EP2184300A1 - Wasserabsorbierendes harz, das zur vewendung in hygieneprodukten geeignet ist - Google Patents
Wasserabsorbierendes harz, das zur vewendung in hygieneprodukten geeignet ist Download PDFInfo
- Publication number
- EP2184300A1 EP2184300A1 EP08792469A EP08792469A EP2184300A1 EP 2184300 A1 EP2184300 A1 EP 2184300A1 EP 08792469 A EP08792469 A EP 08792469A EP 08792469 A EP08792469 A EP 08792469A EP 2184300 A1 EP2184300 A1 EP 2184300A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- absorbent resin
- dispersion medium
- aqueous solution
- ethylenically unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 134
- 239000011347 resin Substances 0.000 title claims abstract description 134
- 239000002250 absorbent Substances 0.000 claims abstract description 156
- 239000002612 dispersion medium Substances 0.000 claims abstract description 87
- 239000000178 monomer Substances 0.000 claims abstract description 82
- 239000007864 aqueous solution Substances 0.000 claims abstract description 55
- 239000003209 petroleum derivative Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 37
- 239000004094 surface-active agent Substances 0.000 claims abstract description 37
- 238000010557 suspension polymerization reaction Methods 0.000 claims abstract description 30
- 230000002745 absorbent Effects 0.000 claims abstract description 28
- -1 fatty acid ester Chemical class 0.000 claims description 68
- 239000006185 dispersion Substances 0.000 claims description 32
- 229920001577 copolymer Polymers 0.000 claims description 26
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 25
- 239000000194 fatty acid Substances 0.000 claims description 25
- 229930195729 fatty acid Natural products 0.000 claims description 25
- 239000003431 cross linking reagent Substances 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 23
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- 239000004743 Polypropylene Substances 0.000 claims description 11
- 229930006000 Sucrose Natural products 0.000 claims description 11
- 229920001155 polypropylene Polymers 0.000 claims description 11
- 239000007870 radical polymerization initiator Substances 0.000 claims description 11
- 239000005720 sucrose Substances 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 10
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 9
- 238000004132 cross linking Methods 0.000 claims description 9
- 239000000835 fiber Substances 0.000 claims description 9
- 239000004698 Polyethylene Substances 0.000 claims description 8
- 229920000573 polyethylene Polymers 0.000 claims description 8
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- AZUZXOSWBOBCJY-UHFFFAOYSA-N Polyethylene, oxidized Polymers OC(=O)CCC(=O)C(C)C(O)CCCCC=O AZUZXOSWBOBCJY-UHFFFAOYSA-N 0.000 claims description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- YYXLGGIKSIZHSF-UHFFFAOYSA-N ethene;furan-2,5-dione Chemical group C=C.O=C1OC(=O)C=C1 YYXLGGIKSIZHSF-UHFFFAOYSA-N 0.000 claims description 3
- 229920001038 ethylene copolymer Polymers 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 50
- 238000010558 suspension polymerization method Methods 0.000 abstract description 9
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 80
- 239000002245 particle Substances 0.000 description 54
- 238000006116 polymerization reaction Methods 0.000 description 40
- 239000012071 phase Substances 0.000 description 31
- 238000010521 absorption reaction Methods 0.000 description 25
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 24
- 238000003756 stirring Methods 0.000 description 23
- 238000010792 warming Methods 0.000 description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 239000002504 physiological saline solution Substances 0.000 description 16
- 239000012798 spherical particle Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 15
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000001035 drying Methods 0.000 description 13
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 12
- 239000011164 primary particle Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 239000002253 acid Substances 0.000 description 9
- 235000013305 food Nutrition 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 235000011187 glycerol Nutrition 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 150000005215 alkyl ethers Chemical class 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000005037 alkyl phenyl group Chemical group 0.000 description 3
- 239000012986 chain transfer agent Substances 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- VLJXXKKOSFGPHI-UHFFFAOYSA-N 3-methylhexane Chemical compound CCCC(C)CC VLJXXKKOSFGPHI-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 2
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 1
- NLQMSBJFLQPLIJ-UHFFFAOYSA-N (3-methyloxetan-3-yl)methanol Chemical compound OCC1(C)COC1 NLQMSBJFLQPLIJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- NQIGSEBFOJIXSE-UHFFFAOYSA-N 2-(3-ethyloxetan-3-yl)ethanol Chemical compound OCCC1(CC)COC1 NQIGSEBFOJIXSE-UHFFFAOYSA-N 0.000 description 1
- MJGLWGBXQWRFCX-UHFFFAOYSA-N 2-[(1-imino-2-methyl-1-pyrrolidin-1-ylpropan-2-yl)diazenyl]-2-methyl-1-pyrrolidin-1-ylpropan-1-imine;dihydrochloride Chemical compound Cl.Cl.C1CCCN1C(=N)C(C)(C)N=NC(C)(C)C(=N)N1CCCC1 MJGLWGBXQWRFCX-UHFFFAOYSA-N 0.000 description 1
- KFNAHVKJFHDCSK-UHFFFAOYSA-N 2-[2-(4,5-dihydro-1,3-oxazol-2-yl)ethyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCC1=NCCO1 KFNAHVKJFHDCSK-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- CYKDLUMZOVATFT-UHFFFAOYSA-N ethenyl acetate;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(=O)OC=C CYKDLUMZOVATFT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- WVFLGSMUPMVNTQ-UHFFFAOYSA-N n-(2-hydroxyethyl)-2-[[1-(2-hydroxyethylamino)-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCO WVFLGSMUPMVNTQ-UHFFFAOYSA-N 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 150000002921 oxetanes Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 229940051841 polyoxyethylene ether Drugs 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010334 sieve classification Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229940104261 taurate Drugs 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/45—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
- A61F13/49—Absorbent articles specially adapted to be worn around the waist, e.g. diapers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/14—Organic medium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/32—Polymerisation in water-in-oil emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/04—Acids, Metal salts or ammonium salts thereof
- C08F20/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/24—Treatment of polymer suspensions
Definitions
- the present invention relates to a water-absorbent resin suitable for use in hygienic materials, and an absorbent material and an absorbent article using the same. More particularly, the present invention relates to a water-absorbent resin obtained by a reversed-phase suspension polymerization method, which contains a small amount of a petroleum hydrocarbon dispersion medium remaining therein used in reversed-phase suspension polymerization, and thus reducing an odor originating from the petroleum hydrocarbon dispersion medium, and also which is suitable for use in hygienic materials; an absorbent material and an absorbent article using the same.
- Water-absorbent resins are widely used in hygienic materials such as disposable diapers and sanitary napkins; daily commodities such as pet sheets; and industrial materials such as water blocking materials for cables.
- Hygienic materials such as disposable diapers and sanitary napkins are generally composed of a top sheet, a back sheet, a hot melt adhesive, an elastic material, a water-absorbent resin and a pulp fiber, and use various synthetic resins and modifiers and, therefore, an odor originating from raw material components is felt from the hygienic materials, in some cases. Since these hygienic materials are worn on the human body, the odor makes those who wear them uncomfortable even if it is subtle and, therefore, it is desired to develop an odor-free material.
- the water-absorbent resin has a subtle odor originating from the substances used in the production process, and since the odor tends to diffuse during absorbing water, it is considered to be desirable to reduce the odor.
- Known water-absorbent resins used for the hygienic materials include, for example, a partially-neutralized product of polyacrylic acid, a neutralized product of a starch-acrylic acid graft polymer, a hydrolysate of a starch-acrylonitrile graft copolymer, a saponified product of a vinyl acetate-acrylic acid ester copolymer.
- an aqueous polymerization method and a reversed-phase suspension polymerization method are known, but in the case of the water-absorbent resin prepared by the reversed-phase suspension polymerization method in which polymerization is performed by suspending a water-soluble monomer in a dispersion medium, a major cause of the odor is considered to originate from the dispersion medium.
- Known conventional arts for producing the water-absorbent resin by the reversed-phase suspension polymerization method include a method of polymerizing an aqueous solution of ⁇ , ⁇ -unsaturated carboxylic acid and alkali metal salt thereof in a petroleum hydrocarbon solvent using a radical polymerization initiator in the presence or absence of a internal-crosslinking agent in which a sucrose fatty acid ester is used as a protective colloid agent (see Patent Document 1), and a method of polymerizing a 25% by mass or more of aqueous solution of an ⁇ , ⁇ -unsaturated carboxylic acid and alkali metal salt thereof in a petroleum hydrocarbon solvent using a radical polymerization initiator in the presence or absence of a internal-crosslinking agent in which a polyglycerol fatty acid ester with an HLB of 2 to 16 is used as a surfactant (see Patent Document 2).
- these production technologies did not focus on reduction of an odor, and thus the resultant water-absorbent resins were
- An object of the present invention is to provide a water-absorbent resin produced by a reversed-phase suspension polymerization method, which contains a small remaining amount of a petroleum hydrocarbon dispersion medium used in reversed-phase suspension polymerization, and thus reducing an odor originating from the petroleum hydrocarbon dispersion medium, when the water-absorbent resin absorbs water, and also which is suitable for use in hygienic materials; an absorbent material and an absorbent article.
- the present inventors intensively studied about a relation between an odor originating from a petroleum hydrocarbon dispersion medium, when the water-absorbent resin absorbs water, and a petroleum hydrocarbon dispersion medium used in production of the water-absorbent resin and, as a result, found out that a water-absorbent resin containing a specific amount or less of a petroleum hydrocarbon dispersion medium remaining therein is obtained by performing reversed-phase suspension polymerization at multi-stages of two or more stages in the production of the water-absorbent resin and adding a surfactant to a dispersion obtained after dispersing an aqueous solution of a water-soluble ethylenically unsaturated monomer in a petroleum hydrocarbon dispersion medium in reversed-phase suspension polymerization at the first stage, and thus significantly reducing an odor in the water-absorbent resin as compared with a water-absorbent resin obtained by the conventional art.
- the present invention relates to a water-absorbent resin obtained by subjecting an aqueous solution of a water-soluble ethylenically unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium in the presence of a surfactant, wherein the amount of the petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin is 2,000 ppm or less.
- the present invention also relates to an absorbent material and an absorbent article using the above water-absorbent resin.
- a water-absorbent resin suitable for use in hygienic materials which has a reduced odor originating from a petroleum hydrocarbon dispersion medium, when the water-absorbent resin absorbs water.
- An absorbent material and an absorbent article using the water-absorbent resin of the present invention are most suitable for use as hygienic materials because of less discomfort due to generation of an odor.
- the water-absorbent resin of the present invention is a water-absorbent resin obtained by subjecting an aqueous solution of a water-soluble ethylenically unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium in the presence of a surfactant, and the amount of the petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin is 2,000 ppm or less.
- the amount of the petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin of the present invention is 2,000 ppm or less, preferably 1,500 ppm or less, more preferably 1,000 ppm or less, still more preferably 750 ppm or less, and even more preferably 500 ppm or less, in view of reducing an odor originating from a petroleum hydrocarbon dispersion medium, when the water-absorbent resin absorbs water.
- sensitivity to an odor varies depending on the kind of the petroleum hydrocarbon dispersion medium, when the amount of the remaining medium is 2,000 ppm or less, it is felt that an odor was significantly reduced as compared with a water-absorbent resin of the conventional art.
- the amount of the remaining medium is 500 ppm or less, it results in the level where little odor is felt.
- the "amount of a remaining petroleum hydrocarbon dispersion medium" is the value measured by a measuring method described hereinafter.
- the method for producing a water-absorbent resin of the present invention is not particularly limited as long as it is a method which enables the amount of the petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin, that is obtained by subjecting an aqueous solution of a water-soluble ethylenically unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium in the presence of a surfactant, to be adjusted to 2,000 ppm or less.
- a petroleum hydrocarbon having a boiling point of about 80 to 130°C is usually used as a dispersion medium. Therefore, it was found that, although it is considered that an odor originating from a dispersion medium is reduced by heating at the temperature of not less than the boiling point of the dispersion medium, heating actually has the low decreasing effect and little effect is exerted.
- the present inventors continued intensive study and found a method of effectively decreasing the amount of the remaining dispersion medium by dispersing an aqueous monomer solution to the dispersion medium and adding a surfactant to the resultant dispersion, followed by reversed-phase suspension polymerization.
- the method for obtaining the water-absorbent resin of the present invention includes, for example, a method in which the reversed-phase suspension polymerization is performed at multi-stages of two or more stages, and the reversed-phase suspension polymerization at the first stage is performed by:
- water-soluble ethylenically unsaturated monomer used in the step (A) examples include monomers having an acid group, such as (meth)acrylic acid ["(meth)acrylic” means “acrylic” and “methacrylic", the same shall apply hereinafter] 2-(meth)acrylamide-2-methylpropanesulfonic acid and maleic acid, and salts thereof; nonionic unsaturated monomers such as (meth)acrylamide, N,N-dimethyl(meth)acrylamide, 2-hydroxyethyl (meth)acrylate and N-methylol(meth)acrylamide; and amino group-containing unsaturated monomers such as diethylaminoethyl (meth)acrylate and diethylaminopropyl (meth)acrylate, and quaternized monomers thereof.
- These water-soluble ethylenically unsaturated monomers can be used alone, or two or more kinds of them can be used in combination.
- water-soluble ethylenically unsaturated monomers (meth)acrylic acid and a salt thereof, and (meth)acrylamide are preferable in view of industrial availability.
- the water-soluble ethylenically unsaturated monomer has an acid group, it can also be used as a salt after neutralizing the acid group.
- Examples of an alkaline compound used when a monomer having an acid group is converted into a salt by neutralization include compounds of lithium, sodium, potassium and ammonium.
- the neutralization degree is preferably from 30 to 90 mol% of the acid group of the water-soluble ethylenically unsaturated monomer.
- the neutralization degree is less than 30 mol%, the acid group is not easily ionized and water-absorption capacity decreases, and therefore it is not preferred.
- the neutralization degree is more than 90 mol%, safety issues may arise when used as hygienic materials, and therefore it is not preferred.
- the concentration of the monomer in the aqueous solution of the water-soluble ethylenically unsaturated monomer is from 20% by mass to saturation concentration. If necessary, the aqueous solution of the water-soluble ethylenically unsaturated monomer may contain a chain transfer agent and a thickener.
- chain transfer agent examples include compounds such as thiols, thiolic acids, secondary alcohols, hypophosphorous acid and phosphorous acid. These chain transfer agents can be used alone, or two or more kinds of them can be used in combination.
- thickener examples include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid and polyacrylamide.
- Examples of the petroleum hydrocarbon dispersion medium include aliphatic hydrocarbon having 6 to 8 carbon atoms, such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane and n-octane; alicyclic hydrocarbons having 6 to 8 carbon atoms, such as cyclohexane, methylcyclopentane and methylcyclohexane; and aromatic hydrocarbons such as benzene, toluene and xylene.
- aliphatic hydrocarbon having 6 to 8 carbon atoms such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane and n-octane
- alicyclic hydrocarbons having 6 to 8 carbon atoms such as cyclohexane, methylcyclopentane and methylcyclohexane
- aromatic hydrocarbons such as benzene, toluene and xy
- At least one kind selected from an aliphatic hydrocarbon and an alicyclic hydrocarbone, each having 6 to 7 carbon atoms, or a mixture thereof is preferably used as the dispersion medium in view of industrial availability and the low cost.
- the used amount of the petroleum hydrocarbon dispersion medium is usually from 50 to 600 parts by mass, more preferably from 50 to 400 parts by mass, and still more preferably from 50 to 200 parts by mass, based on 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer in view of uniformly dispersing the aqueous solution of the water-soluble ethylenically unsaturated monomer and facilitating control of the polymerization temperature.
- step (A) when the aqueous solution of the water-soluble ethylenically unsaturated monomer is added and dispersed in the petroleum hydrocarbon dispersion medium in the presence of a polymeric dispersion agent, it is effective to decrease the amount of the remaining petroleum hydrocarbon dispersion medium.
- polymeric dispersion agent those which are dissolved or dispersed in the petroleum hydrocarbon dispersion medium to be used, and examples of the polymeric dispersion agent include those having an average molecular weight of 20,000 or less, preferably 10,000 or less, and more preferably 5,000 or less.
- maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, a maleic anhydride-modified ethylene-propylene copolymer, a maleic anhydride-ethylene copolymer, a maleic anhydride-propylene copolymer, a maleic anhydride-ethylene-propylene copolymer, polyethylene, polypropylene, an ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, an oxidized ethylene-propylene copolymer, an ethylene-acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose, anhydrous maleinated polybutadiene and anhydrous maleinated EPDM (ethylene/propylene/diene terpolymer).
- the additive amount of the polymeric dispersion agent is preferably 5 parts by mass or less, more preferably from 0.01 to 3 parts by mass, and still more preferably from 0.05 to 2 parts by mass, based on 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer.
- the additive amount of the polymeric dispersion agent is more than 5 parts by mass, it is not economic, being not preferable.
- the aqueous solution of the water-soluble ethylenically unsaturated monomer is added to and dispersed in the petroleum hydrocarbon dispersion medium, the aqueous solution of the water-soluble ethylenically unsaturated monomer is dispersed by stirring.
- stirring conditions vary depending on a desired dispersed droplet diameter and therefore cannot be determined unconditionally.
- the dispersed droplet diameter can be adjusted by the kind of a stirring wing, the wing diameter and the rotation number.
- stirring impeller a propeller impeller, a paddle impeller, an anchor impeller, a turbine impeller, a Pfaudler impeller, a ribbon impeller, a FULLZONE impeller (manufactured by Shinko Pantech Co., Ltd.), a MAXBLEND impeller (manufactured by Sumitomo Heavy Industries, Ltd.) and Super-Mix (manufactured by Satake Chemical Equipment Mfg., Ltd.).
- a surfactant is added to the dispersion obtained in the step (A) and the aqueous solution of the water-soluble ethylenically unsaturated monomer is dispersed in the petroleum hydrocarbon dispersion medium (step (B)).
- Examples of the surfactant used in the step (B) include nonionic surfactants such as sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hardened castor oil, alkyl allyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester, alkyl glucoside, N-alkyl gluconamide, polyoxyethylene fatty acid amide and polyoxyethylene alkylamine; and anionic surfactants such as fatty acid salt, alkylbenzene sulfonate, alkylmethyl taurate, poly
- At least one kind selected from the group consisting of polyglycerin fatty acid ester, sucrose fatty acid ester and sorbitan fatty acid ester are preferred in view of dispersion stability of the aqueous solution of the water-soluble ethylenically unsaturated monomer.
- the additive amount of the surfactant used in the step (B) is preferably from 0.01 to 5 parts by mass, and more preferably from 0.05 to 3 parts by mass, based on 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer.
- the additive amount of the surfactant is less than 0.01 part by mass, dispersion stability of the aqueous monomer solution deteriorates, and therefore it is not preferred.
- the additive amount of the surfactant is more than 5 parts by mass, it is not economic, being not preferable.
- the surfactant added in the step (B) a method of using after diluting the surfactant with, or dissolving the surfactant in a small amount of the dispersion medium in advance is preferred since the surfactant is dispersed and stabilized within a short time.
- the polymeric dispersion agent in addition to the surfactant, can be added.
- the additive amount of the polymeric dispersion agent used in combination with the surfactant is preferably 5 parts by mass or less, more preferably from 0.01 to 3 parts by mass, and still more preferably from 0.05 to 2 parts by mass, based on 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer.
- the additive amount of the polymeric dispersion agent is more than 5 parts by mass, it is not economic, being not preferable.
- the polymeric dispersion agent to be added can be dispersed and stabilized within a short time, a method of using the polymeric dispersion agent in a state where the polymeric dispersion agent is dissolved or dispersed in a small amount of a dispersion medium while heating in advance is preferred.
- the dispersion obtained in the step (B) is subjected to reversed-phase suspension polymerization, optionally in the presence of an internal-crosslinking agent using a water-soluble radical polymerization initiator to obtain a polymerization reaction solution (step (C)).
- water-soluble radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate; peroxides such as hydrogen peroxide; and azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropiondiamine] tetrahydrate, 2,2'-azobis(1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride and 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide].
- persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate
- peroxides such as hydrogen peroxide
- azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[N-(2-carbox
- water-soluble radical polymerization initiators potassium persulfate, ammonium persulfate, sodium persulfate and 2,2'-azobis(2-amidinopropane) dihydrochloride are preferred in view of availability and ease of handling. It is also possible to use, as a redox polymerization initiator, the water-soluble radical polymerization initiator in combination with reducing agents such as sulfite and ascorbic acid.
- the used amount of the water-soluble radical polymerization initiator is usually from 0.01 to 1 part by mass based on 100 parts by mass of the water-soluble ethylenically unsaturated monomer. When the amount is less than 0.01 part by mass, a polymerization rate decreases, whereas, when the amount is more than 1 part by mass, a rapid polymerization reaction arises. Therefore, both cases are not preferred. Although there is no particular limitation on timing of the addition of the water-soluble radical polymerization initiator, it is preferred to add the water-soluble radical polymerization initiator to the aqueous solution of the water-soluble ethylenically unsaturated monomer in advance.
- Examples of the internal-crosslinking agent used optionally include polyols such as (poly)ethylene glycol ["(poly)” means the case where a prefix "poly” exists or not, the same shall apply hereinafter], 1,4-butanediol, glycerin and trimethylolpropane; polyunsaturated esters having two or more vinyl groups obtained by reacting polyols with an unsaturated acid such as acrylic acid or methacrylic acid; bisacrylamides such as N,N'-methylenebisacrylamide; and polyglycidyl compounds having two or more glycidyl groups, such as (poly)ethylene glycol diglycidyl ether, (poly)ethylene glycol triglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, (poly)propylene glycol polyglycidyl ether and (poly)glycerol polygly
- the additive amount of the internal-crosslinking agent is preferably 3 parts by mass or less, more preferably 1 part by mass or less, and still more preferably from 0.001 to 0.1 part by mass, based on 100 parts by mass of the water-soluble ethylenically unsaturated monomer.
- the amount is more than 3 parts by mass, excess crosslinking arises and water-absorption capability excessively deteriorates, and therefore it is not preferred.
- the internal-crosslinking agent is added to the aqueous solution of the water-soluble ethylenically unsaturated monomer in advance.
- the reaction temperature during reversed-phase suspension polymerization in the present invention varies depending on the kind and amount of the polymerization initiator to be used, and therefore cannot be determined unconditionally, but is preferably from 20 to 100°C, and more preferably from 40 to 90°C.
- the reaction temperature is lower than 20°C, the polymerization rate may decrease, whereas, when the reaction temperature is higher than 100°C, a rapid polymerization reaction arises. Therefore, both cases are not preferred.
- the size of particles obtained by the polymerization of the water-soluble ethylenically unsaturated monomer at the first stage is preferably from 20 to 200 ⁇ m, more preferably from 30 to 150 ⁇ m, and still more preferably from 40 to 100 ⁇ m, in terms of a median particle size in view of obtaining a proper aggregated particle size at multi-stage polymerization.
- the median particle size of the first-stage polymerized particles is the measured value of particles obtained by dehydration and drying after completion of the polymerization at the first stage.
- the aqueous solution of the water-soluble ethylenically unsaturated monomer is added and, subsequently, reversed-phase suspension polymerization at the second stage is performed.
- An aqueous solution of a water-soluble ethylenically unsaturated monomer at the second stage is added so as to aggregated particles obtained by the polymerization at the first stage thereby adjusting the particle size suitable for use in hygienic materials.
- the aggregated particles can be obtained by cooling after completion of the polymerization at the first stage and adding a water-soluble ethylenically unsaturated monomer at the second stage at the temperature at which the surfactant is precipitated.
- the method is not limited to the above method as long as it is a method capable of obtaining aggregated particles by the addition of the water-soluble ethylenically unsaturated monomer at the second stage.
- the amount of the remaining dispersion medium can be further decreased by performing reversed-phase suspension polymerization at the second stage. It is possible to use, as water-soluble ethylenically unsaturated monomer at the second-stage, the same as those exemplified as the water-soluble ethylenically unsaturated monomer at the first stage.
- the kind, the neutralization degree and the neutralized salt of the monomer, and the concentration of the aqueous monomer solution may be the same as or different from those of the water-soluble ethylenically unsaturated monomer at the first stage.
- the polymerization initiator to be added to an aqueous solution of a water-soluble ethylenically unsaturated monomer at the second stage can also be used after appropriately selecting from those exemplified as the polymerization initiator used in the polymerization at the first stage.
- an internal-crosslinking agent and a chain transfer agent can also be added to the aqueous solution of the water-soluble ethylenically unsaturated monomer at the second stage, and can be used after selecting from those exemplified during the polymerization at the first stage.
- the additive amount of the water-soluble ethylenically unsaturated monomer at the second stage is preferably from 50 to 300 parts by mass, more preferably form 100 to 200 parts by mass, and still more preferably from 120 to 160 parts by mass, based on 100 parts by mass of the water-soluble ethylenically unsaturated monomer at the first stage in view of obtaining appropriate aggregated particles.
- the median particle size of aggregated particles can be controlled depending on the precipitated state of the surfactant and the ratio of the amount of the ethylenically unsaturated monomer at the second stage to the ethylenically unsaturated monomer at the first stage.
- the median particle size of the aggregated particles suitable for use in hygienic materials is preferably from 200 to 600 ⁇ m, more preferably from 250 to 500 ⁇ m, and still more preferably from 300 to 450 ⁇ m.
- reaction temperature in reversed-phase suspension polymerization at the second stage varies depending on the kind and amount of the polymerization initiator and therefore cannot be determined unconditionally, but is preferably from 20 to 100°C, and more preferably from 40 to 90°C.
- multi-stage reversed-phase suspension polymerization can be performed by performing the polymerization reaction at the third stage or subsequent stage similar to reversed-phase suspension polymerization at the second stage.
- a post-crosslinking agent containing two or more functional groups having reactivity with a functional group derived from water-soluble ethylenically unsaturated monomer to the resultant precursor of the water-absorbent resin.
- a post-crosslinking agent to be used in the post-crosslinking reaction is not particularly limited as long as it can react with a functional group derived from the water-soluble ethylenically unsaturated monomer used in the polymerization.
- the post-crosslinking agent to be used include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)ethylene glycol triglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, (poly)propylene glycol polyglycidyl ether and (poly)glycerol polyglycidyl ether; haloepoxy compounds such as epic
- polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)ethylene glycol triglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, (poly)propylene glycol polyglycidyl ether and (poly)glycerol polyglycidyl ether are preferred in view of excellent reactivity.
- the additive amount of the post-crosslinking agent is preferably from 0.01 to 5 parts by mass, and more preferably from 0.02 to 3 parts by mass, based on 100 parts by mass of the total amount of the water-soluble ethylenically unsaturated monomer subjected to the polymerization.
- the additive amount of the post-crosslinking agent is less than 0.01 part by mass, it is impossible to enhance various performances such as water-absorption capacity under load, water-absorption rate and gel strength of the resultant water-absorbent resin, whereas, when the additive amount is more than 5 parts by mass, water-absorption capacity excessively deteriorates, and therefore both cases are not preferred.
- the post-crosslinking agent may be added as it is, or added in the form of an aqueous solution. If necessary, the post-crosslinking agent may be added using a hydrophilic organic solvent as a solvent.
- the hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol and propylene glycol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; amides such as N,N-dimethylformamide; and sulfoxides such as dimethyl sulfoxide.
- These hydrophilic organic solvents can be used alone, or two or more kinds of them can be used in combination.
- the timing of the addition of the post-crosslinking agent may be after completion of the polymerization and is not particularly limited.
- the post-crosslinking reaction is preferably performed in a drying step after the polymerization in the presence of water at the amount within a range from 1 to 200 parts by mass, more preferably from 5 to 100 parts by mass, and still more preferably from 10 to 50 parts by mass, based on 100 parts by mass of the water-absorbent resin.
- the temperature in the post-crosslinking reaction is preferably from 50 to 250°C, more preferably from 60 to 180°C, still more preferably from 60 to 140°C, and even more preferably from 70 to 120°C.
- the drying step can be performed under a normal pressure or reduced pressure, or can be performed under a gas flow such as nitrogen gas flow in order to enhance drying efficacy.
- the drying temperature is preferably from 70 to 250°C, more preferably from 80 to 180°C, still more preferably from 80 to 140°C, and even more preferably from 90 to 130°C.
- the drying temperature is preferably from 60 to 100°C, and more preferably from 70 to 90°C.
- the water content of the water-absorbent resin after drying is 20% or less, and preferably 10% or less, in view of imparting fluidity.
- An amorphous silica powder can also be added to the water-absorbent resin so as to improve fluidity.
- the absorbent material using the water-absorbent resin of the present invention is composed of particles of a water-absorbent resin and a hydrophilic fiber.
- the constitution of the absorbent material include a mixed structure in which particles of a water-absorbent resin and a hydrophilic fiber are uniformly blended, a sandwich structure in which particles of a water-absorbent resin are held between layered hydrophilic fibers, and a structure in which particles of a water-absorbent resin and a hydrophilic fiber are wrapped with a tissue, but the present invention is not limited thereto.
- the absorbent material can contain a synthetic fiber as a reinforcing agent.
- the content of the water-absorbent resin in the absorbent material is preferably from 5 to 80% by mass, and more preferably from 15 to 60% by mass.
- the content of the water-absorbent resin is less than 5% by mass, absorption capacity may decrease, leading to increase in liquid leakage and re-wet.
- the content of the water-absorbent resin is more than 80% by mass, the cost of the absorbent material may increase and the touch of the absorbent material may become hard.
- hydrophilic fiber examples include cellulose fibers such as cotton-like pulp obtained from wood, mechanical pulp, chemical pulp and semichemical pulp; and artificial cellulose fibers made of rayon and acetate, but the present invention is not limited only thereto.
- the hydrophilic fiber can contain a fiber made of a synthetic resin such as polyamide, polyester or polyolefin.
- the absorbent article using the water-absorbent resin of the present invention has a structure of holding the absorbent material between a liquid-permeable sheet (top sheet) through which an aqueous liquid can permeate and a liquid-impermeable sheet (back sheet) through which an aqueous liquid can not permeate.
- the liquid-permeable sheet is disposed on the side which is contacted with the body, while the liquid-impermeable sheet is disposed on the side which is not contacted with the body.
- the liquid-permeable sheet include a non-woven fabric made of polyethylene, polypropylene, polyester or polyamide, and a porous synthetic resin sheet.
- liquid-impermeable sheet examples include a film made of polyethylene, polypropylene, polyester or polyamide, and a film made of a composite material of these synthetic resins and a non-woven fabric, but the present invention is not limited only thereto.
- the size of the liquid-permeable sheet and the liquid-impermeable sheet varies depending on applications of the absorbent article and therefore cannot be determined unconditionally. Therefore, it is preferred that the size is appropriately adjusted according to the applications.
- the median particle size, the water content, the absorption capacity of physiological saline solution, the amount of the remaining dispersion medium (amount of petroleum hydrocarbon dispersion medium remaining in water-absorbent resin particles) and the odor sensory test of water-absorbent resins obtained in the respective Examples and Comparative Examples were evaluated by the following methods.
- a water-absorbent resin(50g) was passed through a JIS standard sieve having a sieve opening size of 250 ⁇ m.
- the median particle size was measured using a combination of sieves (A) when 50% by mass or more of the resin passed through the sieve, while using a combination of sieves (B) when 50% by mass or more of the resin remaining on the sieve.
- the amount of the petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin was measured using a head-space gas chromatograph.
- 0.1 g of the petroleum hydrocarbon dispersion medium (hereinafter referred to as a "dispersion medium”) used to polymerize the sample was accurately weighed into a 50 ml volumetric screw vial and then DMF (dimethylformamide) was added thereto to accurately make 40 g, followed by stirring with a magnetic stirrer bar to obtain a standard sample solution.
- each of 0.01, 0.04, 0.2 and 0.5 g of the standard sample solutions was accurately weighed and DMF was added thereto to make the amount of contents in each vial bottle to 0.75 g. Furthermore, 0.75 g of distilled water was added to each vial, followed by stopping with a septum rubber and an aluminum cap and further fastening.
- This vial bottle was warmed at 110°C for 2 hours, and 1 ml of a vapor phase portion was collected and then injected into a gas chromatograph to obtain a chromatogram.
- a calibration curve was made from a charge amount of a dispersion medium in each vial bottle and a peak area of the chromatogram (when a mixture of petroleum hydrocarbons was used as the dispersion medium, plural peaks appeared and therefore a calibration curve was made from a total value of the areas and the charge amount).
- This vial bottle was warmed at 110°C for 2 hours, and 1 ml of a vapor phase portion was collected and then injected into a gas chromatograph to obtain a chromatogram.
- the amount of the dispersion medium contained in 0.10 g of the sample was calculated from the calibration curve made based on the peak area of the resultant chromatogram, and then converted into the amount [ppm] of the dispersion medium contained per 1 g of the sample.
- the conditions of a gas chromatograph used in the measurement of the amount of the remaining dispersion medium in the present invention are as follows.
- odor of the water-absorbent resin originating from the dispersion medium upon swelling was compared by the following method.
- a 140 mL volumetric glass bottle with a lid mayonnaise bottle
- 20.0 g of 0.9% by mass saline at 25°C was charged, and stirred with a 3 cm-long magnetic stirrer bar.
- 4.0 g of the water-absorbent resin was added and the bottle was tightly sealed.
- the odor originating from the dispersion medium in the glass bottle was determined by five panelists in accordance with the "six-level odor intensity indication method" shown below, and evaluated by the average.
- step (A) To a 2 L volumetric five-necked cylindrical round-bottom flask equipped with a stirrer with two 50 mm ⁇ pitched blade paddle impellers, a thermometer, a reflux condenser and a nitrogen gas introducing tube, 334 g of n-heptane was added as a petroleum hydrocarbon dispersion medium and this was warmed to 61°C, and then the aqueous solution of the water-soluble ethylenically unsaturated monomer was added at once under a stirring rate of 500 rpm using a funnel and dispersed by stirring at an inner temperature of 40°C for 10 minutes (step (A))
- a solution prepared by warming 0.92 g of a sucrose fatty acid ester (manufactured by Mitsubishi-Kagaku Foods Corporation, trade name: S-370) as a surfactant to dissolve it in 8.28 g of n-heptane by warming was added to the round-bottom flask using a funnel and an aqueous solution of a water-soluble ethylenically unsaturated monomer was further dispersed (step (B))
- step (C) the atmosphere in the system was well substituted with nitrogen while maintaining an inner temperature of the round-bottom flask containing the dispersion at 40°C and the polymerization reaction was performed by warming for 1 hour using a hot water bath at 70°C (step (C)).
- the stirring rate was increased to 1,000 rpm and the inner temperature was lowered to about 21°C.
- 128.8 g of 80 mass% acrylic acid was added and neutralized by adding dropwise 142.9 g of 30 mass% sodium hydroxide under stirring while cooling from the outside.
- aqueous solution of a water-soluble ethylenically unsaturated monomer at the second stage had a neutralization degree of 75 mol% and a concentration of 44% by mass.
- the aqueous monomer solution at the second stage was added to the cooled polymerization suspension at the first stage using a dropping funnel.
- reversed-phase suspension polymerization at the second stage was performed by warming for 1 hour using a hot water bath at 70°C.
- the reaction suspension was heated using an oil bath at 120°C and about 260 g of water was removed off the system by azeotropic distillation while refluxing n-heptane in the flask to obtain a dehydrated polymer dispersed in heptane.
- heptane dispersed dehydrated polymer 8.2 g of a 2% aqueous solution of ethylene glycol diglycidyl ether as a post-crosslinking agent was added and the post-crosslinking reaction was performed at 83°C for 2 hours. After heating using an oil bath at 120°C, n-heptane and water were removed off the system by distillation, followed by drying under a nitrogen gas flow to obtain 234 g of a water-absorbent resin having the shape of aggregated spherical particles.
- This water-absorbent resin had a median particle size of 310 ⁇ m, absorption capacity of physiological saline solution of 63 g/g, and a water content of 4.5% (A median particle size of primary particles is about 60 ⁇ m).
- Example 2 According to the same manner as that of Example 1, except that a solution prepared by warming 0.92 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) to dissolve it in 8.28 g of n-heptane by warming was added as a polymeric dispersion agent after adding a solution of a surfactant in the step (B) of Example 1, 236 g of a water-absorbent resin having the shape of aggregated spherical particles was obtained.
- a solution prepared by warming 0.92 g of a maleic anhydride-modified ethylene-propylene copolymer manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A
- This water-absorbent resin had a median particle size of 403 ⁇ m, absorption capacity of physiological saline solution of 65 g/g, and a water content of 3.7% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- n-heptane was added as a petroleum hydrocarbon dispersion medium and 0.92 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) was added as a polymeric dispersion agent and then this was warmed to dissolve it.
- a maleic anhydride-modified ethylene-propylene copolymer manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A
- step (A) After cooling to 61°C, the aqueous solution of a water-soluble ethylenically unsaturated monomer was added at once under a stirring rate of 500 rpm using a funnel and then dispersed by stirring at an inner temperature of 40°C for 10 minutes (step (A))
- a solution prepared by warming 0.92 g of a sucrose fatty acid ester (manufactured by Mitsubishi-Kagaku Foods Corporation, trade name: S-370) as a surfactant to dissolve it in 8.28 g of n-heptane by warming was added to the round-bottom flask using a funnel and an aqueous solution of a water-soluble ethylenically unsaturated monomer was further dispersed (step (B))
- step (C) the atmosphere in the system was well substituted with nitrogen while maintaining the inner temperature of the round-bottom flask containing the dispersion at 40°C and the polymerization reaction was performed by warming for 1 hour using a hot water bath at 70°C (step (C)).
- the stirring rate was increased to 1,000 rpm and the inner temperature was lowered to about 23°C.
- reversed-phase suspension polymerization at the second stage was performed by warming for 1 hour using a hot water bath at 70°C.
- the reaction solution was heated using an oil bath at 120°C and about 260 g of water was removed off the system by azeotropic distillation while refluxing n-heptane in the flask to obtain a dehydrated polymer dispersed in heptane.
- heptane dispersed dehydrated polymer 8.2 g of a 2% aqueous solution of ethylene glycol diglycidyl ether as a post-crosslinking agent was added and the post-crosslinking reaction was performed at 83°C for 2 hours. After heating using an oil bath at 120°C, n-heptane and water were removed off the system by distillation, followed by drying under a nitrogen gas flow to obtain 238 g of a water-absorbent resin having the shape of aggregated spherical particles.
- This water-absorbent resin had a median particle size of 352 ⁇ m, absorption capacity of physiological saline solution of 62 g/g, and a water content of 5.6% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- Example 3 According to the same manner as that of Example 3, except that a solution prepared by warming to dissolve the surfactant and, then, 0.92 g of an oxidized ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 220MP) as a polymeric dispersion agent in 8.28 g of n-heptane by warming was added in the step (B) of Example 3, 237 g of a water-absorbent resin having the shape of aggregated spherical particles spherical particles was obtained. This water-absorbent resin had a median particle size of 368 ⁇ m, absorption capacity of physiological saline solution of 60 g/g, and a water content of 5.1% (A median particle size of primary particles is about 60 ⁇ m).
- an oxidized ethylene-propylene copolymer manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 220MP
- Example 3 According to the same manner as that of Example 3, except that a solution prepared by warming to dissolve, in 8.28 g of n-heptane by warming, 0.92 g of tetraglyceryl stearate (manufactured by Mitsubishi-Kagaku Foods Corporation, trade name: TS4) in place of 0.92 g of a sucrose fatty acid ester (manufactured by Mitsubishi-Kagaku Foods Corporation, trade name: S-370) was used, and the reaction solution was cooled to about 20°C after completion of the polymerization at the first stage in the step (B) of Example 3, 234 g of a water-absorbent resin having the shape of aggregated spherical particles spherical particles was obtained.
- TS4 tetraglyceryl stearate
- S-370 sucrose fatty acid ester
- This water-absorbent resin had a median particle size of 293 ⁇ m, absorption capacity of physiological saline solution of 58 g/g, and a water content of 3.0% (A median particle size of primary particles of this water-absorbent resin is about 70 ⁇ m).
- Example 3 According to the same manner as that of Example 3, except that 0.92 g of an oxidized ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 4052E) was used as a polymeric dispersion agent in place of 0.92 g of the maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) in the step (A) of Example 3, 240 g of a water-absorbent resin having the shape of aggregated spherical particles spherical particles was obtained.
- HIWAX 4052E oxidized ethylene-propylene copolymer
- This water-absorbent resin had a median particle size of 353 ⁇ m, absorption capacity of physiological saline solution of 63 g/g, and a water content of 5.8% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- n-heptane was added as a petroleum hydrocarbon dispersion medium and 0.92 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) was added as a polymeric dispersion agent and, then, they were dissolved by warming.
- a maleic anhydride-modified ethylene-propylene copolymer manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A
- step (A) After cooling to 61°C, the aqueous solution of a water-soluble ethylenically unsaturated monomer was added at once under a stirring rate of 300 rpm using a funnel and then dispersed by stirring at the inner temperature of 40°C for 10 minutes (step (A))
- a solution prepared by warming to dissolve 0.92 g of a sucrose fatty acid ester (manufactured by Mitsubishi-Kagaku Foods Corporation, trade name: S-370) as a surfactant in 8.28 g of n-heptane by warming was added to the round-bottom flask using a funnel, and an aqueous solution of a water-soluble ethylenically unsaturated monomer was further dispersed at a stirring rate of 500 rpm (step (B)).
- step (C) The operation after completion of the polymerization at the first stage was performed according to the same manner as that of Example 3 to obtain 237 g of a water-absorbent resin having the shape of aggregated spherical particles.
- This water-absorbent resin had a median particle size of 372 ⁇ m, absorption capacity of physiological saline solution of 62 g/g, and a water content of 4.8% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- Example 7 According to the same manner as that of Example 7, except that a mixture of 0.46 g of an oxidized ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 4052E) and 0.46 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) was used as a polymeric dispersion agent in place of 0.92 g of the maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) in the step (A) of Example 7, 235 g of a water-absorbent resin having the shape of aggregated spherical particles spherical particles was obtained.
- This water-absorbent resin had a median particle size of 356 ⁇ m, absorption capacity of physiological saline solution of 63 g/g, and a water content of 4.5% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- Example 236 g of a water-absorbent resin having the shape of aggregated spherical particles This water-absorbent resin had a median particle size of 318 ⁇ m, absorption capacity of physiological saline solution of 62 g/g, and a water content of 4.6% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- n-heptane was added as a petroleum hydrocarbon dispersion medium
- 0.92 g of a sucrose fatty acid ester (manufactured by Mitsubishi-Kagaku Foods Corporation, trade name: S-370) was added as a surfactant
- 0.92 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., trade name: HIWAX 1105A) was added as a polymeric dispersion agent, followed by warming to dissolve them.
- the aqueous solution of a water-soluble ethylenically unsaturated monomer was added at once using a funnel under a stirring rate of 500 rpm.
- the atmosphere in the system was well substituted with nitrogen while maintaining the inner temperature at 40°C, and the polymerization reaction was performed by warming for 1 hour using a hot water bath at 70°C.
- the operation after completion of the polymerization at the first stage was performed according to the same manner as that of Example 3 to obtain 237 g of a water-absorbent resin having the shape of aggregated spherical particles.
- This water-absorbent resin had a median particle size of 348 ⁇ m, absorption capacity of physiological saline solution of 61 g/g, and a water content of 4.9% (A median particle of this water-absorbent resin size of primary particles is about 60 ⁇ m).
- This water-absorbent resin had a median particle size of 273 ⁇ m, absorption capacity of physiological saline solution of 60 g/g, and a water content of 3.5% (A median particle size of primary particles of this water-absorbent resin is about 70 ⁇ m).
- the sample obtained according to the same manner as that of Comparative Example 2 was further heated by a hot air dryer at 180°C for 3 hours to obtain 230 g of a water-absorbent resin having the shape of aggregated spherical particles.
- This water-absorbent resin had a median particle size of 356 ⁇ m, absorption capacity of physiological saline solution of 68 g/g, and a water content of 0.5% (A median particle size of primary particles of this water-absorbent resin is about 60 ⁇ m).
- the amount of the remaining dispersion medium and the results of an odor sensory test of water-absorbent resins obtained in Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Table 2.
- the amount of the petroleum hydrocarbon dispersion medium remaining used during the polymerization of the water-absorbent resin is remarkably decreased to 2,000 ppm or less and an odor originating from the dispersion medium is reduced.
- the water-absorbent resins of Examples 6 to 8 having the amount of the remaining dispersion medium of 500 ppm or less no odor originating from the dispersion medium was felt in the odor sensory test.
- a water-absorbent resin which contains a small remaining amount of a petroleum hydrocarbon dispersion medium used in reversed-phase suspension polymerization, and thus reducing an odor originating from the petroleum hydrocarbon dispersion medium, and also which is suitable for use in hygienic materials; an absorbent material and an absorbent article using the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007217173 | 2007-08-23 | ||
PCT/JP2008/064588 WO2009025235A1 (ja) | 2007-08-23 | 2008-08-14 | 衛生材用途に適した吸水性樹脂 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2184300A1 true EP2184300A1 (de) | 2010-05-12 |
EP2184300A4 EP2184300A4 (de) | 2011-02-16 |
EP2184300B1 EP2184300B1 (de) | 2019-01-23 |
Family
ID=40378140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08792469.2A Active EP2184300B1 (de) | 2007-08-23 | 2008-08-14 | Herstellungsverfahren für wasserabsorbierendes harz, das zur vewendung in hygieneprodukten geeignet ist |
Country Status (10)
Country | Link |
---|---|
US (2) | US20100331802A1 (de) |
EP (1) | EP2184300B1 (de) |
JP (1) | JP5439179B2 (de) |
KR (2) | KR20140147124A (de) |
CN (2) | CN101835809A (de) |
AU (1) | AU2008289997B2 (de) |
BR (1) | BRPI0815730B1 (de) |
CA (1) | CA2696087C (de) |
MX (1) | MX2010002149A (de) |
WO (1) | WO2009025235A1 (de) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103003313A (zh) * | 2010-07-28 | 2013-03-27 | 住友精化株式会社 | 吸水性树脂的制造方法 |
CN103003311A (zh) * | 2010-07-28 | 2013-03-27 | 住友精化株式会社 | 吸水性树脂的制造方法 |
CN103003310A (zh) * | 2010-07-28 | 2013-03-27 | 住友精化株式会社 | 吸水性树脂的制造方法 |
EP2599794A1 (de) * | 2010-07-28 | 2013-06-05 | Sumitomo Seika Chemicals CO. LTD. | Herstellungsverfahren für wasserabsorbierende harze |
EP2607383A1 (de) * | 2010-08-19 | 2013-06-26 | Sumitomo Seika Chemicals Co. Ltd. | Wasserabsorbierendes harz |
EP2615117A1 (de) * | 2010-09-06 | 2013-07-17 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierendes harz und verfahren zu seiner herstellung |
EP2653483A1 (de) * | 2010-12-16 | 2013-10-23 | Sumitomo Seika Chemicals CO. LTD. | Herstellungsverfahren für ein wasserabsorbierendes harz |
EP2752430A1 (de) * | 2011-08-30 | 2014-07-09 | Sumitomo Seika Chemicals CO. LTD. | Verfahren zur herstellung von wasserabsorbierendem harz und damit hergestelltes wasserabsorbierendes harz |
US9074022B2 (en) | 2006-04-27 | 2015-07-07 | Sumitomo Seika Chemicals Co., Ltd. | Process for production of water-absorbent resin |
EP2893974A1 (de) * | 2012-09-10 | 2015-07-15 | Sumitomo Seika Chemicals Co., Ltd. | Wasserabsorbierendes harz, wasserabsorbierender körper und wasserabsorbierendes produkt |
US9273156B2 (en) | 2010-11-15 | 2016-03-01 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing water-absorbent resin |
EP3023442A1 (de) * | 2011-08-03 | 2016-05-25 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierende harzpartikel, verfahren zur herstellung wasserabsorbierender harzpartikel, absorptionskörper, saugfähiger artikel und wasserdichtes material |
EP3153529B1 (de) | 2014-07-11 | 2019-07-31 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierendes harz und absorbierender artikel |
US11136420B2 (en) | 2014-07-11 | 2021-10-05 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and method of producing water-absorbent resin |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2631251B1 (de) * | 2010-10-18 | 2019-01-23 | Sumitomo Seika Chemicals Co. Ltd. | Verfahren zur herstellung wasserabsorbierender harzpartikel und wasserabsorbierende harzpartikel |
JP5637869B2 (ja) * | 2011-01-11 | 2014-12-10 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
US9061269B2 (en) | 2011-02-08 | 2015-06-23 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing water-absorbent resin |
EP2725039A4 (de) | 2011-06-24 | 2014-11-12 | Sumitomo Seika Chemicals | Verfahren zur herstellung eines wasserabsorbierenden harzes |
CN103857705B (zh) * | 2011-10-06 | 2015-08-26 | 住友精化株式会社 | 吸水性树脂粒子的制造方法 |
CN102504288B (zh) * | 2011-10-12 | 2013-09-25 | 浙江卫星石化股份有限公司 | 一种高吸水树脂的制备方法 |
WO2013128978A1 (ja) * | 2012-02-29 | 2013-09-06 | 住友精化株式会社 | 吸水性樹脂粒子の製造方法 |
CN105153350B (zh) * | 2015-07-28 | 2017-04-05 | 华南理工大学 | 一种三层网状结构的高加压吸收量吸水树脂及其制备方法 |
KR20180067940A (ko) | 2016-12-13 | 2018-06-21 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
JP6727627B2 (ja) | 2016-12-23 | 2020-07-22 | エルジー・ケム・リミテッド | 多孔性高吸水性樹脂の製造方法及び多孔性高吸水性樹脂 |
CN106726162A (zh) * | 2017-01-06 | 2017-05-31 | 广东川田卫生用品有限公司 | 一种新型卫生巾吸收体 |
WO2022181771A1 (ja) | 2021-02-26 | 2022-09-01 | 株式会社日本触媒 | 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品 |
US20240253012A1 (en) | 2021-05-12 | 2024-08-01 | Nippon Shokubai Co., Ltd. | Poly(meth)acrylic acid (salt) water-absorbing resin and absorbent article |
EP4338831A1 (de) | 2021-05-12 | 2024-03-20 | Nippon Shokubai Co., Ltd. | Wasserabsorbierendes harz auf basis von poly(meth)acrylsäure (salz) und saugfähiger körper |
CN113307904B (zh) * | 2021-06-16 | 2022-07-12 | 万华化学集团股份有限公司 | 一种吸水性树脂的制备方法 |
CN118354746A (zh) | 2021-12-07 | 2024-07-16 | 株式会社日本触媒 | 吸收性物品 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2014683A1 (de) * | 2006-04-27 | 2009-01-14 | Sumitomo Seika Chemicals Co., Ltd. | Verfahren zur herstellung von wasserabsorbierbarem harz |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187702A (ja) | 1984-10-05 | 1986-05-06 | Seitetsu Kagaku Co Ltd | 吸水性樹脂の製造方法 |
JPH066612B2 (ja) | 1986-01-25 | 1994-01-26 | 住友精化株式会社 | 吸水性樹脂の製造法 |
JPH03195709A (ja) * | 1989-12-25 | 1991-08-27 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
JPH03195713A (ja) * | 1989-12-25 | 1991-08-27 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
JP2938920B2 (ja) * | 1990-01-31 | 1999-08-25 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
JP3040438B2 (ja) * | 1990-08-21 | 2000-05-15 | 三菱化学株式会社 | 高吸水性ポリマーの製造法 |
JPH0912613A (ja) * | 1995-06-28 | 1997-01-14 | Mitsubishi Chem Corp | 吸水性樹脂の製造方法 |
JP3363000B2 (ja) * | 1995-09-11 | 2003-01-07 | 三菱化学株式会社 | 吸水性樹脂の製造方法 |
US6254990B1 (en) * | 1998-02-18 | 2001-07-03 | Nippon Shokubai Co., Ltd. | Surface-crosslinking process for water-absorbent resin |
EP1072630B1 (de) * | 1999-07-26 | 2004-12-01 | Nippon Shokubai Co., Ltd. | Wasser-absorbierende Zusammensetzung und ihre Verwendung |
US6803107B2 (en) * | 1999-09-07 | 2004-10-12 | Basf Aktiengesellschaft | Surface-treated superabsorbent polymer particles |
EP1456258B1 (de) * | 2001-12-19 | 2009-04-01 | Nippon Shokubai Co., Ltd. | Wasser absorbierendes harz und seine herstellungsverfahren |
CN100379764C (zh) * | 2003-05-13 | 2008-04-09 | 住友精化株式会社 | 制造吸水树脂的方法 |
EP1796831B1 (de) * | 2004-08-06 | 2020-01-15 | Nippon Shokubai Co.,Ltd. | Verfahren zur herstellung eines teilchenförmigen wasserabsorbierenden mittels, entsprechendes teilchenförmiges wasserabsorbierendes mittel und absorbierender artikel |
-
2008
- 2008-08-14 JP JP2009529016A patent/JP5439179B2/ja active Active
- 2008-08-14 US US12/673,924 patent/US20100331802A1/en not_active Abandoned
- 2008-08-14 MX MX2010002149A patent/MX2010002149A/es not_active Application Discontinuation
- 2008-08-14 CN CN200880113420A patent/CN101835809A/zh active Pending
- 2008-08-14 BR BRPI0815730-8A patent/BRPI0815730B1/pt active IP Right Grant
- 2008-08-14 AU AU2008289997A patent/AU2008289997B2/en not_active Ceased
- 2008-08-14 KR KR1020147031379A patent/KR20140147124A/ko not_active Application Discontinuation
- 2008-08-14 EP EP08792469.2A patent/EP2184300B1/de active Active
- 2008-08-14 CN CN201410010153.4A patent/CN103739744B/zh active Active
- 2008-08-14 KR KR1020107006127A patent/KR101520127B1/ko active IP Right Grant
- 2008-08-14 WO PCT/JP2008/064588 patent/WO2009025235A1/ja active Application Filing
- 2008-08-14 CA CA2696087A patent/CA2696087C/en not_active Expired - Fee Related
-
2013
- 2013-12-09 US US14/100,331 patent/US20140094570A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2014683A1 (de) * | 2006-04-27 | 2009-01-14 | Sumitomo Seika Chemicals Co., Ltd. | Verfahren zur herstellung von wasserabsorbierbarem harz |
Non-Patent Citations (1)
Title |
---|
See also references of WO2009025235A1 * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9074022B2 (en) | 2006-04-27 | 2015-07-07 | Sumitomo Seika Chemicals Co., Ltd. | Process for production of water-absorbent resin |
TWI499595B (zh) * | 2010-07-28 | 2015-09-11 | Sumitomo Seika Chemicals | 吸水性樹脂的製造方法 |
CN103003311A (zh) * | 2010-07-28 | 2013-03-27 | 住友精化株式会社 | 吸水性树脂的制造方法 |
EP2599795A1 (de) * | 2010-07-28 | 2013-06-05 | Sumitomo Seika Chemicals CO. LTD. | Herstellungsverfahren für wasserabsorbierende harze |
EP2599797A1 (de) * | 2010-07-28 | 2013-06-05 | Sumitomo Seika Chemicals Co. Ltd. | Herstellungsverfahren für wasserabsorbierbare harze |
EP2599794A1 (de) * | 2010-07-28 | 2013-06-05 | Sumitomo Seika Chemicals CO. LTD. | Herstellungsverfahren für wasserabsorbierende harze |
EP2599796A1 (de) * | 2010-07-28 | 2013-06-05 | Sumitomo Seika Chemicals CO. LTD. | Herstellungsverfahren für wasserabsorbierbare harze |
US9132413B2 (en) | 2010-07-28 | 2015-09-15 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing a water-absorbent resin |
CN103003313A (zh) * | 2010-07-28 | 2013-03-27 | 住友精化株式会社 | 吸水性树脂的制造方法 |
CN103003311B (zh) * | 2010-07-28 | 2015-02-25 | 住友精化株式会社 | 吸水性树脂的制造方法 |
CN103003310B (zh) * | 2010-07-28 | 2015-08-12 | 住友精化株式会社 | 吸水性树脂的制造方法 |
CN103003310A (zh) * | 2010-07-28 | 2013-03-27 | 住友精化株式会社 | 吸水性树脂的制造方法 |
US8841395B2 (en) | 2010-07-28 | 2014-09-23 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing a water-absorbent resin |
US8859700B2 (en) | 2010-07-28 | 2014-10-14 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing a water-absorbent resin |
EP2599794A4 (de) * | 2010-07-28 | 2015-02-11 | Sumitomo Seika Chemicals | Herstellungsverfahren für wasserabsorbierende harze |
US8883944B2 (en) | 2010-07-28 | 2014-11-11 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing a water-absorbent resin |
EP2599797A4 (de) * | 2010-07-28 | 2014-11-26 | Sumitomo Seika Chemicals | Herstellungsverfahren für wasserabsorbierbare harze |
EP2599795A4 (de) * | 2010-07-28 | 2014-11-26 | Sumitomo Seika Chemicals | Herstellungsverfahren für wasserabsorbierende harze |
EP2599796A4 (de) * | 2010-07-28 | 2014-11-26 | Sumitomo Seika Chemicals | Herstellungsverfahren für wasserabsorbierbare harze |
CN103003313B (zh) * | 2010-07-28 | 2015-08-19 | 住友精化株式会社 | 吸水性树脂的制造方法 |
EP2607383A4 (de) * | 2010-08-19 | 2014-11-05 | Sumitomo Seika Chemicals | Wasserabsorbierendes harz |
EP2607383A1 (de) * | 2010-08-19 | 2013-06-26 | Sumitomo Seika Chemicals Co. Ltd. | Wasserabsorbierendes harz |
EP2615117A4 (de) * | 2010-09-06 | 2015-01-21 | Sumitomo Seika Chemicals | Wasserabsorbierendes harz und verfahren zu seiner herstellung |
EP2615117A1 (de) * | 2010-09-06 | 2013-07-17 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierendes harz und verfahren zu seiner herstellung |
US9273156B2 (en) | 2010-11-15 | 2016-03-01 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing water-absorbent resin |
EP2653483A1 (de) * | 2010-12-16 | 2013-10-23 | Sumitomo Seika Chemicals CO. LTD. | Herstellungsverfahren für ein wasserabsorbierendes harz |
EP2653483A4 (de) * | 2010-12-16 | 2014-04-30 | Sumitomo Seika Chemicals | Herstellungsverfahren für ein wasserabsorbierendes harz |
EP3398974B1 (de) * | 2011-08-03 | 2022-08-24 | Sumitomo Seika Chemicals Co., Ltd. | Wasserabsorbierende harzpartikel, verfahren zur herstellung wasserabsorbierender harzpartikel, absorptionskörper, saugfähiger artikel und wasserdichtes material |
EP3023442A1 (de) * | 2011-08-03 | 2016-05-25 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierende harzpartikel, verfahren zur herstellung wasserabsorbierender harzpartikel, absorptionskörper, saugfähiger artikel und wasserdichtes material |
EP3398974A1 (de) | 2011-08-03 | 2018-11-07 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierende harzpartikel, verfahren zur herstellung wasserabsorbierender harzpartikel, absorptionskörper, saugfähiger artikel und wasserdichtes material |
EP2740747B1 (de) | 2011-08-03 | 2017-03-15 | Sumitomo Seika Chemicals Co. Ltd. | Wasserabsorbierende harzpartikel, verfahren zur herstellung wasserabsorbierender harzpartikel, absorptionskörper, saugfähiger artikel und wasserdichtes material |
EP2752430A1 (de) * | 2011-08-30 | 2014-07-09 | Sumitomo Seika Chemicals CO. LTD. | Verfahren zur herstellung von wasserabsorbierendem harz und damit hergestelltes wasserabsorbierendes harz |
EP2752430B1 (de) | 2011-08-30 | 2016-07-06 | Sumitomo Seika Chemicals CO. LTD. | Verfahren zur herstellung von wasserabsorbierendem harz und damit hergestelltes wasserabsorbierendes harz |
EP2752430A4 (de) * | 2011-08-30 | 2015-04-15 | Sumitomo Seika Chemicals | Verfahren zur herstellung von wasserabsorbierendem harz und damit hergestelltes wasserabsorbierendes harz |
EP2893974A4 (de) * | 2012-09-10 | 2016-04-20 | Sumitomo Seika Chemicals | Wasserabsorbierendes harz, wasserabsorbierender körper und wasserabsorbierendes produkt |
EP2893974A1 (de) * | 2012-09-10 | 2015-07-15 | Sumitomo Seika Chemicals Co., Ltd. | Wasserabsorbierendes harz, wasserabsorbierender körper und wasserabsorbierendes produkt |
US10265226B2 (en) | 2012-09-10 | 2019-04-23 | Sumitomo Seika Chemicals Co., Ltd. | Water-absorbent resin, water-absorbent material, and water-absorbent article |
EP3153529B1 (de) | 2014-07-11 | 2019-07-31 | Sumitomo Seika Chemicals CO. LTD. | Wasserabsorbierendes harz und absorbierender artikel |
US11136420B2 (en) | 2014-07-11 | 2021-10-05 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and method of producing water-absorbent resin |
Also Published As
Publication number | Publication date |
---|---|
WO2009025235A1 (ja) | 2009-02-26 |
AU2008289997A1 (en) | 2009-02-26 |
EP2184300A4 (de) | 2011-02-16 |
BRPI0815730B1 (pt) | 2020-10-20 |
US20100331802A1 (en) | 2010-12-30 |
BRPI0815730A2 (pt) | 2015-02-10 |
JP5439179B2 (ja) | 2014-03-12 |
CA2696087C (en) | 2017-04-25 |
CN103739744A (zh) | 2014-04-23 |
AU2008289997B2 (en) | 2013-05-09 |
EP2184300B1 (de) | 2019-01-23 |
KR101520127B1 (ko) | 2015-05-13 |
MX2010002149A (es) | 2010-08-02 |
CN103739744B (zh) | 2015-12-30 |
JPWO2009025235A1 (ja) | 2010-11-25 |
CA2696087A1 (en) | 2009-02-26 |
CN101835809A (zh) | 2010-09-15 |
US20140094570A1 (en) | 2014-04-03 |
KR20100052543A (ko) | 2010-05-19 |
KR20140147124A (ko) | 2014-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2184300B1 (de) | Herstellungsverfahren für wasserabsorbierendes harz, das zur vewendung in hygieneprodukten geeignet ist | |
EP2893974B1 (de) | Wasserabsorbierendes harz, wasserabsorbierender körper und wasserabsorbierendes produkt | |
EP2014683B1 (de) | Verfahren zur herstellung von wasserabsorbierbarem harz | |
EP2674441B1 (de) | Verfahren zur herstellung eines wasserabsorbierenden harzes | |
EP2607383B1 (de) | Wasserabsorbierendes harz | |
DE69728349T2 (de) | Wasserabsorbierendes Mittel und Verfahren zur Herstellung davon | |
EP3604360A1 (de) | Wasserabsorbierendes harzteilchen | |
KR101841799B1 (ko) | 흡수성 수지의 제조 방법 | |
EP3604366A1 (de) | Wasserabsorbierendes harz | |
EP2752430B1 (de) | Verfahren zur herstellung von wasserabsorbierendem harz und damit hergestelltes wasserabsorbierendes harz | |
US20200353443A1 (en) | Water-absorbent resin | |
EP2599795A1 (de) | Herstellungsverfahren für wasserabsorbierende harze | |
EP2725039A1 (de) | Verfahren zur herstellung eines wasserabsorbierenden harzes | |
EP3936538A1 (de) | Wasserabsorbierende harzteilchen und verfahren zu deren herstellung, absorbierender körper absorbierender artikel und verfahren zur anpassung der permeationsgeschwindigkeit | |
EP3936540A1 (de) | Wasserabsorbierende harzteilchen und verfahren zur herstellung davon, absorbierender körper und absorbierender artikel | |
EP2599794B1 (de) | Herstellungsverfahren für wasserabsorbierende harze | |
EP3936530A1 (de) | Saugfähiger körper, saugfähiger artikel und verfahren zur einstellung der permeationsgeschwindigkeit | |
EP3960795A1 (de) | Wasserabsorbierende harzpartikel, saugfähiger körper und saugfähiger artikel | |
EP4230663A1 (de) | Wasserabsorbierendes harz, absorber und saugfähiger artikel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100311 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20110114 |
|
17Q | First examination report despatched |
Effective date: 20111031 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08F 2/32 20060101AFI20180726BHEP Ipc: A61L 15/60 20060101ALI20180726BHEP Ipc: C08F 2/14 20060101ALI20180726BHEP Ipc: C08F 20/02 20060101ALI20180726BHEP Ipc: C08F 20/06 20060101ALI20180726BHEP Ipc: B01J 20/26 20060101ALI20180726BHEP Ipc: A61F 13/53 20060101ALI20180726BHEP Ipc: A61F 13/49 20060101ALI20180726BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180817 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1091384 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008058861 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190423 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190523 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1091384 Country of ref document: AT Kind code of ref document: T Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190523 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190423 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008058861 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
26N | No opposition filed |
Effective date: 20191024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190814 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080814 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240821 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240828 Year of fee payment: 17 |