EP2203185A1 - Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent - Google Patents
Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agentInfo
- Publication number
- EP2203185A1 EP2203185A1 EP08839967A EP08839967A EP2203185A1 EP 2203185 A1 EP2203185 A1 EP 2203185A1 EP 08839967 A EP08839967 A EP 08839967A EP 08839967 A EP08839967 A EP 08839967A EP 2203185 A1 EP2203185 A1 EP 2203185A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antibody
- bcl
- type
- cancer
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
Definitions
- the present invention is directed to the use a type II anti-CD20 antibody for the manufacture of a medicament for the treatment of cancer, especially of CD20 expressing cancers in combination with an anti-Bcl-2 active agent.
- CD20 also called human B-lymphocyte-restricted differentiation antigen or Bp35
- Bp35 human B-lymphocyte-restricted differentiation antigen
- CD20 is a hydrophobic transmembrane protein with a molecular weight of approximately 35 kD located on pre-B and mature B lymphocytes (Valentine, M.A., et al., J. Biol. Chem. 264 (19) (1989) 11282-11287; and Einfield, D.A., et al. EMBO J. 7(3) (1988) 711-717).
- CD20 is found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs and is expressed during early pre-B cell development and remains until plasma cell differentiation. CD20 is present on both normal B cells as well as malignant B cells.
- the 85 amino acid carboxyl-terminal region of the CD20 protein is located within the cytoplasm.
- the length of this region contrasts with that of other B cell-specific surface structures such as IgM, IgD, and IgG heavy chains or histocompatibility antigens class Il a or ⁇ chains, which have relatively short intracytoplasmic regions of 3, 3, 28, 15, and 16 amino acids, respectively ( Komaromy, M., et al., NAR 11 (1983) 6775-6785).
- 21 are acidic residues, whereas only 2 are basic, indicating that this region has a strong net negative charge.
- GenBank Accession No. is NP-690605.
- CD20 might be involved in regulating an early step(s) in the activation and differentiation process of B cells (Tedder, T.F., et al., Eur. J. Immunol. 16 (1986) 881-887) and could function as a calcium ion channel (Tedder, T.F., et al., J. Cell. Biochem. 14D (1990) 195).
- Type I antibodies as e.g. rituximab, are potent in complement mediated cytotoxicity
- type II antibodies as e.g. Tositumomab (Bl), 11B8, AT80 or humanized B-LyI antibodies, effectively initiate target cell death via caspase-independent apoptosis with concomitant phosphatidylserine exposure.
- Bcl-xL, BcI-W, McI-I and Al which bear three or four conserved Bcl-2 homology (BH) regions
- the initial signal for cell death is conveyed by the diverse group of BH3-only proteins, including Bad, Bid, Bim, Puma and Noxa, which have in common only the small BH3 interaction domain (Huang and Strasser, Cell 103 (2000) 839-842).
- Bax or Bak multi-domain proteins containing BH1-BH3, are required for commitment to cell death (Cheng, et al., Molecular Cell 8 (2001) 705-711; Wei, M.C., et al., Science 292 (2001) 727-730; Zong, W.X., et al., Genes and Development 15 148 (2001) 1-1486).
- cytochrome C pro-apoptogenic factors
- Bax may be activated via direct engagement by certain BH3-only proteins (Lucken-
- Bcl-2 directly engages Bax (Oltvai, Z.N., et al., Cell 74 (1993) 609-619), has become problematic because Bcl-2 is membrane bound while Bax is cytosolic, and their interaction seems highly dependent on the detergents used for cell lysis (Hsu, Y.T., and Youle, 1997 supra). Nevertheless, it is well established that the BH3 region of Bax can mediate association with Bcl-2 (Zha, H., and Reed, J., Journal of Biological
- Bax which is largely cytosolic
- Bak resides in complexes on the outer membrane of mitochondria and on the endoplasmic reticulum of healthy cells (Wei, M. C, et al., 2000 supra; Zong, W.X., et al., Journal of Cel l Biology 162 (2003) 59-69).
- both Bax and Bak change conformation, and Bax translocates to the organellar membranes, where both Bax and Bak then form homo-oligomers that can associate, leading to membrane permeabilization (Hsu, Y.T., et al., PNAS
- Bcl-2 inhibitors which all have the same property of inhibiting prosurvival members of the Bcl-2 family of proteins and are therefore promising candidates for the treatment of cancer.
- Bcl-2 inhibitors are e.g.
- the invention comprises the use of a type II anti-CD20 antibody for the manufacture of a medicament for the treatment of CD20 expressing cancer in combination with an anti-Bcl-2 active agent.
- the invention further comprises the use of a type II anti-CD20 antibody for the manufacture of a medicament for the treatment of a patient suffering from a CD20 expressing cancer in combination with an anti-Bcl-2 active agent.
- an anti-Bcl-2 active agent is a Bcl-2 inhibitor with an IC50 of the anti- Bcl-2 inhibitory activity of 5 ⁇ M or less.
- said type II anti-CD20 antibody has a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said type II anti-CD20 antibody compared to rituximab of 0.3 to 0.6, more preferably 0.35 to 0.55, and still more preferably 0.4 to 0.5
- said type II anti-CD20 antibody is a humanized B-LyI antibody.
- said type II anti-CD20 antibody has increased antibody dependent cellular cytotoxicity (ADCC).
- ADCC antibody dependent cellular cytotoxicity
- anti-Bcl-2 active agent is selected from the group consisting of
- the CD20 expressing cancer is a B-CeIl Non-Hodgkin's lymphoma
- antibody encompasses the various forms of antibodies including but not being limited to whole antibodies, human antibodies, humanized antibodies and genetically engineered antibodies like monoclonal antibodies, chimeric antibodies or recombinant antibodies as well as fragments of such antibodies as long as the characteristic properties according to the invention are retained.
- the terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of a single amino acid composition. Accordingly, the term “human monoclonal antibody” refers to antibodies displaying a single binding specificity which have variable and constant regions derived from human germline immunoglobulin sequences.
- the human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic non-human animal, e.g. a transgenic mouse, having a genome comprising a human heavy chain transgene and a light human chain transgene fused to an immortalized cell.
- said type II anti-CD20 antibody is a monoclonal antibody.
- chimeric antibody refers to a monoclonal antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a different source or species, usually prepared by recombinant DNA techniques. Chimeric antibodies comprising a murine variable region and a human constant region are especially preferred. Such murine/human chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding murine immunoglobulin variable regions and DNA segments encoding human immunoglobulin constant regions.
- Other forms of "chimeric antibodies" encompassed by the present invention are those in which the class or subclass has been modified or changed from that of the original antibody.
- Such “chimeric” antibodies are also referred to as "class-switched antibodies.”
- Methods for producing chimeric antibodies involve conventional recombinant DNA and gene transfection techniques now well known in the art. See, e.g., Morrison, S.L., et al., Proc. Natl. Acad Sci. USA 81 (1984) 6851-6855;
- humanized antibody refers to antibodies in which the framework or "complementarity determining regions” (CDR) have been modified to comprise the CDR of an immunoglobulin of different specificity as compared to that of the parent immunoglobulin.
- CDR complementarity determining regions
- a murine CDR is grafted into the framework region of a human antibody to prepare the "humanized antibody.” See, e.g., Riechmann, L., et al., Nature 332 (1988) 323-327; and Neuberger, M.S., et al., Nature 314 (1985) 268-270.
- Particularly preferred CDRs correspond to those representing sequences recognizing the antigens noted above for chimeric and bifunctional antibodies.
- human antibody is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences.
- Human antibodies are well-known in the state of the art (van Dijk, M.A., and van de Winkel, J. G., Curr. Opin. Pharmacol. 5 (2001) 368-374). Based on such technology, human antibodies against a great variety of targets can be produced. Examples of human antibodies are for example described in Kellermann, S. A., et al., Curr Opin Biotechnol. 13 (2002) 593-597.
- recombinant human antibody is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from a host cell such as a NSO or CHO cell or from an animal (e.g. a mouse) that is transgenic for human immunoglobulin genes or antibodies expressed using a recombinant expression vector transfected into a host cell.
- recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences in a rearranged form.
- the recombinant human antibodies according to the invention have been subjected to in vivo somatic hypermutation.
- the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.
- binding affinity is of KD- value of 10 "9 mol/1 or lower (e.g. 10 "10 mol/1), preferably with a KD-value of 10 "10 mol/1 or lower (e.g. 10 " mol/1).
- the binding affinity is determined with a standard binding assay, such as Scatchard plot analysis on CD20 expressing cells.
- nucleic acid molecule is intended to include DNA molecules and RNA molecules.
- a nucleic acid molecule may be single-stranded or double-stranded, but preferably is double-stranded DNA.
- the "constant domains" are not involved directly in binding the antibody to an antigen but are involved in the effector functions (ADCC, complement binding, and CDC).
- variable region denotes each of the pair of light and heavy chains which is involved directly in binding the antibody to the antigen.
- the domains of variable human light and heavy chains have the same general structure and each domain comprises four framework (FR) regions whose sequences are widely conserved, connected by three "hypervariable regions” (or complementarity determining regions, CDRs).
- the framework regions adopt a b-sheet conformation and the CDRs may form loops connecting the b-sheet structure.
- the CDRs in each chain are held in their three-dimensional structure by the framework regions and form together with the CDRs from the other chain the antigen binding site.
- the antibody heavy and light chain CDR3 regions play a particularly important role in the binding specificity/affinity of the antibodies according to the invention and therefore provide a further object of the invention.
- the terms "hypervariable region” or “antigen-binding portion of an antibody” when used herein refer to the amino acid residues of an antibody which are responsible for antigen-binding.
- the hypervariable region comprises amino acid residues from the "complementarity determining regions" or "CDRs”.
- “Framework” or "FR” regions are those variable domain regions other than the hypervariable region residues as herein defined. Therefore, the light and heavy chains of an antibody comprise from N- to C-terminus the domains FRl, CDRl, FR2, CDR2, FR3, CDR3, and FR4.
- CDR3 of the heavy chain is the region which contributes most to antigen binding.
- CDR and FR regions are determined according to the standard definition of Kabat, et al., Sequences of Proteins of Immunological Interest, 5
- CD20 and CD20 antigen are used interchangeably herein, and include any variants, isoforms and species homologs of human CD20 which are naturally expressed by cells or are expressed on cells transfected with the CD20 gene. Binding of an antibody of the invention to the CD20 antigen mediate the killing of cells expressing CD20 (e.g., a tumor cell) by inactivating CD20. The killing of the cells expressing CD20 may occur by one or more of the following mechanisms: Cell death/apoptosis induction, ADCC and CDC. Synonyms of CD20, as recognized in the art, include B-lymphocyte antigen CD20,
- B-lymphocyte surface antigen Bl Leu- 16, Bp35, BM5, and LF5.
- anti-CD20 antibody is an antibody that binds specifically to CD20 antigen.
- two types of anti-CD20 antibodies can be distinguished according to Cragg, M.S., et al., Blood 103 (2004) 2738-2743; and Cragg, M.S., et al., Blood 101 (2003) 1045-1052, see Table 2.
- Table 2 Properties of type I and type II anti-CD20 antibodies
- type I and type II anti-CD20 antibody can be classified by the ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said anti- CD20 antibody compared to rituximab.
- the type II anti-CD20 antibodies have a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said anti-CD20 antibody compared to rituximab of 0.3 to 0.6, preferably of 0.35 to 0.55, more preferably 0.4 to 0.5.
- type II anti-CD20 antibodies include e.g. tositumomab (Bl IgG2a), humanized B-LyI antibody IgGl (a chimeric humanized IgGl antibody as disclosed in WO 2005/044859), 11B8 IgGl (as disclosed in WO 2004/035607), and AT80 IgGl.
- said type II anti-CD20 antibody is a monoclonal antibody that binds to the same epitope as humanized B-LyI antibody (as disclosed in WO 2005/044859).
- Type I anti-CD20 antibodies in contrast to the type II antibodies have a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said anti-CD20 antibody compared to rituximab of 0.8 to 1.2, preferably of 0.9 to 1.1.
- type I anti-CD20 antibodies include e.g.
- rituximab 1F5 IgG2a (ECACC, hybridoma; Press, et al., Blood 69/2 (1987) 584-591), HI47 IgG3 (ECACC, hybridoma), 2C6 IgGl (as disclosed in WO 2005/103081), 2F2 IgGl (as disclosed and WO 2004/035607 and WO 2005/103081) and 2H7 IgGl (as disclosed in WO 2004/056312).
- the "ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of an anti-CD20 antibodies compared to rituximab” is determined by direct immunofluorescence measurement (the mean fluorescence intensities (MFI) is measured) using said anti-CD20 antibody conjugated with Cy5 and rituximab conjugated with Cy5 in a FACSArray (Becton Dickinson) with Raji cells (ATCC- No. CCL-86), as described in Example No. 2, and calculated as follows:
- Cy5-labeling ratio means the number of Cy5-label molecules per molecule antibody.
- said type II anti-CD20 antibody has a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said second anti-CD20 antibody compared to rituximab of 0.3 to 0.6, preferably 0.35 to 0.55, more preferably 0.4 to
- said type II anti-CD20 antibody preferably a humanized B-LyI antibody
- ADCC antibody dependent cellular cytotoxicity
- antibody having increased antibody dependent cellular cytotoxicity (ADCC) is meant an antibody, as that term is defined herein, having increased ADCC as determined by any suitable method known to those of ordinary skill in the art.
- One accepted in vitro ADCC assay is as follows:
- the assay uses target cells that are known to express the target antigen recognized by the antigen -binding region of the antibody;
- PBMCs peripheral blood mononuclear cells
- the assay is carried out according to following protocol: i) the PBMCs are isolated using standard density centrifugation procedures and are suspended at 5 x 10 6 cells/ml in RPMI cell culture medium;
- the target cells are grown by standard tissue culture methods, harvested from the exponential growth phase with a viability higher than 90%, washed in RPMI cell culture medium, labeled with 100 micro-Curies of 51 Cr, washed twice with cell culture medium, and resuspended in cell culture medium at a density of 10 5 cells/ml;
- PBMC suspension 50 microliters of the PBMC suspension (point i above) are added to each well to yield an effecto ⁇ target cell ratio of 25:1 and the plates are placed in an incubator under 5% CO2 atmosphere at 37°C for 4 hours;
- ER-MR the average radioactivity quantified (see point ix above) for that antibody concentration
- MR the average radioactivity quantified (see point ix above) for the MR controls (see point V above)
- SR the average radioactivity quantified (see point ix above) for the SR controls (see point vi above);
- "increased ADCC” is defined as either an increase in the maximum percentage of specific lysis observed within the antibody concentration range tested above, and/or a reduction in the concentration of antibody required to achieve one half of the maximum percentage of specific lysis observed within the antibody concentration range tested above.
- the increase in ADCC is relative to the ADCC, measured with the above assay, mediated by the same antibody, produced by the same type of host cells, using the same standard production, purification, formulation and storage methods, which are known to those skilled in the art, but that has not been produced by host cells engineered to overexpress GnTIII.
- Said "increased ADCC” can be obtained by glycoengineering of said antibodies, that means enhance said natural, cell-mediated effector functions of monoclonal antibodies by engineering their oligosaccharide component as described in Umana, P., et al., Nature Biotechnol. 17 (1999) 176-180 and US 6,602,684.
- CDC complement-dependent cytotoxicity
- CDC refers to lysis of human tumor target cells by the antibody according to the invention in the presence of complement.
- CDC is measured preferably by the treatment of a preparation of CD20 expressing cells with an anti-CD20 antibody according to the invention in the presence of complement.
- CDC is found if the antibody induces at a concentration of 100 nM the lysis (cell death) of 20% or more of the tumor cells after 4 hours.
- the assay is performed preferably with 51 Cr or Eu labeled tumor cells and measurement of released 51 Cr or Eu. Controls include the incubation of the tumor target cells with complement but without the antibody.
- type II anti-CD20 antibodies of the IgGl isotype show characteristic CDC properties.
- Type II anti-CD20 antibodies have a decreased CDC (if IgGl isotype) compared to type I antibodies of the IgGl isotype.
- type II anti-CD20 antibodies are IgGl isotype antibodies.
- the "rituximab” antibody (reference antibody; example of a type I anti-CD20 antibody) is a genetically engineered chimeric human gamma 1 murine constant domain containing monoclonal antibody directed against the human CD20 antigen.
- This chimeric antibody contains human gamma 1 constant domains and is identified by the name "C2B8" in US 5,736,137 (Andersen, K. C, et. al.) issued on April 17,1998, assigned to IDEC Pharmaceuticals Corporation.
- Rituximab is approved for the treatment of patients with relapsed or refracting low-grade or follicular, CD20 positive, B cell non-Hodgkin's lymphoma.
- rituximab exhibits human complement— dependent cytotoxicity (CDC) (Reff, et. al, Blood 83(2) (1994) 435-445). Additionally, it exhibits significant activity in assays that measure antibody-dependent cellular cytotoxicity (ADCC).
- humanized B-LyI antibody refers to humanized B-LyI antibody as disclosed in WO 2005/044859 and WO 2007/031875, which were obtained from the murine monoclonal anti-CD20 antibody B-LyI (variable region of the murine heavy chain (VH): SEQ ID NO: 1; variable region of the murine light chain (VL): SEQ ID NO: 2- see Poppema, S. and Visser, L., Biotest Bulletin 3 ( 1987) 131-139;) by chimerization with a human constant domain from IgGl and following humanization (see WO 2005/044859 and WO 2007/031875).
- VH murine heavy chain
- VL variable region of the murine light chain
- the "humanized B-LyI antibody” has variable region of the heavy chain (VH) selected from group of SEQ ID No.3 to SEQ ID No.20 (B-HH2 to B-HH9 and B-HL8 to B-HL17 of WO 2005/044859 and WO 2007/031875).
- VH variable region of the heavy chain
- SEQ ID No.3 to SEQ ID No.20 B-HH2 to B-HH9 and B-HL8 to B-HL17 of WO 2005/044859 and WO 2007/031875
- Seq. ID No. 3, 4, 7, 9, 11, 13 and 15 B-HH2, BHH-3, B-HH6, B-HH8, B-HL8, B-HLIl and B-HL13 of WO 2005/044859 and WO 2007/031875).
- the "humanized B-LyI antibody” has variable region of the light chain (VL) of SEQ ID No. 20 (B-KVl of WO 2005/044859 and WO 2007/031875). Furthermore the humanized B-LyI antibody is preferably an IgGl antibody. Preferably such humanized B-LyI antibodies are glycoengineered (GE) in the Fc region according to the procedures described in WO 2005/044859,
- Such glycoengineered humanized B-LyI antibodies have an altered pattern of glycosylation in the Fc region, preferably having a reduced level of fucose residues.
- Preferably at least 40% or more (in one embodiment between 40% and 60%, in another embodiment at least 50%, and in still another embodiment at least 70% or more) of the oligosaccharides of the Fc region are non-fucosylated.
- the oligosaccharides of the Fc region are preferably bisected.
- the oligosaccharide component can significantly affect properties relevant to the efficacy of a therapeutic glycoprotein, including physical stability, resistance to protease attack, interactions with the immune system, pharmacokinetics, and specific biological activity. Such properties may depend not only on the presence or absence, but also on the specific structures, of oligosaccharides. Some generalizations between oligosaccharide structure and glycoprotein function can be made. For example, certain oligosaccharide structures mediate rapid clearance of the glycoprotein from the bloodstream through interactions with specific carbohydrate binding proteins, while others can be bound by antibodies and trigger undesired immune reactions. (Jenkins, N., et al., Nature Biotechnol. 14 (1996) 975-981).
- Mammalian cells are the preferred hosts for production of therapeutic glycoproteins, due to their capability to glycosylate proteins in the most compatible form for human application. (Cumming, D.A., et al., Glycobiology 1 (1991) 115- 130; Jenkins, N., et al., Nature Biotechnol. 14 (1996) 975-981). Bacteria very rarely glycosylate proteins, and like other types of common hosts, such as yeasts, filamentous fungi, insect and plant cells, yield glycosylation patterns associated with rapid clearance from the blood stream, undesirable immune interactions, and in some specific cases, reduced biological activity. Among mammalian cells, Chinese hamster ovary (CHO) cells have been most commonly used during the last two decades.
- these cells allow consistent generation of genetically stable, highly productive clonal cell lines. They can be cultured to high densities in simple bioreactors using serum free media, and permit the development of safe and reproducible bioprocesses.
- Other commonly used animal cells include baby hamster kidney (BHK) cells, NSO- and SP2/0-mouse myeloma cells. More recently, production from transgenic animals has also been tested. (Jenkins, N., et al., Nature Biotechnol. 14 (1996) 975-981).
- All antibodies contain carbohydrate structures at conserved positions in the heavy chain constant regions, with each isotype possessing a distinct array of N-linked carbohydrate structures, which variably affect protein assembly, secretion or functional activity.
- the structure of the attached N-linked carbohydrate varies considerably, depending on the degree of processing, and can include high-mannose, multiply- branched as well as biantennary complex oligosaccharides. (Wright, A., and Morrison, S. L., Trends Biotech. 15 (1997) 26-32).
- IgGl type antibodies the most commonly used antibodies in cancer immunotherapy, are glycoproteins that have a conserved N-linked glycosylation site at Asn297 in each CH2 domain.
- ADCC antibody dependent cellular cytotoxicity
- the antibody chCE7 belongs to a large class of unconjugated monoclonal antibodies which have high tumor affinity and specificity, but have too little potency to be clinically useful when produced in standard industrial cell lines lacking the GnTIII enzyme (Umana, P., et al., Nature Biotechnol. 17 (1999) 176-180). That study was the first to show that large increases of ADCC activity could be obtained by engineering the antibody producing cells to express GnTIII, which also led to an increase in the proportion of constant region
- Bcl-2 refers to the Bcl-2 protein(Swiss Prot ID No.
- anti-Bcl-2 active agent comprises “anti-Bcl-2 antisense nucleotides” and "Bcl-2 inhibitors”.
- the "anti-Bcl-2 antisense nucleotides” down-regulate the Bcl-2 mRNA levels and reduces Bcl-2 protein expression. Examples of such anti-
- Bcl-2 antisense nucleotides include Oblimersen and SPC-2996.
- Bcl-2 inhibitors refers to agents which inhibit the Bcl-2 protein interaction activity either by the inhibition of the phosphorylation of Bcl-2 ("Bcl-2 protein phosphorylation inhibitors") such as e.g. RTA-402 or by binding to the BcI- 2 protein and thus disruption of the Bad/Bcl-2 complex (these are referred to as
- Bcl-2 protein binding inhibitors Preferably said Bcl-2 inhibitors are Bcl-2 protein binding inhibitors.
- the Bcl-2 inhibitory activity via direct binding of such Bcl-2 protein binding inhibitors can be measured via a competitive binding assay .
- the IC50 of the inhibition of the Bcl-2 protein activity can be determined in an homogenous time resolved fluorescence (HTRF) Assay according to Example 3.
- the IC50 of anti-Bcl-2 inhibitory activity is 5 ⁇ M or less, more preferably l ⁇ M or less.
- Bcl-2 protein binding inhibitors include compounds such as Gossypol, AT-101, Obatoclax mesylate, A-371191, A-385358, A-438744, ABT-737, ABT-263, AT-101, BL-I l, BL-193, GX-15-003, 2-Methoxyantimycin A 3 , HA-14-1, KF-67544, Purpurogallin, TP-TW-37, YC- 137 and Z-24, preferably ABT-263 and
- Oblimersen is an antisense oligonucleotide that inhibits Bcl-2 expression.
- the antisense oligonucleotide, its sequence and its preparation are described e.g. in WO 95/08350, WO 1999/051259, WO 2002/017852, WO 2004/056971 and US 5,734,033.
- Oblimersen (or other synonyms: Genansense, G-3139, Oblimersen sodium) as used herein means Heptadecasodium salt of 18-mer antisense phosphorothioate oligodeoxynucleotide whose sequence is:
- an antisense oligonucleotide is a 16-Mer antisense phosphorothioate oligonucleotides whose sequence is 5'-CTCCCAACGTGCGCCA-3' and in which nucleotides 1, 2, 14 and 15 are locked nucleic acid (LNA) nucleotides with enhanced resistance to nuclease digestion.
- LNA locked nucleic acid
- RTA-402 as used herein means CDDO-Me, the methyl ester of the C28- triterpenoid: oleanane triterpenoid 2-cyano-3,12-dioxoolean-l,9-dien-28-oic acid (CDDO) (See e.g. Honda, T., Rounds BV Bore, L., et al. J Med Chem. 43 (2000) 4233-4246), which blocks Bcl-2 protein phosphorylation (Konopleva, M., et al., Blood 99 (2002) 326-35).
- ABT-737 as used herein means N-[4-[4-(4'-Chlorobiphenyl-2-ylmethyl)piperazin- l-yl]benzoyl]-3-[3-(dimethylamino)-l(R)-(phenylsulfanylmethyl)propylamino]-4- nitrobenzenesulfonamide; 4-[4-(4'-Chlorobiphenyl-2-ylmethyl)piperazin-l-yl]-N- [3-[3-(dimethylamino)-l(R)-(phenylsulfanylmethyl)propylamino]-4- nitrophenylsulfonyl]benzamide, a Bcl-2 inhibitor of formula I, which is described in WO 2006/099667 or Corey, S., et al., Cancer Cell 8 (2005) 5-6.
- ABT-263 as used herein means a Bcl-2 inhibitor of formula II, which is described in US 2007/027,135,
- A-371191 as used herein means a Bcl-2 inhibitor of formula III
- A-385358 as used herein means [(R)-4-(3-dimethylamino-l-phenylsulfanylmethyl- propylarnino)-N-[4-(4,4-dimethyl-piperidin-l-yl)-benzoyl]-3-nitrobenzene- sulfonamide (as e.g. disclosed in Shoemaker, A.R., et al., Cancer Research 66 (2006) 8731-8739) a Bcl-2 inhibitor of formula IV,
- Gossypol as used herein means either a racemic mixture of (+)-Gossypol or (-)- Gossypol (a Bcl-2 inhibitor of formula V), or pure (+)-Gossypol or (-)-Gossypol, preferably Gossypol refers to pure (-)-Gossypol.
- AT-IOl as used herein means clinical lead compound of Ascenta Therapeutics AT- 101, a Bcl-2 inhibitor and derivative of R (-)-gossypol.
- Obatoclax mesylate (or other synonyms: GX-015-070;or GX15-070) as used herein means 2-[2-(3,5-Dimethyl-lH-pyrrol-2-ylmethylene)-3-methoxy-2H-pyrrol-5-yl]- lH-indole methanesulfonate, a Bcl-2 inhibitor, which is described e.g. in WO 2004/106328, WO 2006/089397 and Walensky, L.D., Cell Death and Differentiation, 13 (2006) 1339-1350.
- TW-37 as used herein means a Bcl-2 inhibitor of formula VI
- BL- 193 as used herein means a Bcl-2 inhibitor of formula VII,
- NSC-719664 as used herein means 2-Methoxy-Antimycin A 3 , a Bcl-2 inhibitor derived from Antimycin A 3 .
- YC-137 is described e.g. in Walensky, L.D., Cell Death and Differentiation 13
- Purpurogallin is described e.g. in Walensky, L.D., Cell Death and Differentiation 13 (2006) 1339-1350.
- HA- 14-1 is described e.g. in Walensky, L.D., Cell Death and Differentiation 13 (2006) 1339-1350.
- Z-24 as used herein means 3Z-3-[(lH-pyrrol-2-yl)-methylidene]-l-(l- piperidinylmethyl)-l,3-2H-indol-2-one, a Bcl-2 inhibitor of formula VIII,
- anti-Bcl-2 active agent is selected from Oblimersen, SPC-2996,
- the anti-Bcl-2 active agent is a Bcl-2 protein binding inhibitor with an IC50 of the anti-Bcl-2 inhibitory activity of 5 ⁇ M or less.
- Bcl-2 protein binding inhibitor is preferably selected from Gossypol, AT-IOl, Obatoclax mesylate, ABT-263 and ABT-737, more preferably from ABT-263 or ABT-737.
- the term "expression of the CD20" antigen is intended to indicate an significant level of expression of the CD20 antigen in a cell, preferably on the cell surface of a T- or B- Cell, more preferably a B-cell, from a tumor or cancer, respectively, preferably a non-solid tumor.
- Patients having a "CD20 expressing cancer” can be determined by standard assays known in the art. E.g. CD20 antigen expression is measured using immunohistochemical (IHC) detection, FACS or via PCR-based detection of the corresponding mRNA.
- IHC immunohistochemical
- CD20 expressing cancer refers to all cancers in which the cancer cells show an expression of the CD20 antigen.
- Such CD20 expressing cancer may be, for example, lymphomas, lymphocytic leukemias, lung cancer, non small cell lung (NSCL) cancer, bronchioloalviolar cell lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, gastric cancer, colon cancer, breast cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of
- CD20 expressing cancer as used herein refers to lymphomas (preferably B-CeIl Non-Hodgkin's lymphomas (NHL)) and lymphocytic leukemias.
- lymphomas and lymphocytic leukemias include e.g.
- follicular lymphomas b) Small Non-Cleaved Cell Lymphomas/ Burkitt's lymphoma (including endemic Burkitt's lymphoma, sporadic Burkitt's lymphoma and Non-Burkitt's lymphoma) c) marginal zone lymphomas (including extranodal marginal zone B cell lymphoma (Mucosa-associated lymphatic tissue lymphomas, MALT), nodal marginal zone B cell lymphoma and splenic marginal zone lymphoma), d) Mantle cell lymphoma (MCL), e) Large Cell Lymphoma (including B-cell diffuse large cell lymphoma (DLCL), Diffuse Mixed Cell Lymphoma, Immunoblastic Lymphoma, Primary
- B-CeIl Lymphoma Angiocentric Lymphoma-Pulmonary B-CeIl Lymphoma
- f) hairy cell leukemia g ) lymphocytic lymphoma, Waldenstrom's macroglobulinemia, h) acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL)/ small lymphocytic lymphoma (SLL), B-cell prolymphocytic leukemia, i) plasma cell neoplasms, plasma cell myeloma, multiple myeloma, plasmacytoma j) Hodgkin's disease.
- ALL acute lymphocytic leukemia
- CLL chronic lymphocytic leukemia
- SLL small lymphocytic lymphoma
- B-cell prolymphocytic leukemia i) plasma cell neoplasms, plasma cell myeloma, multiple myeloma, plasmacytoma
- the CD20 expressing cancer is a B-CeIl Non-Hodgkin's lymphomas (NHL).
- the CD20 expressing cancer is a Mantle cell lymphoma (MCL), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), B-cell diffuse large cell lymphoma (DLCL), Burkitt's lymphoma, hairy cell leukemia, follicular lymphoma, multiple myeloma, marginal zone lymphoma, post transplant lymphoproliferative disorder (PTLD), HIV associated lymphoma, Waldenstrom's macroglobulinemia, or primary CNS lymphoma.
- MCL Mantle cell lymphoma
- ALL acute lymphocytic leukemia
- CLL chronic lymphocytic leukemia
- DLCL B-cell diffuse large cell lymphoma
- Burkitt's lymphoma hairy cell leukemia
- follicular lymphoma multiple my
- treating means reversing, alleviating, inhibiting the progress of, or preventing, either partially or completely, the growth of tumors, tumor metastases, or other cancer-causing or neoplastic cells in a patient.
- treatment refers to the act of treating.
- a method of treating when applied to, for example, cancer refers to a procedure or course of action that is designed to reduce or eliminate the number of cancer cells in a patient, or to alleviate the symptoms of a cancer.
- a method of treating does not necessarily mean that the cancer cells or other disorder will, in fact, be eliminated, that the number of cells or disorder will, in fact, be reduced, or that the symptoms of a cancer or other disorder will, in fact, be alleviated.
- a method of treating cancer will be performed even with a low likelihood of success, but which, given the medical history and estimated survival expectancy of a patient, is nevertheless deemed to induce an overall beneficial course of action.
- co-administration refers to the administration of said type II anti-CD20 antibody and said Bcl-2 inhibitor as one single formulation or as two separate formulations.
- the co-administration can be simultaneous or sequential in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.
- Said type II anti-CD20 antibody and said Bcl-2 inhibitor are co-administered either simultaneously or sequentially (e.g. via an intravenous (i.v.) through a continuous infusion (one for the antibody and eventually one for the Bcl-2 inhibitor; or the Bcl-2 inhibitor is administered orally).
- both therapeutic agents are co-administered sequentially the dose is administered either on the same day in two separate administrations, or one of the agents is administered on day 1 and the second is co- administered on day 2 to day 7, preferably on day 2 to 4.
- “sequentially” means within 7 days after the dose of the first antibody, preferably within 4 days after the dose of the first antibody; and the term “simultaneously” means at the same time.
- the terms "co-administration" with respect to the maintenance doses of the type II anti-CD20 antibody and the Bcl-2 inhibitor mean that the maintenance doses can be either co-administered simultaneously, if the treatment cycle is appropriate for both drugs, e.g. every week. Or the Bcl-2 inhibitor is e.g. administered e.g. every first to third day and type II anti-CD20 antibody is administered every week. Or the maintenance doses are co-administered sequentially, either within one or within several days.
- the antibodies are administered to the patient in a
- terapéuticaally effective amount (or simply “effective amount") which is the amount of the respective compound or combination that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
- the amount of co-administration of said type II anti-CD20 antibody and said Bcl-2 inhibitor and the timing of co-administration will depend on the type (species, gender, age, weight, etc.) and condition of the patient being treated and the severity of the disease or condition being treated.
- Said type II anti-CD20 antibody and said Bcl-2 inhibitor are suitably co-administered to the patient at one time or over a series of treatments. Depending on the type and severity of the disease, about
- 1 ⁇ g /kg to 50 mg/kg (e.g. 0.1-20 mg/kg) of said type II anti-CD20 antibody and 1 mg /kg to 200 mg/kg (e.g. 10-150 mg/kg) of said Bcl-2 inhibitor is an initial candidate dosage for co-administration of both drugs to the patient. If the administration is intravenous the initial infusion time for said type II anti-CD20 antibody or said Bcl-2 inhibitor may be longer than subsequent infusion times, for instance approximately 90 minutes for the initial infusion, and approximately 30 minutes for subsequent infusions (if the initial infusion is well tolerated).
- the preferred dosage of said type II anti-CD20 antibody will be in the range from about 0.05mg/kg to about 30mg/kg. Thus, one or more doses of about 0.5mg/kg, 2.0mg/kg, 4.0mg/kg, 10 mg/kg or 30mg/kg (or any combination thereof) may be co-administered to the patient.
- the preferred dosage of said Bcl-2 inhibitor will be in the range from 20 mg/kg to about 150mg/kg.
- the dosage and the administration schedule of said anti-CD20 antibody can differ from the dosage of Bcl-2 inhibitor.
- the said anti-CD20 antibody may be administered e.g. every one to three weeks and said Bcl-2 inhibitor may be administered daily or every 2 to 7 days. An initial higher loading dose, followed by one or more lower doses may also be administered.
- the medicament is useful for preventing or reducing metastasis or further dissemination in such a patient suffering from CD20 expressing cancer.
- the medicament is useful for increasing the duration of survival of such a patient, increasing the progression free survival of such a patient, increasing the duration of response, resulting in a statistically significant and clinically meaningful improvement of the treated patient as measured by the duration of survival, progression free survival, response rate or duration of response.
- the medicament is useful for increasing the response rate in a group of patients.
- additional other cytotoxic, chemotherapeutic or anti-cancer agents, or compounds that enhance the effects of such agents may be used in the type II anti-CD20 antibody and Bcl-2 inhibitor combination treatment of CD20 expressing cancer.
- cytokines e.g. cytokines
- Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
- the type II anti-CD20 antibody and Bcl-2 inhibitor combination treatment is used without such additional cytotoxic, chemotherapeutic or anticancer agents, or compounds that enhance the effects of such agents.
- Such agents include, for example: alkylating agents or agents with an alkylating action, such as cyclophosphamide (CTX; e.g. Cytoxan ® ), chlorambucil (CHL; e.g. leukeran®), cisplatin (CisP; e.g. platinol®) busulfan (e.g. myleran®), melphalan, carmustine (BCNU), streptozotocin, triethylenemelamine (TEM), mitomycin C, and the like; anti-metabolites, such as methotrexate (MTX), etoposide (VP16; e.g.
- vepesid® 6-mercaptopurine (6MP), 6-thiocguanine (6TG), cytarabine (Ara-C), 5-fluorouracil (5-FU), capecitabine (e.g. Xeloda®), dacarbazine (DTIC), and the like; antibiotics, such as actinomycin D, doxorubicin (DXR; e.g.
- adriamycin® daunorubicin (daunomycin), bleomycin, mithramycin and the like
- alkaloids such as vinca alkaloids such as vincristine (VCR), vinblastine, and the like
- antitumor agents such as paclitaxel (e.g. taxol®) and paclitaxel derivatives, the cytostatic agents, glucocorticoids such as dexamethasone (DEX; e.g.
- decadron ® and corticosteroids such as prednisone, nucleoside enzyme inhibitors such as hydroxyurea, amino acid depleting enzymes such as asparaginase, leucovorin and other folic acid derivatives, and similar, diverse antitumor agents.
- the following agents may also be used as additional agents: arnifostine (e.g. ethyol ® ), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, lomustine (CCNU), doxorubicin lipo (e.g. doxil®), gemcitabine
- gemzar® daunorubicin lipo
- procarbazine mitomycin, docetaxel (e.g. taxotere®), aldesleukin, carboplatin, oxaliplatin, cladribine, camptothecin, CPT 11 (irinotecan), 10-hydroxy 7-ethyl-camptothecin (SN38), floxuridine, fludarabine, ifosfamide, idarubicin, mesna, interferon beta, interferon alpha, mitoxantrone, topotecan, leuprolide, megestrol, melphalan, mercaptopurine, plicamycin, mitotane, pegaspargase, pentostatin, pipobroman, plicamycin, tamoxifen, teniposide, testolactone, thioguanine, thiotepa, uracil mustard
- cytotoxic and anticancer agents described above as well as antiproliferative target-specific anticancer drugs like protein kinase inhibitors in chemotherapeutic regimens is generally well characterized in the cancer therapy arts, and their use herein falls under the same considerations for monitoring tolerance and effectiveness and for controlling administration routes and dosages, with some adjustments.
- the actual dosages of the cytotoxic agents may vary depending upon the patient's cultured cell response determined by using histoculture methods. Generally, the dosage will be reduced compared to the amount used in the absence of additional other agents.
- Typical dosages of an effective cytotoxic agent can be in the ranges recommended by the manufacturer, and where indicated by in vitro responses or responses in animal models, can be reduced by up to about one order of magnitude concentration or amount.
- the actual dosage will depend upon the judgment of the physician, the condition of the patient, and the effectiveness of the therapeutic method based on the in vitro responsiveness of the primary cultured malignant cells or histocultured tissue sample, or the responses observed in the appropriate animal models.
- an effective amount of ionizing radiation may be carried out and/or a radiopharmaceutical may be used in addition to the type II anti-CD20 antibody and Bcl-2 inhibitor combination treatment of CD20 expressing cancer.
- the source of radiation can be either external or internal to the patient being treated. When the source is external to the patient, the therapy is known as external beam radiation therapy (EBRT). When the source of radiation is internal to the patient, the treatment is called brachytherapy (BT).
- Radioactive atoms for use in the context of this invention can be selected from the group including, but not limited to, radium, cesium-137, iridium-192, americium-241, gold-198, cobalt-57, copper-67, technetium-99, iodine-123, iodine-131, and indium-I l l. Is also possible to label the antibody with such radioactive isotopes. Preferably the type II anti-CD20 antibody and Bcl-2 inhibitor combination treatment is used without such ionizing radiation. Radiation therapy is a standard treatment for controlling unresectable or inoperable tumors and/or tumor metastases. Improved results have been seen when radiation therapy has been combined with chemotherapy.
- Radiation therapy is based on the principle that high-dose radiation delivered to a target area will result in the death of reproductive cells in both tumor and normal tissues.
- the radiation dosage regimen is generally defined in terms of radiation absorbed dose (Gy), time and fractionation, and must be carefully defined by the oncologist.
- the amount of radiation a patient receives will depend on various considerations, but the two most important are the location of the tumor in relation to other critical structures or organs of the body, and the extent to which the tumor has spread.
- a typical course of treatment for a patient undergoing radiation therapy will be a treatment schedule over a 1 to 6 week period, with a total dose of between 10 and 80 Gy administered to the patient in a single daily fraction of about 1.8 to 2.0 Gy, 5 days a week.
- a preferred embodiment of this invention there is synergy when tumors in human patients are treated with the combination treatment of the invention and radiation.
- the inhibition of tumor growth by means of the agents comprising the combination of the invention is enhanced when combined with radiation, optionally with additional chemotherapeutic or anticancer agents.
- Parameters of adjuvant radiation therapies are, for example, contained in WO 99/60023.
- the type II anti-CD20 antibodies are administered to a patient according to known methods, by intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, or intrathecal routes. Intravenous or subcutaneous administration of the antibodies is preferred.
- the Bcl-2 inhibitors are administered to a patient according to known methods, e.g. by intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, or peroral routes. Intravenous, subcutaneous or oral administration of the Bcl-2 inhibitors is preferred.
- the invention further comprises a kit comprising a type II anti-CD20 antibody and an anti-Bcl-2 active agent for the combination treatment of a patient suffering from a CD20 expressing cancer.
- the kit containers may further include a pharmaceutically acceptable carrier.
- the kit may further include a sterile diluent, which is preferably stored in a separate additional container.
- the kit may further include a package insert comprising printed instructions directing the use of the combined treatment as a method for a CD20 expressing cancer disease, preferably a B-CeIl Non-Hodgkin's lymphoma (NHL).
- package insert refers to instructions customarily included in commercial packages of therapeutic products, which may include information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
- the article of manufacture containers may further include a pharmaceutically acceptable carrier.
- the article of manufacture may further include a sterile diluent, which is preferably stored in a separate additional container.
- a "pharmaceutically acceptable carrier” is intended to include any and all material compatible with pharmaceutical administration including solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and other materials and compounds compatible with pharmaceutical administration. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- compositions can be obtained by processing the type II anti-CD20 antibody and/or the anti-Bcl-2 active agent according to this invention with pharmaceutically acceptable, inorganic or organic carriers.
- Lactose, corn starch or derivatives thereof, talc, stearic acids or it's salts and the like can be used, for example, as such carriers for tablets, coated tablets, dragees and hard gelatine capsules.
- Suitable carriers for soft gelatine capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols and the like. Depending on the nature of the active substance no carriers are, however, usually required in the case of soft gelatine capsules.
- Suitable carriers for the production of solutions and syrups are, for example, water, polyols, glycerol, vegetable oil and the like.
- Suitable carriers for suppositories are, for example, natural or hardened oils, waxes, fats, semi-liquid or liquid polyols and the like.
- compositions can, moreover, contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
- One embodiment of the invention is pharmaceutical composition comprising both said type II anti-CD20 antibody and said anti-Bcl-2 active agent, in particular for use in CD20 expressing cancer.
- Said pharmaceutical composition may further comprise one or more pharmaceutically acceptable carriers.
- the present invention further provides a pharmaceutical composition, in particular for use in cancer, comprising (i) an effective first amount of a type II anti-CD20 antibody , and (ii) an effective second amount of an anti-Bcl-2 active agent.
- a pharmaceutical composition optionally comprises pharmaceutically acceptable carriers and / or excipients.
- Pharmaceutical compositions of the type II anti-CD20 antibody alone used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine,
- compositions of the anti-Bcl-2 active agent alone, e.g. the Bcl-2 inhibitor depend on their pharmaceutical properties; e.g. for small chemical compounds such as e.g. ABT-737 or ABT-263, one formulation could be e.g. the following: a) Tablet Formulation (Wet Granulation):
- compositions according to the invention are two separate formulations for said type II anti— CD20 antibody and said Bcl-2 inhibitor.
- the active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interracial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly- (methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano- particles and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano- particles and nanocapsules
- Sustained-release preparations may be prepared. Suitable examples of sustained- release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules.
- sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (US 3,773,919), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid.
- polyesters for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)
- polylactides US 3,773,919
- copolymers of L-glutamic acid and gamma-ethyl-L-glutamate non-degradable ethylene-vinyl
- the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
- the present invention further provides a method for the treatment of cancer, comprising administering to a subject in need of such treatment (i) an effective first amount of a type II anti-CD20 antibody ; and (ii) an effective second amount of an anti-Bcl-2 active agent.
- the present invention further provides a method for the treatment of cancer, comprising administering to a subject in need of such treatment (i) an effective first amount of a type II anti-CD20 antibody ; and (ii) an effective second amount of an anti-Bcl-2 active agent.
- the term "patient” preferably refers to a human in need of treatment with type II anti-CD20 antibody (e.g. a patient suffering from CD20 expressing cancer) for any purpose, and more preferably a human in need of such a treatment to treat cancer, or a precancerous condition or lesion.
- the term "patient” can also refer to non-human animals, preferably mammals such as dogs, cats, horses, cows, pigs, sheep and non-human primates, among others.
- the invention further comprises a type II anti-CD20 antibody for the treatment of
- CD20 expressing cancer in combination with an anti-Bcl-2 active agent.
- the invention further comprises a type II anti-CD20 antibody for the treatment of a patient suffering from a CD20 expressing cancer in combination an anti-Bcl-2 active agent.
- the invention further comprises a type II anti-CD20 antibody and an anti-Bcl-2 active agent for use in the treatment of CD20 expressing cancer .
- the invention further comprises a type II anti-CD20 antibody and an anti-Bcl-2 active agent for use in the treatment of a patient suffering from a CD20 expressing cancer.
- anti-Bcl-2 active agent is selected from Oblimersen, SPC-2996,
- RTA-402 Gossypol, AT-101, Obatoclax mesylate, A-371191, A-385358, A-438744, ABT-737, AT-IOl, BL-Il, BL-193, GX-15-003, 2-Methoxyantimycin A 3 , HA-14-1, KF-67544, Purpurogallin, TP-TW-37, YC-137 and Z-24.
- the anti-Bcl-2 active agent is a Bcl-2 protein binding inhibitor with an IC50 of the anti-Bcl-2 inhibitory activity of 5 ⁇ M or less.
- Bcl-2 protein binding inhibitor is preferably selected from Gossypol, AT-IOl, Obatoclax mesylate, ABT-263 and ABT-737, more preferably from ABT-263 or ABT-737.
- said type II anti-CD20 antibody has a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said type II anti-CD20 antibody compared to rituximab of 0.3 to 0.6, more preferably 0.35 to 0.55, and still more preferably 0.4 to 0.5.
- said type II anti-CD20 antibody is a humanized B-LyI antibody.
- said type II anti-CD20 antibody has increased antibody dependent cellular cytotoxicity (ADCC).
- ADCC antibody dependent cellular cytotoxicity
- the CD20 expressing cancer is a B-CeIl Non-Hodgkin's lymphoma (NHL).
- NDL B-CeIl Non-Hodgkin's lymphoma
- said type II anti-CD20 antibody is a monoclonal antibody.
- Figure 1 Antitumor activity of combined treatment of a type II anti-CD20 antibody (B-HH6-B-KV1 GE) having a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said type II anti-CD20 antibody compared to rituximab of 0.44, with a type II anti-CD20 antibody (B-HH6-B-KV1 GE) having a ratio of the binding capacities to CD20 on Raji cells (ATCC-No. CCL-86) of said type II anti-CD20 antibody compared to rituximab of 0.44, with a
- Bcl-2 inhibitor (ABT-737) (Bcl-2 Inhibitory Activity of IC50: 0.040 ⁇ M) on SU-DHL-4 DLBCL B-CeIl Non-Hodgkin- Lymphoma (NHL). Mean values of tumor volume [mm 3 ] plotted on the y-axis; number of days after injection of tumor cells plotted on the x-axis. Legend: A)Vehicle (circles ), B) humanized
- B-IyI (B-HH6-B-KV1 GE) 10 mg/kg once weekly (squares), C) Bcl-2 inhibitor ABT-737 100 mg/kg every second day (triangles) and D) humanized B-IyI (B-HH6-B-KV1 GE) 10 mg/kg once weekly co-administered with Bcl-2 inhibitor ABT-737 (100 mg/kg every second day) (crosses)
- rituximab and type II anti-CD20 antibody (B-HH6-B-KV1 GE) compared to rituximab (scaled on right y-axis)
- FIG. 3 Antitumor activity of treatment of two type II anti-CD20 antibodies on the Z138 human Non-Hodgkin-Lymphoma (NHL). Both antibodies are humanized B-Ly] anti-CD20 antibodies; 1) B-HH6-B-KV1 glycoengineered (GE) and 2) B- HH6-B-KV1 wildtype (wt, non-glycoengineered). Mean values of tumor volume [mm 3 ] plotted on the y-axis; number of days after injection of tumor cells plotted on the x-axis.
- Antibody buffer included histidine, trehalose and polysorbate 20.
- Antibody solution was diluted appropriately in PBS from stock for prior injections.
- Non-Hodgkin-Lymphoma (NHL) cells (Chang, H., et al., Leuk.
- Lymphoma.8 (1992) 129-136) were kindly provided from DSMZ, Braunschweig.
- Tumor cell line was routinely cultured in RPMI medium (PAA, Laboratories,
- mice Female SCID beige mice; age 4-5 weeks at arrival (purchased from Bomholtgard,
- Bcl-2 inhibitor ABT-737 was given i.p. every second day (day 23-33, q2d,) at 100 mg/kg and due to low tolerability until day 41 at reduced dose of 50 mg/kg.
- TGI 87%) significantly inhibited xenograft growth for 14 days (TGI 87%) compared to control.
- TGI 87%) significantly inhibited xenograft growth for 14 days
- Raji cells (ATCC-No. CCL-86) were maintained in culture in RPMI- 1640 medium (PanBiotech GmbH, Cat.-No. PO4- 18500) containing 10% FCS (Gibco, Cat.- No.10500-064).
- the type II anti-CD20 antibody B-HH6-B-KV1 (humanized B-LyI antibody ) and rituximab were labeled using Cy5 Mono NHS ester (Amersham GE Healthcare, Catalogue No. PAl 5101) according to the manufacturer's instructions. Cy5-conjugated rituximab had a labeling ratio of 2.0 molecules Cy5 per antibody.
- Cy5-conjugated B-HH6-B-KV1 had a labeling ratio of 2.2 molecules Cy5 per antibody.
- binding curves (by titration of Cy5-conjugated Rituximab and
- Cy5-conjugated B-HH6-B-KV1 were generated by direct immunofluorescence using the Burkitt's lymphoma cell line Raji (ATCC-No. CCL-86). Mean fluorescence intensities (MFI) for were analyzed as EC50 (50% of maximal intensity) for Cy5-conjugated Rituximab and Cy5-conjugated B-HH6-B-KV1, respectively. 5*105 cells per sample were stained for 30 min at 4 0 C. Afterwards, cells were washed in culture medium. Propidium iodide (PI) staining was used to exclude dead cells.
- MFI mean fluorescence intensities
- FIG. 1 shows Mean Fluorescence Intensity (MFI) for binding at EC50 (50% of maximal intensity) of Cy5-labeled B-HH6-B-KV1 (black bar) and Cy5-labeled rituximab (white bar).
- MFI Mean Fluorescence Intensity
- B-HH6-B-KV1 as a typical type II anti-CD20 antibody shows reduces binding capacity compared to rituximab.
- BAD protein is an apoptosis inducer associated with BCL2 and BAX )) for Bcl-2 assay:
- Bio-BAD peptide 73.64nM
- assay buffer containing 5OmM Tris- HCL buffer, bovine serum albumin (BSA) 0.2mg/mL, Dithiothreitol 1 mM and 9% DMSO .
- BSA bovine serum albumin
- Bio-BAD peptide (9.82nM) in assay buffer containing 5OmM Tris- HCL, BSA 0.2mg/mL, Dithiothreitol ImM and 9% DMSO .
- Transfer plate transfer 5 ⁇ L of compound from compound prep plate (or 5 ⁇ L of 100% DMSO into no drug control wells) into a 384-well plate transfer plate and add 55 ⁇ Ls of Bio-BAD solution. Transfer 12 ⁇ L from the transfer plate into the assay plate and add 16 ⁇ L of either His6-Bcl2 or His6-BclXL for test wells or assay buffer for blanks. Incubate for 1 hour at 37C° . Add 8 ⁇ Ls of EU-SA/APC solution/well and incubate for 1 hour at room temperature. Plates are read on a plate reader suitable for homogenous time resolved fluorescence (HTRF) format at 340 nm excitation and 665/615 nm emission.
- HTRF time resolved fluorescence
- Cross talk correction Add into multiple wells 16 ⁇ L of assay buffer, 12 ⁇ L Bio- BAD, 8 ⁇ L of detection buffer with and without EU-SA/APC.
- Antibody buffer included histidine, trehalose and polysorbate 20.
- NEL Non-Hodgkin-lymphoma
- Glycart Mantle cell lymphoma-MCL
- Tumor cell line was routinely cultured in DMEM medium (PAA, Laboratories, Austria) supplemented with 10% fetal bovine serum (PAA Laboratories, Austria) and 2 mM L-glutamine at 37°C in a water-saturated atmosphere at 5% CO 2 . Passage 2 was used for transplantation.
- mice Female SCID beige mice; age 4-5 weeks at arrival (purchased from Bomholtgard,
- mice do not express the correct Fc receptor on their NK cells and furthermore SCID beige mice are thought to be incompetent for NK-mediated ADCC due to severe triple immunodeficiency. Therefore s.c. xenografts models in SCID beige mice are not appropriate for mimicking human ADCC mediated effect with glycoengineered modified antibodies.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13155433.9A EP2604277A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type II anti-CD20 antibody with an anti-Bcl-2 active agent |
EP08839967A EP2203185A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07020120 | 2007-10-15 | ||
PCT/EP2008/008635 WO2009049841A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
EP08839967A EP2203185A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2203185A1 true EP2203185A1 (en) | 2010-07-07 |
Family
ID=38904707
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08839967A Withdrawn EP2203185A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
EP13155433.9A Withdrawn EP2604277A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type II anti-CD20 antibody with an anti-Bcl-2 active agent |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13155433.9A Withdrawn EP2604277A1 (en) | 2007-10-15 | 2008-10-13 | Combination therapy of a type II anti-CD20 antibody with an anti-Bcl-2 active agent |
Country Status (16)
Country | Link |
---|---|
US (6) | US20090098118A1 (ko) |
EP (2) | EP2203185A1 (ko) |
JP (1) | JP5416124B2 (ko) |
KR (1) | KR101278395B1 (ko) |
CN (1) | CN101827611B (ko) |
AR (1) | AR068862A1 (ko) |
AU (1) | AU2008314068B2 (ko) |
BR (1) | BRPI0818673A2 (ko) |
CA (1) | CA2702300A1 (ko) |
CL (1) | CL2008003035A1 (ko) |
IL (1) | IL204744A0 (ko) |
MX (1) | MX2010003815A (ko) |
PE (1) | PE20090966A1 (ko) |
RU (1) | RU2541805C2 (ko) |
TW (1) | TWI430809B (ko) |
WO (1) | WO2009049841A1 (ko) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG10202008722QA (en) * | 2003-11-05 | 2020-10-29 | Roche Glycart Ag | Cd20 antibodies with increased fc receptor binding affinity and effector function |
US20110021440A1 (en) * | 2007-05-16 | 2011-01-27 | University Of Maryland, Baltimore | Apoptotic pathway targeting for the diagnosis and treatment of cancer |
AR073295A1 (es) | 2008-09-16 | 2010-10-28 | Genentech Inc | Metodos para tratar la esclerosis multiple progresiva. articulo de fabricacion. |
WO2010043582A1 (en) * | 2008-10-17 | 2010-04-22 | Santaris Pharma A/S | Method for the treatment of cancer |
US8586754B2 (en) | 2008-12-05 | 2013-11-19 | Abbvie Inc. | BCL-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases |
US8728516B2 (en) * | 2009-04-30 | 2014-05-20 | Abbvie Inc. | Stabilized lipid formulation of apoptosis promoter |
US20220315555A1 (en) | 2009-05-26 | 2022-10-06 | Abbvie Inc. | Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases |
US8546399B2 (en) | 2009-05-26 | 2013-10-01 | Abbvie Inc. | Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases |
KR102001418B1 (ko) * | 2009-05-26 | 2019-07-19 | 애브비 아일랜드 언리미티드 컴퍼니 | 암,면역 질환 및 자가면역 질환의 치료를 위한 아폽토시스-유도제 |
AR078161A1 (es) | 2009-09-11 | 2011-10-19 | Hoffmann La Roche | Formulaciones farmaceuticas muy concentradas de un anticuerpo anti cd20. uso de la formulacion. metodo de tratamiento. |
WO2011079127A1 (en) * | 2009-12-22 | 2011-06-30 | Abbott Laboratories | Abt-263 capsule |
EP2600901B1 (en) | 2010-08-06 | 2019-03-27 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
CA2848342A1 (en) * | 2010-08-09 | 2012-02-16 | University Of South Florida | Acylsulfonamides and processes for producing the same |
KR101653030B1 (ko) | 2010-08-13 | 2016-08-31 | 로슈 글리카트 아게 | 항-테나신-c a2 항체 및 이의 사용 방법 |
DE19177059T1 (de) | 2010-10-01 | 2021-10-07 | Modernatx, Inc. | N1-methyl-pseudouracile enthältendes ribonucleinsäuren sowie ihre verwendungen |
JP2014507384A (ja) * | 2010-12-16 | 2014-03-27 | ロシュ グリクアート アーゲー | Mdm2阻害剤とのアフコシル化cd20抗体の併用療法 |
KR101274731B1 (ko) * | 2011-01-18 | 2013-06-18 | 동아대학교 산학협력단 | 레스베라트롤의 유사체인 hs-1793 또는 이의 약학적으로 허용가능한 염을 유효성분으로 하는 전립선 암 치료용 약학적 조성물 |
WO2012135805A2 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
JO3733B1 (ar) * | 2011-04-05 | 2021-01-31 | Bayer Ip Gmbh | استخدام 3,2-دايهيدروايميدازو[1, 2 -c]كوينازولينات مستبدلة |
CN102222176A (zh) * | 2011-06-01 | 2011-10-19 | 山东大学 | 一种快速发现以Bcl-2蛋白为靶点的先导化合物的方法 |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
LT3682905T (lt) | 2011-10-03 | 2022-02-25 | Modernatx, Inc. | Modifikuoti nukleozidai, nukleotidai ir nukleorūgštys bei jų naudojimas |
PL2791160T3 (pl) | 2011-12-16 | 2022-06-20 | Modernatx, Inc. | Kompozycje zmodyfikowanego mrna |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
DE18200782T1 (de) | 2012-04-02 | 2021-10-21 | Modernatx, Inc. | Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen |
WO2014039855A1 (en) * | 2012-09-07 | 2014-03-13 | Genentech, Inc. | Combination therapy of a type ii anti-cd20 antibody with a selective bcl-2 inhibitor |
RS63237B1 (sr) | 2012-11-26 | 2022-06-30 | Modernatx Inc | Terminalno modifikovana rnk |
US20150313906A1 (en) * | 2012-12-19 | 2015-11-05 | Glaxosmithkline Llc | Combination |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
EA201690675A1 (ru) | 2013-10-03 | 2016-08-31 | Модерна Терапьютикс, Инк. | Полинуклеотиды, кодирующие рецептор липопротеинов низкой плотности |
DK3302549T3 (da) * | 2015-05-26 | 2019-09-16 | Hoffmann La Roche | Kombinationsbehandling af et anti-CD20-antistof med en Bcl-2-inhibitor og en MDM2-inhibitor |
JP2020508436A (ja) | 2016-12-07 | 2020-03-19 | プロジェニティ, インコーポレイテッド | 胃腸管の検出方法、装置およびシステム |
TR201703149A2 (tr) * | 2017-03-01 | 2018-09-21 | Univ Yeditepe | Kemoterapi̇k i̇laç kompozi̇syonu |
EP4108183A1 (en) | 2017-03-30 | 2022-12-28 | Biora Therapeutics, Inc. | Treatment of a disease of the gastrointestinal tract with an immune modulatory agent released using an ingestible device |
EP3658584A1 (en) * | 2017-07-26 | 2020-06-03 | H. Hoffnabb-La Roche Ag | Combination therapy with a bet inhibitor, a bcl-2 inhibitor and an anti-cd20 antibody |
US20230009902A1 (en) | 2018-06-20 | 2023-01-12 | Progenity, Inc. | Treatment of a disease or condition in a tissue orginating from the endoderm |
WO2019246312A1 (en) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an immunomodulator |
US11554127B2 (en) * | 2018-07-31 | 2023-01-17 | Ascentage Pharma (Suzhou) Co., Ltd. | Synergistic antitumor effect of Bcl-2 inhibitor combined with rituximab and/or bendamustine or Bcl-2 inhibitor combined with CHOP |
WO2020106750A1 (en) | 2018-11-19 | 2020-05-28 | Progenity, Inc. | Methods and devices for treating a disease with biotherapeutics |
SG11202113356XA (en) | 2019-06-12 | 2021-12-30 | Juno Therapeutics Inc | Combination therapy of a cell-mediated cytotoxic therapy and an inhibitor of a prosurvival bcl2 family protein |
WO2021119482A1 (en) | 2019-12-13 | 2021-06-17 | Progenity, Inc. | Ingestible device for delivery of therapeutic agent to the gastrointestinal tract |
CA3176495A1 (en) * | 2020-04-27 | 2021-11-04 | Aruna Bio, Inc. | Binding agents and uses thereof for central nervous system delivery |
WO2022133030A1 (en) | 2020-12-16 | 2022-06-23 | Juno Therapeutics, Inc. | Combination therapy of a cell therapy and a bcl2 inhibitor |
WO2023220655A1 (en) | 2022-05-11 | 2023-11-16 | Celgene Corporation | Methods to overcome drug resistance by re-sensitizing cancer cells to treatment with a prior therapy via treatment with a t cell therapy |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US371191A (en) | 1887-10-11 | Cloth-sponging machine | ||
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
US5204244A (en) | 1987-10-27 | 1993-04-20 | Oncogen | Production of chimeric antibodies by homologous recombination |
US5202238A (en) | 1987-10-27 | 1993-04-13 | Oncogen | Production of chimeric antibodies by homologous recombination |
US5734033A (en) * | 1988-12-22 | 1998-03-31 | The Trustees Of The University Of Pennsylvania | Antisense oligonucleotides inhibiting human bcl-2 gene expression |
US5736137A (en) * | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
PT1584682E (pt) | 1993-09-20 | 2009-08-03 | Univ Pennsylvania | Regulação da expressão do gene bcl-2 |
CA2323929C (en) | 1998-04-03 | 2004-03-09 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
EP1071700B1 (en) * | 1998-04-20 | 2010-02-17 | GlycArt Biotechnology AG | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
IL139707A0 (en) | 1998-05-15 | 2002-02-10 | Imclone Systems Inc | Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases |
US7795232B1 (en) | 2000-08-25 | 2010-09-14 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
RU2306952C2 (ru) * | 2001-01-31 | 2007-09-27 | Байоджен Айдек Инк. | Лечение в-клеточных злокачественных опухолей с использованием комбинации применений, связанных с антителами, уменьшающими количество b-клеток, и с иммуномодулирующими антителами |
US7432304B2 (en) * | 2001-05-30 | 2008-10-07 | The Regents Of The University Of Michigan | Small molecule antagonists of Bcl-2 family proteins |
MXPA05004022A (es) | 2002-10-17 | 2005-10-05 | Genmab As | Anticuerpos monoclonales humanos contra cd20. |
EP2289936B1 (en) | 2002-12-16 | 2017-05-31 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
AU2003300414A1 (en) | 2002-12-19 | 2004-07-14 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
NZ582315A (en) | 2003-01-22 | 2011-01-28 | Glycart Biotechnology Ag | Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function |
ES2382377T3 (es) | 2003-05-30 | 2012-06-07 | Gemin X Pharmaceuticals Canada Inc. | Compuestos triheterocíclicos, composiciones, y métodos para tratar cáncer |
EP1844815B1 (en) * | 2003-11-04 | 2011-09-14 | Novartis Vaccines and Diagnostics, Inc. | Combination therapy comprising anti-CD20 and anti-CD40 antibodies for the treatment of B cell-related cancers |
SG10202008722QA (en) * | 2003-11-05 | 2020-10-29 | Roche Glycart Ag | Cd20 antibodies with increased fc receptor binding affinity and effector function |
MXPA06010938A (es) * | 2004-03-25 | 2007-01-25 | Univ Michigan | Co-cristales de gossipol y el uso de los mismos. |
EP1740946B1 (en) | 2004-04-20 | 2013-11-06 | Genmab A/S | Human monoclonal antibodies against cd20 |
WO2006089397A1 (en) | 2005-02-22 | 2006-08-31 | Gemin X Biotechnologies Inc. | Methods for treating arthritis using triheterocyclic compounds |
WO2006099667A1 (en) | 2005-03-21 | 2006-09-28 | The Walter And Eliza Hall Institute Of Medical Research | Prophylactic and therapeutic agents and uses therefor |
PL2757099T3 (pl) * | 2005-05-12 | 2018-02-28 | Abbvie Bahamas Limited | Promotory apoptozy |
EP1891113A2 (en) * | 2005-06-02 | 2008-02-27 | AstraZeneca AB | Antibodies directed to cd20 and uses thereof |
AR055137A1 (es) | 2005-08-26 | 2007-08-08 | Glycart Biotechnology Ag | Moleculas de union al antigeno modificadas con actividad de senalizacion celular alterada |
-
2008
- 2008-09-22 US US12/234,739 patent/US20090098118A1/en not_active Abandoned
- 2008-10-13 RU RU2010118448/15A patent/RU2541805C2/ru not_active IP Right Cessation
- 2008-10-13 EP EP08839967A patent/EP2203185A1/en not_active Withdrawn
- 2008-10-13 WO PCT/EP2008/008635 patent/WO2009049841A1/en active Application Filing
- 2008-10-13 EP EP13155433.9A patent/EP2604277A1/en not_active Withdrawn
- 2008-10-13 KR KR1020107008152A patent/KR101278395B1/ko not_active IP Right Cessation
- 2008-10-13 AU AU2008314068A patent/AU2008314068B2/en not_active Ceased
- 2008-10-13 JP JP2010528326A patent/JP5416124B2/ja not_active Expired - Fee Related
- 2008-10-13 CA CA2702300A patent/CA2702300A1/en not_active Abandoned
- 2008-10-13 CN CN200880111728.4A patent/CN101827611B/zh not_active Expired - Fee Related
- 2008-10-13 MX MX2010003815A patent/MX2010003815A/es active IP Right Grant
- 2008-10-13 BR BRPI0818673A patent/BRPI0818673A2/pt not_active IP Right Cessation
- 2008-10-14 AR ARP080104472A patent/AR068862A1/es unknown
- 2008-10-14 PE PE2008001762A patent/PE20090966A1/es not_active Application Discontinuation
- 2008-10-14 TW TW097139389A patent/TWI430809B/zh not_active IP Right Cessation
- 2008-10-14 CL CL2008003035A patent/CL2008003035A1/es unknown
-
2010
- 2010-03-25 IL IL204744A patent/IL204744A0/en unknown
- 2010-05-14 US US12/780,640 patent/US20110086025A1/en not_active Abandoned
-
2011
- 2011-07-26 US US13/190,752 patent/US20110287006A1/en not_active Abandoned
-
2012
- 2012-03-20 US US13/424,506 patent/US20120276085A1/en not_active Abandoned
-
2013
- 2013-01-31 US US13/756,319 patent/US20140004104A1/en not_active Abandoned
-
2014
- 2014-03-27 US US14/227,728 patent/US20150056186A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
TSE CHRISTIN ET AL: "ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 68, no. 9, 1 May 2008 (2008-05-01), pages 3421 - 3428, XP002601345, ISSN: 0008-5472, DOI: 10.1158/0008-5472.CAN-07-5836 * |
Also Published As
Publication number | Publication date |
---|---|
US20110287006A1 (en) | 2011-11-24 |
WO2009049841A1 (en) | 2009-04-23 |
AU2008314068A1 (en) | 2009-04-23 |
US20120276085A1 (en) | 2012-11-01 |
EP2604277A1 (en) | 2013-06-19 |
US20150056186A1 (en) | 2015-02-26 |
US20110086025A1 (en) | 2011-04-14 |
RU2010118448A (ru) | 2012-05-20 |
CA2702300A1 (en) | 2009-04-23 |
MX2010003815A (es) | 2010-08-04 |
CL2008003035A1 (es) | 2010-01-11 |
KR101278395B1 (ko) | 2013-06-24 |
IL204744A0 (en) | 2010-11-30 |
TW200920401A (en) | 2009-05-16 |
RU2541805C2 (ru) | 2015-02-20 |
JP2011500521A (ja) | 2011-01-06 |
CN101827611B (zh) | 2014-01-15 |
PE20090966A1 (es) | 2009-07-13 |
BRPI0818673A2 (pt) | 2015-09-08 |
TWI430809B (zh) | 2014-03-21 |
JP5416124B2 (ja) | 2014-02-12 |
AR068862A1 (es) | 2009-12-09 |
US20140004104A1 (en) | 2014-01-02 |
CN101827611A (zh) | 2010-09-08 |
US20090098118A1 (en) | 2009-04-16 |
AU2008314068B2 (en) | 2014-01-16 |
KR20100056559A (ko) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11110087B2 (en) | Combination therapy of a type II anti-CD20 antibody with a selective Bcl-2 inhibitor | |
AU2008314068B2 (en) | Combination therapy of a type II anti-CD20 antibody with an anti-Bcl-2 active agent | |
DK2464382T3 (en) | COMBINATION THERAPY OF AN AFUCOSYLATED CD20 ANTIBODY AND BENDAMUSTIN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110216 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150917 |