EP2173015A1 - Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt - Google Patents

Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt Download PDF

Info

Publication number
EP2173015A1
EP2173015A1 EP09172082A EP09172082A EP2173015A1 EP 2173015 A1 EP2173015 A1 EP 2173015A1 EP 09172082 A EP09172082 A EP 09172082A EP 09172082 A EP09172082 A EP 09172082A EP 2173015 A1 EP2173015 A1 EP 2173015A1
Authority
EP
European Patent Office
Prior art keywords
crimping
crimp
determined
conductor
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09172082A
Other languages
English (en)
French (fr)
Other versions
EP2173015B1 (de
Inventor
Leo Bruhin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komax Holding AG
Original Assignee
Komax Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komax Holding AG filed Critical Komax Holding AG
Priority to EP09172082.1A priority Critical patent/EP2173015B1/de
Publication of EP2173015A1 publication Critical patent/EP2173015A1/de
Application granted granted Critical
Publication of EP2173015B1 publication Critical patent/EP2173015B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes
    • H01R43/0486Crimping apparatus or processes with force measuring means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53022Means to assemble or disassemble with means to test work or product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • Y10T29/53213Assembled to wire-type conductor
    • Y10T29/53235Means to fasten by deformation

Definitions

  • the invention relates to a method for determining the quality of a crimp connection between a conductor and a contact, wherein a crimping device generates a crimping force by means of which the contact with the conductor are electrically and mechanically non-detachably connectable.
  • Crimping has been introduced internationally and defined in terms of standardization. In practice, however, terms such as pressing, squeezing, striking or piecing are used. Crimping is the production of a non-releasable electrical and mechanical connection between a conductor and a contact. During crimping, the material to be joined of the crimp contact and the conductor is plastically, permanently deformed. In this case, if present, poorly conducting surface layers are broken, which favors the electrical conductivities. Correct crimping also prevents the penetration of corrosive media even under difficult operating conditions such as temperature changes or vibration.
  • the aim of the crimping is to produce a good mechanical and electrical connection, which remains qualitatively unchanged in the long run.
  • contact specific crimp tools are used with a fixed crimp anvil down and vertically displaceable crimp punches above (see FIG. 1 to FIG. 3 ).
  • the crimping die for the conductor crimp and the crimping die for the insulation crimp are mounted, which can usually be adjusted independently of one another in the vertical direction on the conductor diameter or insulation diameter by means of raster disks with different height cams. These settings directly affect the quality of the crimp connection.
  • the cable feed takes place above the contact.
  • the previously stripped conductor is usually positioned by machines simultaneously in the radial and axial direction relative to the contact correctly for the crimping process. Due to the downward movement of the crimping die, the conductor is first lowered via a mechanism into the upwardly opened conductor and insulation crimping claws, after which the actual crimping operation begins with forming the flaps corresponding to the crimping die shapes. After the stroke of the crimping die, the crimp has the desired compression molding (see FIG. 5 ), which in turn depends on the contact plate used, the conductor cross-section, the copper of the conductor and the stripping. When the contacts are closed, the conductor must be moved axially into the crimped area of the contact after the radial alignment.
  • a sectional view of a faultless crimp connection shows the original single round Strands of the conductor compact to polygons pressed against each other.
  • the inner surface in the crimp area of the contact shows deformations of the contact points of the individual strands.
  • CCR crimp compression ratio
  • a quality goal is to comply with a specific Crimp Compression Ratio CCR, regardless of which wire cross section is processed. This is achieved by specifying the appropriate crimp height for each conductor cross-section.
  • crimp shape As Measure of crimp compression ratio and conductor pull-out strength.
  • these criteria are only suitable when setting up the crimping machine and during sampling production.
  • means In order to meet today's quality requirements for all crimp connections, means must be available which can record, evaluate and store crimp data via each crimp connection during the crimping process and influence machine data in a result-oriented manner.
  • the crimping force is set in relation to the crimping path or the crimping time. With appropriate evaluation of the crimp data, the quality of a crimp connection can be reliably assessed.
  • a method or device for assessing the quality of a crimped connection must detect crimped errors such as false insulation crimp height, wrong conductor crimp height, untreated strands in the conductor crimp, incorrect or no stripping length, incorrect insertion depth or strands cut off during stripping and generate corresponding error messages.
  • a method for detecting missing strands or crimped conductor insulation in a crimp connection has become known from the crimp force characteristic.
  • value pairs consisting of crimping force and position of the crimping die are measured and stored.
  • the during the production of a crimped connection measured value pairs result in the crimp force curve of the crimping process with the crimping force as a function of the position of the crimping die.
  • the curve section with a strong increase in force is linearized and a point determined from the average of the minimum and maximum crimping force. The point is compared to a reference value.
  • the crimp connection is of acceptable quality.
  • the maximum crimping force is also taken into account. If the maximum crimp force deviates excessively from a reference value, the crimped connection is rejected as unusable.
  • the point in the curve section with a strong increase in force and the maximum crimping force provide information about missing strands or about crimped conductor insulation in the crimped connection.
  • a force sensor detects the force during the crimping process, which is stored in digital form as a force-dependent curve. This is compared with a reference curve. Depending on the size of the deviation from the reference, the type of crimping error is determined.
  • a disadvantage of this method is that despite a large computer, memory and computational effort no differentiated statement about the quality of the crimp connection is possible.
  • a crimping device with a crimping known with the a contact can be connected to a conductor.
  • the crimping device comprises a force sensor arranged above the crimping die in order to determine the crimping force.
  • the crimp force curve is recorded and divided into several zones.
  • the fourth zone width is multiplied by a factor between 0 and 2.
  • the highest point on the reference crimp curve is normalized to 100%.
  • the third zone width is then determined by the two 90% points on the reference crimp curve.
  • An object of the invention is to provide a method and a device in which the abovementioned disadvantages are avoided and which lead to improved quality assurance.
  • FIGS. 1 to 3 show a crimping process in which one end of a cable 1, from which protrudes a piece of conductor, is connected to a contact 2.
  • An open crimping zone 3 of the contact 2 has a first double lug 4 for the insulation crimp 5 and a second double lug 6 for a conductor crimp 7.
  • FIG. 1 shows Crimpstempel 8, 9 in the top dead center. The end of the conductor insulation lies in the first double lug 4 and the stripped cable piece lies in the second double lug 6.
  • FIG. 2 will be shown at Lowering the crimping dies 8, 9, the double flaps 4, 6 by means of wedge-shaped recesses 10, which are located in the Crimpstempeln 8, 9, pressed against each other.
  • FIG. 3 shows the finished crimp connection with the insulation crimp 5, in which the first double lug 4 is pressed around the conductor insulation 11, and with the conductor crimp 7, in which the second double lug 6 is pressed around the conductor.
  • FIG. 4 shows a faultless crimped connection, in which in a window 13, the insulation 11 of the cable 1 and the individual strands of the conductor 12 are visible. At the contact-side end of the conductor crimps 7, the individual strands are visible again.
  • FIG. 5 shows a good crimp connection 7 in cross section. After the stroke of the crimping dies 8, 9, the crimp 7 has the desired compression molding.
  • FIG. 6a shows a contact and a conductor before crimping in cross-section.
  • FIG. 6b shows the contact and the conductor after crimping in cross section.
  • FIG. 7 shows a possible embodiment of a crimping press in a three-dimensional view.
  • the crimping press comprises a stand 14 which is in FIG. 7 partly broken up.
  • a motor 15 is arranged with a gear 16.
  • first guides 17 on which a ram 18 is guided.
  • a driven by the gear 16 shaft 19 has at one end an eccentric pin.
  • the ram 18 comprises a guided in the first guides 17 slider 22 and a tool holder 23 with force sensor 23.1.
  • the slider 22 is in loose connection with the eccentric pin, wherein the rotational movement of the eccentric pin is converted into a linear movement of the slider 22.
  • the position of the slider 22 and thus the ram 18 is detected with a linear sensor 20.
  • the maximum stroke of the slider 22 is determined by the top dead center and the bottom dead center of the eccentric pin 21 (FIGS. 8 and 9 ) certainly.
  • the tool holder 23 usually actuates the crimping tool 8, 9 (FIG. Fig. 1 ), which produces the crimped connection together with an anvil 9.1 belonging to the crimping tool.
  • FIG. 8 shows in a block diagram a first embodiment of a controller 28 together with parts of in FIG. 7 shown crimping press.
  • the controller 28 is designed as a control loop and is used to control the crimping press.
  • the control loop includes a motor controller 40, the motor 15, and an angle sensor 45 for detecting the rotational angle of the motor shaft.
  • the crimping movement for a stroke is regulated by the motor controller 40 according to a predetermined speed-angle profile.
  • the rotational movement is transmitted from the motor 15 to the gear 16 and then to the shaft 19, at one end of the eccentric pin 21 is arranged.
  • the eccentric pin 21 puts the slider 22 of the ram 18 in a linear movement.
  • the position of the slider 22 of the ram 18 is detected by the linear sensor 20.
  • the linear sensor 20 comprises a scale with equidistant (distance .DELTA.s) arranged position markings, which are attached to the slider 22 of the ram 18.
  • the linear sensor 20 includes a stationary read head. The linear sensor 20 generates an electrical voltage pulse 48 each time one of the position markers passes the read head.
  • the force sensor 23.1 measures the force F. applied during the crimping process.
  • the force sensor 23.1 is based on the piezoelectric effect and generates a charge q proportional to the force F.
  • the proportionality factor is the charge constant k.
  • a capacitor 43 with the capacitance C is connected in parallel with the force sensor 23.1 and forms a charge amplifier with a subsequent voltage amplifier 46.
  • a discharge switch 44 is provided which discharges the charge of the capacitor 43 before each crimping cycle.
  • a charge-amplifier downstream analog-to-digital converter 47 digitizes the output voltage u, which represents the applied force F, in synchronism with the position pulses 48 delivered by the linear sensor 20. From the digitized force F and the position pulses 48, the force-displacement curve of FIG Crimping process formed.
  • a control unit 42 takes over the storage and evaluation of the force-displacement curve.
  • FIG. 9 shows an alternative embodiment of the controller 28. This differs from the embodiment according to FIG. 8 on the one hand by the fact that the angle sensor 45 detects the angle of rotation ⁇ of the shaft 19 and for this purpose is in communication with the shaft 19. On the other hand, it differs from the embodiment according to FIG. 8 in that the position of the slider 22 is not offset by the linear sensor 20 (FIG. Fig. 8 ), but is detected by the angle sensor 45. With the aid of a corresponding transducer 50, the angle ⁇ delivered by the angle sensor 45 is transformed into a path s. The force-displacement curve of the crimping process is then formed from the digitized force F and the path s determined in this way.
  • FIG. 10a shows the force-angle curve, which was sampled with constant angular steps ⁇ .
  • the 180 ° point on the abscissa with the angle ⁇ forms the bottom dead center of the ram 18. At this point, the force is maximum.
  • s r ⁇ 1 + cos ⁇ the crimping path s is calculated from the angle ⁇ .
  • r is the distance between the eccentric pin 21 and the center of the shaft 19th
  • FIG. 10b shows the with this formula from the measured force-angle curve ( Fig. 10a ) derived force-displacement curve.
  • the force-displacement curve is in a compression phase K and a decompression phase DK split.
  • the zero point is right on the x-axis.
  • FIG. 11 shows a diagram in which the course of the crimping force is shown depending on the way.
  • This course is also called Crimpsignatur.
  • the slider 22 of the ram 18 travels.
  • the Crimpweg is also called Stroke.
  • the force normalized to 1 is plotted on the y-axis.
  • the force axis is normalized because the force sensor 23.1 (FIG. Fig. 7 ) does not have to be calibrated. Thus, it is sufficient if the force sensor 23.1 supplies a signal which, although proportional to the applied force F, is not absolutely scaled.
  • the normalization of the force axis allows the use of a cost-effective, non-calibrated force sensor 23.1.
  • the crimping path can be derived from the position signal 48 generated by the linear sensor 20.
  • the crimping path can be derived from the rotational angle ⁇ of the shaft (eccentric axis) 19.
  • the rotation angle ⁇ is measured with the angle sensor 45 and transformed with the transducer 50 into a path.
  • the compression phase begins where the tabs 6 touch the conductor 12.
  • the characteristic value csiA is also referred to below as the crimp signature index csiA.
  • the area A is also referred to below as the compression area.
  • FIG. 12 shows the same course of the crimping force as in FIG. 11 , but with a parameter csiB that indicates the width of the decompression phase.
  • csiB 2 ⁇ B ⁇ 2
  • a parameter csiB can be determined as a measure of the width of the decompression phase DK.
  • the decompression phase DK begins after the eccentric pin 21 has reached the bottom dead center and ends when the crimping die 8,9 is removed from the contact 2.
  • the characteristic value or value csiB is also referred to below as crimpsignature index csiB.
  • B is the size of the area which is below the crimp force curve in the decompression phase DK.
  • the area B is also referred to below as the decompression area.
  • the value of the constant ⁇ is advantageously in the range of the constant force descent and is 0.8 in the present example.
  • the crimpsignature index csiC corresponds to the area of the triangle with the baseline csiA - csiB and height 1. This area corresponds to the compression area of the crimp signature.
  • the crimp signature index csiC can be used to monitor the crimp height CH.
  • the crimp signature index csiD can be used to detect an error in setting up the crimping device. In particular, it can be detected with the crimp signature index csiD whether the conductor has been sufficiently stripped.
  • csiE csiB ⁇ csiC
  • the crimp signature index csiE is proportional to the compression work of the crimping operation, and thus is also proportional to the crimp compression ratio CCR: csiE ⁇ CCR
  • the crimp signature index csiE can also be used to detect an error in setting up the crimping device.
  • the crimpsignature index csiE can be used to check whether the crimp height CH set and the cable cross-section configured comply with the specifications.
  • FIG. 14 shows a first Crimpkraftkurve R at a Referenzcrimp, which is also referred to below as Referenzimpimpkraftkurve R.
  • FIG. 14 also shows a second crimp force curve E whose course is typical for a Leercrimp. Both crimp force curves R and E have the same evaluation zones Ziso and Zmc.
  • the evaluation zone Zmc is additionally divided into three subzones Z1, Z2 and Z3.
  • the Ziso evaluation zone is used to detect the crimping error "insulation in the crimp".
  • the evaluation zone Zmc is used to detect the crimped error "Missing strands”.
  • the evaluation zone Zmc covers as far as possible that section of the crimping force curve in which the compression of the strands takes place.
  • the beginning of the evaluation zone Zmc should not lie before this compression range, because otherwise unnecessary noise components are evaluated. Therefore, the determination of the zone widths with the crimp signature index csiA, which, as mentioned above, marks the beginning of the compression phase.
  • the evaluation zone Zmc is calculated as follows:
  • the crimp height is monitored with the crimp signature index csiC.
  • the crimp signature index csiC is determined during a crimping process and compared with a tolerance value chTol.
  • FIG. 15 shows a typical force-displacement curve R for a faultless crimp and a typical force-displacement curve C1 for a faulty crimp with 10% missing strands.
  • the error limit BLMC is also referred to as the error limit.
  • the relative area difference Ri is thus the difference between the area f, which lies below the crimp force curve in the subzone Zi, and the reference area fref, which lies below the reference crimp force curve in the subzone Zi, divided by this reference area fref.
  • the variance of the value Rmc is reduced and thus the discriminatory power for the detection of crimped errors is improved when the weighting factors Si are determined according to the relevance of the respective relative area difference Ri.
  • the scaling factor ScaleFactorRmc is used to scale the value Rmc so that Rmc corresponds to the relative fraction of missing strands.
  • the production is switched off, that is, no further crimping is performed. Instead, however, the crimp can also be marked as scrap without the production being stopped.
  • the error limit BLMC MCL - a ⁇ Hours Rmc , for example, the factor a has the value 3.
  • FIG. 16 clarifies these relationships.
  • the value MCL specifies the percentage of missing strands that should be reliably detected.
  • FIG. 16a a first distribution density function of the value of Rmc is shown.
  • FIG. 16b shows a second distribution density function of Rmc.
  • Rmc the relative frequency p
  • the distribution density function of Rmc has the maximum at the mean of Rmc.
  • the width of the distribution density function is defined by the variance of Rmc expressed by the standard deviation std (Rmc).
  • the distribution density function of the Rmc values of the faultless crimps is designated pc.a and pc.b, respectively.
  • the distribution density function of the Rmc values with MCL% mc missing strands is the FIGS. 16a and 16b denoted by fc.a or fc.b.
  • the weighting factors Si are equal. It can be seen that the selectivity - expressed by the error limit BLMC - is insufficient for error detection due to the wide spread of the Rmc values is. Although the Rmc values of the faulty crimps (see distribution density function fc.a) are all smaller than the error limit -BLMC, the faulty crimps are recognized, but some of the Rmc values of the faultless crimps (see distribution density function pc.a) are also smaller than the error limit -BLMC and are thus erroneously classified as faulty.
  • FIG. 16b shows the case where the weighting factors were determined as described above according to the relevance of the relative area differences Ri.
  • the scattering of the Rmc values is smaller and the two distribution densities pc.b and fc.b do not overlap. Thus, a sufficient selectivity is given for.
  • the faulty crimps are classified as bad and the flawless crimps as good.
  • FIG. 15 In addition to the typical force-displacement curve for a faultless crimp R, a typical force-displacement curve for a faulty crimp with crimped insulation C2 is also shown.
  • the relative area difference Riso from the zone Ziso with a limit value BLISO compared.
  • the limit value BLISO is also referred to as the error limit.
  • the relative area difference Riso is thus the difference between the area fiso, which lies below the crimping force curve C2 in the evaluation zone zio, and the reference area frefiso, which lies below the reference crimping force curve R in the zone zio, divided by this reference area frefiso.
  • the crimp is marked as scrap.
  • error limit BLISO is statistically calculated from the good crimpings.
  • the setup with the subsequent automatic check can, for example, proceed as follows.
  • the specified crimp height CH is set as follows. After a first crimp has been produced, the operator measures the crimp height CH and adjusts the crimping tool accordingly. This is repeated until the crimp height CH is within the tolerance.
  • the setup is automatically checked. For this purpose, the current crimpsignature index csiE is compared with the process parameter csiE 0 stored in the database. If the difference between csiE and csiE 0 lies within the tolerance, ie the crimp height CH and the Conductor cross-section are OK, the production is released.

Abstract

Bei dem Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt wird zunächst mittels einer Crimpeinrichtung eine Crimpkraft auf den Leiter und den Kontakt ausgeübt. Aus der sich während des Crimpens ergebende Crimpkraftkurve wird eine normalisierte Kraft-Weg Crimpkraftkurve (C1; C2; R) abgeleitet und eine Kompressionsfläche ermittelt, die unter einer Referenzcrimpkraftkurve (R) liegt. Die Crimpkraftkurve (C1; C2) und die Referenzcrimpkraftkurve (R) werden in mehrere Zonen (Ziso, Zmc) aufgeteilt, wobei die Aufteilung unter Berücksichtigung der Grösse der Kompressionsfläche erfolgt. Eine weitere unter der Crimpkraftkurve (C1; C2; R) liegende Fläche wird ermittelt und verwendet um auf die Qualität der Crimpverbindung zu schliessen.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt, wobei eine Crimpeinrichtung eine Crimpkraft erzeugt, mittels welcher der Kontakt mit dem Leiter elektrisch und mechanisch unlösbar verbindbar sind.
  • Der Begriff "Crimpen" ist international eingeführt und normungstechnisch festgelegt. In der Praxis werden aber auch Ausdrücke wie Pressen, Quetschen, Anschlagen oder Ansetzen benutzt. Unter Crimpen versteht man die Herstellung einer nicht lösbaren elektrischen und mechanischen Verbindung zwischen einem Leiter und einem Kontakt. Beim Crimpvorgang wird das zu verbindende Material des Crimpkontakts und des Leiters plastisch, dauerhaft verformt. Dabei werden, falls vorhanden, schlecht leitende Oberflächenschichten aufgebrochen, was die elektrische Leitfähigkeiten begünstigt. Eine korrekte Crimpung verhindert aber auch das Eindringen korrosiver Medien selbst unter erschwerten Betriebsbedingungen wie Temperaturwechsel oder Vibration.
  • Ziel der Crimpung ist die Herstellung einer guten mechanischen und elektrischen Verbindung, die auf die Dauer qualitativ unverändert bleibt.
  • Zum Crimpen werden kontaktspezifische Crimpwerkzeuge verwendet mit einem feststehenden Crimpamboss unten und vertikal verschiebbaren Crimpstempeln oben (siehe Figur 1 bis Figur 3). Im Crimpwerkzeug sind der Crimpstempel für den Leitercrimp und der Crimpstempel für den Isolationscrimp montiert, welche meistens über Rasterscheiben mit unterschiedlichen Höhennocken unabhängig voneinander in vertikaler Richtung auf den Leiterdurchmesser beziehungsweise Isolationsdurchmesser eingestellt werden können. Diese Einstellungen beeinflussen direkt die Qualität der Crimpverbindung.
  • Bei offenen Crimpkontakten (siehe Figur 4 und Figur 5) erfolgt die Kabelzuführung oberhalb des Kontaktes. Der zuvor abisolierte Leiter wird üblicherweise von Automaten gleichzeitig in radialer und axialer Richtung gegenüber dem Kontakt korrekt für den Crimpvorgang positioniert. Durch die Abwärtsbewegung des Crimpstempels wird zuerst der Leiter über eine Mechanik in die nach oben geöffneten Leiter- und Isolationscrimpkrallen abgesenkt, danach beginnt der eigentliche Crimpvorgang mit Umformen der Laschen entsprechend der Crimpstempelformen. Nach dem Hub des Crimpstempels hat der Crimp die gewollte Formverpressung (siehe Figur 5), die wiederum vom verwendeten Kontaktblech, vom Leiterquerschnitt, vom Kupfer des Leiters und von der Abisolierung abhängig ist. Bei geschlossenen Kontakten muss der Leiter nach der radialen Ausrichtung axial in den als Rohr ausgeformten Crimpbereich des Kontakts eingefahren werden.
  • Ein Schnittbild einer fehlerfrei ausgeführten Crimpverbindung zeigt die ursprünglich einzelnen runden Litzen des Leiters kompakt zu Vielecken gegeneinander gepresst. Die innere Fläche im Crimpbereich des Kontaktes zeigt Verformungen der Berührungsstellen der einzelnen Litzen.
  • Eine wichtige Kenngrösse für den Verpressungsgrad des Leitercrimps ist das Crimp Kompressions-Verhältnis CCR, definiert als Verhältnis von Querschnittfläche des gecrimpten Leitercrimps CCS zu der Summe der Querschnittflächen des Leiters WCS und des Kontaktteils TCS vor der Verformung. CCR = CCS WCS + TCS 100 %
    Figure imgb0001
  • Ein Qualitätsziel ist es, ein bestimmtes Crimp-Kompressions-Verhältnis CCR einzuhalten, und zwar unabhängig davon welcher Leiterquerschnitt verarbeitetet wird. Dies wird erreicht, indem für jeden Leiterquerschnitt die entsprechende Crimphöhe vorgegeben wird.
  • Beim Leitercrimp müssen alle einzelnen Litzen umfasst sein. Am vorderen Ende des Leitercrimps müssen die einzelnen Litzen je nach Querschnitt etwa 0,5 mm herausragen und dürfen nicht im Crimp verschwinden. In dem zwischen dem Leitercrimp und dem Isolationscrimp liegenden Fenster müssen Leiter und Leiterisolation sichtbar sein. Der Isolationscrimp muss die Isolation umschliessen ohne in diese einzudringen.
  • Wichtige Kriterien für die Beurteilung einer Crimpverbindung sind die Crimpform, die Crimphöhe als Mass für das Crimp-Kompressions-Verhältnis und die Leiterausreiss-Festigkeit. Diese Kriterien eignen sich aber nur beim Einrichten der Crimpmaschine und während der Produktion bei Stichproben. Um den heutigen Qualitätsanforderungen für sämtliche Crimpverbindungen zu genügen, müssen Mittel zur Verfügung stehen, welche über jede Crimpverbindung während des Crimpvorganges Crimpdaten aufnehmen, auswerten, speichern und ergebnisorientiert Maschinendaten beeinflussen können. Zur Beurteilung der Crimpverbindung (ohne mechanische Zerstörung der Crimpverbindung) wird die Crimpkraft in Relation zum Crimpweg oder zur Crimpzeit gesetzt. Mit entsprechender Auswertung der Crimpdaten kann die Güte einer Crimpverbindung verlässlich beurteilt werden.
  • Ein Verfahren beziehungsweise eine Einrichtung zur Beurteilung der Qualität einer Crimpverbindung muss Crimpfehler wie falsche Isolationscrimp-Höhe, falsche Leitercrimp-Höhe, nicht erfasste Litzen beim Leitercrimp, falsche oder keine Abisolierlänge, falsche Einlegetiefe oder beim Abisolieren abgeschnittene Litzen erkennen und entsprechende Fehlermeldungen erzeugen.
  • Stand der Technik
  • Aus der Anmeldeschrift EP 0 460 441 ist ein Verfahren zur Detektion von fehlenden Litzen oder von eingecrimpter Leiterisolation in einer Crimpverbindung anhand des Crimpkraftverlaufes bekannt geworden. Während eines Crimpvorganges werden Wertepaare bestehend aus Crimpkraft und Position des Crimpstempels gemessen und gespeichert. Die während der Herstellung einer Crimpverbindung gemessenen Wertepaare ergeben den Crimpkraftverlauf des Crimpvorganges mit der Crimpkraft in Abhängigkeit der Position des Crimpstempels. Der Kurvenabschnitt mit starkem Kraftanstieg wird linearisiert und ein Punkt aus dem Mittel der minimalen und maximalen Crimpkraft bestimmt. Der Punkt wird mit einem Referenzwert verglichen. Falls der Punkt innerhalb einer vorbestimmten Abweichung vom Referenzwert liegt, ist die Crimpverbindung von akzeptabler Qualität. Bei der Auswertung des Crimpkraftverlaufes des Crimpvorganges wird auch die maximale Crimpkraft mitberücksichtigt. Falls die maximale Crimpkraft gegenüber einem Referenzwert übermässig abweicht, wird die Crimpverbindung als unbrauchbar zurückgewiesen. Der Punkt im Kurvenabschnitt mit starkem Kraftanstieg und die maximale Crimpkraft geben Aufschluss über fehlende Litzen beziehungsweise über eingecrimpte Leiterisolation in der Crimpverbindung.
  • Bei einer marktgängigen Crimppresse erfasst ein Kraftsensor während des Crimpvorganges die Kraft, die in digitaler Form als kraftabhängiger Kurvenverlauf abgespeichert wird. Dieser wird mit einer Referenzkurve verglichen. Je nach Grösse der Abweichung zur Referenz wird auf den Typ des Crimpfehlers geschlossen.
  • Nachteilig bei diesem Verfahren ist, dass trotz grossem Rechner-, Speicher- und Rechenaufwand keine differenzierte Aussage über die Qualität der Crimpverbindung möglich ist.
  • Zudem ist aus dem Stand der Technik EP 0 902 509 B1 eine Crimpeinrichtung mit einem Crimpstempel bekannt, mit dem ein Kontakt mit einem Leiter verbunden werden kann. Die Crimpeinrichtung umfasst einen oberhalb des Crimpstempels angeordneten Kraftsensor, um die Crimpkraft zu bestimmen.
  • Um die Qualität der Crimpverbindung zu ermitteln, wird die Crimpkraftkurve aufgezeichnet und in mehrere Zonen aufgeteilt. Zur Bestimmung der Breite der ersten und der zweiten Zone wird die vierte Zonenbreite mit einem Faktor zwischen 0 und 2 multipliziert. Der höchste Punkt auf der Referenzcrimpkraftkurve wird auf 100% normiert. Die dritte Zonenbreite wird dann durch die beiden 90%-Punkte auf der Referenzcrimpkraftkurve bestimmt.
  • Darstellung der Erfindung
  • Hier will die Erfindung Abhilfe schaffen. Eine Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, bei denen die oben genannten Nachteile vermieden werden und die zu einer verbesserten Qualitätssicherung führen.
  • Die Aufgabe wird durch ein Verfahren mit den Merkmalen gemäss Patentanspruch 1 gelöst.
  • Zudem wird die Aufgabe durch eine Vorrichtung mit den Merkmalen gemäss den Patentansprüchen 11 und 12 gelöst.
  • Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass mit der besseren Auflösung der Fehler eine Qualitätssteigerung möglich ist, dass mit der sensibleren Fehlerdiagnose weniger Ausschuss entsteht und dass Folgefehler, beispielsweise eine Panne eines Personenwagens wegen Wackelkontaktes in einer Steckerverbindung vermieden werden.
  • Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den abhängigen Patentansprüchen angegebenen Merkmalen.
  • Kurze Beschreibung der Zeichnungen
  • Im folgenden wird die Erfindung mit mehreren Ausführungsbeispielen anhand von mehreren Figuren weiter erläutert.
  • Figur 1
    zeigt einen Kabel und einen Kontakt vor dem Crimpen.
    Figur 2
    zeigt das Kabel und den Kontakt während des Crimpens.
    Figur 3
    zeigt das Kabel und den Kontakt nach dem Crimpen.
    Figur 4
    zeigt eine Crimpverbindung zwischen dem Leiter und einem Kontakt.
    Figur 5
    zeigt die Crimpverbindung im Querschnitt.
    Figur 6a
    zeigt einen Kontakt und einen Leiter vor dem Crimpen im Querschnitt.
    Figur 6b
    zeigt den Kontakt und den Leiter nach dem Crimpen im Querschnitt.
    Figur 7
    zeigt eine Crimppresse in einer dreidimensionalen Ansicht.
    Figur 8
    zeigt ein Blockdiagramm einer ersten Ausführungsform einer Steuerung zusammen mit einem Teil der Crimppresse.
    Figur 9
    zeigt ein Blockdiagramm einer zweiten Ausführungsform der Steuerung zusammen mit einem Teil der Crimppresse.
    Figur 10a
    zeigt eine Kraft-Winkel-Kurve, die mit der Steuerung gemäss Figur 9 aufgenommen wurde.
    Figur 10b
    zeigt eine aus der Kraft-Winkel-Kurve gemäss Figur 10 a) transformierte Kraft-Weg-Kurve.
    Figur 11
    zeigt ein Diagramm, in dem der Verlauf der auf 1 normalisierten Crimpkraft in Abhängigkeit vom Weg dargestellt ist mit einem Parameter csiA, der den Beginn der Kompressionsphase kennzeichnet.
    Figur 12
    zeigt den gleichen Verlauf der Crimpkraft wie in Figur 11, allerdings mit einem Parameter csiB, der die Breite der Dekompressionsphase kennzeichnet.
    Figur 13
    zeigt den gleichen Verlauf der Crimpkraft wie in Figur 11, allerdings mit einem Parameter csiC, der die Fläche der Kompression kennzeichnet.
    Figur 14
    zeigt einen Verlauf der Crimpkraft, welcher in zwei Auswertezonen Ziso und Zmc unterteilt ist.
    Figur 15
    zeigt den Kraft-Weg-Verlauf für einen fehlerlosen Referenzcrimp R, einen fehlerhaften Crimp C1 mit 10% fehlenden Litzen und einen fehlerhaften Crimp C2 mit eingecrimpter Isolation.
    Figur 16a
    zeigt eine Verteilungsdichtefunktion für den Fall, dass die Gewichtungsfaktoren S1, S2 und S3 gleich gross sind.
    Figur 16b
    zeigt eine Verteilungsdichtefunktion für den Fall, dass die Gewichtungsfaktoren S1, S2 und S3 optimal gewählt wurden, so dass die Streuung der Rmc Werte minimal ist.
    Wege zur Ausführung der Erfindung
  • Die Figuren 1 bis 3 zeigen einen Crimpvorgang, bei dem ein Ende eines Kabels 1, aus dem ein Stück Leiter herausragt, mit einem Kontakt 2 verbunden wird. Eine offene Crimpzone 3 des Kontaktes 2 weist eine erste Doppellasche 4 für den Isolationscrimp 5 und eine zweite Doppellasche 6 für einen Leitercrimp 7 auf. Figur 1 zeigt Crimpstempel 8, 9 in der oberen Totpunktlage. Das Ende der Leiterisolation liegt in der ersten Doppellasche 4 und das abisolierte Kabelstück liegt in der zweiten Doppellasche 6. Wie in Figur 2 gezeigt, werden beim Absenken der Crimpstempel 8, 9 die Doppellaschen 4, 6 mittels keilförmigen Ausnehmungen 10, die sich in den Crimpstempeln 8, 9 befinden, gegeneinander gepresst. Als Auflage dient ein Amboss 9.1. Ein kuppelförmiges oberes Ende der Ausnehmung 10 gibt der Doppellasche 4, 6 zusammen mit der Leiterisolation 11 beziehungsweise dem Leiter die endgültige Form. Figur 3 zeigt die fertige Crimpverbindung mit dem Isolationscrimp 5, bei dem die erste Doppellasche 4 um die Leiterisolation 11 gepresst ist, und mit dem Leitercrimp 7, bei dem die zweite Doppellasche 6 um den Leiter gepresst ist.
  • Figur 4 zeigt eine fehlerfreie Crimpverbindung, bei der in einem Fenster 13 die Isolation 11 des Kabels 1 und die einzelnen Litzen des Leiters 12 sichtbar sind. Am kontaktseitigen Ende des Leitercrimps 7 sind die Einzellitzen erneut sichtbar.
  • Figur 5 zeigt eine gute Crimpverbindung 7 im Querschnitt. Nach dem Hub der Crimpstempel 8, 9 hat der Crimp 7 die gewollte Formverpressung.
  • Figur 6a zeigt einen Kontakt und einen Leiter vor dem Crimpen im Querschnitt.
  • Figur 6b zeigt den Kontakt und den Leiter nach dem Crimpen im Querschnitt.
  • Figur 7 zeigt eine mögliche Ausführungsform einer Crimppresse in einer dreidimensionalen Ansicht. Die Crimppresse umfasst einen Ständer 14, der in Figur 7 zum Teil aufgebrochen dargestellt ist. Am Ständer 14 ist ein Motor 15 mit einem Getriebe 16 angeordnet. Ausserdem sind am Ständer 14 erste Führungen 17 angeordnet, an denen eine Ramme 18 geführt ist. Eine vom Getriebe 16 angetriebene Welle 19 weist am einen Ende einen Exzenterzapfen auf. Die Ramme 18 umfasst ein in den ersten Führungen 17 geführtes Gleitstück 22 und einen Werkzeughalter 23 mit Kraftsensor 23.1. Das Gleitstück 22 steht in loser Verbindung mit dem Exzenterzapfen, wobei die Rotationsbewegung des Exzenterzapfens in eine Linearbewegung des Gleitstückes 22 umgesetzt wird. Die Position des Gleitstücks 22 und damit der Ramme 18 wird mit einem Linearsensor 20 erfasst. Der maximale Hub des Gleitstückes 22 wird durch den oberen Totpunkt und den unteren Totpunkt des Exzenterzapfens 21 (Fig. 8 und 9) bestimmt. Der Werkzeughalter 23 betätigt üblicherweise das Crimpwerkzeug 8, 9 (Fig. 1), das zusammen mit einem zum Crimpwerkzeug gehörenden Amboss 9.1 die Crimpverbindung herstellt.
  • Figur 8 zeigt in einem Blockschaltbild eine erste Ausführungsform einer Steuerung 28 zusammen mit Teilen der in Figur 7 gezeigten Crimppresse. Die Steuerung 28 ist als Regelkreis ausgebildet und dient zum Steuern der Crimppresse. Der Regelkreis beinhaltet einen Motorregler 40, den Motor 15 und einen Winkelsensor 45 für die Erfassung des Drehwinkels der Motorwelle. Die Crimpbewegung für einen Hub wird nach einem vorgegebenen Geschwindigkeits-Winkel-Profil vom Motorregler 40 geregelt. Die Rotationsbewegung wird vom Motor 15 auf das Getriebe 16 und dann auf die Welle 19 übertragen, an deren einen Ende der Exzenterzapfen 21 angeordnet ist. Der Exzenterzapfen 21 versetzt das Gleitstück 22 der Ramme 18 in eine Linearbewegung.
  • Die Position des Gleitstücks 22 der Ramme 18 wird vom Linearsensor 20 erfasst. Der Linearsensor 20 umfasst einen Massstab mit äquidistant (Abstand Δs) angeordneten Positionsmarkierungen, welche am Gleitstück 22 der Ramme 18 angebracht sind. Zudem umfasst der Linearsensor 20 einen stationären Lesekopf. Der Linearsensor 20 erzeugt jeweils einen elektrischen Spannungsimpuls 48, wenn eine der Positionsmarkierungen den Lesekopf passiert.
  • Der Kraftsensor 23.1 misst die während des Crimpvorgangs für die Umformung aufgewendete Kraft F. Der Kraftsensor 23.1 basiert auf dem piezoelektrischen Effekt und erzeugt eine Ladung q, die proportional zur Kraft F ist. Der Proportionalitätsfaktor ist die Ladungskonstante k. Ein Kondensator 43 mit der Kapazität C ist zum Kraftsensor 23.1 parallel geschaltet und bildet mit einem nachfolgenden Spannungsverstärker 46 einen Ladungsverstärker. Die Ausgangsspannung u am Ausgang des Ladungsverstärkers beträgt: u = k g C F
    Figure imgb0002

    wobei g der Verstärkungsfaktor des Spannungsverstärkers 46 ist.
    Zudem ist ein Entladeschalter 44 vorgesehen, der die Ladung des Kondensators 43 vor jedem Crimpzyklus entlädt. Ein dem Ladungsverstärker nachgeschalteter Analog-Digitalwandler 47 digitalisiert die Ausgangsspannung u, welche die aufgewendete Kraft F repräsentiert, synchron zu den vom Linearsensor 20 gelieferten Positionsimpulsen 48. Aus der digitalisierten Kraft F und den Positionsimpulsen 48 wird die Kraft-Weg-Kurve des Crimpvorganges gebildet. Eine Steuereinheit 42 übernimmt die Speicherung und Auswertung der Kraft-Weg-Kurve.
  • Figur 9 zeigt eine alternative Ausführung der Steuerung 28. Diese unterscheidet sich von der Ausführungsform gemäss Figur 8 zum einen dadurch, dass der Winkelsensor 45 den Drehwinkel ε der Welle 19 erfasst und dazu mit der Welle 19 in Verbindung steht. Zum anderen unterscheidet sie sich von der Ausführungsform gemäss Figur 8 dadurch, dass die Position des Gleitstücks 22 nicht vom Linearsensor 20 (Fig. 8), sondern vom Winkelsensor 45 erfasst wird. Mit Hilfe eines entsprechenden Wandlers 50 wird der vom Winkelsensor 45 gelieferte Winkel ε in einen Weg s transformiert. Aus der digitalisierten Kraft F und dem so ermittelten Weg s wird dann die Kraft-Weg-Kurve des Crimpvorganges gebildet.
  • Figur 10a zeigt die Kraft-Winkel-Kurve, die mit konstanten Winkelschritten Δε abgetastet wurde. Der 180° Punkt auf der Abszisse mit dem Winkel ε bildet den unteren Totpunkt der Ramme 18. An diesem Punkt ist die Kraft maximal. Mit der Formel: s = r 1 + cos ε
    Figure imgb0003
    wird der Crimpweg s aus dem Winkel ε berechnet. Dabei ist r der Abstand zwischen dem Exzenterzapfen 21 und dem Zentrum der Welle 19.
  • Figur 10b zeigt die mit dieser Formel aus der gemessenen Kraft-Winkel-Kurve (Fig. 10a) abgeleitete Kraft-Weg-Kurve. Die Kraft-Weg-Kurve ist in eine Kompressionsphase K und eine Dekompressionsphase DK aufgeteilt. In den in den Figuren 10b bis 15 dargestellten Diagrammen befindet sich der Nullpunkt rechts auf der x-Achse.
  • Crimpsignatur
  • Figur 11 zeigt ein Diagramm, in dem der Verlauf der Crimpkraft in Abhängigkeit vom Weg dargestellt ist. Dieser Verlauf wird auch als Crimpsignatur bezeichnet. Dabei ist auf der x-Achse der Crimpweg, den das Gleitstück 22 der Ramme 18 zurücklegt. Der Crimpweg wird auch als Stroke bezeichnet. Auf der y-Achse ist die auf 1 normalisierte Kraft aufgetragen. Die Kraftachse ist normalisiert, weil so der Kraftsensor 23.1 (Fig. 7) nicht kalibriert sein muss. Somit reicht es aus, wenn der Kraftsensor 23.1 ein Signal liefert, das zwar proportional zur aufgebrachten Kraft F, aber nicht absolut skaliert ist. Die Normierung der Kraftachse erlaubt den Einsatz eines kostengünstigen, nicht kalibrierten Kraftsensors 23.1.
  • Der Crimpweg kann aus dem vom Linearsensor 20 erzeugten Positionssignal 48 abgeleitet werden.
  • Wenn die Crimppresse nicht über einen Linearsensor 20 verfügt, kann der Crimpweg aus dem Drehwinkel ε der Welle (Exzenterachse) 19 abgeleitet werden. Dazu wird mit dem Winkelsensor 45 der Drehwinkel ε gemessen und mit dem Wandler 50 in einen Weg transformiert.
  • Mit Hilfe der Formel:
  • csiA = 2 A γ 2
    Figure imgb0004
    lässt sich ein Kennwert csiA bestimmen, der als Mass für den Beginn der Kompressionsphase K dient. Die Kompressionsphase beginnt dort, wo die Laschen 6 den Leiter 12 berühren. Der Kennwert csiA wird im Folgenden auch als Crimpsignatur-Index csiA bezeichnet.
  • Dabei ist A eine Fläche, die in der Kompressionsphase unter der Crimpkraftkurve liegt, bei einer normalisierten Kraft von 1 - γ beginnt und sich bis zur Spitzenkraft Fp = 1 erstreckt. Die Fläche A wird im Folgenden auch als Kompressionsfläche bezeichnet. γ ist eine Konstante, die vorteilhafter Weise so gewählt wird, dass ihr Wert im Bereich des konstanten Kraftanstiegs liegt. Im vorliegenden Beispiel ist γ = 0,5.
  • Figur 12 zeigt den gleichen Verlauf der Crimpkraft wie in Figur 11, allerdings mit einem Parameter csiB, der die Breite der Dekompressionsphase kennzeichnet.
  • Mit Hilfe der Formel:
  • csiB = 2 B γ 2
    Figure imgb0005
    lässt sich ein Kennwert csiB als Mass für die Breite der Dekompressionsphase DK bestimmen. Die Dekompressionsphase DK beginnt, nachdem der Exzenterzapfen 21 den unteren Totpunkt erreicht hat und endet, wenn der Crimpstempel 8,9 vom Kontakt 2 entfernt wird. Der Kennwert oder Wert csiB wird im Folgenden auch als Crimpsignatur-Index csiB bezeichnet.
  • Dabei ist B die Grösse der Fläche, die in der Dekompressionsphase DK unter der Crimpkraftkurve liegt. Die Fläche B wird im Folgenden auch als Dekompressionsfläche bezeichnet. Der Wert der Konstante γ liegt vorteilhafter Weise im Bereich des konstanten Kraftabstiegs und ist im vorliegenden Beispiel 0,8.
  • Wird beispielsweise die Konstante γ zu γ = 0,8 gewählt, beginnt die Fläche B bei einer normalisierten Kraft von 1 - γ = 0,2 und erstreckt sich bis zur Spitzenkraft Fp = 1.
  • Es gilt: Fp N = csiB m k N / m
    Figure imgb0006

    wobei k eine Konstante ist.
    Da der Crimpsignatur-Index csiB proportional zur Spitzenkraft Fp ist gilt: csiB Fp
    Figure imgb0007

    Aus den Werten csiA und csiB berechnet sich ein weiterer Crimpsignatur-Index csiC: csiC = csiA - csiB 2
    Figure imgb0008
  • Wie in Figur 13 gezeigt, entspricht der Crimpsignatur-Index csiC der Fläche des Dreiecks mit der Grundlinie csiA - csiB und der Höhe 1. Diese Fläche entspricht der Kompressionsfläche der Crimpsignatur.
  • Der Crimpsignatur-Index csiC kann zur Überwachung der Crimphöhe CH verwendet werden. Eine kleine Veränderung ΔCH der Crimphöhe CH bewirkt eine gleich grosse Veränderung ΔcsiC des Crimpsignatur-Indexes csiC mit umgekehrtem Vorzeichen. Es gilt also: Δcsic = - ΔCH
    Figure imgb0009

    Aus den Crimpsignatur-Indizes csiC und csiB berechnet sich ein weiterer Crimpsignatur-Index csiD: csiD = csiC csiB
    Figure imgb0010
  • Der Crimpsignatur-Index csiD kann zur Erkennung eines Fehlers beim Einrichten der Crimpvorrichtung verwendet werden. Insbesondere kann mit dem Crimpsignatur Index csiD erkannt werden, ob der Leiter ausreichend abisoliert wurde.
  • Aus den Werten csiB und csiC berechnet sich ein weiterer Crimpsignatur-Index csiE: csiE = csiB csiC
    Figure imgb0011

    Der Crimpsignatur-Index csiE ist proportional zur Kompressionsarbeit des Crimpvorgangs, und ist somit auch proportional zum Crimp Kompressions-Verhältnis CCR: csiE CCR
    Figure imgb0012
  • Der Crimpsignatur-Index csiE kann ebenfalls zur Erkennung eines Fehlers beim Einrichten der Crimpvorrichtung verwendet werden. Insbesondere kann mit dem Crimpsignatur-Index csiE überprüft werden, ob die eingestellte Crimphöhe CH und der eingerichtete Kabelquerschnitt den Spezifikationen entsprechen.
  • Bestimmung der Auswertezonen
  • Im Folgenden wird unter Bezugnahme auf Figur 14 beschrieben wie aus der Crimpkraftkurve die Auswertezonen Ziso und Zmc bestimmt werden. Die Auswertezone Zmc ist weiter in N Teilzonen Z1, Z2, ..., Zi, ..., ZN unterteilt, für N > 2. N wird in den folgenden Ausführungen gleich 3 gesetzt. Figur 14 zeigt eine erste Crimpkraftkurve R bei einem Referenzcrimp, welche im Folgenden auch als Referenzcrimpkraftkurve R bezeichnet wird. Figur 14 zeigt zudem eine zweite Crimpkraftkurve E, deren Verlauf typisch für einen Leercrimp ist. Beide Crimpkraftkurven R und E weisen die gleiche Auswertezonen Ziso und Zmc auf. Die Auswertezone Zmc ist zusätzlich in drei Teilzonen Z1, Z2 und Z3 aufgeteilt.
  • Die Auswertezone Ziso wird herangezogen, um den Crimpfehler "Isolation im Crimp" zu erkennen. Die Auswertezone Zmc hingegen wird herangezogen, um den Crimpfehler "Fehlende Litzen" zu erkennen.
  • Um den Crimpfehler "Fehlende Litzen" zu erkennen, ist es von Vorteil, wenn die Auswertezone Zmc möglichst denjenigen Abschnitt der Crimpkraftkurve abdeckt, in dem die Komprimierung der Litzen erfolgt. Der Beginn der Auswertezone Zmc sollte aber nicht vor diesem Komprimierungsbereich liegen, weil sonst unnötige Rauschanteile ausgewertet werden. Deshalb erfolgt die Festlegung der Zonenbreiten mit dem Crimpsignatur-Index csiA, der, wie oben erwähnt, den Beginn der Kompressionsphase kennzeichnet.
  • Die Auswertezone Zmc wird wie folgt berechnet:
  • Zmc = 0 , 8 W csiA = Z 1 + Z 2 + Z 3
    Figure imgb0013

    wobei W ein Parameter ist, der im Bereich von W = 0,5 bis 2,0 liegt und für den standardmässig W = 1 gilt.
  • Die Teilzonen Z1, Z2 und Z3 werden wie folgt bestimmt: Z 1 = Z 2 = Z 3 = Zmc / 3
    Figure imgb0014
  • Die Auswertezone Ziso wird wie folgt bestimmt: Ziso = Zmc / 3
    Figure imgb0015
  • Überwachung der Crimphöhe während der laufenden Produktion
  • Die Crimphöhe wird mit dem Crimpsignaturindex csiC überwacht. Dazu wird der Crimpsignaturindex csiC während eines Crimpvorgangs ermittelt und mit einem Toleranzwert chTol verglichen.
  • Für den Fall, dass die Crimphöhe und damit der Crimpsignaturindex csiC des aktuell zu überprüfenden Crimps von der Referenz-Crimphöhe zu stark abweicht, das heisst den Toleranzwert chTol überschreitet, wird die Produktion abgeschaltet, das heisst es werden keine weiteren Crimpungen mehr durchgeführt.
  • Crimpfehler "Fehlende Litzen"
  • Mit der erfindungsgemässen Lösung kann erkannt werden, ob und auch wie viele Litzen eines Leiters 12 (Fig. 4) während des Crimpens nicht gecrimpt wurden. Figur 15 zeigt einen typischen Kraft-Weg-Verlauf R für einen fehlerlosen Crimp und einen typischen Kraft-Weg-Verlauf C1 für einen fehlerhaften Crimp mit 10% fehlenden Litzen.
  • Zur Fehlererkennung wird zunächst ein Wert Rmc, der den relativen Anteil fehlender Litzen angibt und im Folgenden auch als Resultat bezeichnet wird, wie folgt berechnet: Rmc = ScaleFactorRmc i = 1 N Si Ri
    Figure imgb0016

    wobei gilt:
    • ScaleFactorRmc ist ein Skalierungsfaktor,
    • Si ist der Gewichtungsfaktor für die Teilzone Zi und
    • Ri ist die relative Flächendifferenz für die Teilzone Zi.
  • Anschliessend wird der Wert Rmc mit einem Fehlergrenzwert BLMC verglichen. Der Fehlergrenzwert BLMC wird auch als Fehlergrenze bezeichnet.
  • Die relative Flächendifferenz Ri einer Teilzone Zi berechnet sich nach folgender Formel: Ri = Zi f - Zi f Ref Zi f Ref , i = 1 N
    Figure imgb0017

    wobei f die Fläche ist, die unter der Crimpkraftkurve in der Teilzone Zi liegt, und fRef die Referenzfläche ist, die unter der Referenzcrimpkraftkurve in der Teilzone Zi liegt.
  • Die relative Flächendifferenz Ri ist also die Differenz zwischen der Fläche f, die unter der Crimpkraftkurve in der Teilzone Zi liegt, und der Referenzfläche fRef, die unter der Referenzcrimpkraftkurve in der Teilzone Zi liegt, dividiert durch diese Referenzfläche fRef.
  • Die Streuung des Wertes Rmc wird verringert und somit die Trennschärfe für die Erkennung von Crimpfehler verbessert, wenn die Gewichtungsfaktoren Si entsprechend der Relevanz der jeweiligen relativen Flächendifferenz Ri bestimmt werden. Die Gewichtungsfaktoren Si berechnen sich nach folgender Formel: Si = Ri ec std Ri 2 , i = 1 N
    Figure imgb0018

    wobei Ri(ec) die relative Flächendifferenz der Teilzone Zi für einen Leercrimp ec und std(Ri) die Standardabweichung von Ri, ermittelt über eine grössere Anzahl von fehlerlosen Crimps, ist.
  • Der Skalierungsfaktor ScaleFactorRmc dient zur Skalierung des Wertes Rmc, so dass Rmc dem relativen Anteil fehlenden Litzen entspricht.
  • Zur Bestimmung des Skalierungsfaktors ScaleFacorRmc wird ein Fehlcrimp mit einem definierten Anteil mc % fehlender Litzen ausgeführt. Fehlen beispielsweise 2 von 19 Litzen ergibt sich der Wert mc zu mc = 2 / 19 * 100 = 10.5 %. Wird beispielsweise ein Leercrimp durchgeführt, das heisst es wird ein Kontakt ohne Leiter gecrimpt, ergibt sich der Wert mc zu mc = 1 / 1 * 100 = 100 %. Der Skalierungsfaktor ScaleFacorRmc wird nun so bestimmt, dass das Resultat dieses Fehlcrimps Rmc = -mc % ergibt.
  • Für den Fall, dass das Resultat Rmc beim aktuell zu überprüfenden Crimp die Fehlergrenze -BLMC unterschreitet, wird beispielsweise die Produktion abgeschaltet, das heisst es werden keine weiteren Crimpungen mehr durchgeführt. Statt dessen kann aber auch der Crimp als Ausschuss gekennzeichnet werden ohne dass die Produktion gestoppt wird.
  • Um die Fehlergrenze BLMC zu bestimmen, werden mehrere Crimpungen durchgeführt. Anschliessend wird aus den guten Crimpungen die Standardabweichung std(Rmc) der Rmc Resultate berechnet. Weiter wird der geforderte Anteil von fehlenden Litzen in Prozent mit dem Wert MCL vorgegeben. Wird als Wert MCL zum Beispiel MCL = 10% vorgegeben, heisst das, dass das System 10% fehlende Litzen sicher erkennen soll. Die Fehlergrenze BLMC berechnet sich nun zu: BLMC = MCL - a std Rmc .
    Figure imgb0019

    wobei der Faktor a zum Beispiel den Wert 3 hat.
  • Figur 16 verdeutlicht diese Zusammenhänge. Mit dem Wert MCL wird der prozentmässige Anteil von fehlenden Litzen vorgegeben, der sicher erkannt werden soll. In Figur 16a ist eine erste Verteilungsdichtefunktion des Werts von Rmc dargestellt. Figur 16b zeigt eine zweite Verteilungsdichtefunktion von Rmc. Bei den in den Figuren 16a und 16b dargestellten Verteilungsdichtefunktionen ist auf der x-Achse die Variable Rmc aufgetragen. Auf der y-Achse ist die relative Häufigkeit p(Rmc) angegeben, mit der die Variable Rmc einen bestimmten Wert aufweist. Die Verteilungsdichtefunktion von Rmc hat das Maximum beim Mittelwert von Rmc. Die Breite der Verteilungsdichtefunktion ist definiert durch die Streuung von Rmc, ausgedrückt durch die Standardabweichung std(Rmc). In den Figuren 16a und 16b ist die Verteilungsdichtefunktion der Rmc Werte der fehlerlosen Crimps mit pc.a beziehungsweise pc.b bezeichnet. Die Verteilungsdichtefunktion der Rmc Werte mit MCL %mc fehlenden Litzen ist den Figuren 16a und 16b mit fc.a beziehungsweise fc.b bezeichnet.
  • Bei den Verteilungsdichtefunktionen fc.a und pc.a gemäss Figur 16a sind die Gewichtungsfaktoren Si gleich gross. Es ist ersichtlich, dass die Trennschärfe - ausgedrückt durch die Fehlergrenze BLMC - für die Fehlererkennung aufgrund der breiten Streuung der Rmc-Werte ungenügend ist. Die Rmc-Werte der fehlerhaften Crimps (siehe Verteilungsdichtefunktion fc.a) sind zwar allesamt kleiner als die Fehlergrenze -BLMC, so dass die fehlerhaften Crimps erkannt werden, aber einige der Rmc-Werte der fehlerlosen Crimps (siehe Verteilungsdichtefunktion pc.a)sind ebenfalls kleiner als die Fehlergrenze -BLMC und werden somit fälschlicherweise als fehlerhaft klassifiziert.
  • Figur 16b zeigt den Fall, bei dem die Gewichtungsfaktoren, wie oben beschrieben, gemäss der Relevanz der relativen Flächendifferenzen Ri bestimmt wurden. Die Streuung der Rmc-Werte ist kleiner und die beiden Verteilungsdichten pc.b und fc.b überlappen sich nicht. Somit ist eine genügende Trennschärfe für gegeben. Die fehlerhaften Crimps werden als schlecht und die fehlerlosen Crimps als gut klassifiziert.
  • Crimpfehler "Isolation im Crimp"
  • Ein weiterer möglicher Fehler beim Crimpen kann sein, dass sich zwischen dem Kontakt 2 (Fig. 4) und dem Leiter 1 noch mehr oder weniger viel Isolationsmaterial 11 befindet. Figur 15 ist zusätzlich zu dem typischen Kraft-Weg-Verlauf für einen fehlerlosen Crimp R auch ein typischen Kraft-Weg-Verlauf für einen fehlerhaften Crimp mit eingecrimpter Isolation C2 dargestellt.
  • Um einen Crimp mit eingecrimpter Isolation als fehlerhaft erkennen zu können, wird die relative Flächendifferenz Riso aus der Zone Ziso mit einem Grenzwert BLISO verglichen. Der Grenzwert BLISO wird auch als Fehlergrenze bezeichnet.
  • Die relative Flächendifferenz Riso berechnet sich wie folgt: Riso = fiso - f Re fiso f Re fiso = Δfiso f Re fiso
    Figure imgb0020
  • Die relative Flächendifferenz Riso ist also die Differenz zwischen der Fläche fiso, die unter der Crimpkraftkurve C2 in der Auswertezone Ziso liegt, und der Referenzfläche fRefiso, die unter der Referenzcrimpkraftkurve R in der Zone Ziso liegt, dividiert durch diese Referenzfläche fRefiso.
  • Für den Fall, dass die relative Flächendifferenz Riso beim aktuell zu überprüfenden Crimp den Flächengrenzwert BLISO überschreitet, wird beispielsweise der Crimp als Ausschuss gekennzeichnet.
  • Um die Fehlergrenze BLISO zu bestimmen, werden mehrere Crimpungen durchgeführt. Anschliessend wird aus den guten Crimpungen statistisch die Fehlergrenze BLISO berechnet.
  • Ermittlung der Prozessparameter
  • Bevor eine Crimpverbindung zum ersten Mal verarbeitet werden kann, müssen zuvor einmalig die Prozessparameter ermittelt werden. Diese werden dann in einer Datenbank abgelegt und können jeweils bei der Produktion der entsprechenden Crimpverbindung abgerufen werden. Zu den Prozessparametern gehören:
    • Die Crimpsignatur-Indizes csiA0, csiB0, csic0, csiD0 und csiE0.
    • Die Fehlergrenzen BLMC und BLISO.
    • Die Gewichtungsfaktoren S1, S2 und S3.
    • Der Skalierungsfaktor ScaleFactorRmc.
    Einrichten des Crimp-Prozesses
  • Beim Einrichten des Crimp-Prozesses auf dem Crimpautomaten muss sichergestellt werden, dass die Crimpverbindung den Spezifikationen entspricht. Insbesondere muss überprüft werden, ob der vorgeschriebene Kabelquerschnitt verarbeitet wird und ob die Crimpverbindung die spezifizierte Crimphöhe CH aufweist.
  • Das Einrichten mit der anschliessenden automatischen Überprüfung kann zum Beispiel folgendermassen ablaufen. In einem ersten Schritt wird die spezifizierte Crimphöhe CH wie folgt eingestellt. Nachdem ein erster Crimp produziert worden ist misst die Bedienperson die Crimphöhe CH und stellt das Crimpwerkzeug entsprechend nach. Dies wird solange wiederholt, bis die Crimphöhe CH innerhalb der Toleranz liegt. In einem zweiten Schritt wird das Einrichten automatisch überprüft. Dazu wird der aktuelle Crimpsignatur-Index csiE mit dem in der Datenbank hinterlegten Prozessparameter csiE0 verglichen. Liegt die Differenz zwischen csiE und csiE0 innerhalb der Toleranz, das heisst die Crimphöhe CH und der Leiterquerschnitt sind in Ordnung, wird die Produktion freigegeben.
  • Die vorhergehende Beschreibung der Ausführungsbeispiele gemäss der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen, Kombinationen der Ausführungsformen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihre Äquivalente zu verlassen.
  • Bezugszeichenliste
  • 1
    Kabel
    2
    Kontakt
    3
    Crimpzone
    4
    Doppellasche
    5
    Isolationscrimp
    6
    Doppellasche
    7
    Leitercrimp
    8
    Crimpstempel
    9
    Crimpstempel
    9.1
    Amboss
    10
    Ausnehmung
    11
    Leiterisolation
    12
    Leiter
    13
    Fenster
    14
    Ständer
    15
    Motor
    16
    Getriebe
    17
    Führung
    18
    Ramme
    19
    Welle
    20
    Linearmesssystem
    21
    Exzenterzapfen
    22
    Gleitstück
    23
    Werkzeughalter
    23.1
    Kraftsensor
    28
    Steuerung
    40
    Motorregler
    41
    Steuerungseinheit
    42
    Externer Computer
    43
    Kondensator
    44
    Entladungsschalter
    45
    Winkelsensor
    46
    Spannungs-Verstärker
    47
    Analog - Digital Wandler
    48
    Impulsfolge der Weg-Inkremente
    49
    Impulsfolge der Winkel-Inkremente
    50
    Winkel zu Weg Transformationseinheit
    TCS
    Querschnittsfläche des Kontakts
    WCS
    Querschnittsfläche des Leiters
    CCS
    Querschnittsfläche des Leitercrimps
    CH
    Crimphöhe
    Ziso
    Auswertezone
    Zmc
    Auswertezone
    Z1
    Teilzone
    Z2
    Teilzone
    Z3
    Teilzone
    K
    Kompressionsphase
    DK
    Dekompressionsphase
    R
    Referenzcrimpkurve
    F
    Crimpkraft
    C1
    Crimpkurve
    C2
    Crimpkurve
    E
    Crimpkurve

Claims (12)

  1. Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt,
    - bei dem mittels einer Crimpeinrichtung eine Crimpkraft (F) auf den Leiter (1) und den Kontakt (2) ausgeübt wird,
    - bei dem die sich während des Crimpens ergebende Crimpkraftkurve (C1; C2; E; R) ermittelt wird,
    - bei dem eine unter einer Referenzcrimpkraftkurve (R) liegende Kompressionsfläche (A) ermittelt wird,
    - bei dem die Crimpkraftkurve (C1; C2; E) und die Referenzcrimpkraftkurve (R) in mehrere Zonen (Ziso, Zmc, Z1 - Z3) aufgeteilt werden, wobei die Aufteilung unter Berücksichtigung der Grösse der Kompressionsfläche (A) erfolgt, und
    - bei dem wenigstens eine weitere unter der Crimpkraftkurve (C1; C2; E) liegende Fläche (f; fiso) ermittelt wird, wobei die Fläche ein Mass für die Qualität der Crimpverbindung ist.
  2. Verfahren nach Patentanspruch 1,
    bei dem die Kompressionsfläche (A) unter demjenigen Abschnitt (K) der Referenzcrimpkraftkurve (R) ermittelt wird, in dem die Crimpkraft (F) zunimmt.
  3. Verfahren nach Patentanspruch 2,
    bei dem durch die grösste Crimpkraft (Fp) das obere Ende des Abschnitts (K) definiert wird.
  4. Verfahren nach einem der Patentansprüche 1 bis 3,
    bei dem ein erster Crimpsignatur-Index (csiA) unter Berücksichtigung der Kompressionsfläche (A) ermittelt wird.
  5. Verfahren nach Patentanspruch 4,
    bei dem die Zonen (Z1 - Z3) individuell gewichtet werden.
  6. Verfahren nach Patentanspruch 4 oder 5, bei dem
    - aus der Referenzcrimpkraftkurve (R) für jede der Zonen (Z1, Z2, Z3) eine Referenzfläche (fRef) ermittelt wird,
    - bei dem aus der Crimpkraftkurve (E) für jede der Zonen (Z1, Z2, Z3) jeweils eine Fläche (f) ermittelt wird,
    - bei dem daraus Flächendifferenzen (R1, R2, R3) und daraus wiederum eine Gesamt-Flächendifferenz (Rmc) ermittelt werden, und
    - bei dem anhand der Gesamt-Flächendifferenz (Rmc) bestimmt wird, ob eine oder mehrere Litzen des Leiters (12) fehlen.
  7. Verfahren nach einem der Patentansprüche 4 oder 5,
    - bei dem aus einer Referenzcrimpkraftkurve (R) die Grösse der Referenzfläche (fRefiso), die in einer der Zonen (Ziso) unter der Referenzcrimpkraftkurve (R) liegt, ermittelt wird,
    - bei dem aus der Crimpkraftkurve (C2) die Fläche (fiso), die in der Zone (Ziso) unter der Crimpkraftkurve (C2) liegt, ermittelt wird,
    - bei dem aus der Referenzfläche (fRefiso) und der Fläche (fiso) die Flächendifferenz (Riso) ermittelt wird, und
    - bei dem anhand der Flächendifferenz (Riso) bestimmt wird, ob sich Isolationsmaterial (11) im Crimp zwischen dem Leiter (12) und dem Kontakt (2) befindet.
  8. Verfahren nach einem der Patentansprüche 1 bis 7,
    bei dem eine unter der Referenzcrimpkraftkurve (R) liegende Dekompressionsfläche (B) ermittelt wird,
    wobei die Dekompressionsfläche (B) unter demjenigen Abschnitt (DK) der Referenzcrimpkraftkurve (R) ermittelt wird, in dem die Crimpkraft (F) abnimmt.
  9. Verfahren nach einem der Patentansprüche 1 bis 8,
    bei dem ein weiterer Crimpsignatur-Index (csiB) unter Berücksichtigung der Dekompressionsfläche (B) ermittelt wird.
  10. Verfahren nach Patentanspruch 9,
    bei dem der Crimpsignatur-Index (csiA) und der Crimpsignatur-Index (csiB) und verwendet werden, um auf die Crimphöhe (CH) zu schliessen.
  11. Crimpeinrichtung zur Durchführung des Verfahrens nach einem der Patentansprüche 1 bis 10,
    - mit einem Crimpstempel (8; 9),
    - mit einem Linearsensor (20), um die Position des Crimpstempels (8; 9) zu erfassen,
    - mit einem Kraftsensor (23.1) zur Erfassung der Crimpkraft (F), und
    - mit einer Auswerteeinheit (41, 42), die mit dem Linearsensor (20) und dem Kraftsensor (23.1) verbunden und derart ausgebildet und betreibbar ist, dass mit ihr die Qualität einer Crimpverbindung bestimmbar ist.
  12. Crimpeinrichtung zum Crimpen eines Leiters und eines Kontakts,
    - mit einem Crimpstempel (8; 9),
    - mit einem Linearsensor (20), um die Position des Crimpstempels (8; 9) zu erfassen,
    - mit einem Kraftsensor (23.1) zur Erfassung der Crimpkraft (F), und
    - mit einer Auswerteeinheit (41, 42), die mit dem Linearsensor (20) und dem Kraftsensor (23.1) verbunden und derart ausgebildet und betreibbar ist, dass mit ihr die Qualität einer Crimpverbindung bestimmbar ist.
EP09172082.1A 2008-10-02 2009-10-02 Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt Active EP2173015B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09172082.1A EP2173015B1 (de) 2008-10-02 2009-10-02 Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08165675 2008-10-02
EP09172082.1A EP2173015B1 (de) 2008-10-02 2009-10-02 Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt

Publications (2)

Publication Number Publication Date
EP2173015A1 true EP2173015A1 (de) 2010-04-07
EP2173015B1 EP2173015B1 (de) 2017-05-03

Family

ID=40351547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09172082.1A Active EP2173015B1 (de) 2008-10-02 2009-10-02 Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt

Country Status (3)

Country Link
US (1) US8746026B2 (de)
EP (1) EP2173015B1 (de)
CN (1) CN101713648B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110310A1 (de) * 2011-02-17 2012-08-23 Robert Bosch Gmbh Verfahren und vorrichtung zur qualitätssichernden herstellung einer crimpung
EP2821215A1 (de) * 2013-06-13 2015-01-07 Otto Bihler Handels-Beteiligungs-GmbH Umformverfahren mit Regelung einer geometrischen Eigenschaft eines Werkstücks und Vorrichtung dazu
AT515783B1 (de) * 2014-06-06 2015-12-15 Avl List Gmbh Verfahren zur fertigung eines elektrischen energiespeichers
DE102015104161A1 (de) 2015-03-19 2016-09-22 Lisa Dräxlmaier GmbH Verfahren und Vorrichtung zum Überwachen einer Crimpeinrichtung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG174442A1 (en) * 2009-04-09 2011-10-28 Schleuniger Holding Ag Method of monitoring a crimping process, crimping press and computer program product
US8904616B2 (en) 2009-04-09 2014-12-09 Schleuniger Holding Ag Method of monitoring a crimping process, crimping press and computer program product
EP2378615A1 (de) * 2010-04-13 2011-10-19 Schleuniger Holding AG Crimppresse
US9331447B2 (en) * 2010-12-07 2016-05-03 Tyco Electronics Corporation Crimping apparatus having a crimp quality monitoring system
CN102735138B (zh) * 2011-04-12 2015-07-01 科马斯控股股份公司 测量结构以及用于至少确定压接触头的导线压接体的压接高度的方法
TWI608677B (zh) * 2012-08-15 2017-12-11 威查格工具廠有限公司 壓接機用的變換承接器
US10566755B2 (en) * 2017-04-25 2020-02-18 Te Connectivity Corporation Crimp tooling for terminal crimping machine
US10581213B2 (en) * 2017-04-25 2020-03-03 Te Connectivity Corporation Crimp tooling having guide surfaces
US10522960B2 (en) 2017-05-03 2019-12-31 Te Connectivity Corporation Crimp quality monitoring method and system for use with a hydraulic crimping apparatus
CN109655242A (zh) * 2017-10-10 2019-04-19 中国商用飞机有限责任公司 用于检测线束与端接件的连接的可靠性的方法及设备
ES2880751T3 (es) * 2018-09-10 2021-11-25 Hoefliger Harro Verpackung Máquina de enrollamiento universal para multitud de diseños de bandejas
DE102018218371A1 (de) * 2018-10-26 2020-04-30 Schäfer Werkzeug- und Sondermaschinenbau GmbH Verfahren zur Überwachung einer Crimpvorrichtung, Überwachungseinheit sowie Crimpvorrichtung
DE102019101016A1 (de) * 2019-01-16 2020-07-16 Harting Electric Gmbh & Co. Kg Verfahren und Vorrichtung zur Überprüfung der Qualität einer Crimpung
DE102019103758A1 (de) * 2019-02-14 2020-08-20 Lisa Dräxlmaier GmbH Verfahren und system zum prüfen einer stoffschlüssigen fügeverbindung zwischen einem litzenleiter und einem kontaktteil
CN110749843A (zh) * 2019-09-18 2020-02-04 苏州经纬通电子科技有限公司 一种电线束端子压接高度标准计算方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014221A1 (de) * 1989-05-12 1990-11-15 Siemens Ag Verfahren und vorrichtung zur fertigungsueberwachung beim crimpen von flexiblen, abisolierten adern von leitungen
EP0460441A1 (de) 1990-05-29 1991-12-11 The Whitaker Corporation Verfahren zur Qualitätsbestimmung einer Quetschverbindung
EP0902509A1 (de) * 1997-09-11 1999-03-17 Komax Holding Ag Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung
EP1071174A2 (de) * 1999-07-23 2001-01-24 Yazaki Corporation Anordnung und Verfahren zur Prüfung der Crimpqualität von Kontakten

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59806982D1 (de) * 1997-09-11 2003-02-27 Komax Holding Ag Dierikon Verfahren zur Bestimmung der Qualität einer Crimpverbindung
DE19843156A1 (de) * 1998-09-21 2000-04-20 Sle Electronic Gmbh Verfahren zur Qualitätssicherung von in einer Crimpvorrichtung hergestellten Crimpverbindungen sowie Crimpwerkzeug und Crimpvorrichtung
US6152188A (en) * 1999-04-09 2000-11-28 Teknika Usa, Inc. Crimping device
JP4031214B2 (ja) * 2001-03-19 2008-01-09 矢崎総業株式会社 端子圧着状態判別方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014221A1 (de) * 1989-05-12 1990-11-15 Siemens Ag Verfahren und vorrichtung zur fertigungsueberwachung beim crimpen von flexiblen, abisolierten adern von leitungen
EP0460441A1 (de) 1990-05-29 1991-12-11 The Whitaker Corporation Verfahren zur Qualitätsbestimmung einer Quetschverbindung
EP0902509A1 (de) * 1997-09-11 1999-03-17 Komax Holding Ag Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung
EP0902509B1 (de) 1997-09-11 2003-01-22 Komax Holding Ag Verfahren zur Bestimmung der Qualität einer Crimpverbindung
EP1071174A2 (de) * 1999-07-23 2001-01-24 Yazaki Corporation Anordnung und Verfahren zur Prüfung der Crimpqualität von Kontakten

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110310A1 (de) * 2011-02-17 2012-08-23 Robert Bosch Gmbh Verfahren und vorrichtung zur qualitätssichernden herstellung einer crimpung
CN103370841A (zh) * 2011-02-17 2013-10-23 罗伯特·博世有限公司 用于保证质量地制造卷边的方法和装置
KR101554651B1 (ko) 2011-02-17 2015-09-21 로베르트 보쉬 게엠베하 향상된 품질의 크림프를 제조하기 위한 방법 및 장치
CN103370841B (zh) * 2011-02-17 2016-08-17 罗伯特·博世有限公司 用于保证质量地制造卷边的方法和装置
EP2821215A1 (de) * 2013-06-13 2015-01-07 Otto Bihler Handels-Beteiligungs-GmbH Umformverfahren mit Regelung einer geometrischen Eigenschaft eines Werkstücks und Vorrichtung dazu
AT515783B1 (de) * 2014-06-06 2015-12-15 Avl List Gmbh Verfahren zur fertigung eines elektrischen energiespeichers
AT515783A4 (de) * 2014-06-06 2015-12-15 Avl List Gmbh Verfahren zur fertigung eines elektrischen energiespeichers
DE102015104161A1 (de) 2015-03-19 2016-09-22 Lisa Dräxlmaier GmbH Verfahren und Vorrichtung zum Überwachen einer Crimpeinrichtung

Also Published As

Publication number Publication date
US20100139351A1 (en) 2010-06-10
CN101713648A (zh) 2010-05-26
EP2173015B1 (de) 2017-05-03
US8746026B2 (en) 2014-06-10
CN101713648B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
EP2173015B1 (de) Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt
EP1946864B1 (de) Onlinebestimmung der Qualitätskenngrössen beim Stanznieten und Clinchen
EP0373422B1 (de) Anordnung zum Überwachen der Güte von elektrischen Schweissungen
EP0902509B1 (de) Verfahren zur Bestimmung der Qualität einer Crimpverbindung
EP3541544B1 (de) Verfahren zum betrieb einer biegemaschine
DE10127854A1 (de) Crimpanschlußklemme und Verfahren zur Überprüfung des Crimpzustands derselben
DE19843156A1 (de) Verfahren zur Qualitätssicherung von in einer Crimpvorrichtung hergestellten Crimpverbindungen sowie Crimpwerkzeug und Crimpvorrichtung
EP3493940B1 (de) Vorrichtung und verfahren zur herstellung einer geprüften schweissverbindung
DE19840275C2 (de) Verfahren zum Überwachen der Verbindungsqualität einer Crimpverbindung zwischen einem elektrischen Leiter eines Kabels und einer Metallanschlußklemme sowie Anschlußklemme
WO2012110310A1 (de) Verfahren und vorrichtung zur qualitätssichernden herstellung einer crimpung
DE102018126573A1 (de) Erfassungsvorrichtung zur Innendruckänderungserfassung einer prismatischen Batteriezelle sowie Messaufbau
DE60020304T2 (de) Anordnung und Verfahren zur Prüfung der Crimpqualität von Kontakten sowie Verfahren zur Besimmung des Reibungsverschleisses der Crimpmatritze
DE102017106539B3 (de) Verfahren zum ermitteln der schweissqualität einer schweissverbindung und danach arbeitende schweissvorrichtung
WO2016113244A1 (de) Kontaktteil, schweisskontakt sowie prüfverfahren
EP1887308B1 (de) Vorrichtung und Verfahren zur Gewindeprüfung
DE102016218308B4 (de) Vorrichtung und Verfahren zur Herstellung einer geprüften Schweißverbindung
DE60018233T2 (de) Anordnung und Verfahren zur Prüfung der Crimpqualität von Kontakten
DE4100410C2 (de) Verfahren zur Überwachung der Qualität einer Preßverbindung
EP4066958A1 (de) Stanzvorrichtung und verfahren zum bestimmen eines verschleisszustands eines presswerkzeugs
DE112020001836T5 (de) Zellbewertungsverfahren und zellbewertungsvorrichtung
WO2016205846A1 (de) Verfahren zur ermittlung einer einsatzkennzahl eines presswerkzeugs in einer fügepresse
DE4005399C1 (en) Ensuring connection quality of crimped tags - comparing electrical connection with predetermined value and finishing processing only if within tolerance range
EP2067439B1 (de) Verfahren zum Bestimmen einer muskulären Ermüdung
EP3817166A1 (de) Adaptive abisolierung
DE102020133083B4 (de) Technik zum Bestimmen der Klemmkraft eines Schnittspaltes in einer Trägerplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100930

17Q First examination report despatched

Effective date: 20101027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890954

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: INVENTIO AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013929

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 24962

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171002

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 890954

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230925

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230919

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231024

Year of fee payment: 15

Ref country code: DE

Payment date: 20231027

Year of fee payment: 15

Ref country code: CZ

Payment date: 20231002

Year of fee payment: 15

Ref country code: CH

Payment date: 20231102

Year of fee payment: 15