nozzle 2 through the fluid sub-inlet openings 25 at an angle of about 45 ° to the main flow direction 10. Both the fuel 12 and the additional compressed air can be injected at any other angle between 0 ° and 90 ° to the main flow direction 10 at different axial positions in the jet nozzle 2. Since, for example, for natural gas, the fuel mass flows are significantly lower than the air mass flows, no significant increase in the pressure loss is to be expected even in the case of a vertical fuel injection. The fuel 12 can also be injected counter to the air flow direction 10.
  • the fuel can be supplied via one or more fuel supply lines 13 and transported via a ring distributor 7 to the individual jet nozzles 2.
  • these can advantageously be arranged along the circumference of the burner. It is also advantageous if the injection of the fuel into the air jet at more than one axial position of the jet pipe 2 is completed. In addition, for a better mixing at several circumferential positions of the jet pipe 2 can be injected.
  • FIGS. 5 to 7 each show sections through a portion of a burner 301 along the central axis 4 of the burner 301.
  • the burner 301 has at least one, but advantageously a plurality, substantially annularly arranged around the central axis 4 jet nozzles 2. With respect to possible arrangements of the jet nozzles 2, 3 is on the Figures 1 and 2 and the remarks made in this connection.
  • a fuel nozzle 19 is arranged.
  • fuel 12 is injected into the jet nozzle 2.
  • the fuel 12 is preferably injected at an angle of approximately 45 ° to the flow direction 10 of the compressed air 11 flowing into the jet nozzle through the main fluid inlet opening 8.
  • the flow direction of the injected fuel nozzle 19 through the fuel 12 is indicated by arrows 17.
  • the fuel 12 can also be injected at a different angle between 0 ° and 90 ° to the flow direction 10 of the compressed air 11 in the jet nozzle 2.
  • the compressed air coming from a compressor is injected through an air inlet opening 23 perpendicular to the central axis 5 of the jet nozzle 2 in the burner 301.
  • the flow direction of the opening 23 passing compressed air 11 is indicated by an arrow 26.
  • the compressed air 11 now flows through the annular gap 22 to the fluid sub-inlet openings 25 and passes through them into the jet nozzle 2.
  • the majority of the compressed air 11 is introduced into the jet nozzle 2 through the main fluid inlet opening 8 in the flow direction 10.
  • FIG. 7 shows an alternative embodiment of the in the FIG. 5 shown burner 301.
  • the fluid sub-inlet openings 25 are arranged in that the compressed air injected into the jet nozzle 2 through the secondary fluid inlet openings 25 is injected into the compressed air at an angle of approximately 45 ° to the central axis 5 of the jet tube 2.
  • another Eindüswinkel between 0 ° and 90 ° is possible and useful.
  • the air used for the axially stepped Heileindüsung of the present embodiment can be removed either from the annular gap 22 or directly from a surrounding the burner 301 plenum and are injected into the fuel-air mixture in the jet nozzle.
  • the air can be introduced as a jet in the cross flow or as a wall film.
  • the advantage of jet-in-cross-flow injection is a contribution to increased mixing of the fuel-air mixture, while wall-film formation is primarily a measure against potential flashback.
  • the air can be injected tangentially with respect to the circumference of the jet nozzle 2 in this. In this case, a wall film can be produced on the entire inner surface of the jet nozzle 2. Tangential injection can also be used to generate turbulence in the jet nozzle 2.
  • jet-in-cross-flow injection with a wall-film injection by arranging the nozzles very shortly after one another.
  • the jet-in-cross flow injection provides for improved mixing, especially in the core region of the jet, and the film of the second jet strengthens the flow boundary layer and thus prevents flashback.
  • This embodiment is particularly advantageous for a central co-flow injection in the Hauptbrennscherindüsung, for example for synthesis gas. With a high proportion of air in the axial staging, it is possible to adjust the nozzle diameter of the jet nozzle so that the flow velocity in the nozzle remains substantially the same.
  • FIGS. 8 and 9 schematically show various variants of a burner 401 longitudinally along the central axis 4 of the burner 401.
  • the burner 401 has a number of jet nozzles 2, which are arranged substantially annularly around the central axis 4 of the burner 401.
  • jet nozzles 2, 3 is on the Figures 1 and 2 and the remarks made in this connection.
  • Each jet nozzle 2 comprises a main fluid inlet opening 8 and a fluid outlet opening 9.
  • the fluid outlet opening 9 opens into the combustion chamber 18.
  • a fuel nozzle 19 is arranged in the main fluid inlet opening 8.
  • the fuel nozzle 19 comprises a fuel distributor 20 with the aid of which fuel 12 can be injected into the jet nozzle 2 at different radial positions and different circumferential positions of the main fluid inlet opening 8.
  • the flow direction of the injected fuel 12 is indicated by arrows 17.
  • annular gap 21 is arranged at a further downstream with respect to the flow directions 10 and 17 located axial position of the jet nozzle 2. Air is injected into the jet nozzle 2 through the annular gap 21. The direction of flow of the injected air is indicated by arrows 16. The air is injected almost parallel to the central axis 5 of the jet nozzle 2 in this. Unlike the one in the FIG. 8 shown variant is in the FIG. 9 the annular gap 21 is disposed at a position further downstream of the main fluid inlet port 8. In both in the FIGS.
  • the compressed air used can be directed by a compressor either through an annular gap 22 in the flow direction 15 to the main fluid inlet opening 8 of the jet nozzle 2 and / or vertically be injected to the central axis 5 in the flow direction 26.
  • FIGS. 8 and 9 embodiments shown include the possibility of the downstream with respect to the flow direction 15 of the compressed air from the compressor located nozzle part, which also depends on the fuel distribution, stuck from the rear wall 24 of the burner in the burner 401 and this through the front, combustion chamber side part to position, for example by spacers in the annulus. In extreme cases, the downstream nozzle part sits directly in the bottom of the flame tube.
  • the Fig. 10 shows a cross section of a steel burner 1 and the ring manifold 7 with a plurality of radial fluid sub-inlet openings 14. The ring manifold 7 thereby comprises a complete ring of jet nozzles 2.
  • the burner 201, 301, 401 according to the invention can also be designed without the outer housing part 27 or without the outer housing 27 in all exemplary embodiments and variants.
  • the compressed air can flow directly into the "plenum", ie the area between the rear wall 24 and the main fluid inlet opening 8.
  • the burner 1, 101, 201, 301, 401 according to the invention can furthermore be designed without the rear wall 24.
  • annular gaps 21 By varying the axial positions of the annular gaps 21, an additional design parameter against thermoacoustic flame oscillations is obtained. It is also possible to provide the different jet nozzles 2 of a burner 401 with annular gaps 21 at different axial positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Gas Burners (AREA)

Claims (20)

  1. Procédé de réduction d'oscillations de flamme autoinduites,
    dans lequel on injecte, dans un premier courant massique de fluide qui comprend de l'air ( 11 ) et qui passe dans une tuyère ( 2, 3 ) d'échappement d'une ouverture ( 8 ) d'entrée de fluide à une ouverture ( 9 ) de sortie de fluide,
    en au moins une position axiale de la tuyère ( 2, 3 ) d'échappement en aval par rapport à l'ouverture ( 8 ) d'entrée de fluide, un deuxième courant massique de fluide qui comprend un combustible ( 12 ),
    caractérisé en ce qu'à partir de l'arrivée ( 22 ) de fluide, à partir de laquelle le premier courant massique de fluide arrive dans la tuyère ( 2, 3 ) d'échappement, on injecte dans le premier courant massique de fluide supplémentairement un troisième courant massique de fluide en plusieurs positions du pourtour de la tuyère ( 2, 3 ) d'échappement décalées les unes par rapport aux autres dans la direction axiale.
  2. Procédé de réduction d'oscillations de flamme autoinduites,
    dans lequel on injecte, dans un premier courant massique de fluide qui comprend de l'air ( 11 ) et qui passe dans une tuyère ( 2, 3 ) d'échappement, d'une ouverture ( 8 ) d'entrée de fluide à une ouverture ( 9 ) de sortie de fluide,
    en au moins une position radiale de la tuyère ( 2, 3 ) d'échappement par rapport au pourtour de la tuyère ( 2 ) d'échappement, un deuxième courant massique de fluide qui comprend un combustible ( 12 ),
    caractérisé en ce qu'à partir de l'arrivée ( 22 ) de fluide, à partir de laquelle le premier courant massique de fluide arrive dans la tuyère ( 2, 3 ) d'échappement, on injecte dans le premier courant massique de fluide supplémentairement un troisième courant massique de fluide en plusieurs positions du pourtour de la tuyère ( 2, 3 ) d'échappement décalées les unes par rapport aux autres dans la direction axiale.
  3. Procédé suivant la revendication 2,
    caractérisé en ce que l'on réalise des répartitions radiales différentes de combustible.
  4. Procédé suivant les revendications 1 à 3,
    dans lequel on injecte, dans le premier courant massique de fluide, le deuxième courant massique de fluide en plusieurs positions du pourtour de la tuyère ( 2, 3 ) d'échappement.
  5. Procédé suivant la revendication 4,
    dans lequel on injecte, dans le premier courant massique de fluide, le deuxième courant massique de fluide en plusieurs positions du pourtour de la tuyère ( 2, 3 ) d'échappement décalées les unes par rapport aux autres dans la direction axiale.
  6. Procédé suivant l'une des revendications 1 à 5,
    dans lequel le deuxième courant massique de fluide comprenant un combustible est un mélange d'air et de combustible.
  7. Procédé suivant l'une des revendications 1 à 6,
    dans lequel on injecte, dans le premier courant massique de fluide, le deuxième et/ou le troisième courants massiques de fluide suivant un angle compris entre 0° et 90°.
  8. Procédé suivant la revendication 7,
    dans lequel on injecte dans le premier courant massique de fluide, le deuxième courant massique de fluide suivant un angle de 90°, et on injecte, dans le premier courant massique de fluide, le troisième courant massique de fluide suivant un angle de 45°.
  9. Brûleur ( 1, 101, 201, 301, 401, ), qui comprend au moins une tuyère ( 2, 3 ) d'échappement ayant une ouverture ( 8 ) d'entrée principale de fluide et une ouverture ( 9 ) de sortie de fluide, l'ouverture ( 8 ) d'entrée principale de fluide communiquant avec une première arrivée ( 22 ) de fluide, qui est un conduit pour de l'air, du combustible pouvant être injecté dans la tuyère ( 2, 3 ) d'échappement, soit par une tuyère ( 19 ) à combustible qui est montée dans ou juste avant l'ouverture ( 8 ) d'entrée principale de fluide, soit par au moins une première ouverture ( 14 ) d'entrée auxiliaire de fluide en une position de la tuyère ( 2, 3 ) d'échappement axiale, en aval par rapport à l'ouverture ( 8 ) d'entrée principale de fluide, et communiquant avec une arrivée ( 7, 13 ) de combustible, caractérisé en ce que des deuxièmes ouvertures ( 21, 25 ) d'entrée auxiliaires de fluide communiquent avec le premier conduit ( 22 ) pour du fluide et sont disposées le long du pourtour de la tuyère ( 2, 3 ) d'échappement en plusieurs positions décalées les unes par rapport aux autres dans la direction axiale.
  10. Brûleur ( 1, 101, 201, 301, 401 ),
    qui comprend au moins une tuyère ( 2, 3 ) d'échappement ayant une ouverture ( 8 ) d'entrée principale de fluide et une ouverture ( 9 ) de sortie de fluide, l'ouverture ( 8 ) d'entrée principale de fluide communiquant avec une première arrivée ( 22 ) de fluide, qui est une arrivée d'air,
    dans lequel du combustible peut être injecté soit par un tuyère ( 19 ) à combustible, qui est disposée dans ou juste avant l'ouverture ( 8 ) d'entrée principale de fluide, soit par au moins une première ouverture ( 14 ) auxiliaire de fluide en une position radiale de la tuyère d'échappement, par rapport au pourtour de la tuyère ( 2 ) d'échappement, et communiquant avec une arrivée ( 7, 13 ) de combustible, caractérisé en ce que les deuxièmes ouvertures ( 21,25 ) d'entrée auxiliaires de fluide communiquent avec le premier conduit ( 22 ) pour du fluide et sont disposées en plusieurs positions décalées les unes par rapport aux autres dans la direction axiale le long du pourtour de la tuyère ( 2, 3 ) d'échappement.
  11. Brûleur ( 1, 101, 201, 301, 401 ) suivant la revendication 9 ou 10,
    caractérisé en ce que
    des premières ouvertures ( 14 ) d'entrée auxiliaires de fluide sont disposées en plusieurs positions le long du pourtour de la tuyère ( 2, 3 ) d'échappement.
  12. Brûleur ( 1, 101, 201, 301, 401 ) suivant l'une des revendications 9 à 10,
    caractérisé en ce que
    les ouvertures ( 14 ) d'entrée auxiliaires de fluide sont disposées le long du pourtour de la tuyère ( 2, 3 ) d'échappement en plusieurs positions décalées les unes par rapport aux autres dans la direction axiale.
  13. Brûleur ( 1, 101, 201, 301, 401 ) suivant l'une des revendications 9 ou 12,
    caractérisé en ce que
    les premières ou deuxièmes ouvertures ( 14, 21, 25 ) d'entrée auxiliaires de fluide et l'ouverture ( 8 ) d'entrée principale de fluide ont respectivement un axe médian et les axes médians des premières ou deuxièmes ouvertures ( 14, 21, 25 ) d'entrée auxiliaires de fluide font un angle compris entre 0° et 90° avec l'axe médian de l'ouverture ( 8 ) d'entrée principale de fluide et/ou avec l'axe ( 5 ) médian de la tuyère ( 2, 3 ) d'échappement.
  14. Brûleur ( 1, 101, 201, 301, 401 ) suivant la revendication 13,
    caractérisé en ce que
    les axes médians d'une première partie des premières ou deuxièmes ouvertures ( 14, 21, 25 ) d'entrée auxiliaires de fluide font un angle de 90° avec l'axe médian de l'ouverture ( 8 ) d'entrée principale de fluide et/ou avec l'axe ( 5 ) médian de la tuyère ( 2, 3 ) d'échappement et les axes médians d'une deuxième partie des premières ou deuxièmes ouvertures ( 14, 21, 25 ) d'entrée auxiliaires de fluide font un angle de 45° avec l'axe médian de l'ouverture d'entrée principale de fluide et/ou avec l'axe ( 5 ) médian de la tuyère ( 2, 3 ) d'échappement.
  15. Brûleur ( 1, 101, 201, 301, 401 ) suivant l'une des revendication 9 à 14,
    caractérisé en ce que les premières ou deuxièmes ouvertures ( 14, 21, 25 ) d'entrée auxiliaires de fluide et l'ouverture ( 8 ) d'entrée principale de fluide ont respectivement un axe médian et les axes médians des premières ou des deuxièmes ouvertures ( 14, 21, 25 ) d'entrée auxiliaires de fluide font un angle compris entre 0° et 90° avec une direction radiale par rapport à l'axe médian de l'ouverture ( 8 ) d'entrée principale de fluide.
  16. Brûleur ( 1, 101, 201, 301, 401 ) suivant l'une des revendications 9 ou 15,
    caractérisé en ce que
    plusieurs arrivées ( 7 ) de fluide reliées à des premières ouvertures ( 14 ) d'entrée auxiliaires de fluide communiquent entre elles par un répartiteur ( 7 ) annulaire disposé le long du pourtour de la tuyère ( 2, 3 ) d'échappement.
  17. Brûleur ( 1, 101, 201, 301, 401 ) suivant la revendication 9 ou 18,
    caractérisé en ce que
    la tuyère ( 19 ) à combustible comprend un répartiteur ( 20 ) de combustible, qui est disposé dans ou juste avant l'ouverture ( 8 ) d'entrée principale de fluide.
  18. Brûleur ( 1, 101, 201, 301, 401 ) suivant la revendication 9 ou 17,
    caractérisé en ce que
    au moins la deuxième ouverture ( 21 ) d'entrée auxiliaire de fluide est conformée en une fente ( 21 ) annulaire s'étendant suivant le pourtour de la tuyère ( 2, 3 ) d'échappement.
  19. Brûleur ( 1, 101, 201, 301, 401 ) suivant la revendication 18,
    caractérisé en ce que
    le brûleur ( 1, 101, 201, 301, 401 ) est constitué en brûleur à jet et comprend plusieurs tuyères ( 2, 3 ) d'échappement et les fentes ( 21 ) annulaires des diverses tuyères ( 2, 3 ) d'échappement sont disposées en des positions axiales respectivement différentes.
  20. Turbine à gaz, qui comprend un brûleur suivant la revendication 9 ou suivant la revendication 10, ou suivant les revendications 9 et 10.
EP08749689.9A 2008-01-11 2008-04-24 Brûleur et procédé pour réduire des oscillations de flammes autoinduites Active EP2232147B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08749689.9A EP2232147B1 (fr) 2008-01-11 2008-04-24 Brûleur et procédé pour réduire des oscillations de flammes autoinduites

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08000497A EP2078898A1 (fr) 2008-01-11 2008-01-11 Brûleur et procédé pour réduire des oscillations de flammes autoinduites
PCT/EP2008/054969 WO2009086943A1 (fr) 2008-01-11 2008-04-24 Brûleurs et procédés pour réduire les oscillations de flammes auto-induites
EP08749689.9A EP2232147B1 (fr) 2008-01-11 2008-04-24 Brûleur et procédé pour réduire des oscillations de flammes autoinduites

Publications (2)

Publication Number Publication Date
EP2232147A1 EP2232147A1 (fr) 2010-09-29
EP2232147B1 true EP2232147B1 (fr) 2015-10-28

Family

ID=39420374

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08000497A Withdrawn EP2078898A1 (fr) 2008-01-11 2008-01-11 Brûleur et procédé pour réduire des oscillations de flammes autoinduites
EP08749689.9A Active EP2232147B1 (fr) 2008-01-11 2008-04-24 Brûleur et procédé pour réduire des oscillations de flammes autoinduites

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08000497A Withdrawn EP2078898A1 (fr) 2008-01-11 2008-01-11 Brûleur et procédé pour réduire des oscillations de flammes autoinduites

Country Status (3)

Country Link
US (1) US20100323309A1 (fr)
EP (2) EP2078898A1 (fr)
WO (1) WO2009086943A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539773B2 (en) * 2009-02-04 2013-09-24 General Electric Company Premixed direct injection nozzle for highly reactive fuels
EP2236932A1 (fr) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Procédé de fonctionnement d'un brûleur et brûleur, notamment pour une turbine à gaz
EP2282122A1 (fr) * 2009-08-03 2011-02-09 Siemens Aktiengesellschaft Stabilisation de la flamme d'un brûleur à prémélange
EP2587158A1 (fr) * 2011-10-31 2013-05-01 Siemens Aktiengesellschaft Chambre de combustion pour une turbine à gaz et agencement de brûleur
US9534781B2 (en) * 2012-05-10 2017-01-03 General Electric Company System and method having multi-tube fuel nozzle with differential flow
US20150159877A1 (en) * 2013-12-06 2015-06-11 General Electric Company Late lean injection manifold mixing system
US9803555B2 (en) * 2014-04-23 2017-10-31 General Electric Company Fuel delivery system with moveably attached fuel tube
DE102015003920A1 (de) * 2014-09-25 2016-03-31 Dürr Systems GmbH Brennerkopf eines Brenners und Gasturbine mit einem solchen Brenner
JP7379265B2 (ja) * 2020-04-22 2023-11-14 三菱重工業株式会社 バーナー集合体、ガスタービン燃焼器及びガスタービン

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123285A (en) * 1964-03-03 Diffuser with boundary layer control
US1826776A (en) * 1928-07-20 1931-10-13 Charles O Gunther Liquid fuel burner and method of atomizing liquids
US2424654A (en) * 1944-06-03 1947-07-29 Lindberg Eng Co Fluid mixing device
US3070317A (en) * 1958-05-21 1962-12-25 Hunter Variable rate multiple fuel nozzle
US2974090A (en) * 1959-11-24 1961-03-07 Allied Chem High velocity combustion-jet motivater coke oven battery
NL154819B (nl) * 1967-05-10 1977-10-17 Shell Int Research Inrichting voor het aanbrengen van een laag vloeistof met lage viscositeit tussen een stroom vloeistof met hoge viscositeit en de wand van een pijpleiding.
US3705492A (en) * 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
DE2350227A1 (de) * 1973-10-05 1975-04-17 Handschack & Co Heinz Mischduese zur mischung brennbarer gase, insbesondere fuer geblaesebrenner
US3986347A (en) * 1973-12-06 1976-10-19 Phillips Petroleum Company Combustor process for low-level NOx and CO emissions
GB2012415B (en) * 1978-01-04 1982-03-03 Secr Defence Fuel mixers
US4255927A (en) * 1978-06-29 1981-03-17 General Electric Company Combustion control system
US4474477A (en) * 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
JPH0660640B2 (ja) * 1985-09-09 1994-08-10 清之 堀井 管路に螺旋流体流を生成させる装置
DE3545524C2 (de) * 1985-12-20 1996-02-29 Siemens Ag Mehrstufenbrennkammer für die Verbrennung von stickstoffhaltigem Gas mit verringerter NO¶x¶-Emission und Verfahren zu ihrem Betrieb
US5339635A (en) * 1987-09-04 1994-08-23 Hitachi, Ltd. Gas turbine combustor of the completely premixed combustion type
US5004484A (en) * 1988-08-31 1991-04-02 Barrett, Haentjens & Co. Air stripping of liquids using high intensity turbulent mixer
US5338113A (en) * 1990-09-06 1994-08-16 Transsonic Uberschall-Anlagen Gmbh Method and device for pressure jumps in two-phase mixtures
US5492404A (en) * 1991-08-01 1996-02-20 Smith; William H. Mixing apparatus
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
US5893641A (en) * 1998-05-26 1999-04-13 Garcia; Paul Differential injector
DE19905572A1 (de) * 1999-02-11 2000-08-31 Bayer Ag Vorrichtung zum Mischen und Reagieren mehrphasiger gasförmiger und flüssiger Gemische und Verwendung dieser Vorrichtung
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
US6427435B1 (en) * 2000-05-20 2002-08-06 General Electric Company Retainer segment for swirler assembly
JP2002031343A (ja) * 2000-07-13 2002-01-31 Mitsubishi Heavy Ind Ltd 燃料噴出部材、バーナ、燃焼器の予混合ノズル、燃焼器、ガスタービン及びジェットエンジン
FR2829707B1 (fr) * 2001-09-19 2003-12-12 Air Liquide Procede et dispositif de melange de deux gaz reactifs
US6623267B1 (en) * 2002-12-31 2003-09-23 Tibbs M. Golladay, Jr. Industrial burner
EP1828684A1 (fr) * 2004-12-23 2007-09-05 Alstom Technology Ltd Bruleur de premelange dote d'un parcours de melange
JP4728176B2 (ja) * 2005-06-24 2011-07-20 株式会社日立製作所 バーナ、ガスタービン燃焼器及びバーナの冷却方法
EP1950494A1 (fr) * 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Chambre de combustion pour turbine à gaz
EP2006606A1 (fr) * 2007-06-21 2008-12-24 Siemens Aktiengesellschaft Stabilisation sans tourbillonner de la flamme d'un brûleur à prémélange
EP2236932A1 (fr) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Procédé de fonctionnement d'un brûleur et brûleur, notamment pour une turbine à gaz

Also Published As

Publication number Publication date
WO2009086943A1 (fr) 2009-07-16
EP2078898A1 (fr) 2009-07-15
EP2232147A1 (fr) 2010-09-29
US20100323309A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
EP2232147B1 (fr) Brûleur et procédé pour réduire des oscillations de flammes autoinduites
EP1802915B1 (fr) Bruleur pour turbine a gaz
DE2143012C3 (de) Brenneranordnung bei einer Gasturbinen-Brennkammer
DE69421766T2 (de) Wirbelmischvorrichtung für eine Brennkammer
DE112005002065B4 (de) Gasturbinen-Brennkammer
EP0769655B1 (fr) Buse de pulvérisation par air comprimé
DE3217674C2 (de) Brennkammer für eine Gasturbine
EP2156095B1 (fr) Stabilisation sans tourbillonner de la flamme d'un brûleur à prémélange
EP1714081B1 (fr) Systeme de bruleur de premelange pour faire fonctionner une chambre de combustion, et procede pour faire fonctionner une chambre de combustion
CH680467A5 (fr)
EP1336800A1 (fr) Procédé de réduction des oscillations induites par la combustion dans les dispositifs de combustion ainsi que brûleur à prémélange pour la mise en oeuvre du procédé
WO2005080878A1 (fr) Bruleur de premelange et procede pour realiser la combustion d'un gaz de combustion faiblement calorifique
EP2423597B1 (fr) Brûleur à prémélange pour une turbine à gaz
EP3087323A1 (fr) Brûleur, turbine à gaz munie dudit brûleur et injecteur de combustible
DE602004005572T2 (de) Mischer
DE102004041272B4 (de) Hybridbrennerlanze
DE102004027702A1 (de) Injektor für Flüssigbrennstoff sowie gestufter Vormischbrenner mit diesem Injektor
DE102011052594A1 (de) Mehrzweckflansch für eine sekundäre Brennstoffdüse einer Gasturbinenbrennkammer
WO2008019969A1 (fr) Système de combustion, en particulier pour une turbine à gaz
DE2641605C2 (de) Vorrichtung zur Zufuhr von Luft und Brennstoff
DE2606704A1 (de) Brennkammer fuer gasturbinentriebwerke
EP2295858A1 (fr) Stabilisation de la flamme d'un brûleur
DE4424597B4 (de) Verbrennungsvorrichtung
DE102017118166B4 (de) Brennerkopf, Brennersystem und Verwendung des Brennersystems
DE10205428A1 (de) Vormischbrenner mit erhöhter Flammenstabilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20140805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150521

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 758167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013520

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160424

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160424

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 758167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013520

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240423

Year of fee payment: 17