EP2184115A1 - Hydrophobe Beschichtung von Kondensatoren im eingebauten Zustand - Google Patents

Hydrophobe Beschichtung von Kondensatoren im eingebauten Zustand Download PDF

Info

Publication number
EP2184115A1
EP2184115A1 EP09174287A EP09174287A EP2184115A1 EP 2184115 A1 EP2184115 A1 EP 2184115A1 EP 09174287 A EP09174287 A EP 09174287A EP 09174287 A EP09174287 A EP 09174287A EP 2184115 A1 EP2184115 A1 EP 2184115A1
Authority
EP
European Patent Office
Prior art keywords
condenser
coating
built
condenser tube
hydrophobic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09174287A
Other languages
English (en)
French (fr)
Other versions
EP2184115B1 (de
Inventor
Detlef Haje
Tobias Jockenhoevel
Heinrich Zeininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL09174287T priority Critical patent/PL2184115T3/pl
Publication of EP2184115A1 publication Critical patent/EP2184115A1/de
Application granted granted Critical
Publication of EP2184115B1 publication Critical patent/EP2184115B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2254/00Tubes
    • B05D2254/02Applying the material on the exterior of the tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means

Definitions

  • the present invention relates to a method for producing a condenser for a thermal power plant and the condenser for the thermal power plant. Furthermore, the invention relates to a device for coating a built-in condenser tube with a hydrophobic coating.
  • a steam turbine In a steam turbine, the total enthalpy of a water vapor is exploited to convert a thermal energy, such as nuclear energy, coal or other energy sources, into mechanical energy.
  • a thermal energy such as nuclear energy, coal or other energy sources
  • steam is supplied from a liquid working medium, such as water, in a steam generator and fed to a turbine.
  • an enthalpy difference of the steam can be used to generate mechanical energy.
  • a condenser or a steam condenser Downstream of the turbine, a condenser or a steam condenser is arranged to provide an isobaric condensation of the water vapor.
  • vapor condensation surface capacitors for steam turbine plants wherein the surface capacitors have a plurality of uncoated capacitor tubes.
  • the condenser tubes which are filled with a cooling working medium, usually takes place a film condensation, so that the liquid vapor passes into a liquid state of matter.
  • the condenser tubes can be hydrophobic coated to provide a targeted transition from film condensation to dropwise condensation.
  • a droplet condensation By means of a droplet condensation, an increase in the heat transfer can be achieved, resulting in an improvement in the heat transfer coefficient about 20%. This in turn leads to an improvement of the efficiency of the capacitor (smaller Gr.technik) or to a reduction in the cost and space with the same Graderness.
  • a method for manufacturing a condenser for a thermal power plant is described.
  • a condenser tube is installed in a carrier for a condenser tube bundle of the condenser.
  • the built-in condenser tube is coated with a hydrophobic coating.
  • an apparatus for coating a built-in condenser tube having a hydrophobic coating according to the above-described manufacturing methods is provided.
  • the device has a spray head for coating the built-in condenser tube with the hydrophobic coating.
  • a condenser for a thermal power plant is provided.
  • the capacitor is manufactured by the method described above.
  • the condenser has a support with a built-in condenser tube, the built-in condenser tube having a hydrophobic coating.
  • condenser tube bundle may be understood to mean a condenser tube or a multiplicity of condenser tubes which are held in a carrier (condenser tube carrier) at a specific distance from one another and form a condenser tube unit or condenser tube bundle.
  • a water vapor to be cooled can impinge on a condenser tube bundle so that the water vapor can flow past the individual condenser tubes through the condenser tube bundle.
  • the carrier may further be configured to space the individual condenser tubes a defined distance so that the water vapor can flow between the condenser tubes and be cooled by the condenser tubes.
  • the carrier may for example consist of tube plates and retaining walls, which have holes and receiving units where the individual condenser tubes can be attached.
  • hydrophobic or “hydrophobic coating” can be understood as meaning a surface which is water-repellent or on which dropwise condensation can take place.
  • hydrophobic coating may in the following also be understood to mean a coating which has an oleophobic effect, that is to say which has an oil-repellent effect.
  • a hydrophobic coating has a contact angle with liquid drops of over 90 °. The contact angle can range up to 130 ° in hydrophobic coatings. With structured surfaces, a superhydrophobic effect can be achieved with a contact angle of greater than 130 ° or greater than 160 ° (degrees) (eg, Lotus effect).
  • the contact angle defines an angle between a surface of a coating and a vector tangent to a drop of liquid at the point of contact of the drop with a component surface.
  • a contact angle of more than 90 ° a droplet shape forms on a surface in the case of a water droplet, so that droplet condensation can be provided at a contact angle of more than 90 °.
  • capacitor tubes are coated prior to installation in the carrier and inserted after the coating in the carrier for the condenser tube bundle.
  • Hydrophobic coatings have sensitive properties such that they have a low abrasion resistance and a high risk of injury to the hydrophobic coatings on the condenser tubes during installation.
  • a coating of the condenser tubes with superhydrophobic layers may be particularly desirable, with such superhydrophobic layers being particularly sensitive to mechanical stress such that retrofitting of the coated condenser tubes results in a high risk of coating damage.
  • the coating can also be damaged by the attachment methods of the condenser tubes to the support of the condenser tube bundle.
  • Condenser tubes are welded to the carrier, for example, which can result in injury to the hydrophobic coating.
  • a high maintenance is necessary to retrofit hydrophobically coated condenser tubes by means of pipe replacement, so that long maintenance and set-up times exist.
  • a hydrophobic coating is applied to a built-in condenser tube.
  • the hydrophobic coating is applied to a capacitor tube already fixed in a condenser tube bundle.
  • the outer tubes of a condenser tube bundle contribute most to the condensation performance of the condenser. Therefore, the advantages of the invention can already be achieved by the outer condenser tubes are first installed in the carrier of the condenser tube bundle and coated in an installed state with the hydrophobic coating. Thus, at least the outer condenser tubes of the condenser tube bundle have a high quality hydrophobic coating.
  • the coating of the built-in condenser tube with the hydrophobic coating has at least one positioning of a spray device on the carrier or relative to the carrier.
  • a spraying of the hydrophobic coating is then provided in order to coat the built-in condenser tube with the hydrophobic coating.
  • the spray coating By means of the spray coating, a very thin and uniform application of the hydrophobic coating on the built-in condenser tube can be provided due to a very fine spray dust of the hydrophobic coating dimensions.
  • the step of coating the built-in condenser tube with the hydrophobic coating comprises moving the spraying device during spraying at a uniform feed along an extending direction of the built-in condenser tube.
  • a uniform spraying or coating of the installed condenser tube can be provided automatically. Irregularities in the spray application of the hydrophobic coating can occur due to an irregular manual feed, especially with manual application of a coating, so that different layer thicknesses are achieved on the condenser tube.
  • the spray device which provides a uniform feed, a predefined and uniform layer thickness of the hydrophobic coating can be provided so that predefined and improved capacitor effects of the condenser tube can be achieved.
  • a plurality of layers of the hydrophobic coating can be applied by repeated method with the uniform feed.
  • a hydrophobic coating may consist of 10, 12 or more sublayers.
  • a uniform feed orthogonal to the extension direction of the built-in condenser tube can be provided.
  • the capacitor is mounted on the thermal power plant during coating and, e.g. already in operation before the coating process.
  • the power plant operator can thus make a repair or a job of hydrophobic coating on the built-condenser tube without emptying the condenser tubes and thus with minimal effort. An expansion of the condenser tube and thus interrupting the operation of the capacitor can be avoided.
  • the built-in capacitor tube is coated with the hydrophobic coating by means of a spread coating.
  • a condenser tube can be coated in a simple and rapid manner by means of the hydrophobic coating.
  • coating brush devices can be used.
  • the spray device comprises a spray head, wherein coating the built-in condenser tube with the hydrophobic coating further comprises the step of introducing the spray head into the carrier to coat the built-in condenser tube with the hydrophobic coating.
  • the spray head in addition to the spraying of the outer condenser tubes of the condenser tube bundle, there is also provided a way to coat the inside of a condenser tube bundle.
  • the spray head can be introduced into the carrier in such a way that the spray head can be guided between the condenser tube spacings and thus can coat internal condenser tubes which, for example, have no direct connection to the conurbation of the condenser tube bundle.
  • concealed condenser tubes can be coated with the hydrophobic coating in the installed state, so that an expansion of these inner tubes also may not be necessary.
  • the spray device can be positioned on or in the carrier of the condenser tube bundle and provide a spray application of the coating by means of the uniform feed along the condenser tubes.
  • the step of coating the built-in condenser tube with the hydrophobic coating further comprises electroplating the built-in condenser tube.
  • electro-spray painting for example, the degree of coating can be improved by electrostatic effects.
  • the spray of the hydrophobic coating can be electrostatically charged during application, for example at 35kV (kilovolts), 40kV or 50kV, and sprayed onto grounded capacitor tubes.
  • the condenser tubes are connected to a ground potential.
  • the carrier of the condenser tube bundle may be a metallic conductor and thus be used as an electrically conductive structural component.
  • the condenser tubes themselves or the electrically conductive structural components can be provided with a connection to the ground (ground, ground potential).
  • the hydrophobic coating may be, for example, a voltage source be electrostatically charged.
  • the spray head may nevertheless deposit on the opposite side of the condenser tubes due to the electrostatic charge, so that a hydrophobic coating can also be provided at opposite points of the condenser tubes.
  • electro-spray painting by properly selecting the dosage of the hydrophobic coating, and with appropriate choice of feed or applied static stress, a predefined thin and uniform hydrophobic coating can be provided on the condenser tubes so that predefined hydrophobic properties can be provided on each of the condenser tubes.
  • the hydrophobic coating on the built-in condenser tube is crosslinked by means of UV curing, dual cure and / or thermal curing.
  • crosslinking can be understood as meaning a connection of the coating to a surface of the condenser tubes.
  • crosslinking may mean that the coating is firmly bonded to the surface of the condenser tubes. This is made possible for example by the fact that the molecules of the coating combine with the atoms / molecules of the condenser tube surface or that molecules of the coating intervene in cavities of the surface of the condenser tube and thus create a firm connection.
  • UV curing an ultraviolet (UV) light is irradiated in the direction of the coating by means of a UV emitter, so that crosslinking of the coating occurs due to the excitation of the molecules in the coating and due to the resulting temperature.
  • UV emitter In the case of UV curing, an ultraviolet (UV) light is irradiated in the direction of the coating by means of a UV emitter, so that crosslinking of the coating occurs due to the excitation of the molecules in the coating and due to the resulting temperature.
  • Another technology for crosslinking by means of UV curing is the dual-cure process, in which the curing is first initiated by UV radiation and then the hydrophobic coating is completely cured at room temperature, so that crosslinking takes place.
  • thermal cure describes crosslinking by curing due to the application of thermal energy.
  • the temperature ranges in the thermal curing can be between 50 ° C to 100 ° C or in the range between 100 ° C and 200 ° C or between 100 ° C to 250 ° C.
  • the thermal energy can be applied for example by means of radiant heaters, heating coils, resistance heaters or hot air blower.
  • the thermal energy can be achieved for curing by means of a heating fluid in the condenser tubes, so that no further thermal energy sources can be needed.
  • the working fluid in the condenser tubes can be drained to avoid adverse heat capacity of a fluid-filled tube.
  • X organic modification of the alkoxide
  • the coating is produced by hydrolysis and condensation of the metal alkoxides.
  • the organic modification of the metal oxide can affect the properties of the coating.
  • the hydrophobic side chains X e.g., alkyl chains, alkyl groups, fluoroalkyl chains, siloxane groups
  • the organic modification may have sufficient water vapor stability.
  • the described hydrophobic sol-gel based coating material can be further modified by the incorporation of surface treated nano- or microscale particles, for example, whereby the mechanical abrasion resistance or the corrosion resistance can be improved.
  • the hydrophobic sol-gel coatings can be applied to the substrate (condenser tube) in the sol-gel process, for example by wet chemical methods such as spraying, dipping, flooding, rolling or brushing.
  • the coatings are then thermally cured or crosslinked.
  • the temperature ranges of the crosslinking step described above can be used, but also a curing temperature in temperature ranges from room temperature up to 400 ° C (Celsius) are possible. A higher curing temperature above 400 ° C can lead to a vitreous layer, whereby the hydrophobic properties can be reduced.
  • a film thickness in a range of 100 nm (nanometers) to 100 ⁇ m (micrometers) can be achieved.
  • the hydrophobic coating on the built-in condenser tube can be applied by means of the sol-gel method such that, for example, the contact angle of the hydrophobic coating is 90 ° (degrees), 100 ° or 120 °.
  • the condenser is a steam condenser and the thermal power plant is a steam turbine plant.
  • the apparatus for coating a built-in condenser tube with the hydrophobic coating according to the manufacturing method described above has positioning means for positioning the device relative to the carrier of the condenser tube bundle. Furthermore, the device has a movement device for moving the spray head along and / or transversely to an extension direction of the condenser tube.
  • the positioning device may for example be an independent unit and be fixed relative to the carrier. On the other hand, the positioning device can be attached to the carrier itself and support the coating device.
  • the device for coating the built-in condenser tube may be, for example, the spraying device.
  • the coating apparatus has the spray head for coating the built-in condenser tube with the hydrophobic coating.
  • the spray head may, for example, consist of a nozzle which can apply the hydrophobic coating in a fine atomization on a surface of the condenser tubes.
  • the movement device can be movably connected to the positioning device and moved along a predefined linear movement direction, so that a uniform application of the hydrophobic coating to the condenser tubes can be provided by means of the spray head.
  • the spray head is set up such that the hydrophobic coating can be applied to the built-in condenser tube by means of electro-spray painting.
  • the spray head can be connected to a voltage source and thus electrostatically charge a spray of the hydrophobic coating.
  • the device for coating the built-in condenser tube has a connecting tube.
  • the connecting tube can connect the moving device and the spray head.
  • the connecting tube has a helical shape, wherein the pitch of the helical shape can be adapted to a condenser tube radius and to the condenser tube spacings of the condenser tubes in the condenser tube bundle.
  • the helix shape of the connecting tube describes a helical line, similar to a corkscrew.
  • the pitch of the helical shape can be predefined fixedly on condenser tube radii and on the condenser tube distances, and the spray head can be screwed or screwed in along the condenser tubes by rotation of the connecting tube.
  • the connecting tube can thus be adapted already during its manufacture firmly to the condenser tube radii and the condenser tube spacings.
  • the connecting tube may be made of an elastic material or deformable material, such as For example, rubber, so that during rotation, the connecting tube in the condenser tube bundle adapts the connecting tube to the condenser tube radii and the condenser tube spacings and thus forms the helical shape.
  • a way can be provided for coating an existing condenser tube bundle of a plurality of condenser tubes with a hydrophobic coating.
  • a hydrophobic coating Even inside condenser tubes of the condenser tube bundle can be coated with the hydrophobic coating. An expansion of the inside and thus hidden condenser tubes from the condenser tube bundle is thus no longer necessary to provide a hydrophobic coating of the condenser tubes.
  • the capacitor is designed as a heating capacitor.
  • a heating condenser can be understood to mean a condenser which is supplied with a higher vapor pressure in order to shift the condensation point of the vapor into higher temperature ranges.
  • the high vapor pressure in the heating condenser can be generated, for example, by taking high-pressure, high-temperature steam from a turbine stage of a thermal power plant and then supplying it to the heating condenser.
  • the Graedtechnik ie the temperature difference between a primary and secondary return temperature
  • the Graedtechnik ie the temperature difference between a primary and secondary return temperature
  • a slightly higher temperature of the heat transfer medium fluid of the district heating network
  • a smaller heat exchanger surface can be used at the same rate (cost and / or space savings), or the performance of an existing heat exchanger can be increased.
  • the condenser is designed as a high-pressure preheater or as a low-pressure preheater.
  • a low pressure preheater may be placed in front of a feed water tank and the working fluid (e.g., water) in condensed liquid state obtained from so-called condensate pumps.
  • the working fluid e.g., water
  • steam from the steam turbine can be used to remove pressurized steam and supply it to the low pressure preheater.
  • the temperature level of the working fluid is increased in the low-pressure preheater and thus also in the subsequent feed water tank. This increase in the temperature level increases the efficiency of the steam cycle in the thermal power plant.
  • an improvement / restoration of the function and / or a cost reduction and / or a power increase of the apparatus is achieved by means of the new solution.
  • a high-pressure preheater can be arranged between the feed water tank and the steam generator of the thermal power plant. Similar to the low-pressure preheater, the high-pressure preheater is supplied with a hot steam from the steam turbines that is under (higher) pressure. Thus, the energy level, in particular the temperature level, of the feed water entering the steam generator is increased. Thus, an efficiency of the steam cycle in the thermal power plant can be increased. Improvements in function, cost and / or performance can be achieved in a similar manner to the low pressure preheater.
  • this is used in the thermal power plant of a cogeneration plant.
  • a cogeneration plant generates electricity and heat using a cogeneration process.
  • the branched heat of the steam cycle in the heating power plant can be dissipated via the condenser (eg designed as a heating condenser) or another heat exchanger to a working medium of a district heating circuit.
  • the condenser eg designed as a heating condenser
  • the unused waste heat can thus be used in a district heating system for further use.
  • Fig. 1 shows an exemplary embodiment of a capacitor 100, such as a steam condenser 100, for a thermal power plant, such as a steam turbine plant.
  • the capacitor 100 can be coated with the described production method with a hydrophobic coating.
  • the capacitor 100 in this case has a carrier 105, in which built-in condenser tubes 101 are attached.
  • a built-in condenser tube 101 has a hydrophobic coating.
  • a condenser tube 101 is first installed in the carrier 105 for a condenser tube bundle 203 of the condenser 100.
  • the built-in condenser tube 101 is coated with a hydrophobic coating.
  • the carrier 105 may be used to support and fix each of the condenser tubes 101 so that the condenser tube bundle 203 may be provided from the plurality of fixed condenser tubes 101.
  • the condenser tube bundle 203 has outer condenser tubes 101 and inner condenser tubes 101, which have no contact with the surroundings of the condenser tube bundle 203.
  • the built-in condenser tubes 101 have a cooling fluid, for example cooling water, in order to provide condensation of the water vapor by cooling down a passing steam. Due to the hydrophobic coating of the built-in condenser tubes 101, there is also a dropwise condensation of the passing steam.
  • a cooling fluid for example cooling water
  • a hydrophobic coating can be applied to the condenser tubes 101 by means of the spraying device 106.
  • the condenser tubes 101 are already in an installed state on the carrier 105 when the hydrophobic coating is applied, so that a time-consuming expansion for coating the condenser tubes 101 is not necessary. Furthermore, it is avoided that the hydrophobic coating of a condenser tube 101 is damaged during its installation.
  • the spray device 106 may, for example, have a spray head 102 with which a hydrophobic coating can be sprayed onto the condenser tubes 101.
  • a defined spray cone 104 forms.
  • a curtain coating e.g. using brush devices, possible.
  • the spray head 102 can be moved along the longitudinal direction (extension direction) of the outer condenser tubes 101, so that at least the outer condenser tubes 101 can be charged with the hydrophobic coating. Furthermore, the spray head 102 of the spray device 106 may be made so small that the spray head 102 can be inserted between a condenser tube distance a. Thus, the spray device 106 may at least also coat the second row of the condenser tubes 101 in the condenser tube bundle 203 with a hydrophobic coating.
  • the spraying device 106 can have a connecting tube 103, so that all the inner condenser tubes 101 of the condenser tube bundle 203 can also be coated with the hydrophobic coating in an installed state.
  • the connecting tube 103 can have a helical shape (helix), wherein the pitch of the helical line can be selected such that the pitch adapts to the condenser tube radii r and to the condenser tube spacings a.
  • each inner condenser tube 101 can be coated by means of the hydrophobic coating.
  • Fig. 2 11 illustrates a plan view of built-in condenser tubes 101 in the condenser tube bundle 203.
  • the carrier 105 of the condenser tube bundles 203 has, for example, a condenser tube bottom 202 and a plurality of support walls 201 for supporting the condenser tubes 101.
  • the hydrophobic coating can be applied either along the longitudinal direction or along the transverse direction of the condenser tubes.
  • the spray device 106 may be applied to the hydrophobic coating either in one direction or alternately. Furthermore, the spraying device 106 can be moved along the longitudinal direction or the transverse direction of the condenser tubes 101.
  • the spray device 106 may move the spray head alternately or alternately in a direction along the extending direction of the condenser tubes 101 or along the transverse direction.
  • a mixture of both directions of movement is possible.
  • the spraying device 106 can be moved along a positioning device or a moving device and during the process, the spraying head 102 can rotate transversely relative to the direction of movement of the spraying device 106 or perform a pitching motion, so that a mixture of two spraying directions is made possible. This allows a rapid application of the hydrophobic coating.
  • Fig. 3 shows an exemplary embodiment of a structure for applying the hydrophobic coating by means of electro-spray painting.
  • the condenser tubes 101 or the carrier 105 can be electrically conductive and thus represent electrically conductive structural components 303. These electrically conductive Structural components 303 may be connected to a ground potential 302.
  • the spray device 106 and / or the spray head 102 are connected to a voltage source 301 so that the spray of the hydrophobic coating can be electrostatically charged, for example at 30kV, 40kV, 50kV or 60kV (kilovolts). Due to the grounded condenser tubes 101, the electrostatically charged spray of the hydrophobic coating is attracted, so that the spray evenly applied to the condenser tubes 101.
  • a built-in condenser tube 101 comprising the hydrophobic coating can be sprayed. Even if the spray head 102 applies the spray mist on one side of the condenser tube, the spray mist can be attracted to the opposite side of the condenser tube 101 due to the electrostatic attraction, so that the hydrophobic coating also deposits on the opposite side. Thus, even with poorly accessible condenser tubes 101 in the installed state, a uniform coating of the hydrophobic coating can be provided.
  • a condenser tube bundle 203 may be provided for a condenser 100 having built-in and hydrophobically coated condenser tubes 101. Due to the coating of the condenser tubes 101 in the installed state, the manufacturing process of the condenser tube bundle 203 can be accelerated since the coating process need not be performed individually for each condenser tube 101, but once for the entirety of the condenser tubes 101 installed. In addition, in the course of the maintenance of a capacitor 100 already mounted on the steam turbine plant and in operation, a coating of the condenser tubes 101 can be provided without the condenser tubes 101 having to be removed.
  • Damage to the hydrophobic coating which occurs when installing a condenser tube 101 in the carrier 105 of the condenser tube bundle 203, can also be avoided because the condenser tubes 101 are coated after the installation of the condenser tubes 101 in the carrier 105 of the condenser tube bundle 203 with the hydrophobic coating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Kondensators (100) für eine Wärmekraftanlage. Das Herstellverfahren weist zunächst das Einbauen eines Kondensatorrohres (101) in einen Träger (105) für ein Kondensatorrohrbündel (203) des Kondensators (100) auf. Das eingebaute Kondensatorrohr (101) wird mit einer hydrophoben Beschichtung beschichtet.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Kondensators für eine Wärmekraftanlage sowie den Kondensator für die Wärmekraftanlage. Ferner betrifft die Erfindung eine Vorrichtung zum Beschichten eines eingebauten Kondensatorrohres mit einer hydrophoben Beschichtung.
  • Hintergrund der Erfindung
  • In einer Dampfturbine wird die Totalenthalpie eines Wasserdampfes ausgenutzt, um eine Wärmeenergie, beispielsweise von Atomenergie, Kohle oder anderen Energieträgern, in mechanische Energie umzuwandeln. Dabei wird aus einem flüssigen Arbeitsmedium, wie beispielsweise Wasser, in einem Dampferzeuger Dampf bereitgestellt und einer Turbine zugeführt. In dieser Turbine kann eine Enthalpiedifferenz des Dampfes genutzt werden, um mechanische Energie zu erzeugen. Der Turbine nachgeschaltet wird ein Kondensator bzw. ein Dampfkondensator angeordnet, um eine isobare Kondensation des Wasserdampfes bereitzustellen.
  • Als Dampfkondensation sind Oberflächenkondensatoren für Dampfturbinenanlagen bekannt, wobei die Oberflächenkondensatoren eine Vielzahl von unbeschichteten Kondensatorrohren aufweisen. An den Kondensatorrohren, welche mit einem kühlenden Arbeitsmedium gefüllt sind, findet üblicherweise eine Filmkondensation statt, so dass der Flüssigdampf in einen flüssigen Aggregatzustand übergeht.
  • Ferner können die Kondensatorrohre hydrophob beschichtet werden, um einen gezielten Übergang von Filmkondensation zu einer Tropfenkondensation bereitzustellen. Mittels einer Tropfenkondensation kann eine Steigerung des Wärmeübergangs erzielt werden, wodurch sich eine Verbesserung des Wärmedurchgangskoeffizienten um ca. 20 % einstellt. Dies führt wiederum zu einer Verbesserung des Wirkungsgrades des Kondensators (kleinere Grädigkeit) oder zu einer Verringerung der Kosten und des Bauraums bei gleicher Grädigkeit.
  • Darstellung der Erfindung
  • Es ist eine Aufgabe der Erfindung, einen Kondensator mit einer verbesserten Wirksamkeit bereitzustellen.
  • Die Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst, insbesondere mittels eines Verfahrens zur Herstellung eines Kondensators für eine Wärmekraftanlage, eine Vorrichtung zum Beschichten eines eingebauten Kondensatorrohres mit einer hydrophoben Beschichtung und eines Kondensators für eine Wärmekraftanlage.
  • Gemäß einer ersten beispielhaften Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Herstellung eines Kondensators für eine Wärmekraftanlage beschrieben. Ein Kondensatorrohr wird in einen Träger für ein Kondensatorrohrbündel des Kondensators eingebaut. Das eingebaute Kondensatorrohr wird mit einer hydrophoben Beschichtung beschichtet.
  • Gemäß einer weiteren beispielhaften Ausführungsform wird eine Vorrichtung zum Beschichten eines eingebauten Kondensatorrohres mit einer hydrophoben Beschichtung gemäß den oben beschriebenen Herstellverfahren geschaffen. Die Vorrichtung weist einen Sprühkopf zum Beschichten des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung auf.
  • Gemäß einer weiteren beispielhaften Ausführungsform der vorliegenden Erfindung wird ein Kondensator für eine Wärmekraftanlage geschaffen. Der Kondensator wird mit dem oben beschriebenen Verfahren hergestellt. Der Kondensator weist einen Träger mit einem eingebauten Kondensatorrohr auf, wobei das eingebaute Kondensatorrohr eine hydrophobe Beschichtung aufweist.
  • Unter dem Begriff "Kondensatorrohrbündel" kann ein Kondensatorrohr oder eine Vielzahl von Kondensatorrohren verstanden werden, welche in einem Träger (Kondensatorrohrträger) in einem bestimmten Abstand zueinander gehaltert werden und eine Kondensatorrohreinheit bzw. das Kondensatorrohrbündel bilden. Ein zu kühlender Wasserdampf kann beispielsweise auf ein Kondensatorrohrbündel auftreffen, so dass der Wasserdampf durch das Kondensatorrohrbündel an den einzelnen Kondensatorrohren vorbeiströmen kann. Der Träger kann ferner ausgebildet sein, die einzelnen Kondensatorrohre in einen definierten Abstand zu beabstanden, so dass der Wasserdampf zwischen den Kondensatorrohren hindurchströmen und durch die Kondensatorrohre gekühlt werden kann. Der Träger kann beispielsweise aus Rohrböden und Stützwänden bestehen, welche Bohrungen und Aufnahmeeinheiten aufweisen an denen die einzelnen Kondensatorrohre befestigt werden können.
  • Unter dem Begriff "hydrophob" bzw. "hydrophobe Beschichtung" kann eine Oberfläche verstanden werden, welche wasserabweisend ist, bzw. an welcher eine Tropfenkondensation stattfinden kann. Zudem kann im Folgenden unter dem Begriff "hydrophober Beschichtung" ebenfalls eine Beschichtung verstanden werden, welche einen oleophoben Effekt aufweist, das heißt welche einen Öl abweisenden Effekt aufweist. Eine hydrophobe Beschichtung weist einen Kontaktwinkel bei Flüssigkeitstropfen von über 90° auf. Der Kontaktwinkel kann bei hydrophoben Beschichtungen bis zu 130° reichen. Mit strukturierten Oberflächen kann ein superhydrophober Effekt mit einem Kontaktwinkel von größer als 130° oder größer als 160° (Grad) erzielt werden (z.B. Lotus-Effekt). Der Kontaktwinkel definiert einen Winkel zwischen einer Oberfläche einer Beschichtung und einem tangential an einem Flüssigkeitstropfen verlaufenden Vektor im Kontaktpunkt des Tropfens mit einer Bauteiloberfläche. Bei einem Kontaktwinkel von über 90° bildet sich bei einem Wassertropfen auf einer Oberfläche eine Tropfenform aus, so dass bei einem Kontaktwinkel von über 90° eine Tropfenkondensation bereitstellbar sein kann.
  • Üblicherweise werden Kondensatorrohre vor Einbau in den Träger beschichtet und nach der Beschichtung in den Träger für das Kondensatorrohrbündel eingeschoben. Das Einschieben bzw. der Einbau der bereits beschichteten Kondensatorrohre kann jedoch die hydrophobe Beschichtung beschädigen. Hydrophobe Beschichtungen weisen sensible Eigenschaften auf, so dass eine geringe Abriebsfestigkeit vorliegt und das Verletzungsrisiko der hydrophoben Beschichtungen auf den Kondensatorrohren bei dem Einbau hoch ist. Besonders wünschenswert kann dabei eine Beschichtung der Kondensatorrohre mit superhydrophoben Schichten (z.B. Beschichten mit "Lotus-Effekt") sein, wobei solche superhydrophoben Schichten besonders sensibel hinsichtlich mechanischer Beanspruchung sind, so dass ein nachträglicher Einbau der beschichteten Kondensatorrohre zu einem hohen Risiko von Beschichtungsschäden führt. Ferner kann die Beschichtung neben dem Einschieben der Kondensatorrohre ebenfalls durch die Befestigungsverfahren der Kondensatorrohre an dem Träger des Kondensatorrohrbündels beschädigt werden. Kondensatorrohre werden beispielsweise an den Träger geschweißt, wodurch es zu einer Verletzung der hydrophoben Beschichtung kommen kann. Zudem ist ein hoher Wartungsaufwand notwendig, um hydrophob beschichtete Kondensatorrohre mittels Rohraustausch nachzurüsten, so dass lange Wartungs- und Rüstzeiten bestehen.
  • Mittels des beanspruchten Herstellverfahrens wird eine hydrophobe Beschichtung auf ein eingebautes Kondensatorrohr aufgetragen. Mit anderen Worten wird auf ein bereits in einem Kondensatorrohrbündel befestigtes Kondensatorrohr die hydrophobe Beschichtung aufgetragen. Somit besteht die Möglichkeit, einen sich in der Herstellung befindlichen Kondensator in einem einzigen Beschichtungsvorgang zu behandeln, so dass die Kondensatorrohre des Kondensators in einem Arbeitsschritt mit der hydrophoben Beschichtung versehen werden können, womit ein Produktionszeitaufwand reduziert werden kann. Zudem kann bei späteren Wartungsvorgängen der Kondensatoren eine hydrophobe Beschichtung erneuert werden, ohne dass die einzelnen Kondensatorrohre ausgebaut werden müssen.
  • Bei dem beanspruchten Herstellverfahren des Kondensators kann ferner nur ein Teil von Kondensatorrohren in dem eingebauten Zustand beschichtet werden und ein anderer Teil an Kondensatorrohren unbeschichtet bleiben. Beispielsweise tragen jeweils die äußeren Rohre eines Kondensatorrohrbündels am stärksten zur Kondensationsleistung des Kondensators bei. Daher können die Vorteile der Erfindung bereits damit erreicht werden, indem in dem Träger des Kondensatorrohrbündels die äußeren Kondensatorrohre zunächst eingebaut werden und in einem eingebauten Zustand mit der hydrophoben Beschichtung beschichtet werden. Somit weisen zumindest die äußeren Kondensatorrohre des Kondensatorrohrbündels eine hochqualitative hydrophobe Beschichtung auf. Da diese äußeren, sich am Rand des Trägers befindenden Kondensatorrohre die stärkste Kondensationsleistung des Kondensators bereitstellen, ist es besonders vorteilhaft, gerade bei diesen Kondensatorrohren eine hochqualitative hydrophobe Beschichtung bereitzustellen. Somit kann eine Erzielung einer höheren Kondensationsleistung des Kondensators ohne Ausbau der Kondensatorrohre ermöglicht werden.
  • Ferner besteht eine verbesserte Servicemöglichkeit und eine bessere Retrofit-Möglichkeit (Instandhaltungs- oder Nachrüstmöglichkeit). Gerade für einen Kraftwerksbetreiber kann dies einen wichtigen Faktor darstellen, da ein kurzer Stillstand der Dampfturbine bzw. des Kondensators ohne wesentliche Montagearbeit für eine deutliche Verbesserung des Wirkungsgrades führt. Ferner kann für den Hersteller der Dampfturbine ein attraktives Geschäftsfeld in dem Servicebereich bereitgestellt werden.
  • Durch den Auftrag der Beschichtung der Kondensatorrohre in eingebautem Zustand kann ferner eine Wahl der Beschichtung getroffen werden, ohne auf Montagebelange Rücksicht zu nehmen. Gerade bei beschichteten Kondensatorrohren muss Rücksicht genommen werden, dass beispielsweise die Beschichtung mit Befestigungsmitteln am Träger in Kontakt kommen, welches zu einer Abnutzung der Beschichtung führt. Ein komplexes Einschiebeverfahren der Kondensatorrohre durch eine Reihe von Befestigungsbohrungen kann bisher eine Einsatzmöglichkeit von den mechanisch weniger stabilen strukturierten hydrophoben Beschichtungen ausschließen. Durch eine nachträgliche Beschichtung der eingebauten Kondensatorrohre mittels des beanspruchten Herstellverfahrens kann somit ein Auftrag von hydrophoben Beschichtungen auf den Kondensatorrohren ermöglicht werden, so dass eine weitere Verbesserung der Kondensationseigenschaften geschaffen werden kann.
  • Ferner weist das Beschichten des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung zumindest ein Positionieren einer Sprühvorrichtung an dem Träger oder relativ zum Träger auf. Mittels der Sprühvorrichtung wird anschließend ein Aufsprühen der hydrophoben Beschichtung bereitgestellt, um das eingebaute Kondensatorrohr mit der hydrophoben Beschichtung zu beschichten. Mittels der Sprühlackierung kann aufgrund eines sehr feinen Sprühstaubs der hydrophoben Beschichtungsmaße ein besonders dünner und gleichmäßiger Auftrag der hydrophoben Beschichtung auf dem eingebauten Kondensatorrohr bereitgestellt werden.
  • Zudem weist der Schritt des Beschichtens des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung ein Bewegen der Sprühvorrichtung während des Aufsprühens mit einem gleichmäßigen Vorschub entlang einer Erstreckungsrichtung des eingebauten Kondensatorrohres auf. Somit kann selbsttätig ein gleichmäßiges Besprühen bzw. Beschichten des eingebauten Kondensatorrohres bereitgestellt werden. Gerade bei manuellem Auftragen einer Beschichtung kann es durch einen unregelmäßigen manuellen Vorschub zu Unregelmäßigkeiten bei dem Sprühauftrag der hydrophoben Beschichtung kommen, so dass unterschiedliche Schichtdicken auf dem Kondensatorrohr erzielt werden. Mittels des Einsatzes der Sprühvorrichtung, welche einen gleichmäßigen Vorschub bereitstellt, kann eine vordefinierte und gleichmäßige Schichtdicke der hydrophoben Beschichtung bereitgestellt werden, so dass vordefinierte und verbesserte Kondensatorwirkungen des Kondensatorrohres erreicht werden können. Ferner kann durch mehrmaliges Verfahren mit dem gleichmäßigen Vorschub eine Vielzahl von Schichten der hydrophoben Beschichtung aufgetragen werden. So kann beispielsweise eine hydrophobe Beschichtung aus 10, 12 oder mehr Unterschichten bestehen. Neben einem gleichmäßigen Vorschub entlang einer Erstreckungsrichtung des eingebauten Kondensators ist auch ein gleichmäßiger Vorschub orthogonal zur Erstreckungsrichtung des eingebauten Kondensatorrohres bereitstellbar.
  • Gemäß einer weiteren beispielhaften Ausführungsform des Verfahrens ist der Kondensator während des Beschichtens an der Wärmekraftanlage montiert und z.B. bereits vor dem Beschichtungsvorgang in Betrieb gewesen. Der Kraftwerksbetreiber kann somit ohne ein Entleeren der Kondensatorrohre und somit mit minimalem Aufwand eine Ausbesserung oder einen Auftrag der hydrophoben Beschichtung auf dem eingebauten Kondensatorrohr vornehmen. Ein Ausbau des Kondensatorrohres und somit ein Unterbrechen des Betriebs des Kondensators kann vermieden werden.
  • Gemäß einer weiteren beispielhaften Ausführungsform wird das eingebaute Kondensatorrohr mittels einer Streichbeschichtung mit der hydrophoben Beschichtung beschichtet. Mittels der Streichbeschichtung kann in einfacher und schneller Art und Weise ein Kondensatorrohr mittels der hydrophoben Beschichtung beschichtet werden. Beispielsweise können bei der Streichbeschichtung Pinselvorrichtungen eingesetzt werden.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist die Sprühvorrichtung einen Sprühkopf auf, wobei das Beschichten des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung ferner den Schritt des Einbringens des Sprühkopfs in den Träger aufweist, um das eingebaute Kondensatorrohr mit der hydrophoben Beschichtung zu beschichten.
  • Unter dem Begriff "Einbringen" des Sprühkopfs in den Träger kann beschrieben werden, dass neben dem Einsprühen der äußeren Kondensatorrohre des Kondensatorrohrbündels ebenfalls eine Möglichkeit bereitgestellt wird, das Innere eines Kondensatorrohrbündels zu beschichten. Dabei kann der Sprühkopf derart in den Träger eingebracht werden, dass der Sprühkopf zwischen den Kondensatorrohrabständen hindurchgeführt werden kann und somit innenliegende Kondensatorrohre, welche beispielsweise keinen direkten Anschluss mit dem Umfeld des Kondensatorrohrbündels aufweisen, beschichten kann. Somit können auch verdeckt eingebaute Kondensatorrohre mit der hydrophoben Beschichtung im eingebauten Zustand beschichtet werden, so dass ein Ausbau dieser innen liegenden Rohre ebenfalls nicht notwendig sein kann. Die Sprühvorrichtung kann beispielsweise am oder im Träger des Kondensatorrohrbündels positioniert werden und mittels des gleichmäßigen Vorschubs entlang der Kondensatorrohre einen Sprühauftrag der Beschichtung bereitstellen.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist der Schritt des Beschichtens des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung ferner ein Beschichten des eingebauten Kondensatorrohres mittels Elektrospritzlackierens auf. Mittels des Elektrospritzlackierens kann beispielsweise der Grad der Beschichtung durch elektrostatische Effekte verbessert werden. Bei dem Verfahren des Elektrospritzlackierens kann der Sprühnebel der hydrophoben Beschichtung während des Auftrags elektrostatisch aufgeladen werden, zum Beispiel mit 35kV (Kilovolt), 40 kV oder 50 kV, und auf geerdete Kondensatorrohre aufgespritzt werden. Dabei werden die Kondensatorrohre mit einem Erdpotenzial verbunden. Beispielsweise kann der Träger des Kondensatorrohrbündels ein metallischer Leiter sein und somit als elektrisch leitendes Strukturbauteil verwendet werden. Die Kondensatorrohre selbst oder die elektrisch leitenden Strukturbauteile können mit einer Verbindung mit dem Boden (Erdung, Erdpotenzial) versehen werden. Die hydrophobe Beschichtung kann beispielsweise mit einer Spannungsquelle elektrostatisch aufgeladen werden. Somit besteht mittels des Elektrospritzlackierens der Vorteil, dass die hydrophobe Beschichtung beispielsweise bei einem Sprühauftrag gleichmäßig verteilt wird und zudem der Verlust an Material der hydrophoben Beschichtung reduziert werden kann. Ferner wird bei Auftrag der hydrophoben Beschichtung auf den Kondensatorrohren mittels Elektrospritzlackierens eine allseitige Beschichtung der Kondensatorrohre ermöglicht. Wenn sich beispielsweise der Sprühkopf auf einer Seite des Kondensatorrohres befindet, kann sich dennoch der Sprühnebel auf der gegenüberliegenden Seite der Kondensatorrohre aufgrund der elektrostatischen Aufladung niederlegen, so dass eine hydrophobe Beschichtung auch an gegenüberliegenden Stellen der Kondensatorrohre bereitgestellt werden kann. Bei dem Elektrospritzlackieren kann mittels geeigneter Wahl der Dosierung der hydrophoben Beschichtung sowie mit geeigneter Wahl des Vorschubs oder der angelegten statischen Spannung eine vordefinierte dünne und gleichmäßige hydrophobe Beschichtung auf den Kondensatorrohren bereitgestellt werden, so dass vordefinierte hydrophobe Eigenschaften an jedem der Kondensatorrohre bereitgestellt werden können.
  • Gemäß einer weiteren beispielhaften Ausführungsform wird die hydrophobe Beschichtung auf dem eingebauten Kondensatorrohr mittels UV-Härtung, Dual Cure und/oder thermischer Aushärtung vernetzt.
  • Unter dem Begriff "Vernetzen" kann eine Verbindung der Beschichtung mit einer Oberfläche der Kondensatorrohre verstanden werden. Der Begriff "Vernetzung" kann bedeuten, dass die Beschichtung fest mit der Oberfläche der Kondensatorrohre verbunden wird. Dies wird beispielsweise dadurch ermöglicht, dass sich die Moleküle der Beschichtung mit den Atomen / Molekülen der Kondensatorrohroberfläche verbinden oder dass Moleküle der Beschichtung in Hohlräume der Oberfläche des Kondensatorrohres eingreifen und somit eine feste Verbindung schaffen.
  • Bei der UV-Härtung wird mittels eines UV-Strahlers ein ultraviolettes (UV) Licht in Richtung Beschichtung gestrahlt, so dass aufgrund der Anregung der Moleküle in der Beschichtung sowie aufgrund der entstehenden Temperatur eine Vernetzung der Beschichtung entsteht.
  • Eine weitere Technologie zur Vernetzung mittels UV-Härtung ist das Dual Cure Verfahren, bei welchem die Aushärtung zunächst durch UV-Strahlung initiiert wird und anschließend die hydrophobe Beschichtung bei Raumtemperatur vollständig ausgehärtet wird, so dass eine Vernetzung stattfindet.
  • Ferner wird unter dem Begriff "thermischer Aushärtung" eine Vernetzung durch Aushärtung aufgrund des Auftrags von thermischer Energie beschrieben. Die Temperaturbereiche bei der thermischen Aushärtung können zwischen 50°C bis 100°C oder im Bereich zwischen 100°C und 200°C oder auch zwischen 100°C bis 250°C liegen. Die thermische Energie kann beispielsweise mittels Heizstrahlern, Heizspulen, Widerstandsheizungen oder Warmluftgebläse aufgetragen werden. Ferner kann die thermische Energie zur Aushärtung mittels eines Heizfluids in den Kondensatorrohren erzielt werden, so dass keine weiteren thermischen Energiequellen benötigt werden können. Andererseits kann das Arbeitsfluid in den Kondensatorrohren abgelassen werden, um eine nachteilige Wärmekapazität eines Fluid gefüllten Rohres zu vermeiden.
  • Gemäß einer weiteren beispielhaften Ausführungsform wird in dem Schritt des Beschichtens des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung ein Sol-Gel-Verfahren eingesetzt. Bei der Beschichtung mittels des Sol-Gel-Verfahrens werden hydrophobe Beschichtungen eingesetzt, welche einen Sol-Gel-Aufbau aufweisen. Solche Sol-Gel-basierte hydrophobe Beschichtungen basieren auf Hybrid-Polymeren, welche einen Netzwerk-Aufbau mit organischen und anorganischen Komponenten aufweisen. Als Ausgangsstoff zur Herstellung solcher Sol-Gel-Beschichtungen können organisch modifizierte Metalloxide, wie beispielsweise Si-, Ti-, Zr- oder Al-Alkoxide, verwendet werden. Bevorzugterweise können Si-Alkoxide als Präkursoren zum Einsatz kommen, welche beispielsweise die folgende chemische Struktur aufweisen: Xn - Si - OR 4 - n
    Figure imgb0001

    wobei:
    • X = organische Modifikation des Alkoxides
    • R = Alkyl-Gruppe (z.B. Methyl, Ethyl) oder Aryl-Gruppe (z.B. Phenyl)
  • X (organische Modifikation des Alkoxides) kann eine reaktive bzw. nicht-reaktive Seitenkette sein. Die Herstellung der Beschichtung erfolgt durch Hydrolyse und Kondensation der Metall-Alkoxide. Die organische Modifikation des Metalloxides kann die Eigenschaften der Beschichtung beeinflussen. Die hydrophoben Seitenketten X (z.B.: Alkylketten, Alkylgruppen, Fluore-Alkylketten, Siloxan-Gruppen) reduzieren die Oberflächenenergie der Beschichtung und bewirken einen Wasser (hydrophoben) und Öl (oleophoben) abweisenden Effekt. Die organische Modifikation kann eine ausreichende Wasserdampfstabilität aufweisen.
  • Das beschriebene hydrophobe Sol-Gel-basierte Beschichtungsmaterial kann durch den Einbau von Oberflächen behandelten nano- bzw. mikroskaligen Partikeln weiter modifiziert werden, wodurch zum Beispiel die mechanische Abriebsbeständigkeit oder die Korrosionsbeständigkeit verbessert werden kann.
  • Die hydrophoben Sol-Gel-Beschichtungen können in dem Sol-Gel-Verfahren beispielsweise über nasschemische Verfahren wie z.B. Sprühen, Tauchen, Fluten, Rollen oder Streichen auf das Substrat (Kondensatorrohr) aufgetragen werden. Die Beschichtungen werden anschließend thermisch ausgehärtet bzw. vernetzt. Beispielsweise können hierbei die Temperaturbereiche des oben beschriebenen Vernetzungsschrittes verwendet werden, aber auch eine Aushärtungstemperatur in Temperaturbereichen von Raumtemperatur bis zu 400°C (Celsius) sind möglich. Eine höhere Härtungstemperatur über 400°C führt kann zu einer glasartigen Schicht führen, wobei die hydrophoben Eigenschaften reduziert werden können. Ferner weisen kurzkettige Seitengruppen, wie z.B. X = Methyl-Gruppen, Aryl-Gruppen, eine ausreichende thermische Stabilität auf. Ferner kann eine Schichtdicke in einem Bereich von 100 nm (Nanometer) bis 100 µm (Mikrometer) erreicht werden.
  • Die hydrophoben Beschichtung auf dem eingebauten Kondensatorrohr kann mittels des Sol-Gel-Verfahrens derart aufgetragen werden, dass beispielsweise der Kontaktwinkel der hydrophoben Beschichtung bei 90° (Grad), 100° oder 120° liegt. Im Vergleich zu unbehandelten Metalloberflächen bzw. Rohroberflächen der Kondensatorrohre wird durch den Einsatz einer hydrophoben Beschichtung mit einem Kontaktwinkel zwischen 90° und 130°, insbesondere zwischen z.B. Beispiel 100° und 120°, ca. 20 % mehr Kondensat aufgefangen, wodurch die Kondensatorleistung des Kondensators deutlich verbessert werden kann.
  • Gemäß einer weiteren beispielhaften Ausführungsform ist der Kondensator ein Dampfkondensator und die Wärmekraftanlage ist eine Dampfturbinenanlage.
  • Gemäß einer weiteren beispielhaften Ausführungsform der vorliegenden Erfindung weist die Vorrichtung zum Beschichten eines eingebauten Kondensatorrohres mit der hydrophoben Beschichtung nach dem oben beschrieben Herstellungsverfahren eine Positionierungseinrichtung zum Positionieren der Vorrichtung relativ zu dem Träger des Kondensatorrohrbündels auf. Ferner weist die Vorrichtung eine Bewegungseinrichtung zum Verfahren des Sprühkopfs entlang und/oder quer zu einer Erstreckungsrichtung des Kondensatorrohres auf. Die Positionierungseinrichtung kann beispielsweise eine eigenständige Einheit sein und relativ zum Träger fixiert werden. Andererseits kann die Positionierungseinrichtung an dem Träger selbst befestigt werden und die Beschichtungsvorrichtung haltern. Die Vorrichtung zum Beschichten des eingebauten Kondensatorrohres kann beispielsweise die Sprühvorrichtung sein.
  • Ferner weist die Beschichtungsvorrichtung den Sprühkopf zum Beschichten des eingebauten Kondensatorrohres mit der hydrophoben Beschichtung auf. Der Sprühkopf kann beispielsweise aus einer Düse bestehen, welche die hydrophobe Beschichtung in einer feinen Zerstäubung auf eine Oberfläche der Kondensatorrohre auftragen kann. Die Bewegungseinrichtung kann mit der Positionierungseinrichtung verfahrbar verbunden sein und entlang einer vordefinierten linearen Bewegungsrichtung verfahren werden, so dass mittels des Sprühkopfs ein gleichmäßiger Auftrag der hydrophoben Beschichtung auf den Kondensatorrohren bereitgestellt werden kann.
  • Gemäß einer weiteren beispielhaften Ausführungsform der Vorrichtung ist der Sprühkopf derart eingerichtet ist, dass mittels Elektrospritzlackierens die hydrophobe Beschichtung auf das eingebaute Kondensatorrohr auftragbar ist. Beispielsweise kann hierbei der Sprühkopf mit einer Spannungsquelle verbunden werden und somit einen Sprühnebel der hydrophoben Beschichtung elektrostatisch aufladen.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist die Vorrichtung zum Beschichten des eingebauten Kondensatorrohres ein Verbindungsrohr auf. Das Verbindungsrohr kann die Bewegungseinrichtung und den Sprühkopf verbinden. Das Verbindungsrohr weist dabei eine Helixform auf, wobei die Steigung der Helixform an einen Kondensatorrohrradius und an die Kondensatorrohrabstände der Kondensatorrohre in dem Kondensatorrohrbündel anpassbar ist. Die Helixform des Verbindungsrohres beschreibt mit anderen Worten eine Schraubenlinie, ähnlich wie bei einem Korkenzieher. Einerseits kann die Steigung der Helixform an Kondensatorrohrradien und an die Kondensatorrohrabstände fix vordefiniert werden und mittels Drehung des Verbindungsrohres der Sprühkopf entlang der Kondensatorrohre eingeschraubt bzw. eingedreht wird. Das Verbindungsrohr kann somit bereits bei seiner Herstellung fest an die Kondensatorrohrradien und die Kondensatorrohrabstände angepasst sein. In einer anderen Ausführungsform kann das Verbindungsrohr aus einem elastischen Material bzw. verformbaren Material, wie beispielsweise Gummi, hergestellt sein, so dass sich während des Drehens das Verbindungsrohr in das Kondensatorrohrbündel das Verbindungsrohr an die Kondensatorrohrradien und die Kondensatorrohrabstände anpasst und somit die Helixform ausbildet. Mit dem anpassbaren Verbindungsrohr kann eine Möglichkeit bereitgestellt werden, ein bestehendes Kondensatorrohrbündel aus einer Vielzahl von Kondensatorrohren mit einer hydrophoben Beschichtung zu beschichten. Somit können selbst innen liegende Kondensatorrohre des Kondensatorrohrbündels mit der hydrophoben Beschichtung beschichtet werden. Ein Ausbau der innen liegenden und somit verdeckt liegenden Kondensatorrohre aus dem Kondensatorrohrbündel ist somit nicht länger notwendig, um eine hydrophobe Beschichtung der Kondensatorrohre bereitzustellen.
  • Gemäß einer weiteren beispielhaften Ausführungsform ist der Kondensator als Heizkondensator ausgeführt. Unter einem Heizkondensator kann ein Kondensator verstanden werden, welcher mit einem höheren Dampfdruck versorgt wird, um damit den Kondensationspunkt des Dampfes in höhere Temperaturbereiche zu verschieben. Der hohe Dampfdruck in dem Heizkondensator kann beispielsweise erzeugt werden, indem Dampf mit einem hohen Druck und hoher Temperatur aus einer Turbinenstufe einer Wärmekraftanlage entnommen wird und dem anschließend dem Heizkondensator zugeführt wird. Mit der vorgeschlagenen technischen Lösung kann die Grädigkeit (d.h. die Temperaturdifferenz zwischen einer primärer und sekundären Rücklauftemperatur) der Heizkondensatoren verringert werden (also ihre die Funktion verbessert oder wieder hergestellt werden), wodurch bei gleichen Heizdampfparametern eine etwas höhere Temperatur des Wärmeträgermediums (Fluid des Fernwärmenetzes) erreicht werden kann. Auf der anderen Seite kann bei gleicher Grädigkeit eine geringere Wärmetauscherfläche verwendet werden (Kosten- und / oder Platzeinsparung), oder die Leistung eines bestehenden Wärmetauschers kann erhöht werden.
  • Gemäß einer weiteren beispielhaften Ausführungsform ist der Kondensator als Hochdruckvorwärmer oder als Niederdruckvorwärmer ausgeführt.
  • Ein Niederdruckvorwärmer kann beispielsweise vor einem Speisewasserbehälter angeordnet werden und von sogenannten Kondensatpumpen das Arbeitsfluid (z.B. Wasser) im kondensierten flüssigen Zustand erhalten. Zusätzlich kann von den Dampfturbinen unter einem Druck stehender Wasserdampf entnommen werden und dem Niederdruckvorwärmer zugeführt werden. Damit wird im Niederdruckvorwärmer und somit auch im anschließenden Speisewasserbehälter das Temperaturniveau des Arbeitsfluids erhöht. Diese Erhöhung des Temperaturniveaus erhöht den Wirkungsgrad des Dampfkreislaufes in der Wärmekraftanlage. Auch hier wird mittels der neuen Lösung eine Verbesserung / Wiederherstellung der Funktion und / oder eine Kostenreduzierung und / oder eine Leistungserhöhung des Apparates erreicht.
  • Ein Hochdruckvorwärmer kann zwischen dem Speisewasserbehälter und dem Dampferzeuger der Wärmekraftanlage angeordnet werden. Ähnlich wie beim Niederdruckvorwärmer wird dem Hochdruckvorwärmer ein unter (höherem) Druck stehender, heißer Wasserdampf aus den Dampfturbinen zugeführt. Somit wird das energetische Niveau, insbesondere das Temperaturniveau, des in den Dampferzeuger eintretenden Speisewassers erhöht. Damit kann ein Wirkungsgrad des Dampfkreislaufes in der Wärmekraftanlage erhöht werden. Verbesserungen in Funktion, Kosten und / oder Leistung können in ähnlicher Weise wie beim Niederdruckvorwärmer erreicht werden.
  • Gemäß einer weiteren beispielhaften Ausführungsform des Kondensators wird dieser in der Wärmekraftanlage eines Heizkraftwerks verwendet. Ein Heizkraftwerk dient zur Erzeugung von Elektrizität und Wärme mit einem Kraft-Wärme-Kopplungsprozess. Die abgezweigte Wärme des Dampfkreislaufes in dem Heizkraftwerk kann über den Kondensator (z.B. ausgeführt als Heizkondensator) oder einem anderen Wärmetauscher an ein Arbeitsmedium eines Fernwärmekreislaufs abgeführt werden. In einem Heizkraftwerk mit einem Kraft-Wärme-Kopplungsprozess kann die ungenutzte Abwärme damit in ein Fernwärmesystem zur Weiternutzung verwendet werden.
  • Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Vorrichtungsansprüchen und andere Ausführungsformen der Erfindung mit Verfahrensansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieser Anmeldung sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden werden zur weiteren Erläuterung und zum besseren Verständnis der vorliegenden Erfindung Ausführungsbeispiele unter Bezugnahme auf die beigefügte Zeichnung näher beschrieben. Es zeigen:
    • Fig. 1 eine schematische Darstellung eines Kondensatorrohrbündels mit einer hydrophoben Beschichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    • Fig. 2 eine Draufsicht auf Kondensatorrohre in einem Kondensatorrohrbündel gemäß einem Ausführungsbeispiel der vorliegenden Erfindung; und
    • Fig. 3 eine beispielhafte Ausführungsform von Kondensatorrohren, welche mittels Elektrospritzlackierens behandelt werden.
  • Detaillierte Beschreibung von exemplarischen Ausführungsformen Gleiche oder ähnliche Komponenten sind in den Figuren mit gleichen Bezugsziffern versehen. Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.
  • Fig. 1 zeigt eine beispielhafte Ausführungsform eines Kondensators 100, z.B. eines Dampfkondensators 100, für eine Wärmekraftanlage, beispielsweise einer Dampfturbinenanlage. Der Kondensator 100 kann mit dem beschriebenen Herstellungsverfahren mit einer hydrophoben Beschichtung beschichtet werden. Der Kondensator 100 weist dabei einen Träger 105 auf, in welchem eingebaute Kondensatorrohre 101 befestigt sind. Ein eingebautes Kondensatorrohr 101 weist dabei eine hydrophobe Beschichtung auf.
  • Gemäß dem Verfahren zur Herstellung des Kondensators 100 für eine Dampfturbinenanlage wird zunächst ein Kondensatorrohr 101 in den Träger 105 für ein Kondensatorrohrbündel 203 des Kondensators 100 eingebaut. Das eingebaute Kondensatorrohr 101 wird mit einer hydrophoben Beschichtung beschichtet.
  • Dabei kann der Träger 105 verwendet werden, um jedes der Kondensatorrohre 101 zu haltern und zu befestigen, so dass aus der Vielzahl von befestigten Kondensatorrohren 101 das Kondensatorrohrbündel 203 bereitgestellt werden kann. Das Kondensatorrohrbündel 203 weist dabei äußere Kondensatorrohre 101 und innen liegende Kondensatorrohre 101 auf, welche keinen Kontakt zu dem Umfeld des Kondensatorrohrbündels 203 haben.
  • Die eingebauten Kondensatorrohre 101 weisen im Betrieb des Kondensators 100 ein Kühlfluid, z.B. Kühlwasser, auf, um durch Abkühlung eines vorbeiströmenden Wasserdampfs eine Kondensation des Wasserdampfs bereitzustellen. Durch die hydrophobe Beschichtung der eingebauten Kondensatorrohre 101 findet ferner eine Tropfenkondensation des vorbeiströmenden Wasserdampfes statt.
  • Gemäß dem beschrieben Herstellverfahren kann mittels der Sprühvorrichtung 106 eine hydrophobe Beschichtung auf die Kondensatorrohre 101 aufgetragen werden. Die Kondensatorrohre 101 befinden sich bei dem Auftragen der hydrophoben Beschichtung bereits in einem eingebauten Zustand an dem Träger 105, so dass ein zeitintensiver Ausbau zur Beschichtung der Kondensatorrohre 101 nicht notwendig ist. Ferner wird vermieden, dass die hydrophobe Beschichtung eines Kondensatorrohres 101 bei dessen Einbau beschädigt wird.
  • Die Sprühvorrichtung 106 kann beispielsweise einen Sprühkopf 102 aufweisen, mit welchem eine hydrophobe Beschichtung auf die Kondensatorrohre 101 aufgesprüht werden kann. Dabei bildet sich ein definierter Sprühkegel 104 aus. Neben dem Besprühen der Kondensatorrohre 101 mittels eines Sprühkopfs 102 ist ebenso eine Streichbeschichtung, z.B. mittels Pinseleinrichtungen, möglich.
  • Einerseits kann der Sprühkopf 102 entlang der Längsrichtung (Erstreckungsrichtung)der äußeren Kondensatorrohre 101 verfahren werden, so dass zumindest die äußeren Kondensatorrohre 101 mit der hydrophoben Beschichtung beauftragt werden können. Ferner kann der Sprühkopf 102 der Sprühvorrichtung 106 derart klein ausgeführt sein, dass der Sprühkopf 102 zwischen einem Kondensatorrohrabstand a eingefügt werden kann. Somit kann die Sprühvorrichtung 106 zumindest auch die zweite Reihe der Kondensatorrohre 101 in dem Kondensatorrohrbündel 203 mit einer hydrophoben Beschichtung beschichten.
  • In einer weiteren beispielhaften Ausführungsform kann die Sprühvorrichtung 106 ein Verbindungsrohr 103 aufweisen, so dass auch alle innen liegenden Kondensatorrohre 101 des Kondensatorrohrbündels 203 in einem eingebauten Zustand mit der hydrophoben Beschichtung beschichtet werden können. Das Verbindungsrohr 103 kann dabei eine Helixform (Schraubenlinie) aufweisen, wobei die Steigung der Schraubenlinie derart gewählt werden kann, dass die Steigung sich an die Kondensatorrohrradien r und an die Kondensatorrohrabstände a anpasst.
  • Damit kann erreicht werden, dass mittels Drehens des Verbindungsrohrs 103 sich der Sprühkopf 102 in das Kondensatorrohrbündel 203 einschraubt. Somit kann jedes innen liegende Kondensatorrohr 101 mittels der hydrophoben Beschichtung beschichtet werden.
  • Fig. 2 illustriert eine Draufsicht auf eingebaute Kondensatorrohre 101 in dem Kondensatorrohrbündel 203. Der Träger 105 der Kondensatorrohrbündel 203 weist beispielsweise einen Kondensatorrohrboden 202 und eine Vielzahl von Stützwänden 201 auf, um die Kondensatorrohre 101 zu haltern. Die hydrophobe Beschichtung kann entweder entlang der Längsrichtung oder entlang der Querrichtung der Kondensatorrohre aufgetragen werden. Entlang der Querrichtung oder Längsrichtung der Kondensatorrohre 101 kann die Sprühvorrichtung 106 die hydrophobe Beschichtung entweder in einer Richtung oder alternierend aufgetragen werden. Ferner kann die Sprühvorrichtung 106 entlang der Längsrichtung bzw. der Querrichtung der Kondensatorrohre 101 verfahren werden. Die Sprühvorrichtung 106 kann den Sprühkopf beispielsweise alternierend oder abwechselnd in einer Richtung entlang der Erstreckungsrichtung der Kondensatorrohre 101 oder entlang der Querrichtung verfahren. Ebenso ist eine Mischung beider Bewegungsrichtungen (entlang der Erstreckungsrichtung und entlang der Querrichtung) möglich. Hierbei kann beispielsweise die Sprühvorrichtung 106 entlang einer Positionierungseinrichtung bzw. einer Bewegungseinrichtung verfahren werden und während des Verfahrens kann sich der Sprühkopf 102 relativ zu der Bewegungsrichtung der Sprühvorrichtung 106 quer rotieren bzw. eine Nickbewegung durchführen, so dass eine Mischung aus zwei Sprührichtungen ermöglicht wird. Dies ermöglicht ein zügiges Auftragen der hydrophoben Beschichtung.
  • Fig. 3 zeigt eine beispielhafte Ausführungsform eines Aufbaus zum Auftragen der hydrophoben Beschichtung mittels Elektrospritzlackierens. Die Kondensatorrohre 101 bzw. der Träger 105 können elektrisch leitend sein und somit elektrisch leitende Strukturbauteile 303 darstellen. Diese elektrisch leitenden Strukturbauteile 303 können mit einem Erdpotenzial 302 verbunden werden. Die Sprühvorrichtung 106 und/oder der Sprühkopf 102 werden mit einer Spannungsquelle 301 verbunden, so dass der Sprühnebel der hydrophoben Beschichtung elektrostatisch aufgeladen werden kann, zum Beispiel mit 30kV, 40 kV, 50kV oder 60kV (Kilovolt). Aufgrund der geerdeten Kondensatorrohre 101 wird der elektrostatisch aufgeladene Sprühnebel der hydrophoben Beschichtung angezogen, so dass sich der Sprühnebel gleichmäßig auf die Kondensatorrohre 101 aufträgt. Durch das Anziehen des elektrostatisch aufgeladenen Sprühnebels der hydrophoben Beschichtung kann ein eingebautes Kondensatorrohr 101 umfassend mit der hydrophoben Beschichtung besprüht werden. Selbst wenn der Sprühkopf 102 auf einer Seite des Kondensatorrohres den Sprühnebel aufträgt, kann aufgrund der elektrostatischen Anziehung auf der Gegenseite des Kondensatorrohres 101 der Sprühnebel angezogen werden, so dass sich auch auf der Gegenseite die hydrophobe Beschichtung anlegt. Somit kann selbst bei schlecht erreichbaren Kondensatorrohren 101 im eingebauten Zustand eine gleichmäßige Beschichtung der hydrophoben Beschichtung bereitgestellt werden.
  • Mit der vorliegenden Erfindung kann somit ein Kondensatorrohrbündel 203 für einen Kondensator 100 bereitgestellt werden, welches eingebaute und hydrophob beschichtete Kondensatorrohre 101 aufweist. Aufgrund der Beschichtung der Kondensatorrohre 101 in eingebautem Zustand kann der Herstellungsprozess des Kondensatorrohrbündels 203 beschleunigt werden, da der Beschichtungsprozess nicht für jedes Kondensatorrohr 101 einzeln durchgeführt werden muss, sondern für die Gesamtheit der eingebauten Kondensatorrohre 101 einmal. Zudem kann im Zuge der Wartung eines bereits auf der Dampfturbinenanlage montierten und sich im Betrieb befindenden Kondensators 100 eine Beschichtung der Kondensatorrohre 101 bereitgestellt werden, ohne dass die Kondensatorrohre 101 ausgebaut werden müssen. Beschädigungen der hydrophoben Beschichtung, welche bei einem Einbau eines Kondensatorrohres 101 in den Träger 105 des Kondensatorrohrbündels 203 auftreten, können ebenso vermieden werden, da die Kondensatorrohre 101 erst nach dem Einbau der Kondensatorrohre 101 in den Träger 105 des Kondensatorrohrbündels 203 mit der hydrophoben Beschichtung beschichtet werden.
  • Ergänzend ist darauf hinzuweisen, dass "umfassend" keine anderen Elemente oder Schritte ausschließt und "eine" oder "ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden ist, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.

Claims (15)

  1. Verfahren zur Herstellung eines Kondensators (100) insbesondere für eine Wärmekraftanlage, das Herstellverfahren aufweisend:
    ein Einbauen eines Kondensatorrohres (101) in einen Träger (105) für ein Kondensatorrohrbündel (203) des Kondensators (100), und
    ein Beschichten des eingebauten Kondensatorrohres (101) mit einer hydrophoben Beschichtung,
    wobei das Beschichten des eingebauten Kondensatorrohres (101) mit der hydrophoben Beschichtung aufweist:
    ein Positionieren einer Sprühvorrichtung (106) an dem Träger (105),
    ein Aufsprühen der hydrophoben Beschichtung mittels einer Sprühvorrichtung (106), und
    ein Bewegen der Sprühvorrichtung (106) während des Aufsprühens mit einem gleichmäßigen Vorschub entlang einer Erstreckungsrichtung des eingebauten Kondensatorrohres (101).
  2. Verfahren nach Anspruch 1,
    wobei während des Beschichtens der Kondensator (100) auf der Wärmekraftanlage montiert ist.
  3. Verfahren nach Anspruch 1 oder 2,
    wobei das eingebaute Kondensatorrohr (101) mittels einer Streichbeschichtung mit der hydrophoben Beschichtung beschichtet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    wobei die Sprühvorrichtung (106) einen Sprühkopf (102) aufweist, und wobei das Beschichten des eingebauten Kondensatorrohres (101) mit der hydrophoben Beschichtung ferner aufweist:
    ein Einbringen des Sprühkopfs (102) in den Träger (105), um das eingebaute Kondensatorrohr (101) mit der hydrophoben Beschichtung zu beschichten.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Beschichten des eingebauten Kondensatorrohres (101) mit der hydrophoben Beschichtung ferner aufweist:
    ein Beschichten des eingebauten Kondensatorrohres (101) mittels Elektrospritzlackierens.
  6. Verfahren nach einem der Ansprüche 1 bis 5, ferner aufweisend:
    Vernetzen der hydrophoben Beschichtung auf dem eingebauten Kondensatorrohr (101) mittels UV-Härtung, Dual Cure und/oder thermischer Aushärtung.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    wobei das Beschichten des eingebauten Kondensatorrohres (101) mit der hydrophoben Beschichtung mittels eines Sol-Gel Verfahrens erfolgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    wobei der Kondensator (100) ein Dampfkondensator (100) ist und die Wärmekraftanlage eine Dampfturbinenanlage ist.
  9. Vorrichtung zum Beschichten eines eingebauten Kondensatorrohres (101) mit einer hydrophoben Beschichtung nach einem Herstellverfahren nach einem der Ansprüche 1 bis 8, wobei die Vorrichtung aufweist:
    einen Sprühkopf (102) zum Beschichten des eingebauten Kondensatorrohres (101) mit der hydrophoben Beschichtung,
    eine Positionierungseinrichtung zum Positionieren der Vorrichtung an dem Träger (105),und
    eine Bewegungseinrichtung zum Bewegen des Sprühkopfs (102) entlang einer Erstreckungsrichtung des Kondensatorrohres (101).
  10. Vorrichtung nach Anspruch 9,
    wobei der Sprühkopf (102) derart eingerichtet ist, dass mittels Elektrospritzlackierens die hydrophobe Beschichtung auf das eingebaute Kondensatorrohr (101) auftragbar ist.
  11. Vorrichtung nach Anspruch 9 oder 10, ferner aufweisend:
    ein Verbindungsrohr (103),
    wobei das Verbindungrohr (103) die Bewegungseinrichtung und den Sprühkopf (102) verbindet,
    wobei das Verbindungsrohr (103) eine Helixform aufweist,
    wobei eine Steigung der Helixform an Kondensatorrohrradien (r) und an Kondensatorrohrabstände (a) der Kondensatorrohre (101) anpassbar ist.
  12. Kondensator (100) insbesondere für eine Wärmekraftanlage, wobei der Kondensator (100) mit einem Verfahren nach einem der Ansprüche 1 bis 8 hergestellt ist, wobei der Kondensator (100) aufweist:
    einen Träger (105) mit einem eingebauten Kondensatorrohr (101),
    wobei das eingebaute Kondensatorrohr (101) eine hydrophobe Beschichtung aufweist.
  13. Kondensator (100) nach Anspruch 12,
    wobei der Kondensator (100) als Heizkondensator ausgeführt ist.
  14. Kondensator (100) nach Anspruch 12,
    wobei der Kondensator (100) als Hochdruckvorwärmer und/oder als Niederdruckvorwärmer ausgeführt ist.
  15. Verwendung des Kondensators nach einem der Ansprüche 12 bis 14 in einer Wärmekraftanlage eines Heizkraftwerks.
EP09174287A 2008-11-10 2009-10-28 Hydrophobe Beschichtung von Kondensatoren im eingebauten Zustand Not-in-force EP2184115B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09174287T PL2184115T3 (pl) 2008-11-10 2009-10-28 Powłoka hydrofobowa kondensatorów w stanie zamontowanym

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008056621A DE102008056621B4 (de) 2008-11-10 2008-11-10 Verfahren zur Herstellung eines Dampfkondensators, sowie Dampfkondensator für eine Dampfturbinenanlage und Vorrichtung zum Beschichten eines Kondensatorrohres

Publications (2)

Publication Number Publication Date
EP2184115A1 true EP2184115A1 (de) 2010-05-12
EP2184115B1 EP2184115B1 (de) 2013-03-13

Family

ID=42026280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09174287A Not-in-force EP2184115B1 (de) 2008-11-10 2009-10-28 Hydrophobe Beschichtung von Kondensatoren im eingebauten Zustand

Country Status (6)

Country Link
US (1) US8580351B2 (de)
EP (1) EP2184115B1 (de)
CN (1) CN101786060A (de)
BR (1) BRPI0905392A2 (de)
DE (1) DE102008056621B4 (de)
PL (1) PL2184115T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3159634A1 (de) * 2015-10-23 2017-04-26 Carrier Corporation Verfahren zur regenerierung einer wasserabweisenden beschichtung eines wärmetauschers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096072A1 (en) 2009-02-17 2010-08-26 The Board Of Trustees Of The University Of Illinois Methods for fabricating microstructures
JP5218525B2 (ja) * 2010-11-09 2013-06-26 株式会社デンソー 熱輸送流体が流通する装置
GB2519405B (en) 2011-09-26 2016-04-13 Trane Int Inc Refrigerant management in HVAC systems
US8980387B2 (en) 2011-10-27 2015-03-17 General Electric Company Method of coating a surface and article incorporating coated surface
US8842435B2 (en) * 2012-05-15 2014-09-23 Toyota Motor Engineering & Manufacturing North America, Inc. Two-phase heat transfer assemblies and power electronics incorporating the same
US10921072B2 (en) * 2013-05-02 2021-02-16 Nbd Nanotechnologies, Inc. Functional coatings enhancing condenser performance
DE112015001545T5 (de) 2014-03-31 2016-12-22 Trane International Inc. Abweisende/aufnehmende Strukturen in Kühlsystemen und Flüssigdampfabscheidung in Kühlsystemen
KR101858814B1 (ko) * 2016-07-12 2018-05-17 두산중공업 주식회사 응축기 전열관 코팅 시스템
WO2019103799A1 (en) 2017-11-21 2019-05-31 Bl Technologies, Inc. Improving steam power plant efficiency with novel steam cycle treatments
JP6506865B1 (ja) * 2018-03-14 2019-04-24 栗田工業株式会社 蒸気の凝縮方法
CN115228386B (zh) * 2022-05-24 2023-10-20 大连理工大学 一种缠绕管式催化剂组件、大通量换热反应器及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE833049C (de) * 1949-06-29 1952-03-03 Bbc Brown Boveri & Cie Einrichtung zur Erzielung einer Tropfenkondensation bei Kondensationsanlagen
US3899366A (en) * 1973-10-31 1975-08-12 Allied Chem Treated substrate for the formation of drop-wise condensates and the process for preparing same
WO2001056711A1 (de) * 2000-02-03 2001-08-09 Sunyx Surface Nanotechnologies Gmbh Rohrleitung mit ultraphober innenwand
GB2428604A (en) * 2005-08-05 2007-02-07 Visteon Global Tech Inc Fluorosiloxane anti-foul coating on heat exchanger
DE102007008038A1 (de) * 2007-02-17 2008-09-11 Helmut Aaslepp Vorrichtung zur Beschichtung von WT-Rohren zur Erzwingung der Tropfenkondensation von Wasserdampf. Die Erneuerung der Beschichtung kann während eines Stillstands ohne zusätzliche Umbauten durchgeführt werden.
DE102007015450A1 (de) * 2007-03-30 2008-10-02 Siemens Ag Beschichtung für Dampfkondensatoren

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524607A (en) * 1982-04-05 1985-06-25 Science Applications International Corporation System and method for locating leaking tubes
US6058718A (en) * 1996-04-08 2000-05-09 Forsberg; Francis C Portable, potable water recovery and dispensing apparatus
AUPQ234599A0 (en) * 1999-08-20 1999-09-16 Lamb, Robert Norman Hydrophobic material
WO2005061166A1 (en) * 2003-12-24 2005-07-07 Showa Denko K.K. Heat exchanger and method for manufacturing the same
DE102007017518A1 (de) * 2007-04-13 2008-10-16 Siemens Ag Biozide/hydrophobe Innenbeschichtung von Kondensatorrohren (von Industrieturbinen und Nebenkühlkreisen)
US7914856B2 (en) * 2007-06-29 2011-03-29 General Electric Company Method of preparing wetting-resistant surfaces and articles incorporating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE833049C (de) * 1949-06-29 1952-03-03 Bbc Brown Boveri & Cie Einrichtung zur Erzielung einer Tropfenkondensation bei Kondensationsanlagen
US3899366A (en) * 1973-10-31 1975-08-12 Allied Chem Treated substrate for the formation of drop-wise condensates and the process for preparing same
WO2001056711A1 (de) * 2000-02-03 2001-08-09 Sunyx Surface Nanotechnologies Gmbh Rohrleitung mit ultraphober innenwand
GB2428604A (en) * 2005-08-05 2007-02-07 Visteon Global Tech Inc Fluorosiloxane anti-foul coating on heat exchanger
DE102007008038A1 (de) * 2007-02-17 2008-09-11 Helmut Aaslepp Vorrichtung zur Beschichtung von WT-Rohren zur Erzwingung der Tropfenkondensation von Wasserdampf. Die Erneuerung der Beschichtung kann während eines Stillstands ohne zusätzliche Umbauten durchgeführt werden.
DE102007015450A1 (de) * 2007-03-30 2008-10-02 Siemens Ag Beschichtung für Dampfkondensatoren

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3159634A1 (de) * 2015-10-23 2017-04-26 Carrier Corporation Verfahren zur regenerierung einer wasserabweisenden beschichtung eines wärmetauschers

Also Published As

Publication number Publication date
US8580351B2 (en) 2013-11-12
CN101786060A (zh) 2010-07-28
EP2184115B1 (de) 2013-03-13
DE102008056621A1 (de) 2010-05-20
DE102008056621B4 (de) 2012-01-05
US20100115950A1 (en) 2010-05-13
BRPI0905392A2 (pt) 2011-06-14
PL2184115T3 (pl) 2013-08-30

Similar Documents

Publication Publication Date Title
EP2184115B1 (de) Hydrophobe Beschichtung von Kondensatoren im eingebauten Zustand
DE212010000102U1 (de) Automatischer Prozess zur korrosionshemmendenBeschichtung und Fertigungsstrasse für ein großformatiges Stahlrohr
DE102014109339A1 (de) Beschichtung, beschichtete Turbinenkomponente und Beschichtungsverfahren
EP3294478A1 (de) Pulverbettbasiertes additives fertigungsverfahren mit oberflächennachbehandlung und für dieses fertigungsverfahren geeignete anlage
DE102008002987B4 (de) Verfahren und Vorrichtung zum Zuführen von Druck für die Sprühvernebelung durch einen Ansaugluft-Temperaturdämpfer von Gasturbinen
DE112007000436T5 (de) Wälzlager und Verfahren zur Herstellung desselben
WO2008092893A1 (de) Verdunstungskühler und dessen verwendung, sowie gasturbinenanlage mit einem verdunstungskühler
DE102008064125A1 (de) Kondensatorrohr mit erhöhter Hydrophobie, Herstellungsverfahren und Verwendung dazu
EP2236974A2 (de) Beschichteter Wärmetauscher
DE10192241B4 (de) Schutzüberzug für metallische Bauelemente
EP2390467A1 (de) Schutzschicht zur Vermeidung von Tropfenschlagerosion
EP0951580B1 (de) Verfahren zur Herstellung einer Beschichtung
WO2018134302A1 (de) Verwendung von sio2-beschichtungen in wasserführenden kühlsystemen
EP2898591A2 (de) Diffusionssperrschicht für spaltrohre
EP3000977B1 (de) Schaufel einer turbine mit wasserabweisendem beschichtetem schaufelblatt
DE102019114806A1 (de) Verfahren zur Herstellung elektrischer oder elektronischer Bauteile oder Schaltungen auf einem flexiblen flächigen Träger
DE102015116916A1 (de) Beschichtung, Beschichtungssystem und Beschichtungsverfahren
EP3149093B1 (de) Hydrophile beschichtung für wärmetauscher
EP2893982B1 (de) Lackiervorrichtung
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
DE102019134132A1 (de) Vorrichtung und Verfahren zur Herstellung von Kantenschutzbeschichtungen
EP2942334A1 (de) Schichtsystem für ein Bauteil
DE102019124080B4 (de) Verfahren zur Instandsetzung von DLC-beschichteten Bauteilen und DLC-beschichtetes Flugzeugbauteil
DE102016204447A1 (de) Metallisches Bauteil mit reibungsvermindernder Oberflächenbeschichtung, Verfahren zur Herstellung und Vorrichtung zur Durchführung des Verfahrens
WO2020030752A1 (de) Windenergieanlagen-rotorblatt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100921

17Q First examination report despatched

Effective date: 20110428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 1/40 20060101ALN20120910BHEP

Ipc: B05D 5/08 20060101AFI20120910BHEP

Ipc: F28F 13/04 20060101ALN20120910BHEP

Ipc: B05D 1/04 20060101ALN20120910BHEP

Ipc: F28F 13/18 20060101ALN20120910BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 600474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009006467

Country of ref document: DE

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130715

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

26N No opposition filed

Effective date: 20131216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009006467

Country of ref document: DE

Effective date: 20131216

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131028

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140923

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20141023

Year of fee payment: 6

Ref country code: FR

Payment date: 20141017

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141028

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141219

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091028

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 600474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009006467

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151028

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151028

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151028