EP0667810A1 - Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en uvre - Google Patents

Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en uvre

Info

Publication number
EP0667810A1
EP0667810A1 EP94900853A EP94900853A EP0667810A1 EP 0667810 A1 EP0667810 A1 EP 0667810A1 EP 94900853 A EP94900853 A EP 94900853A EP 94900853 A EP94900853 A EP 94900853A EP 0667810 A1 EP0667810 A1 EP 0667810A1
Authority
EP
European Patent Office
Prior art keywords
particles
gas
substrate
gas flow
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94900853A
Other languages
German (de)
English (en)
Inventor
Piotr Vasilievich Nikitin
Youri Pavlovich Frolov
Youri Yeniaminovich Dikun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Europeenne de Propulsion SEP SA
Original Assignee
Societe Europeenne de Propulsion SEP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Europeenne de Propulsion SEP SA filed Critical Societe Europeenne de Propulsion SEP SA
Publication of EP0667810A1 publication Critical patent/EP0667810A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to the methods used for the formation of surface layers (coatings), or even of solid material or of composite material, which make it possible both to change the physico-chemical and technological properties of the base material (substrate) and of obtain a new material having new physico-chemical properties and new surface properties (multifunction coatings), for example in order to protect the surface from various factors such as heat flux, corrosion, chemical attack, etc. It also relates to an installation for the implementation of this process.
  • the disadvantages of this method are on the one hand, a weak cohesion between the particles of the coating and a weak adhesion of the coating to the substrate material, and on the other hand, insufficient mechanical characteristics of the coating which make it impossible for example to machine subsequent mechanics (weak cohesion, etc.).
  • the object of the invention is to increase the characteristics and properties of the coating by changing the physico-chemical properties of the surface of the deposited material.
  • This objective is achieved by a coating formation process by cold gasodynamic deposition of particles on a substrate, characterized in that it comprises the following stages:
  • This process for forming coatings and composite materials makes it possible to eliminate all the drawbacks of the thermal flow processes, to exclude the chemical interaction between the particles and the carrier gas, which makes it possible to use compressed air as the carrier gas. thus reducing the cost of the operation.
  • inert gases to ensure higher cleanliness of the coating, as well as a mixture of gases can also be used.
  • this moderate temperature process (or cold spraying, that is to say for which the carrier gas is brought to a temperature much lower than the melting temperature of the materials constituting the particles to be sprayed) makes it possible to produce coatings with from mixtures of powders of different materials, in all kinds of proportions, whether metallic, metalloceramic, organometallic, etc. It is thus possible to obtain composite materials and coatings with a very wide range of physicochemical and / or technological properties such as for example: mechanical resistance, resistance to friction or to erosion, thermal or corrosion protection, electrical conductivity, etc.).
  • the temperature of the carrier gas is between 300 and 600 K and the speed of ejection of the two-phase flow is between Mach 1 and Mach 2.
  • the substrate is animated with a relative movement with respect to the supersonic jet, which makes it possible to treat large surfaces but also, by adjusting the distance between the jet and the substrate, to modify one of the projection parameters, the thickness of the layer and the deposition rate in particular depend on the projection parameters, the thickness for example possibly varying from a few microns to several tens of millimeters.
  • the invention also relates to an installation for implementing the above method comprising a mixing chamber in which a particle-gas mixture coming from a particle supply device is injected into a main gas flow coming from an apparatus heating system in which this flow generated by a gas supply circuit from a gas storage tank is brought to a temperature much lower than the melting temperature of the material or materials constituting it, the particle supply device ensuring prior mixing of the particles by the gas flow delivered by the gas supply circuit , and the mixing chamber delivering via a supersonic nozzle a two-phase gas flow to be projected onto the substrate.
  • - Figure 1 represents a functional diagram of the installation allowing the implementation of the method according to the invention
  • - Figure 2 is an example of embodiment of the mixing chamber
  • FIG. 3 is an embodiment of the particle supply device.
  • This installation illustrated in FIG. 1, comprises a mixing chamber 1 provided with an interchangeable nozzle 10 and which performs a mixing of particles coming from a device 2 for supplying particles 2a under a gas flow delivered at the outlet d a gas heating appliance 3.
  • a gas supply circuit 4 delivers the carrier gas necessary for the reaction both to the supply device 2 and to the heating appliance 3, from a reservoir of storage 5.
  • the material to be coated 6 (and the servomechanism for moving the part 7) is placed at the outlet of the nozzle 10 of the mixing chamber 1.
  • FIG. 2 shows more precisely an exemplary embodiment of the mixing chamber 1.
  • This chamber comprises a chamber body 12 to which an inlet pipe for the carrier gas 14 coming from the heating appliance 3 ends, and from which emerges a starting pipe 10 for the two-phase flow formed in the chamber.
  • This outlet conduit is in the form of a nozzle with a converging part 10a, a neck 10b and a diverging part 10c.
  • FIG. 3 represents an exemplary embodiment of the device for supplying particles.
  • This device 2 is very simply constituted by a chamber 22 comprising an inlet orifice 24 through which the gas supplied by the supply circuit 4 enters and an outlet orifice 26 which delivers the mixture of pseudoliquefied particles generated inside the chamber by mixing the gas with the particles initially suspended in the chamber.
  • the particles can be introduced continuously into the chamber 22 in parallel with the gas.
  • the operation of the installation according to the invention is as follows.
  • the gas supply circuit 4 is divided into two parts.
  • the carrier gas coming from the tank or storage system 5 arrives at a regulator 42 which makes it possible, via a control station 45, to establish the desired pressure.
  • This gas is then brought to the necessary temperature by the heating system 3 (heating resistor, for example).
  • the hot gas is then led into the mixing chamber 1 where it receives the particles to be sprayed from the particle supply device 2.
  • the two-phase mixture is finally accelerated through the nozzle 10 and sprayed onto the part to be coated 6 (substrate ).
  • the gas also passes through a pressure regulator 52 allowing the control station 45 to regulate the pressure and the operating flow. Then, the gas is brought into the particle supply device 2, the volume of which is previously filled or continuously supplied (in 2a) with particles (powder or mixture of powders). This pseudo-liquid mixture (particles-gas) is then brought to the mixing chamber 1 where it mixes with the main flow of the carrier gas. The necessary concentration of particles in the two-phase flow is obtained by the aforementioned regulation of the gas flow rate in the second part of the gas supply circuit.
  • a valve 8 placed in front of the nozzle prevents the projection of particles at an unsuitable speed on the substrate.
  • the valve is withdrawn and the deposition on the substrate begins.
  • the dimensions of the two-phase flow being limited (in diameter and in length), it is necessary to move either the substrate in front of the supersonic jet, or the nozzle in front of the part, or both together, so that the surface to be coated 6 is located at a given distance and perpendicular to the axis of the jet.
  • the coating process can take place in the open air, or in a ventilated enclosure. In this second case, the collected gas containing non-deposited particles is filtered in order to remove these particles and returned to the atmosphere or stored for recycling.
  • the coating method is adapted by varying the parameters of the installation: pressure in the second supply circuit, temperature of the carrier gas in the main circuit, pressure in the mixing chamber, distance between the outlet of the nozzle and the surface of the substrate.
  • cold gasodynamics consists of the formation of coatings, materials, or composite materials by projection, using a very high kinetic energy of the particles in a supersonic gas flow whose temperature is very much lower than their melting temperature. (temperature not exceeding 600 K). This means that the physico-chemical transformations as well as the phase transformations of the material of the particles inside the gas flow are excluded. The collision of these particles with the substrate, which takes place at high speed, causes reciprocal plastic deformations, activation and physical contact due to very high local pressure in the contact spot.
  • the particles undergo physico-chemical transformations and phase transformations, both in the interface zone between the coating and the substrate and within the coating. Materials also undergo transformations of crystal lattices and new materials can be formed. Such transformations are notably recorded for the Cu-Zn, Ni-Al, Cu-Al, etc. systems, both for the case of deposition with pure elements (Zn, Ni, Cu, etc.) on a Cu or in Al, than for the case of deposition with mixtures of powders Zn and Cu, Ni and Al, Cu and Al, on an Al substrate.
  • the intermetallic compounds of the Cu-Zn (brass), Ni-Al, Cu-Al system are formed in a transient zone at the interface between the substrate and the coating.
  • the compounds are formed within the coating.
  • the use of powder mixture makes it possible to reduce the spraying speed corresponding to the formation of coatings having good adhesion and cohesion properties, at other equal parameters. This is possible thanks to the additional energy provided during the deposition by gas flow, by the release of heat during the formation of solid solutions of the intermetallic and chemical compounds following the exothermic reactions which take place between the components of the mixture of powders at the time of collisions between the particles and the substrate.
  • the interaction of nickel and aluminum particles results in the formation of intermetallic compounds and gives off an energy of 62.7 kJ / g. Atom in the form of heat, for particles of boron carbide and of titanium carbide, an energy of 3260.4 kJ / kg, for particles of silicon carbide and titanium carbide, an energy of 1701.26 kJ / kg of initial material (NV Audeev "Metallization" M. MACHINOSTRENIE, 1978, p. 64-65).
  • the sprayed powders can be either powders or a mixture of powders of pure elements, or pre-alloyed powders, or powders of pure elements coated with a second element.
  • the deposition of nickel powder on an aluminum substrate makes it possible to generate a transition zone with the inter-metallic Ni-Al compound 60 ⁇ m thick for a deposition time (collision) of a few tens seconds, while a chemical-thermal method tradition ⁇ nel makes it possible to form a transition zone 30 .mu.m thick 9 h at a temperature of 690 ° C.
  • the proposed method has also given excellent results for the formation of brass throughout the coating volume in the case of depositing a mixture of copper and zinc powders on a substrate.
  • the mixture then arrives at the entrance to the mixing chamber where it is injected into the main gas flow brought to the temperature of 293 K.
  • the two-phase gas flow is then accelerated, in the nozzle, to the speed of Mach 2 for coating on an aluminum substrate.
  • the chemical reactions which take place lead to the formation of a new material corresponding to brass by the composition of phases observed in X-ray analysis (microhardness 450 Nickers).
  • this process allows the displacement of the substrate in front of the nozzle or the vibration of this substrate.
  • Another example of use of the process according to the invention makes it possible to obtain a refractory ceramic coating on a composite material with carbon fibers and matrix of silicon carbide.
  • the mixture is conveyed by a first compressed air flow and injected into the mixing chamber where the second air flow (main flow) gives the particles a supersonic speed.
  • the particles are then projected onto the surface of a C / SiC composite material on which they form a coating.
  • the C / SiC sample is moved regularly in front of the jet to obtain a uniform deposit over the entire surface to be coated.
  • This coating also gives new properties to the surface of the composite such as wear resistance and resistance to oxidizing atmospheres.
  • a powder composition enriched with Silicon (40% B4C, 30% Ti, 30% Si) is sprayed according to the invention on the surface of a Carbon-Carbon composite, a layer is thus obtained. hard and adherent which protects the material from oxidation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

La présente invention concerne un procédé de formation de revêtement par dépôt gazodynamique à froid de particules sur un substrat comportant les étapes suivantes: mise en suspension des particules par un flux gazeux, injection du mélange particules-gaz ainsi créé dans un flux gazeux principal (gaz porteur) porté à une température très inférieure à la température de fusion du ou des matériaux constituant ces particules, accélération à une vitesse supersonique du flux gazeux biphasique résultant, et projection du jet supersonique sur le substrat. La température du gaz porteur est comprise entre 300 et 600 K et la vitesse d'éjection du flux biphasique est comprise entre Mach 1 et Mach 2. Elle concerne aussi une installation pour la mise en oeuvre de ce procédé.

Description

Procédé pour la réalisation de matériaux ou revêtements composites et installation pour sa mise en oeuvre.
L'invention concerne les procédés utilisés pour la formation de couches superficielles (revêtements), voire de matériau massif ou de matériau composite, qui permettent à la fois de changer les propriétés physico-chimiques et technologiques du matériau de base (substrat) et d'obtenir un nouveau matériau ayant de nouvelles propriétés physico-chimiques et de nouvelles propriétés de surface (revêtements multifonctions), par exemple dans le but de protéger la surface de différents facteurs tels que flux thermiques, corrosion, attaque chimique, etc. Elle concerne également une installation pour la mise en oeuvre de ce procédé.
On connaît bien les procédés de formation de revêtement par dépôt thermique basés sur un échauffement et une accélération de particules (poudres) par un flux gazeux à haute température. Parmi les inconvénients de ces types de procédés, on peut citer une adhésion relativement faible du revêtement sur le substrat nécessitant la réalisation de traitements thermiques post-déposition, et la présence de réactions chimiques entre les particules projetées et le flux gazeux (absorption d'oxygène, formation d'oxydes, de nitrure, etc.). Un autre procédé connu pour la réalisation de revêtements consiste en l'accélération des particules du matériau de revêtement dans un flux gazeux et impact sur le matériau de substrat (A.S. N92461 cl. C.23. C4/18, 1982). Les inconvénients de ce procédé sont d'une part, une cohésion faible entre les particules du revêtement et une adhésion faible du revêtement sur le matériau de substrat, et d'autre part, des caractéristiques mécaniques du revêtement insuffisantes qui rendent impossible par exemple un usinage mécanique ultérieur (cohésion faible, etc.).
Le but de l'invention est une augmentation des caractéristiques et des propriétés du revêtement par changement des propriétés physico-chimiques de la surface du matériau déposé.
Cet objectif est atteint grâce à un procédé de formation de revêtement par dépôt gazodynamique à froid de particules sur un substrat, caractérisé en ce qu'il comporte les étapes suivantes:
.mise en suspension des particules par un flux gazeux, .injection du mélange particules-gaz ainsi créé dans un flux gazeux principal (gaz porteur) porté à une température très inférieure à la température de fusion du ou des matériaux constituant ces particules,
.accélération à une vitesse supersonique du flux gazeux biphasique résultant, et
.projection du jet supersonique sur le substrat.
Ce procédé de formation de revêtements et matériaux composites permet de supprimer tous les inconvénients des procédés par flux thermique, d'exclure l'interaction chimique entre les particules et le gaz porteur, ce qui permet d'utiliser de l'air comprimé comme gaz porteur diminuant ainsi le coût de l'opéra¬ tion. Toutefois, des gaz inertes, pour assurer une plus haute propreté du revêtement, ainsi qu'un mélange de gaz peuvent aussi être employés.
De même, ce procédé à température modérée (ou projection froide c'est-à-dire pour laquelle le gaz porteur est porté à une température très inférieure à la température de fusion des matériaux constituant les particules à projeter) permet de réaliser des revêtements à partir de mélanges de poudres de matériaux différents, dans toutes sortes de proportions, qu'ils soient métalliques, métallocéramiques, organométalliques, etc. On peut ainsi obtenir des matériaux et des revêtements composites avec un très large éventail de propriétés physico- chimiques et/ou technologiques comme par exemple : la tenue mécanique, la résistance au frottement ou à l'érosion, les protections thermiques ou contre la corrosion, la conductibilité électrique, etc.).
De préférence, la température du gaz porteur est comprise entre 300 et 600 K et la vitesse d'éjection du flux biphasique est comprise entre Mach 1 et Mach 2.
Le substrat est animé d'un mouvement relatif par rapport au jet supersonique, ce qui permet de traiter de grandes surfaces mais aussi, en réglant la distance sortie de jet-substrat, de modifier l'un des paramètres de projection, l'épaisseur de la couche et la vitesse de dépôt notamment dépendent des paramètres de projection, l'épaisseur par exemple pouvant varier de quelques microns à plusieurs dizaines de millimètres.
L'invention concerne aussi une installation pour la mise en oeuvre du procédé précédent comportant une chambre de mélange dans laquelle un mélange particules-gaz en provenance d'un dispositif d'alimentation en particules est injecté dans un flux gazeux principal provenant d'un appareillage de chauffage dans lequel ce flux généré par un circuit d'alimentation en gaz à partir d'un réservoir de stockage de gaz est porté à une température très inférieure à la température de fusion du ou des matériaux le constituant, le dispositif d'alimentation en particules assurant un brassage préalable des particules par le flux gazeux délivré par le circuit d'alimentation en gaz, et la chambre de mélange délivrant par l'intermédiaire d'une tuyère supersonique un flux gazeux biphasique à projeter sur le substrat.
Avantageusement, elle comporte en outre un clapet disposé en sortie de la tuyère supersonique pour empêcher tout dépôt de particules pendant une période transitoire déterminée de démarrage de l'installation. D'autres caractéristiques et avantages de la présente invention ressortiront mieux de la description suivante, faite à titre indicatif et non limitatif, en regard des dessins annexés sur lesquels:
- la figure 1 représente un schéma fonctionnel de l'installation permettant la mise en oeuvre du procédé selon l'invention, - la figure 2 est un exemple de réalisation de la chambre de mélange, et
- la figure 3 est un exemple de réalisation du dispositif d'alimentation en particules.
Cette installation, illustrée par la figure 1, comprend une chambre de mélange 1 munie d'une tuyère interchangeable 10 et qui effectue un brassage de particules en provenance d'un dispositif d'alimentation 2 en particules 2a sous un flux gazeux délivré en sortie d'un appareillage de chauffage de gaz 3. Un circuit d'alimentation en gaz 4 délivre le gaz porteur nécessaire à la réaction à la fois au dispositif d'alimentation 2 et à l'appareillage de chauffage 3, à partir d'un réservoir de stockage 5. Le matériau à revêtir 6 (et le servomécanisme de déplacement de la pièce 7) est placé en sortie de la tuyère 10 de la chambre de mélange 1.
L'installation peut être un poste fixe comprenant soit un robot de déplacement des pièces à revêtir devant la tuyère, soit un robot de manipulation de la tuyère devant une pièce fixe, soit les deux. L'installation peut également être mobile, le déplacement de la tuyère devant la pièce se faisant manuellement. La figure 2 montre plus précisément un exemple de réalisation de la chambre de mélange 1. Cette chambre comporte un corps de chambre 12 auquel aboutit un conduit d'arrivée du gaz porteur 14 en provenance de l'appareillage de chauffage 3, et duquel émerge un conduit de départ 10 du flux diphasique formé dans la chambre. Ce conduit de départ se présente sous la forme d'une tuyère avec une partie convergente 10a, un col 10b et une partie divergente 10c. Le conduit d'arrivée est percé d'un conduit auxiliaire 16 qui assure l'injection dans le corps de chambre du mélange de particules pseudoliquéfié en provenance du dispositif d'alimentation en particules 2. Avantageusement, la liaison entre ce conduit 14 et le corps de chambre 12 est réalisée par une paroi divergente 17. Des dispositifs de mesure de température 18, comme un thermocouple par exemple, et de pression 20 tel qu'un manomètre sont en outre présents au niveau de la chambre de mélange 1. La figure 3 représente un exemple de réalisation du dispositif d'alimentation en particules. Ce dispositif 2 est très simplement constitué par une chambre 22 comportant un orifice d'entrée 24 par lequel pénètre le gaz délivré par le circuit d'alimentation 4 et un orifice de sortie 26 qui délivre le mélange de particules pseudoliquéfié généré à l'intérieur de la chambre par le brassage du gaz avec les particules en suspension initialement dans la chambre. Dans une variante de réalisation, les particules peuvent être introduites continûment dans la chambre 22 en parallèle avec le gaz.
Le fonctionnement de l'installation selon l'invention est le suivant. Le circuit d'alimentation en gaz 4 est divisé en deux parties. Dans la première partie 40, le gaz porteur provenant du réservoir ou système de stockage 5 arrive sur un détendeur 42 qui permet par l'intermédiaire d'un poste de commande 45 d'établir la pression désirée. Ce gaz est ensuite amené à la température nécessaire par le système de chauffage 3 (résistance chauffante, par exemple). Le gaz chaud est alors conduit dans la chambre de mélange 1 où il reçoit les particules à projeter du dispositif d'alimentation en particules 2. Le mélange diphasique est enfin accéléré au travers de la tuyère 10 et projeté sur la pièce à revêtir 6 (substrat).
Dans la deuxième partie 50, le gaz traverse également un détendeur 52 permettant par le poste de commande 45 de réguler la pression et le débit de fonctionnement. Ensuite, le gaz est amené dans le dispositif d'alimentation en particules 2 dont le volume est antérieurement rempli ou continûment alimenté (en 2a) en particules (poudre ou mélange de poudres). Ce mélange pseudo liquide (particules-gaz) est alors amené à la chambre de mélange 1 où il se mêle avec le flux principal du gaz porteur. La concentration nécessaire en particules dans le flux diphasique est obtenue par la régulation précitée du débit de gaz dans la deuxième partie du circuit d'alimentation en gaz.
Au démarrage de l'installation, pendant la période transitoire, un clapet 8 placé devant la tuyère empêche la projection de particules à un régime inadapté sur le substrat. Dès l'obtention des paramètres nécessaires (mode stationnaire), le clapet se retire et le dépôt sur le substrat commence. Les dimensions du flux diphasique étant limitées (en diamètre et en longueur), il est nécessaire de déplacer soit le substrat devant le jet supersonique, soit la tuyère devant la pièce, soit les deux ensemble, de façon que la surface à revêtir 6 se trouve à une distance donnée et perpendiculaire à l'axe du jet. Le processus de revêtement peut se dérouler à l'air libre, ou dans une enceinte ventilée. Dans ce deuxième cas, le gaz recueilli contenant des particules non déposées est filtré afin d'éliminer ces particules et renvoyé dans l'atmosphère ou stocké pour recyclage.
Eh fonction du couple particules-substrat, le mode de revêtement est adapté en faisant varier les paramètres de l'installation : pression dans le deuxième circuit d'alimentation, température du gaz porteur du circuit principal, pression dans la chambre de mélange, distance entre la sortie de la tuyère et la surface du substrat.
Il va maintenant être explicité les principes physico-chimiques à l'origine du procédé mise en oeuvre dans l'installation précitée.
Le procédé (dit gazodynamique à froid) consiste en la formation de revêtements, de matériaux, ou matériaux composites par projection, en utilisant une énergie cinétique des particules très élevée dans un flux gazeux supersonique dont la température est très largement inférieure à leur température de fusion (température ne dépassant pas 600 K). Ceci fait que les transformations physico¬ chimiques ainsi que les transformations de phase du matériau des particules à l'intérieur du flux gazeux sont exclues. La collision de ces particules avec le substrat, qui se fait à grande vitesse, provoque des déformations plastiques réciproques, une activation et un contact physique dus à une pression locale très élevée dans le spot de contact.
A la suite des charges de choc agissant sur les matériaux des particules et du substrat, et à la suite de la transformation de l'énergie cinétique des particules en chaleur qui crée un maximum de température localisé dans la tache de collision, les particules subissent des transformations physico-chimiques et des transformations de phases, tant dans la zone d'interface entre le revêtement et le substrat qu'au sein du revêtement. Les matériaux subissent également des transformations de réseaux cristallins et de nouveaux matériaux peuvent se former. De telles transformations sont notamment enregistrées pour les systèmes Cu-Zn, Ni-Al, Cu-Al, etc., tant pour le cas de dépôt avec des éléments purs (Zn, Ni, Cu, etc.) sur un substrat en Cu ou en Al, que pour le cas de dépôt avec des mélanges de poudres Zn et Cu, Ni et Al, Cu et Al, sur un substrat en Al. Dans le premier cas, les composés intermétalliques du système Cu-Zn (laiton), Ni-Al, Cu-Al se forment dans une zone transitoire à l'interface entre le substrat et le revêtement. Dans le deuxième cas, les composés se forment au sein du revêtement.
En outre, l'utilisation de mélange de poudres permet de réduire la vitesse de projection correspondant à la formation de revêtements ayant de bonnes propriétés d'adhésion et de cohésion, à autres paramètres égaux. Cela est possible grâce à l'énergie supplémentaire apportée, lors du dépôt par flux gazeux, par le dégagement de chaleur lors de la formation des solutions solides des composés intermétalliques et chimiques à la suite des réactions exothermiques qui ont lieu entre les composants du mélange de poudres au moment des collisions entre les particules et le substrat.
La température nécessaire au démarrage de ces réactions exother¬ miques est atteinte de façon locale dans le spot de contact entre la poudre projetée et la surface de la pièce (M.X. Chormorov, J.A. Kharlemov "Principes physico- chimiques du dépôt des revêtements par l'explosion des gaz" M. NAOUKA, 1978, p.78).
A titre d'exemples, l'interaction de particules de nickel et d'aluminium aboutit à la formation de composés intermétalliques et dégage une énergie de 62,7 kJ/g.atome sous forme de chaleur, pour des particules de carbure de bore et de carbure de titane, une énergie de 3260,4 kJ/kg, pour des particules de carbure de silicium et de carbure de titane, une énergie de 1701,26 kJ/kg de matériau initial (N.V. Audeev "Métallisation" M. MACHINOSTRENIE, 1978, p. 64-65).
Les poudres projetées peuvent être soit des poudres ou mélange de poudres d'éléments purs, soit des poudres préalliées, soit des poudres d'éléments purs revêtues d'un deuxième élément.
L'utilisation de ces mélanges de poudres permet de déposer des maté¬ riaux comme des carbures, borures, oxydes, siliciures et autres composés difficile¬ ment fusibles, ce que l'on ne peut pas obtenir avec par exemple le procédé de dépôt dans un flux gazeux cité en introduction, qui n'utilise que des poudres préalliées. On peut notamment provoquer pendant la formation du dépôt sur le substrat les réactions suivantes :
B4C + 3Ti > 2TiB2 + TiC
3SiC + 8 Ti > Ti5Si3 + 3TiC
Alors qu'avec le procédé cité de l'art antérieur il faut atteindre des vitesses et des températures beaucoup plus élevées puisqu'il n'y a pas d'activation thermique du processus de formation des nouveaux composés par les réactions chimiques exothermiques. Et, de plus, un revêtement intermétallique ainsi obtenu (à partir de poudres préalliées) est moins performant que celui réalisé avec le procédé de l'invention pour les raisons suivantes : - la cohésion et l'adhérence des revêtements obtenus sont plus élevées avec le procédé proposé, du fait que ces revêtements sont formés à la suite d'une ou plusieurs réactions chimiques qui font partie du processus de dépôt. La synthèse d'un composé intermétallique par le procédé proposé se termine par un refroidisse¬ ment ultrarapide du matériau fondu (la fusion est due à la réaction chimique), ce qui aboutit à une dureté très élevée au sein du matériau de revêtement. (R. Prummer "Traitement des matériaux en poudre par explosion" M. MIR, 1990, p. 81)
- le procédé proposé est plus économique puisqu'il n'exige pas : . une synthèse préliminaire des composés intermétalliques qui se fait par fusion sous vide
. l'élaboration de la poudre à partir du composé intermétallique qui nécessite une énergie beaucoup plus importante que pour des éléments purs.
L'ensemble des particularités mentionnées ci-dessus permet de réaliser toute sorte de matériaux composites ou non permettant d'associer un procédé tech- nologique économique aux performances d'emploi de pièces revêtues recherchées. Par ailleurs, Il a été établi que la porosité résiduelle des revêtements obtenus par ce procédé est inférieure à 1 %. La résistance mécanique, la résistance à la corrosion, la résistance à l'usure sont considérablement plus élevées que celles obtenues sur des échantillons de référence ayant la même composition chimique. A titre d'exemple comparatif, le dépôt de poudre de nickel sur un substrat en aluminium permet de générer une zone de transition au composé inter¬ métallique Ni-Al de 60 μm d'épaisseur pour un temps de dépôt (collision) de quelques dizaines de secondes, tandis qu'un procédé chimico-thermique tradition¬ nel ne permet de former qu'une zone de transition de 30 μm d'épaisseur en 9 h à la température de 690*C. Le procédé proposé a également donné d'excellents résultats pour la formation de laiton dans tout le volume du revêtement dans le cas de dépôt d'un mélange de poudres de cuivre et de zinc sur un substrat.
Ces résultats permettent d'affirmer que le procédé proposé a un carac¬ tère original et ne ressemble en rien aux autres procédés de réalisation de maté- riaux et de revêtements composites. Les applications du procédé selon la présente invention sont multiples. Citons par exemple l'élaboration d'un revêtement en laiton :
Un mélange de poudres comprenant 40 % de cuivre et 60 % de zinc (en masse), dont la taille est comprise entre 10 et 50 μm, est placé dans le dispositif d'alimentation en particules, où celles-ci sont brassées par un courant d'air comprimé. Le mélange arrive ensuite à l'entrée de la chambre de mélange où il est injecté dans le flux gazeux principal porté à la température de 293 K. Le flux gazeux biphasique est alors accéléré, dans la tuyère, jusqu'à la vitesse de Mach 2 pour réaliser le revêtement sur un substrat en aluminium. Pendant la formation du revêtement, les réactions chimiques qui ont lieu aboutissent à la formation d'un nouveau matériau correspondant au laiton par la composition de phases observée en analyse par rayons X (microdureté 450 Nickers ). Pour intensifier les processus qui ont lieu au moment des collisions, ce procédé permet le déplacement du substrat devant la tuyère ou la vibration de ce substrat.
Un autre exemple d'utilisation du procédé selon l'invention permet d'obtenir un revêtement céramique réfractaire sur un matériau composite à fibres de carbone et matrice de carbure de silicium.
Un mélange de poudre B4C, de titane et de silicium, de granulométrie inférieur à 50 μm, est placé dans le dispositif d'alimentation, les proportions en masse étant les suivantes : 45% de B4C, 40% de Ti, et 15% de Si.
Le mélange est véhiculé par un prenier flux d'air comprimé et injecté dans la chambre de mélange où le second flux d'air (flux principal) confère aux particules une vitesse supersonique. Les particules sont alors projetées sur la surface d'un matériau composite C/SiC sur lequel elles forment un revêtement.
L'échantillon de C/SiC est déplacé régulièrement devant le jet pour obtenir un dépôt régulier sur toute la surface à revêtir.
On obtient un revêtement adhérent et compact, l'analyse montre que ce revêtement contient des phases nouvelles (TiB2 et SiC). Avec les techniques de l'art antérieur, l'obtention de ces phases nouvelles aurait nécessité un traitement thermique à haute température (>1100*C).
L'utilisation du procédé selon l'invention à permis d'obtenir ce revêtement à froid.
Ce revêtement confère en outre de nouvelles propriétés à la surface du composite telle qu'une résistance à l'usure et une résistance aux atmosphères oxydantes. La même procédure est utilisée avec une composition de poudre enrichie en Silicium (40% B4C, 30%Ti, 30% de Si) et est projettée selon l'invention à la surface d'un composite Carbone-Carbone, on obtient ainsi une couche dure et adhérente qui protège le matériau de l'oxydation.

Claims

REVENDICATIONS
1. Procédé de formation de revêtement par dépôt gazodynamique à froid de particules sur un substrat, caractérisé en ce qu'il comporte les étapes suivantes: .mise en suspension des particules par un flux gazeux,
.injection du mélange particules-gaz ainsi créé dans un flux gazeux principal (gaz porteur) porté à une température très inférieure à la température de fusion du ou des matériaux constituant ces particules,
.accélération à une vitesse supersonique du flux gazeux biphasique résultant , et
.projection du jet supersonique sur le substrat.
2. Procédé selon la revendication 1, caractérisé en ce que la température du gaz porteur est comprise entre 300 et 600 K et la vitesse d'éjection du flux biphasique est comprise entre Mach 1 et Mach 2.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que les particules sont constituées d'un mélange de poudres de matériaux différents.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le gaz porteur est de l'air comprimé.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le substrat est animé d'un mouvement relatif par rapport au jet supersonique.
6. Installation pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte une chambre de mélange (1) dans laquelle un mélange particules-gaz en provenance d'un dispositif d'alimentation en particules (2) est injecté dans un flux gazeux principal provenant d'un appareillage de chauffage (3) dans lequel ce flux généré par un circuit d'alimentation en gaz (4) à partir d'un réservoir de stockage de gaz (5) est porté à une température très inférieure à la température de fusion du ou des matériaux le constituant, le dispositif d'alimentation en particules assurant un brassage préalable des particules par une partie du flux gazeux délivré par le circuit d'alimentation en gaz (4), et la chambre de mélange (1) délivrant par l'intermédiaire d'une tuyère supersonique (10) un flux gazeux biphasique à projeter sur le substrat.
7. Installation selon la revendication 6, caractérisé en ce que le dispositif d'alimentation en particules (2) est initialement rempli de particules.
8. Installation selon la revendication 6, caractérisé en ce que le dispositif d'alimentation en particules (2) est alimenté continûement en particules en parallèle avec l'introduction du flux gazeux délivré par le circuit d'alimentation en gaz (4).
9. Installation selon la revendication 6, caractérisée en ce qu'elle comporte en outre un clapet (8) disposé en sortie de la tuyère supersonique(lθ) pour empêcher tout dépôt de particules pendant une période transitoire déterminée de démarrage de l'installation.
EP94900853A 1993-09-15 1993-09-15 Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en uvre Withdrawn EP0667810A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR1993/000887 WO1995007768A1 (fr) 1993-09-15 1993-09-15 Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre

Publications (1)

Publication Number Publication Date
EP0667810A1 true EP0667810A1 (fr) 1995-08-23

Family

ID=9443460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94900853A Withdrawn EP0667810A1 (fr) 1993-09-15 1993-09-15 Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en uvre

Country Status (2)

Country Link
EP (1) EP0667810A1 (fr)
WO (1) WO1995007768A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747383A1 (de) * 1997-10-27 1999-04-29 Linde Ag Verbinden von Werkstücken
DE19747384A1 (de) * 1997-10-27 1999-04-29 Linde Ag Herstellung von Verbundkörpern
DE19747386A1 (de) * 1997-10-27 1999-04-29 Linde Ag Verfahren zum thermischen Beschichten von Substratwerkstoffen
DE19747385A1 (de) * 1997-10-27 1999-04-29 Linde Ag Herstellung von Formteilen
DE19756594A1 (de) * 1997-12-18 1999-06-24 Linde Ag Heißgaserzeugung beim thermischen Spritzen
CN114214615A (zh) * 2021-12-20 2022-03-22 湖南顶立科技有限公司 一种铝合金基复合材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869936A (en) * 1987-12-28 1989-09-26 Amoco Corporation Apparatus and process for producing high density thermal spray coatings
CA2002497A1 (fr) * 1988-12-28 1990-06-28 Anthony J. Rotolico Methode de pulverisation thermique de poudre, a haute vitesse, sur des materiaux non fusibles
EP0484533B1 (fr) * 1990-05-19 1995-01-25 Anatoly Nikiforovich Papyrin Procede et dispositif de revetement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9507768A1 *

Also Published As

Publication number Publication date
WO1995007768A1 (fr) 1995-03-23

Similar Documents

Publication Publication Date Title
EP0703883B1 (fr) Procede pour la protection contre l'oxydation de produits en materiau refractaire et produits ainsi proteges
Ulianitsky et al. Computer-controlled detonation spraying: from process fundamentals toward advanced applications
US9328918B2 (en) Combustion cold spray
KR100250363B1 (ko) 블레이드 표면에 내마모성층을 도포하는 방법
CH694221A5 (fr) Procédé de pulvérisation thermique, appareil de pulvérisation thermique et appareil de passage de poudre.
JP2006265732A (ja) コールドスプレーを用いてエンジン部品に接合被覆を付与する方法
WO2006047441A1 (fr) Appareil de revetement a detonations pulsees et sections multiples et son procede d’utilisation
CA3066848A1 (fr) Piece de turbomachine revetue et procede de fabrication associe
JP2002506926A (ja) すべり軸受のライニングの形成
FR2881757A1 (fr) Procede d'elaboration par projection thermique d'une cible a base de silicium et de zirconium
JP6683902B1 (ja) 溶射皮膜の形成方法
KR20060114365A (ko) 내마모성 금속-세라믹 복합체 코팅 형성 방법
EP0667810A1 (fr) Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en uvre
CA2355695C (fr) Procede pour produire une poudre d'alliage metallique de type mcraly et revetements obtenus avec cette poudre
EP2935641B1 (fr) Procédé de revêtement d'un substrat par un matériau abradable céramique
US6749900B2 (en) Method and apparatus for low-pressure pulsed coating
EP3374543A1 (fr) Revêtement céramique multicouche de protection thermique à haute température, notamment pour application aéronautique, et son procédé de fabrication
Zhitomirsky et al. WC–Co coatings deposited by the electro-thermal chemical spray method
JP2007138299A (ja) 品物をコーティングする方法およびその製品
JP2006045616A (ja) Al−Si膜およびその形成方法
EP2791389B1 (fr) Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique
FR3001977A1 (fr) Procede de depot d'un revetement contre la corrosion a partir d'une suspension
Kharlamov et al. Cleaning and surface preparation technology and other factors related to coatings produced by flame spraying
FR2808808A1 (fr) Projection de titane sur prothese medicale avec refroidissement par co2 ou argon
Harding et al. Oxidation resistance of CVD (chemical vapor deposition) coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR

17Q First examination report despatched

Effective date: 19970122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970603