EP2183403A2 - Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium - Google Patents

Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium

Info

Publication number
EP2183403A2
EP2183403A2 EP08803371A EP08803371A EP2183403A2 EP 2183403 A2 EP2183403 A2 EP 2183403A2 EP 08803371 A EP08803371 A EP 08803371A EP 08803371 A EP08803371 A EP 08803371A EP 2183403 A2 EP2183403 A2 EP 2183403A2
Authority
EP
European Patent Office
Prior art keywords
zirconium
layer
projection
corrosion
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08803371A
Other languages
German (de)
English (en)
Inventor
Thierry David
Philippe Aubert
Vincent Royet
Pierre Didier Alain Fauvet
Raphaël ROBIN
Pascal Aubry
Véronique LORENTZ
Maurice Ducos
Nadine Goubot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2183403A2 publication Critical patent/EP2183403A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a method for the anti-corrosion treatment of a workpiece by depositing a layer of zirconium and / or zirconium alloy thereon.
  • This process is particularly suitable for the protection of parts intended to be brought into contact with acidic media, such as media containing nitric acid, encountered especially in the chemical industries in general and in particular in the nuclear field.
  • acidic media such as media containing nitric acid
  • the general field of the invention is that of corrosion.
  • Corrosion means according to ISO 8044, the physicochemical interaction between a metal and its surrounding environment leading to changes in the properties of the metal and often a functional degradation of the metal, its environment or the chemical system constituted by both factors.
  • corrosion refers to the alteration of an object by reaction with oxygen, the most well-known examples being the chemical alterations of metals in water, such as rust iron or the formation of verdigris on copper and its alloys, such as bronze and brass.
  • the first idea may be to choose a material that does not corrode in the environment.
  • a material may be, for example, stainless steel, containing in particular chromium.
  • the formation of chromium oxides on the surface will thus hinder the progression of oxygen, and consequently, the deep propagation of the corrosion phenomenon.
  • stainless steel has limited corrosion resistance to weakly oxidizing and acidic media. It is therefore unsuitable for strongly acidic media, such as media containing nitric acid, found in the nuclear field and in the chemical industry.
  • a solution may be to control the characteristics of the environment, in particular by modifying the parameters having an influence on corrosion, such as the chemical composition (such as acidity, temperature and oxidizing power).
  • the chemical composition such as acidity, temperature and oxidizing power
  • this type of solution is only conceivable in a limited number of cases, especially in a closed environment.
  • a last solution may consist in isolating the part from the corrosive environment, in particular by protecting the part with a layer of paint, plastic material or by introducing another part to disturb the reaction.
  • the inventors have discovered, surprisingly, that by depositing on the part to be protected a thin layer of a particular metallic element and / or an alloy thereof in particular conditions, it was possible to respond effectively to the need mentioned above.
  • the invention relates to a method of anti-corrosion treatment of a part comprising a step of depositing by spraying on the surface thereof a zirconium and / or zirconium alloy layer, said part being , advantageously, maintained during the deposition step, at a temperature less than 200 0 C.
  • zirconium alloy is meant, conventionally, a mixture of predominantly zirconium (more than 50% by weight) and another metal element chosen, for example, from hafnium, iron, chromium, tin, nickel, niobium, copper and mixtures thereof.
  • This anti-corrosion treatment process is particularly advantageous in that zirconium is an element with very good corrosion resistance properties in most aggressive aqueous media.
  • the inalterability of zirconium is due to its very high affinity for oxygen and to the characteristics of the formed oxide film, this film having significant coverage and adhesion as well as high chemical stability.
  • This method is simple to implement because it does not require, advantageously, subsequent processing steps after the deposition step.
  • the process of the invention consists, advantageously, solely in a deposition step by projecting a zirconium and / or zirconium alloy layer on the surface of a piece, said part being advantageously maintained during the deposition step, at a temperature below 200 ° C.
  • zirconium and its alloys have, in oxidizing medium of the acidic type nitric, excellent resistance to corrosion over a very wide range of concentrations and temperatures.
  • the corrosion rate of the zirconium remains below 4.5 mg.dm.sup.- 1. ⁇ m / year), with a generalized corrosion morphology
  • the corrosion rate remains below 18 mg.dm ⁇ d "1 (ie 100 microns / year).
  • Zirconium and its alloys are therefore particularly advantageous for forming a coating for parts intended to be in contact with an aggressive aqueous medium.
  • the deposited layer is zirconium (that is to say not zirconium alloy), pure zirconium being even more effective than its alloys in terms of corrosion resistance.
  • This method may be intended to coat new parts or to reload corroded parts (especially in nuclear environment).
  • This layer of zirconium and / or zirconium alloy may have a thickness of up to 2 mm and is advantageously free of oxide (s).
  • the deposition step can be advantageously carried out by a technique selected from electric arc projection, HVOF projection, plasma projection, cold spraying.
  • the deposition step is performed by the preferred technique of cold spraying.
  • the step of depositing the zirconium and / or zirconium alloy layer is carried out by electric arc projection (also known in the English terminology of the "Arc Spray” method). ).
  • the principle of the electric arc projection consists of sparking an electric arc between two consumable and conductive wires (in this case zirconium and / or zirconium alloy wires), which perform both a function of electrode and a filler material function to form the layer.
  • the wires may be annealed wires of zirconium and / or zirconium alloy having a diameter of 1.6 mm.
  • the molten metal, resulting from the melting of the consumable and conducting wires following contact with the arc, is then projected onto the part to be treated by a jet of neutral gas, such as argon.
  • This embodiment is particularly suitable for producing coatings on parts intended to be subjected to an environment acid, such as a medium comprising nitric acid at 11 mol.l '1 at a temperature of 60 0 C, that the coating is intended to coat a new part or to carry out repairs on a damaged part .
  • an environment acid such as a medium comprising nitric acid at 11 mol.l '1 at a temperature of 60 0 C
  • the deposition step of the zirconium layer and / or zirconium alloy may be carried out by HVOF projection (acronym corresponding to "High Velocity Oxygen Fuel” also known in French as “oxygen flame projection” - high speed fuel).
  • HVOF projection is a supersonic flame projection process, in which the energy required for the fusion and acceleration of the filler (here zirconium or zirconium alloy) is obtained by the combustion of a fuel in gaseous form (for example, propane, propylene, hydrogen, acetylene, natural gas) or liquid (such as kerosene) and oxygen, the fuel and the oxidant being, for example, a stoichiometric mixture. It can also be used, in addition to the aforementioned mixture, a propellant gas, preferably a neutral gas, such as argon.
  • the filler product is conventionally in the form of zirconium son and / or zirconium alloy.
  • the wires may be annealed wires of zirconium and / or zirconium alloy having a diameter of 1.6 mm.
  • the gases burned in a combustion chamber generally flow into a nozzle, where they are accelerated to reach a supersonic speed at the nozzle outlet (for example, of the order of 700 m / s) and will contribute to the transport of zirconium. injected into the same nozzle.
  • Temperatures e.g. of from 2000 to 4000 0 C
  • the speeds reached by the gas jet e.g. from 1800 to 2200 m. S -1
  • the deposition step of the zirconium layer and / or zirconium alloy can be performed by plasma spraying.
  • the principle of plasma spraying is to project melted particles which, under the effect of temperature and speed, crash on the surface of the workpiece, where they mechanically cling.
  • an electric arc is initiated by high frequency and maintained by a low voltage power source in a plasma gas flow.
  • the plasma gas may be argon, nitrogen, mixtures thereof, optionally in the presence of hydrogen and / or helium. Under the effect of high temperatures, the gas molecules dissociate and then ionize it and obtain a highly conductive medium allowing the maintenance of an electric arc between the cathode and the anode with a difference in temperature. potential.
  • the plasmagene gas also subject to considerable expansion (up to more than 100 times its initial volume), contributes to the constriction of the arc, which has as its effect of raising the temperature and forcing the gas out of the anode in the form of plasma.
  • the plasma consisting of dissociated and partially ionized gases emerges from the nozzle-shaped anode at high speed (which may be of the order of Mach 1) and at high temperature (for example, from 10,000 K to 14,000 K ).
  • the zirconium and / or zirconium alloy in powder form is injected into the plasma in the nozzle anode or more generally at the outlet thereof. Accelerated and melted, the particles are projected on the surface of the part to be coated with a very high kinetic energy, which allows an optimal attachment.
  • This embodiment is particularly suitable for producing coatings on new parts intended to be subjected to an acidic environment, such as a medium comprising nitric acid at 11 mol.l -1 at a temperature of 60 ° C. .
  • the deposition step of the zirconium and / or zirconium alloy layer can be performed by cold spraying (corresponding to the English terminology "CoId Spray”), which is the preferred technique. of the invention.
  • the principle of the cold projection is to accelerate a gas (such as nitrogen, helium, argon), heated to a temperature ranging from 100 to 700 0 C, at supersonic speeds in a nozzle of the type "Laval" then the powder of material to be sprayed (here, the zirconium powder and / or zirconium alloy) is introduced into the high pressure part (between 10 and 40 bar) of the nozzle and is projected to " unmelted state "towards the surface of the part to be coated at a speed of between 600 and 1200 m / s. In contact with the workpiece, the particles undergo a plastic deformation and form on impact a dense and adherent coating.
  • a gas such as nitrogen, helium, argon
  • This embodiment lies in the non-melting of the particles, therefore in a very low risk of oxidation and possible integration in a hostile environment.
  • This embodiment is particularly suitable for producing coatings on parts intended to be subjected to an acid environment, such as a nitric acid medium at 11 mol.l -1 at a temperature of 60 ° C. or 14 mol.l -1 at 120 ° C., that this coating is intended to be in place on a new part or to carry out repairs on a part having suffered damages.
  • an acid environment such as a nitric acid medium at 11 mol.l -1 at a temperature of 60 ° C. or 14 mol.l -1 at 120 ° C.
  • the deposition step is also advantageously carried out in a neutral gas atmosphere (such as argon), so as to reduce in particular the risks of pyrophoricity of the zirconium powder.
  • a neutral gas atmosphere such as argon
  • the deposition step can be performed in the presence of a cooling system or propulsion under a neutral gas.
  • the part to be coated in particular except for laser deposition, is maintained, during the deposition step, at a temperature below 200 ° C., in order to ensure good cohesion with the substrate.
  • the metal parts that can be treated by the process of the invention may be steel parts, zirconium or zirconium alloy parts, iron parts or iron-based alloys.
  • the metal parts when made of steel, may be ferritic, martensitic, and in particular austenitic precipitation-hardened ferritic-martensitic steel or austenitic-ferritic steel parts, corresponding to shading described in standard NF EN 10088 (such as steel X 2 CN 18 10, X 2 CND 17 13, X 2 CN 25 20 or X 2 CNS 18 15).
  • the metal parts that can be treated by the process of the invention may also be zirconium or zirconium-based alloy parts.
  • the purpose of the process may be, in addition to protecting the piece of corrosion, reloading said zirconium piece, for example, to carry out repairs on said damaged piece.
  • This treatment method finds its application for the parts subjected to a corrosive environment, such as those used in equipment intended for the stages of the spent fuel treatment process, or more generally such as those used in the chemical industries using acids.
  • oxidants such as nitric acid, sulfuric acid.
  • This example illustrates the deposition of a zirconium layer by electric arc projection on a piece of 304L stainless steel or zirconium.
  • the device used for this projection is a TAFA 9000 Arc Spray. It consists of a generator module with integrated wire coils and a gun. The gun is embedded on a robot allowing a better homogeneity of the recovery of the different passes.
  • the propellant used is argon.
  • the gun is equipped with an "Arc Jet" device, which makes it possible to increase the particle velocity, and to better sheath the particles in an argon atmosphere up to the substrate part.
  • a stripping of the piece to be treated is made by impact with abrasive (white corundum) and the piece thus stripped is then blown in the air then degreased to
  • the temperature of the room is less than 200 0 C during projection.
  • the projection conditions are grouped in the following Table I:
  • argon as a propellant and coolant provided a homogeneous, dense deposit with a low oxide content and an adhesion of about 11 MPa.
  • the hardness of the deposit is about 200 Hv and is comparable to that of solid zirconium (190 Hv).
  • the corrosion tests by immersion in a nitric acid solution of 11 moles / liter at a temperature of 60 ° C. for 800 hours did not show any degradation of the previously deposited layer.
  • the change in mass is less than 2 mg / dm 2 .
  • This example illustrates the deposition of a zirconium layer by HVOF projection on a piece of zirconium or 304L steel.
  • the apparatus used for this projection is a HV WIRE System model 2000.
  • the projection gun is mounted on a motorized linear slide whose speed can be adjusted, the offsets between each pass being done manually.
  • the wire is brought to the level of the gun by a conventional device ("pulled-pushed"), which allows to vary the speed of the wire, and therefore to know the amount of material consumed.
  • Thread speed 0, 01 m / s
  • Flow rate 0, 67 g / s
  • the corrosion tests by immersion in a nitric acid solution of 11 moles / liter at a temperature of 60 ° C. for 800 hours did not show any degradation of the previously deposited layer.
  • the mass variation is less than 2 mg / dm 2 .
  • This example illustrates the deposition of a zirconium layer by plasma spraying on a piece of 304L stainless steel or zirconium.
  • the apparatus used is a conventional torch (F4 from Metco) in an 18 m chamber, which is placed in a controlled atmosphere (argon).
  • a 6-axis robot is integrated in the cabin allowing the realization of pieces of complex shapes.
  • the advantage of making deposits with this type of installation is the use of an atmosphere under argon, which will limit the oxidation of zirconium.
  • Stripping of the workpiece is carried out by impact with an abrasive (white corundum, having a particle size of 700 microns) under a pressure of 4.5 bar and with an angle of 45 °, in order to minimize the incrustations in the substrate.
  • an abrasive white corundum, having a particle size of 700 microns
  • the chamber is pre-pumped several times before the projection, and an additional cooler (FENWICK slotted cooler) was added at the torch outlet in addition to the two EMANI nozzles, which avoids the combination of residual oxygen with the molten powder during the projection. This system also reduces the temperature of the room.
  • the projection conditions are grouped in the following Table III.
  • the deposit obtained is homogeneous, dense, free of oxide, of millimeter thickness and without cracking between the layer and the part.
  • the adhesion is between 31 and 43 MPa.
  • the hardness of the layer is identical to that of solid zirconium (190 Hv).
  • the corrosion tests by immersion in a nitric acid solution of 11 moles / liter at a temperature of 60 ° C. for 800 hours did not show any appreciable degradation of the layer.
  • the mass variation is less than 2 mg / dm 2 .
  • This example illustrates the deposition of a layer of zirconium by cold spraying (so-called "CoId Spray” projection) on a piece of 304 L stainless steel or zirconium.
  • the apparatus used consists of a projection booth, a robot, a pistol, a generator, a powder distributor and a gas heater.
  • the projection conditions are grouped in the following Table IV.
  • the deposits are homogeneous, dense and do not contain oxides.
  • the hardness of the deposited layer is approximately 350 Hv, this value being greater than that of solid zirconium. This comes from the process, since the elaboration of the layer is done by stacking successive sub-layers and the high speed of the particles causes a phenomenon of hardening, which increases the hardness of the layer. This is of interest in that the layer can provide both an anti-corrosion function and an anti-wear function.
  • the corrosion tests by immersion in a nitric acid solution of 11 moles / liter at a temperature of 60 ° C. for 800 hours did not show any degradation of the deposited layer.
  • Another test of 168 hours in a nitric acid solution of 14 mol / liter at a temperature of 120 ° C. has also not shown degradation of the deposited layer.
  • the mass variation is less than 3 mg / dm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

L'invention a trait à un procédé de traitement anti-corrosion d'une pièce comprenant une étape de dépôt par projection à la surface de celle-ci d'une couche en zirconium et/ou en alliage de zirconium.

Description

PROCEDE DE TRAITEMENT ANTI-CORROSION D'UNE PIECE PAR DEPOT D'UNE COUCHE DE ZIRCONIUM ET/OU D'ALLIAGE DE
ZIRCONIUM
DESCRIPTION
DOMAINE TECHNIQUE
L' invention a trait à un procédé de traitement anti-corrosion d'une pièce, par dépôt d'une couche de zirconium et/ou d'alliage de zirconium sur celle-ci .
Ce procédé est particulièrement adapté à la protection de pièces destinées à être mises en contact avec des milieux acides, tels que les milieux contenant de l'acide nitrique, rencontrés notamment dans les industries chimiques en général et en particulier dans le domaine nucléaire.
Le domaine général de l'invention est donc celui de la corrosion.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
La corrosion désigne, suivant la norme ISO 8044, l'interaction physico-chimique entre un métal et son milieu environnant entraînant des modifications dans les propriétés du métal et souvent une dégradation fonctionnelle du métal, de son environnement ou du système chimique constitué par les deux facteurs.
Plus communément, la corrosion désigne l'altération d'un objet par réaction avec l'oxygène, les exemples les plus connus étant les altérations chimiques des métaux dans l'eau, telles la rouille du fer ou la formation de vert-de-gris sur le cuivre et ses alliages, tels que le bronze et le laiton.
Pour lutter contre la corrosion, la première idée peut consister à choisir un matériau qui ne se corrode pas dans l'environnement considéré. Un tel matériau peut être, par exemple, l'acier inoxydable, contenant notamment du chrome. La formation d'oxydes de chrome à la surface va ainsi gêner la progression de l'oxygène, et par voie de conséquence, la propagation en profondeur du phénomène de corrosion. Toutefois, l'acier inoxydable présente une résistance à la corrosion limitée aux milieux faiblement oxydants et acides. Il est donc peu adapté à des milieux fortement acides, tels que des milieux contenant de l'acide nitrique, que l'on rencontre dans le domaine nucléaire et dans l'industrie chimique.
Il peut être également envisageable de jouer sur la conception de la pièce, afin d'éviter les zones de confinement, les contacts entre matériaux différents et les hétérogénéités en général, qui constituent souvent le point de départ de la corrosion. Une autre solution peut consister à maîtriser les caractéristiques de l'environnement, notamment en modifiant les paramètres ayant une influence sur la corrosion, telles que la composition chimique (comme l'acidité, la température et le pouvoir oxydant). Toutefois, ce type de solution n'est envisageable que dans un nombre limité de cas, notamment dans un milieu fermé. Enfin, une dernière solution peut consister à isoler la pièce de l'environnement corrosif, notamment en protégeant la pièce par une couche de peinture, en matière plastique ou encore en introduisant une autre pièce pour perturber la réaction
(principe de l'anode sacrificielle), cette nouvelle pièce se corrodant à la place de la pièce à protéger.
Toutefois, ces solutions ne sont pas adaptées à un environnement très acide, tel que ceux que l'on rencontre dans le domaine nucléaire.
Il existe donc un véritable besoin pour un procédé de traitement anti-corrosion, permettant une protection des pièces efficace dans des milieux très corrosifs, notamment des milieux acides, tels que les milieux contenant de l'acide nitrique, que l'on rencontre dans le domaine nucléaire, et qui plus est, qui soit un procédé de mise en œuvre simple et peu coûteux .
EXPOSÉ DE L'INVENTION
Les Inventeurs ont découvert, de façon surprenante, qu'en déposant sur la pièce à protéger une fine couche d'un élément métallique particulier et/ou d'un alliage de celui-ci dans des conditions particulières, il était possible de répondre efficacement au besoin susmentionné.
Ainsi, l'invention a trait à un procédé de traitement anti-corrosion d'une pièce comprenant une étape de dépôt par projection à la surface de celle-ci d'une couche en zirconium et/ou en alliage de zirconium, ladite pièce étant, avantageusement, maintenue, pendant l'étape de dépôt, à une température inférieure à 2000C.
On précise que, par alliage de zirconium, on entend, classiquement, un mélange de zirconium en quantité prédominante (plus de 50% en masse) et d'un autre élément métallique choisi, par exemple, parmi l'hafnium, le fer, le chrome, l'étain, le nickel, le niobium, le cuivre et les mélanges de ceux-ci.
Ce procédé de traitement anti-corrosion est particulièrement avantageux, en ce sens que le zirconium est un élément présentant des propriétés de tenue en corrosion très intéressantes dans la plupart des milieux aqueux agressifs. L'inaltérabilité du zirconium tient à sa très grande affinité pour l'oxygène et aux caractéristiques du film d'oxyde formé, ce film présentant une couvrance et une adhérence importantes ainsi qu'une grande stabilité chimique . Ce procédé est de mise en œuvre simple, car il ne nécessite pas, avantageusement, d'étapes ultérieures de traitement après l'étape de dépôt. Ainsi, le procédé de l'invention consiste, avantageusement, uniquement en une étape de dépôt par projection à la surface d'une pièce d'une couche en zirconium et/ou en alliage de zirconium, ladite pièce étant, avantageusement, maintenue, pendant l'étape de dépôt, à une température inférieure à 2000C.
Plus spécifiquement, le zirconium et ses alliages présentent, en milieu oxydant du type acide nitrique, une excellente tenue à la corrosion, et ce sur un très large domaine de concentrations et de températures. Par exemple, pour une mise en contact avec une solution d'acide nitrique jusqu'à 24 mol/L à 1' ébullition, la vitesse de corrosion du zirconium reste inférieure à 4,5 mg.dm^.j"1 (soit 25 μm/an) , avec une morphologie de corrosion généralisée. Pour une mise en contact avec une solution d'acide sulfurique jusqu'à 14 mol/L à l' ébullition, la vitesse de corrosion reste inférieure à 18 mg.dm^.j"1 (soit 100 μm/an).
Le zirconium et ses alliages sont donc particulièrement avantageux pour constituer un revêtement pour des pièces destinées à être en contact avec un milieu aqueux agressif. Avantageusement, la couche déposée est en zirconium (c'est-à-dire pas en alliage de zirconium), le zirconium pur étant encore plus efficace que ses alliages en termes de tenue à la corrosion.
Ce procédé peut être destiné à revêtir des pièces neuves ou encore à recharger des pièces corrodées (notamment en environnement nucléaire) .
Cette couche de zirconium et/ou d'alliage de zirconium peut présenter une épaisseur allant jusqu'à 2 mm et est, avantageusement, dépourvue d'oxyde (s) .
L'étape de dépôt peut être avantageusement réalisée par une technique choisie parmi la projection par arc électrique, la projection HVOF, la projection plasma, la projection à froid. Tout particulièrement, l'étape de dépôt est réalisée par la technique privilégiée de projection à froid.
Ces techniques sont particulièrement adaptées pour obtenir une couche en zirconium et/ou alliage de celui-ci dense, avantageusement exempte d'oxyde (s) et présentant une bonne adhérence sur la pièce .
Ainsi, selon un premier mode de réalisation, l'étape de dépôt de la couche de zirconium et/ou d'alliage de zirconium est réalisée par projection par arc électrique (technologie connue également sous la terminologie anglo-saxonne de procédé « Arc Spray ») .
Le principe de la projection par arc électrique consiste à faire jaillir un arc électrique entre deux fils consommables et conducteurs (en l'occurrence ici, des fils de zirconium et/ou d'alliage de zirconium), qui remplissent à la fois une fonction d'électrode et une fonction de matériau d'apport pour constituer la couche. En particulier, les fils peuvent être des fils recuits de zirconium et/ou d'alliage de zirconium présentant un diamètre de 1,6 mm. Le métal fondu, issu de la fusion des fils consommables et conducteurs suite au contact avec l'arc, est ensuite projeté sur la pièce à traiter par un jet de gaz neutre, tel que de l'argon.
Ce mode de réalisation est particulièrement approprié à la réalisation de revêtements sur des pièces destinées à être soumises à un environnement acide, tel qu'un milieu comprenant de l'acide nitrique à 11 mol.l'1 à une température de 600C, que ce revêtement soit destiné à revêtir une pièce neuve ou à réaliser des réparations sur une pièce ayant subi des dommages.
Selon un second mode de réalisation, l'étape de dépôt de la couche en zirconium et/ou d'alliage de zirconium peut être réalisée par projection HVOF (acronyme correspondant à « High Velocity Oxygen Fuel » appelée également en français « Projection à flamme oxygène-carburant à haute vitesse) .
La projection HVOF est un procédé de projection à la flamme supersonique, dans lequel l'énergie nécessaire à la fusion et à l'accélération du produit d'apport (ici le zirconium ou alliage de zirconium) est obtenue par la combustion d'un carburant sous forme gazeuse (par exemple, propane, propylène, hydrogène, acétylène, gaz naturel) ou liquide (tel que le kérosène) et d'oxygène, le carburant et l'oxydant étant, par exemple, en mélange stoechiométrique . Il peut être utilisé, également, en plus du mélange susmentionné, un gaz propulseur, de préférence, un gaz neutre, tel que l'argon. Le produit d'apport se présente classiquement sous forme de fils de zirconium et/ou alliage de zirconium. En particulier, les fils peuvent être des fils recuits de zirconium et/ou d'alliage de zirconium présentant un diamètre de 1,6 mm. Les gaz brûlés dans une chambre de combustion s'écoulent généralement dans une buse, où ils sont accélérés pour atteindre une vitesse supersonique en sortie de buse (par exemple, de l'ordre de 700 m/s) et vont contribuer au transport du zirconium injectée dans la même buse.
Les températures (par exemple allant de 2000 à 40000C) et les vitesses atteintes par le jet de gaz (par exemple allant de 1800 à 2200 m. s'1) permettent au contact du zirconium de le fondre et de le projeter à grande vitesse sur la pièce à revêtir. Il s'ensuit un excellent accrochage du zirconium et/ou de l'alliage de zirconium sur la pièce, une faible porosité et une faible rugosité de surface de la couche déposée. II peut être avantageux de maintenir la pièce à revêtir à une température inférieure à 1000C, pour améliorer encore la qualité de l'accrochage.
Selon un troisième mode de réalisation, l'étape de dépôt de la couche en zirconium et/ou d'alliage de zirconium peut être réalisée par projection plasma.
Le principe de la projection plasma consiste à projeter des particules fondues qui, sous l'effet de la température et de la vitesse, s'écrasent sur la surface de la pièce à traiter, où elles s'accrochent mécaniquement.
De façon plus précise, entre une cathode
(généralement de forme axiale, et en un matériau tel que le tungstène) et une anode (généralement en forme de tuyère et en un matériau tel que le cuivre) , qui sont toutes deux refroidies par un système de refroidissement (tel que l'eau), un arc électrique est amorcé par haute fréquence et entretenu par une source de courant à basse tension dans un flux de gaz plasmagène. Le gaz plasmagène peut être de l'argon, de l'azote, des mélanges de ceux-ci, éventuellement en présence d'hydrogène et/ou d'hélium. Sous l'effet des températures élevées, il y a dissociation des molécules de gaz puis ionisation de celui-ci et obtention d'un milieu très conducteur permettant l'entretien d'un arc électrique entre la cathode et l'anode présentant une différence de potentiel.
Lors de son passage au travers de l'anode, le gaz plasmagène, par ailleurs soumis à une dilatation considérable (pouvant aller jusqu'à plus de 100 fois son volume initial), contribue à la constriction de l'arc, ce qui a pour effet d'élever la température et de forcer le gaz à sortir de l'anode sous forme de plasma. Le plasma constitué de gaz dissociés et partiellement ionisés, émerge de l'anode en forme de tuyère à grande vitesse (pouvant être de l'ordre de Mach 1) et à haute température (par exemple, allant de 10 000 K à 14 000 K) .
Le zirconium et/ou l'alliage de zirconium sous forme de poudre, préalablement mis en suspension dans un gaz support, est injecté dans le plasma dans l'anode tuyère ou plus généralement à la sortie de celle-ci. Accélérées et fondues, les particules sont projetées sur la surface de la pièce à revêtir avec une énergie cinétique très importante, ce qui permet un accrochage optimal. Ce mode de réalisation est particulièrement adapté à la réalisation de revêtements sur des pièces neuves destinées à être soumises à un environnement acide, tels qu'un milieu comprenant de l'acide nitrique à 11 mol.l'1 à une température de 600C.
Selon un quatrième mode de réalisation, l'étape de dépôt de la couche en zirconium et/ou en alliage de zirconium peut être réalisée par projection à froid (correspondant à la terminologie anglo-saxonne « CoId Spray ») , qui est la technique privilégiée de 1' invention .
Le principe de la projection à froid consiste à accélérer un gaz (tel que l'azote, l'hélium, l'argon), chauffé à une température pouvant aller de 100 à 7000C, à des vitesses supersoniques dans une buse du type « De Laval » puis la poudre de matériau à projeter (ici, la poudre de zirconium et/ou d'alliage de zirconium) est introduite dans la partie haute pression (entre 10 et 40 bars) de la buse et est projetée à « l'état non fondu » vers la surface de la pièce à revêtir à une vitesse pouvant aller de 600 à 1200 m/s. Au contact de la pièce, les particules subissent une déformation plastique et forment à l'impact un revêtement dense et adhérent.
L'intérêt de ce mode de réalisation réside dans la non fusion des particules, donc dans un risque d'oxydation très faible et une possible intégration en milieu hostile. Ce mode de réalisation est particulièrement adapté à la réalisation de revêtements sur des pièces destinées à être soumises à un environnement acide, tel qu'un milieu acide nitrique à 11 mol.l"1 à une température de 600C ou 14 mol. L"1 à 1200C, que ce revêtement soit destiné à être mis en place sur une pièce neuve ou à réaliser des réparations sur une pièce ayant subie des dommages.
Quel que soit le mode de réalisation envisagé, l'étape de dépôt est réalisée également avantageusement en atmosphère de gaz neutre (tel que de l'argon), de façon à réduire notamment les risques de pyrophoricité du zirconium en poudre.
L'étape de dépôt peut être réalisée en présence d'un système de refroidissement ou de propulsion sous gaz neutre.
Avantageusement, la pièce à revêtir, en particulier hormis pour le dépôt par voie laser, est maintenue, pendant l'étape de dépôt, à une température inférieure à 2000C, afin d'assurer une bonne cohésion avec le substrat.
Les pièces métalliques susceptibles d'être traitées par le procédé de l'invention peuvent être des pièces en acier, des pièces en zirconium ou en alliages à base de zirconium, des pièces en fer ou en alliages à base de fer.
En particulier, les pièces métalliques, lorsqu'elles sont en acier, peuvent être des pièces en acier inoxydable ferritique, martensitique et, en particulier, à durcissement par précipitation, austénitique, en acier ferritique-martensitique ou en acier austéno-ferritique, correspondant aux nuances décrites dans la norme NF EN 10088 (telles que l'acier X 2 CN 18 10, X 2 CND 17 13, X 2 CN 25 20 ou X 2 CNS 18 15) .
Les pièces métalliques susceptibles d'être traitées par le procédé de l'invention peuvent être aussi des pièces en zirconium ou en alliages à base de zirconium. Dans ce cas, la finalité du procédé peut être, outre celle de protéger la pièce de la corrosion, de recharger ladite pièce en zirconium, par exemple, de réaliser des réparations sur ladite pièce ayant subi un dommage .
Ce procédé de traitement trouve son application pour les pièces soumises à un environnement corrosif, telles que celles utilisées dans des équipements destinés aux étapes du procédé de traitement du combustible usé, ou plus généralement telles que celles utilisées dans les industries chimiques mettant en œuvre des acides oxydants (tels que l'acide nitrique, l'acide sulfurique) .
L' invention va maintenant être décrite par rapport aux modes de réalisations suivants donnés à titre illustratif et non limitatif. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Les exemples suivants illustrant différents modes de réalisation de l'invention, chacun de ces modes illustrant une technique de projection particulière . EXEMPLE 1
Cet exemple illustre le dépôt d'une couche de zirconium par projection par arc électrique sur une pièce en acier inoxydable 304L ou en zirconium.
L'appareil utilisé pour cette projection est un appareil Arc Spray TAFA 9000. Il est constitué d'un module générateur comprenant des bobines de fils intégrés et un pistolet. Le pistolet est embarqué sur un robot permettant une meilleure homogénéité du recouvrement des différentes passes. Le gaz propulseur utilisé est de l'argon. Le pistolet est équipé d'un dispositif « Arc Jet », qui permet d'augmenter la vitesse des particules, et de mieux gainer les particules dans une atmosphère d'argon jusqu'à la pièce formant substrat.
Préalablement au dépôt, un décapage de la pièce à traiter est réalisé par impact avec de l'abrasif (corindon blanc) et la pièce ainsi décapée est ensuite soufflée à l'air puis dégraissée à
1' alcool .
La température de la pièce est inférieure à 2000C lors de la projection. Les conditions de projection sont regroupées dans le tableau I suivant :
L'utilisation de l'argon en tant que gaz propulseur et refroidisseur a permis d'obtenir un dépôt homogène, dense, avec un faible taux d'oxyde et une adhérence d'environ 11 MPa. La dureté du dépôt est d'environ 200 Hv et est comparable à celle du zirconium massif (190 Hv) .
Les tests en corrosion par immersion dans une solution d'acide nitrique de 11 moles/litre à une température de 600C pendant 800 heures n'ont pas mis en évidence de dégradation de la couche précédemment déposée. La variation de la masse est inférieure à 2 mg/dm2.
EXEMPLE 2
Cet exemple illustre le dépôt d'une couche de zirconium par projection HVOF sur une pièce en zirconium ou en acier 304L. L'appareil utilisé pour cette projection est un HV WIRE System model 2000. Le pistolet de projection est monté sur un chariot linéaire motorisé dont la vitesse peut être ajustée, les décalages entre chaque passe se faisant manuellement. Le fil est amené au niveau du pistolet par un dispositif classique (« tiré-poussé ») , qui permet de faire varier la vitesse du fil, et donc de connaître la quantité de matière consommée.
Les conditions de projection sont regroupées dans le tableau II suivant.
Caractéristique Valeur
Oxygène Pression : 600 000 Pa Débit : 1, 06 L/s
Propylène Pression : 500 000 Pa Débit : 0,2 L/s
Argon Pression : 600 000 Pa Débit : 0,1 L/s
Distance de tir 0, 15 m
Vitesse de translation du 0, 05 m/s pistolet
Vitesse du fil 0, 01 m/s Débit : 0, 67 g/s
Nombre de passes 40
Epaisseur déposée 0, 0014 m
L'originalité dans l'utilisation de ce procédé a été d'utiliser l'argon comme gaz propulseur, de travailler avec un mélange stoechiométrique de gaz de combustion, de maintenir la température de la pièce à moins de 2000C par un refroidissement adapté et de limiter l'épaisseur par passe la plus faible possible. Les dépôts obtenus sont homogènes, denses. La dureté de cette couche est identique à celle du zirconium massif (190 Hv) .
Les tests en corrosion par immersion dans une solution d'acide nitrique de 11 moles/litre à une température de 600C pendant 800 heures n'ont pas mis en évidence de dégradation de la couche précédemment déposée. La variation de masse est inférieure à 2 mg/dm2.
EXEMPLE 3
Cet exemple illustre le dépôt d'une couche de zirconium par projection plasma sur une pièce en acier inoxydable 304L ou en zirconium.
L'appareil utilisé est une torche classique (F4 de chez Metco) dans une enceinte de 18 m , qui est placée en atmosphère contrôlée (argon) . Un robot 6 axes est intégré dans la cabine permettant la réalisation de pièces de formes complexes. L'intérêt de réaliser des dépôts avec ce type d' installation réside dans l'utilisation d'une atmosphère sous argon, qui va limiter l'oxydation du zirconium.
Un décapage de la pièce à traiter est réalisé par impact avec un abrasif (corindon blanc, présentant une granulométrie de 700 μm) sous une pression de 4,5 bars et avec un angle de 45°, afin de minimiser les incrustations dans le substrat. Afin de diminuer le taux d' oxyde dans le dépôt, l'enceinte est prévidée plusieurs fois avant la projection, et il a été ajouté un refroidisseur supplémentaire (refroidisseur à fente FENWICK) en sortie de torche en plus des deux buses EMANI, ce qui permet d'éviter la combinaison de l'oxygène résiduel avec la poudre en fusion pendant la projection. Ce système permet également de diminuer la température de la pièce.
Les conditions de projection sont regroupées dans le tableau III suivant.
Le dépôt obtenu est homogène, dense, dépourvu d'oxyde, d'épaisseur millimétrique et sans fissuration entre la couche et la pièce. L'adhérence est comprise entre 31 et 43 MPa. La dureté de la couche est identique à celle du zirconium massif (190 Hv) . Les tests en corrosion par immersion dans une solution d'acide nitrique de 11 moles/litre à une température de 600C pendant 800 heures n'ont pas mis en évidence de dégradation notable de la couche. La variation de masse est inférieure à 2 mg/dm2.
EXEMPLE 4
Cet exemple illustre le dépôt d'une couche de zirconium par projection à froid (dite projection « CoId Spray ») sur une pièce en acier inoxydable 304 L ou en zirconium.
L'appareil utilisé est composé d'une cabine de projection, d'un robot, d'un pistolet, d'un générateur, d'un distributeur de poudre et d'un réchauffeur de gaz.
Les conditions de projection sont regroupées dans le tableau IV suivant.
Les dépôts réalisés sont homogènes, denses et ne contiennent pas d'oxydes. La dureté de la couche déposée est d'environ 350 Hv, cette valeur étant supérieure à celle du zirconium massif. Cela provient du procédé, car l'élaboration de la couche se fait par empilage de sous couches successives et la vitesse élevée des particules provoque un phénomène d' écrouissage, qui augmente la dureté de la couche. Cela présente un intérêt, en ce sens que la couche peut assurer à la fois une fonction anti-corrosion et une fonction anti-usure. Les tests en corrosion par immersion dans une solution d'acide nitrique de 11 moles/litre à une température de 600C pendant 800 heures n'ont pas mis en évidence de dégradation de la couche déposée. Un autre essai de 168 heures dans une solution d'acide nitrique de 14 moles/litre à une température de 1200C n'a pas mis également en évidence de dégradation de la couche déposée. La variation de masse est inférieure à 3 mg/dm2.

Claims

REVENDICATIONS
1. Procédé de traitement anti-corrosion d'une pièce comprenant une étape de dépôt par projection à la surface de celle-ci d'une couche en zirconium et/ou en alliage de zirconium, ladite pièce étant maintenue, pendant l'étape de dépôt, à une température inférieure à 2000C.
2. Procédé de traitement anti-corrosion selon la revendication 1, consistant uniquement en une étape de dépôt telle que mentionnée à la revendication 1.
3. Procédé de traitement selon la revendication 1 ou 2, dans lequel la couche en zirconium et/ou en alliage de zirconium présente une épaisseur allant jusqu'à 2 mm.
4. Procédé de traitement selon l'une quelconque des revendications précédentes, dans lequel la couche en zirconium et/ou en alliage de zirconium est dépourvue d'oxyde (s).
5. Procédé de traitement selon l'une quelconque des revendications précédentes, dans lequel la couche est en zirconium.
6. Procédé de traitement selon l'une quelconque des revendications précédentes, dans lequel l'étape de dépôt est réalisée par une technique choisie parmi la projection par arc électrique, la projection HVOF, la projection plasma et la projection à froid.
7. Procédé de traitement selon l'une quelconque des revendications précédentes, dans lequel l'étape de dépôt est réalisée par projection à froid.
8. Procédé de traitement selon l'une quelconque des revendications précédentes, dans lequel l'étape de dépôt est réalisée en atmosphère de gaz neutre .
9. Procédé de traitement selon l'une quelconque des revendications précédentes, dans lequel la pièce à traiter est choisie parmi les pièces en acier, les pièces en zirconium ou en alliages à base de zirconium, les pièces en fer ou en alliages à base de fer.
10. Procédé de traitement selon la revendication 9, dans lequel, lorsque la pièce à traiter est en acier, est en acier inoxydable ferritique, martensitique, austénitique, ferritique- martensitique ou austéno-ferritique .
EP08803371A 2007-08-31 2008-08-29 Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium Withdrawn EP2183403A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757292A FR2920440B1 (fr) 2007-08-31 2007-08-31 Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium
PCT/EP2008/061373 WO2009027497A2 (fr) 2007-08-31 2008-08-29 Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium

Publications (1)

Publication Number Publication Date
EP2183403A2 true EP2183403A2 (fr) 2010-05-12

Family

ID=39204051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08803371A Withdrawn EP2183403A2 (fr) 2007-08-31 2008-08-29 Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium

Country Status (7)

Country Link
US (1) US20110097504A1 (fr)
EP (1) EP2183403A2 (fr)
JP (1) JP2010537058A (fr)
CN (1) CN101784690A (fr)
FR (1) FR2920440B1 (fr)
RU (1) RU2489512C2 (fr)
WO (1) WO2009027497A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747956B2 (en) * 2011-08-11 2014-06-10 Ati Properties, Inc. Processes, systems, and apparatus for forming products from atomized metals and alloys
RU2593041C2 (ru) * 2014-10-23 2016-07-27 Акционерное общество "Конструкторское бюро специального машиностроения" Способ газодинамического напыления антикоррозионного покрытия из коррозионно-стойкой композиции на поверхности контейнера для транспортировки и/или хранения отработавшего ядерного топлива, выполненного из высокопрочного чугуна с шаровидным графитом
FR3090427B1 (fr) * 2018-12-21 2023-11-10 Safran Procede de fabrication d’un noyau
CN109622978B (zh) * 2019-01-08 2022-02-11 深圳市辰越科技有限公司 一种非晶合金粉末及其制备方法和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943278A (en) * 1960-12-06 1963-12-04 Morgan Crucible Co The coating of metal bodies with zirconium
JPH0289589A (ja) * 1988-06-24 1990-03-29 Sumitomo Metal Ind Ltd 高耐食性異材接合材およびその製造方法
JPH0353087A (ja) * 1989-07-20 1991-03-07 Mitsubishi Heavy Ind Ltd 異材配管接合用ジョイントピースの防食処理方法
WO1991019016A1 (fr) * 1990-05-19 1991-12-12 Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr Procede et dispositif de revetement
RU2021388C1 (ru) * 1991-04-18 1994-10-15 Научно-исследовательский институт порошковой металлургии с опытным производством Способ плазменного напыления керамического покрытия
JPH06322508A (ja) * 1993-05-12 1994-11-22 Hitachi Ltd 構造物の表面改質方法
US5338577A (en) * 1993-05-14 1994-08-16 Kemira, Inc. Metal with ceramic coating and method
US6759085B2 (en) * 2002-06-17 2004-07-06 Sulzer Metco (Us) Inc. Method and apparatus for low pressure cold spraying
CA2444917A1 (fr) * 2002-10-18 2004-04-18 United Technologies Corporation Cuivre pulverise a froid sur des composants de moteur-fusee
RU2235149C1 (ru) * 2002-12-27 2004-08-27 ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО НАУЧНО-ПРОИЗВОДСТВЕННО-КОММЕРЧЕСКАЯ ФИРМА "МаВР" Способ холодного газодинамического нанесения покрытий и получения новых материалов
US7662435B2 (en) * 2003-11-12 2010-02-16 Intelligent Energy, Inc. Method for reducing coking in a hydrogen generation reactor chamber
KR20060044497A (ko) * 2004-03-23 2006-05-16 토소가부시키가이샤 내식성 부재 및 그 제조 방법
US20060090593A1 (en) * 2004-11-03 2006-05-04 Junhai Liu Cold spray formation of thin metal coatings
US20060129215A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having nanostructured regions for controlled tissue biocompatibility and drug delivery
RU2305142C2 (ru) * 2005-03-28 2007-08-27 Закрытое акционерное общество научно-производственный центр "Трибоника" Способ ионной обработки поверхностного слоя металлического изделия и установка для его осуществления
WO2006117144A1 (fr) * 2005-05-05 2006-11-09 H.C. Starck Gmbh Procede de revetement d'une surface de substrat et produit muni du revetement
BRPI0611451A2 (pt) * 2005-05-05 2010-09-08 Starck H C Gmbh processo de revestimento para fabricação ou reprocessamento de alvos de metalização e anodos de raios x

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009027497A2 *

Also Published As

Publication number Publication date
US20110097504A1 (en) 2011-04-28
RU2010105956A (ru) 2011-10-10
RU2489512C2 (ru) 2013-08-10
FR2920440B1 (fr) 2010-11-05
JP2010537058A (ja) 2010-12-02
WO2009027497A3 (fr) 2009-08-06
CN101784690A (zh) 2010-07-21
FR2920440A1 (fr) 2009-03-06
WO2009027497A2 (fr) 2009-03-05

Similar Documents

Publication Publication Date Title
US8597724B2 (en) Corrosion protective coating through cold spray
JP6367567B2 (ja) 耐食性溶射皮膜、その形成方法およびその形成用溶射装置
EP2183403A2 (fr) Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium
US5807613A (en) Method of producing reactive element modified-aluminide diffusion coatings
JP2007324353A (ja) 半導体加工装置用部材およびその製造方法
US5578349A (en) Process for coating a ceramic glow plug portion with a corrosion inhibiting material
JP4903104B2 (ja) 半導体加工装置用部材
Takalapally et al. A critical review on surface coatings for engineering materials
WO2017080948A1 (fr) Revêtement céramique multicouche de protection thermique à haute température, notamment pour application aéronautique, et son procédé de fabrication
JP5286528B2 (ja) 半導体加工装置用部材の製造方法
EP0924968B1 (fr) Mélange gazeux pour projection plasma et application de ce mélange à la projection plasma de matériaux réfractaires
JP5071706B2 (ja) Hvof溶射装置
FR2495503A1 (fr) Procede de fabrication d'un revetement protecteur resistant a la corrosion par les gaz a haute temperature, et revetement obtenu par ce procede
JP2004019490A (ja) 給水ポンプ
Kim et al. Coating layer and corrosion protection characteristics in sea water with various thermal spray coating materials for STS304
EP0667810A1 (fr) Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en uvre
JPWO2011010400A1 (ja) 耐溶融金属部材および耐溶融金属部材の製造方法
FR2808808A1 (fr) Projection de titane sur prothese medicale avec refroidissement par co2 ou argon
JP3994162B2 (ja) モリブデンが含有されたステンレス鋼の溶射皮膜とその溶射皮膜形成法
WO2000036180A1 (fr) PROCEDE POUR FORMER UN REVETEMENT D'ALLIAGE METALLIQUE DE TYPE MCrAlY
Kim et al. High-deposition rate coating of aluminum cylinder bores
FR3001977A1 (fr) Procede de depot d'un revetement contre la corrosion a partir d'une suspension
CA3101723A1 (fr) Piece revetue par un revetement de carbone amorphe non-hydrogene sur une sous-couche comportant du chrome, du carbone et du silicium
Vallimanalan et al. Erosion and corrosion behaviour of thermally sprayed Basalt and metal-matrix composite coating in mine environment
Hazra Processing and Characterization of Mullite Coating Obtained by Plasma Spraying of Zircon-Alumina Powder Mixture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130923

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140404