EP2215346B1 - Egr-system mit hoher gaseintrittstemperatur - Google Patents

Egr-system mit hoher gaseintrittstemperatur Download PDF

Info

Publication number
EP2215346B1
EP2215346B1 EP08788275A EP08788275A EP2215346B1 EP 2215346 B1 EP2215346 B1 EP 2215346B1 EP 08788275 A EP08788275 A EP 08788275A EP 08788275 A EP08788275 A EP 08788275A EP 2215346 B1 EP2215346 B1 EP 2215346B1
Authority
EP
European Patent Office
Prior art keywords
tubular member
cooling device
inner tubular
exhaust gas
corrugations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08788275A
Other languages
English (en)
French (fr)
Other versions
EP2215346A1 (de
Inventor
Charles Penny
Paul Downs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senior UK Ltd
Original Assignee
Senior UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senior UK Ltd filed Critical Senior UK Ltd
Priority to EP12173479.2A priority Critical patent/EP2570646B1/de
Publication of EP2215346A1 publication Critical patent/EP2215346A1/de
Application granted granted Critical
Publication of EP2215346B1 publication Critical patent/EP2215346B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements

Definitions

  • the present invention relates to gas cooling devices, and particularly although not exclusively to exhaust gas re-circulation coolers for use in automotive applications.
  • Exhaust gas re-circulation cooling is used extensively on diesel engines to aid the reduction of nitrous oxide emissions, To aid overall emissions reduction, the EGR cooling on diesel engines may also be bypassed so that the re-circulated exhaust gas is not subject to additional cooling.
  • heat exchange from the gas may be required, but under other circumstances it may be undesirable. For example in cold engine conditions, it is desirable not to additionally cool the gas so that the engine can heat up more quickly. Under hot engine conditions, it may be desirable to cool the gas.
  • Exhaust gas re-circulation and the cooling of re-circulating exhaust gases can also be applied in gasoline (petrol) engines. This is of particular use when downsizing a gasoline engine and utilising turbo changing. Cooled exhaust gas re-circulation can help to significantly improve emissions whilst also reducing fuel consumption.
  • a technical challenge of gasoline exhaust gas re-circulation cooling is that the exhaust gas at the inlet to the exhaust gas re-circutation system is much hotter than in the comparable situation with diesel engines.
  • the temperature of re-circulated exhaust gas in a gasoline engine can be up to 1100 °C, but more typically up to around 1000 °C, compared to the equivalent situation in a diesel engine, where the gas temperature at the Inlet to the EGR system is typically of the order of up to 650 °C.
  • a common failure mode of diesel exhaust gas re-circulation coolers is that thermal loading causes high stress at the gas inlet interface.
  • FIG. 1 there is illustrated schematically in cut away view the inlet of a known exhaust gas re-circulation cooling device.
  • the device comprises an outer casing 1 having a bulkhead 2 which extends across a width of the outer casing, the bulkhead contains a plurality of gas conduits 3.
  • the outer casing 1 When gas flows the gas conduits expand due to their increased temperature from the gas, the outer casing 1 also expands but at a slower rate and has a thermal expansion which is less than the thermal expansion of the gas conduits, resulting in high stresses in the bulkhead and the gas conduits, for example as shown at position A in figure 1 .
  • the result can include failure of the bulkheads, failure of the joints between the conduit tubes and the bulkhead, failure of tube to tube joints, and collapse of gas tubes.
  • a typical failure of a tube to bulkhead joint may comprise a crack through the tubular conduit wall, at the position of the weld/braze between the tubular conduit wall and the bulkhead, resulting in mixture of coolant with the exhaust gas re-circulation path.
  • EP1,770,250 discloses an exhaust gas cooler having inner and outer corrugated tubes forming a cavity there between in which liquid coolant flows to cool a gas flow through the inner tube.
  • the problem addressed in EP1,770,250 is to replace prior art coolers for diesel engines, having a construction of a plurality of inner tubes and an outer casing, with a simpler structure.
  • the solution presented in EP 1.770.250 is a concentric tube arrangement with a plurality of spacers to keep the tubes apart.
  • the inner tube has a frusto - conical section joining the inner tube to the outer tube at the inlet end,
  • the inlet ends of the inner and outer tubes do not coincide, and the Inlet of the outer tube extends beyond and upstream in the gas flow compared to the inlet end of the inner tube.
  • the outer tube is not in contact with coolant up to the extremity of its inlet end, and therefore heats up due to the high temperatures of the inlet gas.
  • EP1,770,250 does not address the problem of reliability of an exhaust gas cooler used for the hotter exhaust gases which occur in a gasoline engine exhaust system.
  • Specific embodiments herein aim to provide an exhaust gas re-circulation system which is capable of being robust against the thermal loadings caused by high inlet gas temperatures, whilst giving improve heat exchange.
  • an exhaust gas cooling device comprising:
  • the exhaust gas re-circulation cooler 200 comprises a metallic inner tubular substantially cylindrical member 201, and a co-axially aligned substantially cylindrical tubular outer member 202, surrounding the inner member and spaced apart therefrom, providing a sealed cavity between the inner and outer members, which provides a fluid fillable jacket around a central passage 503 through the inner tubular member, for cooling hot exhaust gases which pass through the cooling device.
  • the inner tubular member 201 comprises a plurality of annular or helical corrugations 203.
  • the primary purpose of the corrugations is for absorbing expansion and contraction stresses in a direction axially of the inner tubular member, thereby enabling the inner tubular member to operate with an elevated temperature gradient along the cooler, between an inlet temperature of 1100°C maximum and an outlet temperature of around 700 °C maximum.
  • the outer tubular member 202 is also provided with a plurality of annular or helical corrugations 505 for a similar purpose, that is, to absorb axial expansion and contraction and axial stresses and strains between the two ends of the cooler, and to enable the cooler to operate over a temperature gradient between a maximum of around 1100 °C at one end and a maximum temperature of around 700 °C at the other end.
  • the outer tubular member 202 is provided with a fluid inlet tube 506, and a fluid outlet tube 207 for entry and outlet of a liquid coolant which fills the cavity between the inner and outer tubular members.
  • the corrugations also have the effect of increasing the surface area in contact with the hot exhaust gases flowing through the inner tube, and coating local turbulence at the interface between the gas and the tube wall, thereby increasing the heat transfer rate between the gas and the tubular wall.
  • the inner and outer tubular members are joined at the inlet end by a first annular plate member 508 extending between the substantially parallel cylindrical walls of the respective inner and outer tubular members 202, 205.
  • a second annular plate member 209 joins the other ends of the inner and outer tubular members.
  • Said annular plates may be formed as part of the gas conduit.
  • said annular platens may be formed as part of the coolant conduit.
  • the ends of the cooler are liquid cooled.
  • the interface components to this embodiment would have a gas path diameter not grater than the diameter of the gas conduit ends, such that said annular plates are not in the gas flow path.
  • the inner tubular member and the outer tubular member do not contact each other, except at their respective corresponding ends, where they are connected together
  • FIG. 3 there is illustrated schematically an arrangement of an engine and a first exhaust gas re-circulation bypass system according to a second specific embodiment herein.
  • An internal combustion engine 300 comprises an inlet manifold 301 for drawing air Into the combustion chambers of the engine, and an outlet manifold 302 for channeling exhaust gases out of the engine. Air being input Into the inlet manifold may be compressed by a compressor 303. Additionally and optionally, a turbo 304 may be fitted after the exhaust manifold to an exhaust channel 305 of the engine.
  • the engine may be fitted with an exhaust gas re-circulation EGR system.
  • the EGR system comprises a first exhaust gas cooler 306 through which exhaust gases flow, and a second exhaust cooler 307, the first and second exhaust coolers being connected in series.
  • a high pressure exhaust gas re-circulation circuit takes high pressure exhaust gas from the outlet manifold 302, through a feed pipe 308 to the inlet of the first EGR cooler 306, and from an outlet of the second EGR cooler 307, directly to the inlet manifold 301 via a second feed pipe 309.
  • High pressure recirculated exhaust gas is cooled, but does not pass through the compressor 303 or the turbo 304.
  • An alternative low pressure EGR system takes the exhaust gas downstream of the turbo 304 and feeds It via a third feed pipe 310 to the inlet of the first EGR cooler 306, through the first EGR cooler 306 via a connecting pipe 311 to the inlet of the second EGR cooler 307, and from the outlet of the second EGR cooler 307, to an air channel inlet upstream of compressor 303, via a fourth feed pipe 312.
  • the purpose of the first EGR cooler 306 is to cool the high temperature exhaust gases from a temperature of 1000 to 1100 °C down to a temperature of around 650 °C prior to entry to the second EGR cooler 307. Gas is entering the second EGR cooler 307 at an inlet temperature of around 650 °C may exit the second EGR cooler at a reduced temperature of around 150 °C.
  • the first EGR cooler 306 can be used to cool the exhaust gas from a relatively higher temperature having a maximum temperature in the range 1000 °C - 1100 °C. to a relatively lower temperature of the order of 650 °C. Since the exhaust gas has been cooled prior to entry on the multi gas conduit EGR cooler 307. the multi gas conduit EGR cooler will not suffer cracking of the gas conduits where they connect to the bulkhead inside the EGR cooler.
  • the exhaust gas is taken at a relatively lower pressure, after the turbo 304 and via the second feed pipe 310, through the first and second EGR coolers, and through the second feed pipe 309 directly into the inlet without going through the compressor.
  • high pressure exhaust gas may be taken by the first feed pipe 308 through the first and second EGR coolers 306, 307, and fed into the compressor 303 via fourth feed pipe 312.
  • the exhaust gas re-circulation system may operate to cool gas from a maximum inlet temperature of 1100 °C, to a maximum temperature of around 300 °C at the outlet of the first cooler device. This may not be a highly effective cooler.
  • the first cooler device may be robust so as to withstand thermal shock, thermal loading and thermal growth as experienced in automotive applications.
  • the gas may be cooled from an inlet temperature of the second cooler device of around 700 ° C to around 150 °C. with a thermal effectiveness of at least 80%.
  • the thermal effectiveness of the second cooler section is in the range 90% to 95%.
  • the exhaust gas re-circulation system may be fully integrated as a set of connecting pipes and cooler devices being of welded, brazed or soldered construction, without the need for being joined by fasteners, external damps or other additional mechanical fixings.
  • FIG. 4 there is illustrated schematically a second EGR system.
  • the second system for re-circulating exhaust gas from an internal combustion engine 400 having an inlet manifold 401 and an outlet manifold 402, an inlet air compressor 403 and a turbo 404 operating of the exhaust gas and comprises a first EGR cooler 405, an inlet of which is supplied with exhaust gas from the exhaust manifold 402 of the internal combustion engine via an exhaust feed pipe 806, the first EGR cooler receiving high temperature exhaust gas at a temperature in the range 1000 °C - 1100 °C; and a second EGR cooler 407 which receives relatively lower temperature exhaust gas typically at a maximum inlet temperature of around 650 °C, and which cools the gas down to a temperature around 150 °0.
  • the cooled exhaust gas being fed through the outlet of the second EGR cooler directly into the inlet manifold 401.
  • the second EGR cooler 407 is bypassed, but the first EGR cooler 406 remains in the EGR circuit.
  • a temperature at the inlet of the first EGR cooler 406 may be of the order of 400 °C, and gradually rises as the engine warms up, towards a maximum temperature In the range 1000 °C - 1100 °C.
  • the second EGR cooler 407 can be bypassed, thereby enabling the engine to heat up to its optimum running temperature more quickly, improving efficiency of the engine.
  • the second EGR cooler 407 is switched Into circuit via a valve mechanism to provide further cooling of the exhaust gas before it is fed back into the inlet manifold 401.
  • corrugations have been shown for the inner and outer tubular members of the pre-cooler device, the corrugations could be made helical as an alternative embodiment.
  • the corrugations extend in either case around a circumference of the inner tubular member, and similarly for the outer tubular member.
  • a high gas inlet temperature cooler as described herein may be designed to function with relatively high inlet gas temperatures (up to 1100 °C) and be able to withstand the associated thermal shock loading by using a single gas tube to form the gas conduit.
  • the gas conduit may be substantially concentric within an outer cooler conduit, and an annular space between said gas tube and said outer cool tube may form a cavity for a coolant fluid.
  • the cooler may avoid having any bulkhead interfacing between the gas conduit and any other component within the cooler.
  • a high gas inlet temperature cooler may be used to cool an EGR valve, thus enabling the EGR valve to be located after the high gas inlet temperature cooler and therefore upstream of a relatively lower temperature gas cooler, operating typically at a maximum temperature of around 700 °C.
  • the relatively higher gas inlet temperature cooler may be used to cool an exhaust gas re-circulation valve, which enables a lower temperature cooler to be located after the EGR valve.
  • the relatively high gas inlet temperature cooler may have a gas inlet interface joint between a gas conduit and the rest of the cooler, which is substantially cooled by the cooler coolant.
  • the EGR system may be used for "high pressure" exhaust gas recirculation, i.e. taking gas from pre turbo In the gas flow through an internal combustion engine.
  • the EGR system may also be used for "low pressure" exhaust gas recirculation, i.e. taking exhaust gases after passing through a turbo.
  • the lower gas inlet temperature cooler may have a bypass valve-such-that gas can bypass the cooler without being significantly cooled.
  • the whole of the EGR system may not be bypassed as this would cause the gas inlet to the Induction side to be too hot.
  • the lower gas inlet temperature cooler may have an internal gas conduit which is flexible along its axis and have either annular or helical corrugations along its walls.
  • the corrugations may be present substantially all the way along the internal gas conduit, or In a restricted section of the gas conduit.
  • An outer casing of the lower temperature gas cooler may have annular or helical corrugations to allow flexibility along the length of the casing.
  • the corrugations may be present along substantially the entire outer cooler conduit, or may be restricted to a section of its length.
  • the embodiments disclosed above may provide an EGR system capable of cooling re-circulated exhaust gas from a maximum temperature of around 1100 °C at a gas inlet to the system, down to a first stage of cooling at a maximum temperature of around 700 °C within a specially designed section which is robust against thermal shock, thermal loading and thermal growth.
  • the gas may then be further cooled down from a maximum temperature of around 700 °C within a second cooling section which has a thermal effectiveness of at least 90%, and preferably at least 95%.
  • the whole system may be fully integrated, without the use of additional fasteners or connectors between the tubes and sections, to form a unitary welded, brazed or soldered construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (22)

  1. Abgaskühlvorrichtung umfassend:
    ein inneres Rohrelement (201) mit einem Einlassende und einem Auslassende, wobei das innere Rohrelement einen Gaskanal bildet; und
    ein äusseres Rohrelement (200) um einen äusseren Abschnitt des inneren Rohrelements, wobei das äussere Rohrelement bildet einen Hohlraum dazwischen zur Aufnahme eines flüssigen Kühlmittels,
    wobei das innere Rohrelement (201) eine Vielzahl von Wellungen (504) für die Aufnahme von thermischen Expansion und/oder Kontraktion des inneren Elements umfasst;
    wobei das äussere Rohrelement (200) eine Vielzahl von Wellungen (205) für die Aufnahme von thermischen Expansion und/oder Kontraktion des äusseren Elements umfasst;
    dadurch gekennzeichnet, dass die innere und äussere Rohrelemente bei dem Einlassende mit einem Element (208), das zwichen den Wänden der inneren und äusseren Rohrelemente spannt, verbunden sind; und
    bei dem Einlassende, die innere und äussere Rohrelemente berühren nicht einander, ausser wo sie mit dem Element (208) verbunden sind, damit das Einlassende mit der Flüssigkeit kühlen lassen.
  2. Die Kühlvorrichtung nach Anspruch 1, wobei der Hohlraum im wesentlichen die ganze Länge des inneren (201) und äusseren (200) Rohrelemente spannt, so dass die erste und zweite Ende des Kühlvorrichtunges mit einer Kühlflüssigkeit, die durch den Hohlraum zwichen den inneren und äusseren Rohrelementen fliesst, gekühlt werden.
  3. Die Kühlvorrichtung nach Anspruch 1 oder 2, , wobei das innere (201) und das äussere (200) Rohrelemete so angeordnet werden, einander nicht, ausser an ersten Enden der inneren und äusseren Rohrlemente und an zweiten Enden der inneren und äusseren Rohrelemente zu kontaktieren.
  4. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Kühlvorrichtung keine Trenwand Komponente, um das innere Rohrelement (201) und das äussere Rohrelement (202) zu verbinden, umfasst.
  5. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei das innere Rohrelement eine Vielzahl von Ring- oder Spiralwellungen (203) umfasst.
  6. Die Kühlvorrichtugn nach Anspruch 5, wobei die Wellungen (203) auf dem inneren Rohrelement zwischen 10% und 85% der gesamten Länge des inneren Rohrelements spannen.
  7. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei das äussere Rohrelement eine Reihe von Wellungen (205) umfasst, die zwischen 10% und 100% der Länge des inneren Rohrelements spannen.
  8. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei eine Hauptmittelachse eines Einlassendes des inneren Rohrelements in einem Winkel in Bezug auf eine Hauptmittelachse eines Auslassendes des inneren Rohrelements liegt und die innere- und äussere Elemente gebogen sind, so dass die Kühlvorrichtung eine gekrümmte oder gebogene Komponente bildet.
  9. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, geeignet zum Betrieb in einem Temperaturbereich -60 ° C bis 1100 ° C.
  10. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei das äussere Rohrelement eine Vielzahl von Ring- oder Spiralwellungen (205) umfasst.
  11. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei das innere Rohrelement umfasst:
    die erste Sorte von Wellungen, die von Höhepunkt bis Höhepunkt Fugen zwischen anschliessenden Wellungen haben, längs der Hauptlänge des inneren Rohrelements, mit der Distanz gemäss von 16% bis 20% von dem Distanz über das Rohrelement.
  12. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, umfassend die erste Sorte von Wellungen, die einen Höhenpunkt in einem Taldistanz in einer Radialdirektion, von 6% bis 8% von dem inneren radialen Distanz des inneren Rohrelements.
  13. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, umfassend die zweite Sorte von Wellungen umfassend eine im wesentlichen ringförmige Oberfläche.
  14. Die Kühlvorrichtugn nach Anspruch 13, wobei die Wellungen von der zweiten Sorte einen Höhepunkt in einmen Talradialdistanz von 10% bis 14 % von maximalem Radius des inneren Rohrelements umfassen.
  15. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, umfassend mindestens eine gezogene Einkerbung, die gezogene Einkerbung spannt die Hauptmittelachse von des inneren Rohrelements.
  16. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, umfassend mindestens eine gezogene Einkerbung, die gezogene Einkerbung spannt die Hauptmittelachse des inneren Rohrelements;
    Die Einkerbung umfassed eine Wandportion , die bis die haupte innere Passage des inneren Rohrelements spannt, von 15% bis 90% von dem Distanz über das innere Rohrelement.
  17. Die Kühlvorrichtugn nach Anspruch 16, umfassend eine Vielzahl der gezogenen Einkerbungen, die Vielzahl der gezogenen Einkerbungen entgegen einander, so dass die innere entgegen Sektionprofile der inneren Passage des inneren Rohrelements eine im wesentlichen Falter- oder Pilzdoppelforme bildet.
  18. Die Kühlvorrichtugn nach Anspruch 16 oder 17, wobei die gezogene Einkerbung eine Vielzahl von Wellugen super installiert umfasst, die im Zirkumferenz das innere Rohrelement spannt.
  19. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, umfassend ein zweites Rohrende, where das zweite Ende des inneren Rohrelements und das zweite Ende des äusseren Rohrelements verbunden sind, so dass das innere und äussere Rohrelemente mit dem Hohlraum getrennt sind, nicht berührend sich einander.
  20. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei das innere Rohrelement und das äussere Rohrelement so konstruiert sind, dass sie sich einander nicht berühren, ausser dem Einlassende und dem Auslassende.
  21. Die Kühlvorrichtung nach einem der vorhergehenden Ansprüche, wobei die erste Kühlvorrichtung is fähig das Abgas von eine Einlasstemperature maximum von 1100 °C zu eine Auslasstemperature maximum von 700 °C, zu kühlen.
  22. Abgas re-zirkulierung System für einen inneren Verbrennungsmotor, das System umfassend:
    die erste Kühlvorrichtung nach Ansprüche 1 bis 21, für eine Abgaseinnahme von dem inneren Verbrennungsmotor konfiguriert werden; und
    die zweite Kühlvorrichtung verbunden in Serien mit der ersten Kühlvorrichtung und eingerichtet für eine Kühlabgaseinnahme von dem Auslass der ersten Kühlvorrichtung, ein Auslass der zweiten Kühlvorrichtung mit dem Einlass des inneren Verbrennungsmotors verbunden werden.
EP08788275A 2007-08-15 2008-08-11 Egr-system mit hoher gaseintrittstemperatur Active EP2215346B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12173479.2A EP2570646B1 (de) 2007-08-15 2008-08-11 EGR-System mit hoher Gaseintrittstemperatur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0715891A GB2451862A (en) 2007-08-15 2007-08-15 High gas inlet temperature EGR system
PCT/GB2008/002704 WO2009022113A1 (en) 2007-08-15 2008-08-11 High gas inlet temperature egr system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP12173479.2A Division EP2570646B1 (de) 2007-08-15 2008-08-11 EGR-System mit hoher Gaseintrittstemperatur
EP12173479.2 Division-Into 2012-06-25

Publications (2)

Publication Number Publication Date
EP2215346A1 EP2215346A1 (de) 2010-08-11
EP2215346B1 true EP2215346B1 (de) 2012-11-21

Family

ID=38566411

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12173479.2A Active EP2570646B1 (de) 2007-08-15 2008-08-11 EGR-System mit hoher Gaseintrittstemperatur
EP08788275A Active EP2215346B1 (de) 2007-08-15 2008-08-11 Egr-system mit hoher gaseintrittstemperatur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12173479.2A Active EP2570646B1 (de) 2007-08-15 2008-08-11 EGR-System mit hoher Gaseintrittstemperatur

Country Status (3)

Country Link
EP (2) EP2570646B1 (de)
GB (1) GB2451862A (de)
WO (1) WO2009022113A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040560A1 (de) * 2009-09-08 2011-03-10 Krones Ag Röhrenwärmetauscher
DE102009047620C5 (de) 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel
DE102010006370B4 (de) * 2010-01-29 2021-08-19 Wallstein Ingenieur-Gesellschaft Mbh Wärmetauscher
DE102010033718B4 (de) 2010-08-07 2015-04-30 Audi Ag Kraftwagen mit einer Verbrennungskraftmaschine
DE102010036946A1 (de) 2010-08-11 2012-02-16 Ford Global Technologies, Llc. Hochdruck-Abgasrückführsystem mit Wärmerückgewinnung
DE102010045259A1 (de) * 2010-09-14 2012-03-15 Pierburg Gmbh Kühlanordnung
IT1406069B1 (it) * 2010-09-16 2014-02-06 Dytech Dynamic Fluid Tech Spa Scambiatore di calore particolarmente per un impianto di condizionamento aria di un veicolo
EP2841748B1 (de) * 2011-07-29 2017-11-15 Claudio Filippone Abwärmerückführungs- und umwandlungssystem und dazugehöriger wärmetauscher
ITCO20110033A1 (it) * 2011-08-25 2013-02-26 Nuovo Pignone Spa Scambiatore di calore integrato con compensazione della pressione e metodo
BE1020321A3 (nl) * 2011-10-19 2013-08-06 Atlas Copco Airpower Nv Buizenwarmtewisselaar en compressoreenheid daarmee uitgerust.
CN102734004A (zh) 2012-05-15 2012-10-17 浙江银轮机械股份有限公司 一种egr冷却器的废气进气端结构
CN104196652B (zh) * 2014-08-13 2017-06-27 潍柴动力股份有限公司 一种egr系统及其冷后进气温度的控制方法和控制装置
JP6362515B2 (ja) * 2014-11-11 2018-07-25 三恵技研工業株式会社 Egrクーラー及びその製造方法
DE102015220742A1 (de) * 2015-10-23 2017-04-27 Arvos Gmbh Industrierußherstellungsanlage
EP3163243B1 (de) * 2015-10-28 2019-08-14 Borgwarner Emissions Systems Spain, S.L.U. Verdampfer
JP2017198392A (ja) * 2016-04-27 2017-11-02 株式会社ヴァレオジャパン 二重管
US10808652B2 (en) 2016-09-26 2020-10-20 Komatsu Ltd. EGR apparatus and dump truck including the same
CN113423235B (zh) * 2021-05-11 2022-04-22 西安交通大学 一种用于机载电子设备的冷却系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203312A (en) * 1977-09-29 1980-05-20 Spiral Tubing Corporation Corrugated tubing with variable depth corrugations and method of making the same
DE3209240C2 (de) * 1982-03-13 1985-09-26 Dieter Steinegg-Appenzell Steeb Kreuzstrom-Plattenwärmetauscher
DE4414429C1 (de) * 1994-04-26 1995-06-01 Mtu Friedrichshafen Gmbh Verfahren zur Kühlung von dieselmotorischen Abgasen
DE19731129A1 (de) * 1997-07-19 1999-01-21 Volkswagen Ag Einzelzylinderandrosselung unter Einbeziehung der Abgasrückführung
EP1096131B1 (de) * 1999-10-26 2001-09-19 Senior Flexonics Automotive Limited Abgasrückführungskühler
JP2002130060A (ja) * 2000-10-24 2002-05-09 Katayama Kogyo Co Ltd Egrガス冷却装置
DE10232515A1 (de) * 2002-07-18 2004-04-08 Daimlerchrysler Ag Abgasrückführung einer Brennkraftmaschine
JP4323333B2 (ja) * 2004-01-19 2009-09-02 株式会社マーレ フィルターシステムズ 内燃機関の排気還流装置
JP2005220747A (ja) * 2004-02-03 2005-08-18 Usui Kokusai Sangyo Kaisha Ltd Egrガス冷却機構
SE526821C2 (sv) * 2004-03-31 2005-11-08 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor
GB2417067B (en) * 2004-08-12 2006-09-06 Senior Uk Ltd Improved gas heat exchanger
JP3928642B2 (ja) * 2005-01-18 2007-06-13 いすゞ自動車株式会社 Egr装置
DE102005029322A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Vorrichtung zur Rückführung und Kühlung von Abgas für eine Brennkraftmaschine
SE529101C2 (sv) * 2005-09-20 2007-05-02 Scania Cv Ab Kylarrangemang för återcirkulation av gaser hos en överladdad förbränningsmotor
DE102005046536A1 (de) * 2005-09-28 2007-03-29 Witzenmann Gmbh Wärmetauscher für EGR-Leitungen

Also Published As

Publication number Publication date
EP2570646B1 (de) 2016-05-11
GB2451862A (en) 2009-02-18
EP2570646A1 (de) 2013-03-20
EP2215346A1 (de) 2010-08-11
GB0715891D0 (en) 2007-09-26
WO2009022113A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
EP2215346B1 (de) Egr-system mit hoher gaseintrittstemperatur
EP2344797B1 (de) Flüssigkeitstransferleitung mit mehreren schläuchen
JP6397411B2 (ja) 改良型排気ガス再循環装置およびそれを形成するための方法
US7255096B2 (en) Gas heat exchanger
JP4341224B2 (ja) 多積層燃料ストリップを有する燃料噴射器の燃料導管
JP6114379B2 (ja) 螺旋チューブegrクーラー
US9581107B2 (en) Exhaust gas heat exchanging device
US11029095B2 (en) Finned coaxial cooler
EP3543636B1 (de) Gerippter koaxialer kühler
JP5405027B2 (ja) 熱交換手段を備える航空エンジン
WO2014183001A2 (en) Exhaust gas heat exchanger and method
US8656709B2 (en) Dual-layer to flange welded joint
JP2004028535A (ja) 排気熱交換装置
US9403204B2 (en) Heat exchanger assembly and method
JP4345470B2 (ja) エンジンのegrクーラー
JP2005273512A (ja) エンジンのegrクーラー
EP2681480B1 (de) Rohreinheit in einer leitung für ein gasförmiges medium
JP2005214586A (ja) 排気ガス冷却用熱交換器
KR101048134B1 (ko) 배기 매니폴드의 벨로우즈 커넥터
WO2019031090A1 (ja) 熱交換器
CN215337866U (zh) 一种回热器烟风管道
CN217463743U (zh) 一种带复合层导流管结构的耐高温egr连接管
WO2013184135A1 (en) Egr cooler header casting
US20210017898A1 (en) Floating core heat exchanger
GB2571637A (en) Finned coaxial cooler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100823

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PENNY, CHARLES

Inventor name: DOWNS, PAUL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 585211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008020293

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 585211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121121

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008020293

Country of ref document: DE

Effective date: 20130822

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080811

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240813

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240806

Year of fee payment: 17