EP2169764B1 - Antenne radiofréquence d'émission-réception à paramètres d'émission-réception modifiables - Google Patents

Antenne radiofréquence d'émission-réception à paramètres d'émission-réception modifiables Download PDF

Info

Publication number
EP2169764B1
EP2169764B1 EP09170873.5A EP09170873A EP2169764B1 EP 2169764 B1 EP2169764 B1 EP 2169764B1 EP 09170873 A EP09170873 A EP 09170873A EP 2169764 B1 EP2169764 B1 EP 2169764B1
Authority
EP
European Patent Office
Prior art keywords
liquid
antenna
transmitting
volume
antenna according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09170873.5A
Other languages
German (de)
English (en)
Other versions
EP2169764A1 (fr
Inventor
Ghislain Despesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2169764A1 publication Critical patent/EP2169764A1/fr
Application granted granted Critical
Publication of EP2169764B1 publication Critical patent/EP2169764B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable
    • H01Q9/145Length of element or elements adjustable by varying the electrical length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system

Definitions

  • the present invention relates to a radiofrequency antenna whose transmission-reception parameters are modifiable.
  • antennas used in radiofrequency communication systems have a fixed geometry, i.e. their length and their configuration are determined during their manufacture and can not be modified later, or even with complex operations. Consequently, the operating frequency band of these antennas can not be modified, and more generally their transmission-reception parameters can not be modified.
  • the antenna is generally dimensioned so that the radiation of the antenna is the most isotropic possible. That is, the transmitted energy is substantially the same in all directions. This is the case in wireless systems. Indeed, for example in the case of a mobile phone, the orientation of the antenna is almost permanently changed. With such antennas, the systems allow communication in any direction. However, this show multidirectional has the disadvantage of being energy-consuming. However, we seek to reduce the energy consumption of portable telecommunication systems.
  • the switches even in the open state, have a capacitive impedance that does not allow to consider a total disconnection of the antenna element (or the parasitic element) that we want to disconnect.
  • the switches even if we can isolate each piece of this antenna, it can exist a radio frequency coupling between each of these pieces, which degrades the overall operation.
  • antennas made from an electrically conductive liquid, the resonant frequency of the antenna being adapted by changing the length of the liquid antenna.
  • This type of antenna is described in the document GB 2,435,720 .
  • the liquid is contained in a tube having a given geometry, for example in the form of a helix, the length of the antenna being modified for example by a device for controlling the temperature, by a pump or a piston.
  • the shape of the antenna is imposed by the shape of the tube, and therefore can not be changed during the use of the antenna.
  • the modification of the length of the antenna requires cumbersome means and whose reaction time is relatively long.
  • a radiofrequency antenna according to claim 1 comprising at least a portion made of a conductive liquid, whose shape is modified by electromagnetic forces.
  • liquid volumes are moved by electrowetting or by generating a magnetic field, to form, from the volumes of liquid, an antenna whose shape and / or length is adapted to a given frequency band and / or at a given orientation.
  • This antenna is of relatively simple construction, and allows for a large number of shapes. Moreover, the displacement of the drops of liquid is very fast.
  • the frequency band of the antenna according to the invention can therefore be adapted very rapidly, depending on the orientation of the radiofrequency system.
  • the main subject of the present invention is therefore a radio transmission and reception antenna, comprising a transmission and reception zone, means of connection to a transmission and / or reception circuit, said transmission zone and receiver being formed at least in part by at least one volume of liquid, and means for modifying the shape of said liquid volume, said means for modifying the shape of said liquid volume using electromagnetic forces, in this case the liquid provides ferromagnetic properties, and a control unit means for deforming the fluid volume.
  • most of the transmit and receive area of the antenna is in solid form, the volume of liquid forming an extension of the solid part of emission and reception, of adjustable form.
  • the solid part may be a wire intended to be connected to a transmitting and / or receiving circuit, and the volume of liquid is provided at a free end of the wire, the means for modifying the shape the volume of liquid being formed by at least one electrode, the volume of liquid being deposited on an electrically insulating surface, providing low wettability with respect to the liquid, the electrode being disposed opposite the volume of liquid by relative to the insulating surface.
  • the solid portion may be formed by two electrical conductive plates delimiting between them a slot to form a slot antenna, each plate being covered with a volume of liquid delimiting a slot superimposed substantially with the slot defined by the plates, the plates forming electrodes electrically insulated from the liquid volumes, a potential difference that can be imposed between the two plates to cause a change in the width of the slot, by bringing liquid volumes closer or further apart. It is also possible to provide a polarization electrode in the slot between the two plates, a potential difference can be imposed between the bias electrode and the two plates to cause a change in the width of the slot, by bringing together or removal volumes of liquid from the bias electrode.
  • the antenna has a wall disposed at the slot to prevent contacting the two volumes of liquid.
  • most of the emission and reception zone is in liquid form
  • the means for modifying the shape of the liquid volume or volumes comprising a plurality of electrodes or electromagnetic coils, distributed under an electrically insulating surface on which the liquid volume (s) can move, said surface having a low wettability with respect to the liquid.
  • the control unit can send individual commands to each of the electrodes or coils.
  • the radio antenna according to the invention may comprise a volume of liquid intended to be connected to the transmitting and / or receiving circuit and a ground plane connected to the transmitting / receiving circuit.
  • the radio antenna can then form a GSM antenna.
  • the antenna according to the invention may comprise two liquid volumes separated by a slot whose width is substantially constant over its entire length and forming a slot antenna, or separated by a slot whose width increases along the slot and forming a broadband antenna.
  • the control unit can then advantageously generate orders to the electrodes or coils such that it causes the rotation of said slot to detect higher scanning energy orientation.
  • the antenna comprises a ground plane and a substantially planar electrode maintained at a distance from this ground plane substantially parallel thereto, said electrode being covered with a liquid film, said electrode providing a very high good wettability with respect to the liquid, the adjustment of the potential between the ground plane and the electrode making it possible to modify the distribution of the film of liquid on the face of the electrode vis-à-vis the ground plane .
  • the antenna may comprise a wire or point portion and a liquid portion remote from the wire portion, the liquid portion covering a surface provided with means adapted to modify the shape of the liquid portion.
  • the surface is spherical, so as to form a satellite dish.
  • the radio antenna advantageously comprises a sealed housing enclosing the transmitting and receiving part, said transmitting and receiving part being embedded in an electrically insulating liquid which is non-missible with the liquid forming at least a part of the antenna.
  • the liquid may be mercury, "Indalloy® 46L Ga-In-Sn-Zn Alloy" or water comprising one or more additives such as acid, a silver powder, a carbon powder, or in the case of the implementation of the electromagnetic forces, the liquid may be a magnetorheological liquid.
  • the present invention also relates to a portable communication device of the portable telephone type, comprising a transmission and reception circuit and at least one antenna according to the present invention connected to said circuit.
  • the present invention also relates to the use of means for modifying the shape of at least one volume of fluid of hydraulic fluid by electrostatic forces or by electromagnetic forces to modify the parameters of transmission and reception of an antenna radio.
  • the forces used for displacement are electrostatic forces.
  • the document FR 2 841 063 describes a device implementing a catenary facing electrodes activated for displacement.
  • a drop is based on a succession of electrodes, from which it is isolated by a dielectric layer and a hydrophobic layer.
  • the dielectric layer and the hydrophobic layer, between this activated electrode and the electrode-polarized drop act as a capacitor.
  • the effects of electrostatic charge induce the displacement of the drop on this electrode.
  • the electrode can be a catenary, it then maintains an electrical contact with the drop during its movement, as described in the document FR 2 841 063 .
  • the drop can thus be displaced step by step, or spread more or less on the hydrophobic surface, by successive activation of the electrodes of the matrix of electrodes.
  • an exemplary embodiment of an antenna 2 according to the present invention can be seen.
  • it is a wired antenna.
  • the antenna 2 is formed by an electrical conducting wire 4 and a drop 6 of conductive liquid covering a free end 4.1 of the wire 4.
  • the wire 4 and the drop 6 form a conductive element whose length determines the operating frequency band of the antenna.
  • the antenna also comprises means 8 for varying the length of the conductive element, by modifying the shape of the drop 6.
  • These means 8 are formed by a plane 10 on which the end 4.1 of the wire 4 and the drop 6 rest, and an electrode 12 disposed opposite the wire 4 relative to the plane 6.
  • the wire 4 also forms a catenary.
  • the plane 10 comprises a dielectric layer for electrically isolating the drop 6 and the electrode 12, and a non-wetting layer vis-à-vis the liquid envisaged on the dielectric layer, ie hydrophobic for an aqueous or oleophobic solution, vis-à-vis screw of a fat body.
  • the dielectric layer and the hydrophobic layer may be merged.
  • the liquid constituting the drop is chosen so that it is able to carry the electrical signal to be emitted.
  • water can be used.
  • liquid forming is chosen good electrical conductors, such as mercury, "Indalloy® 46L Ga-In-Sn-Zn Alloy” or water with one or more additives such as acid, silver powder, carbon powder .... Indeed, the quality factor of the antenna is even higher than the liquid is good driver.
  • the greatest possible conductivity is sought, for example at least 10 5 Sm -1 .
  • Silver offers the highest conductivity at room temperature, it offers an electrical conductivity equal to 62.5.10 6 Sm -1 .
  • Copper has an electrical conductivity of 58.8 ⁇ 10 6 Sm -1
  • mercury has an electrical conductivity of 1.04 ⁇ 6 Sm -1 .
  • Means are provided to bias the electrode 12.
  • the wire 4 is at a fixed potential, the drop 6 is at the same potential.
  • the drop 6 tends to be spherical because of its own properties and hydrophobic properties of the plane 10. It surrounds the end 4.1 of the wire 4 forming a small projection. Therefore, the length of the conductive element is substantially equal to that of the wire.
  • the bias potential of the electrode 12 By varying the value of the bias potential of the electrode 12, it is then possible to vary the length of the conductive element of the antenna between the length of the wire 4 and the length of the wire to which is added the length of the deformed drop. It is therefore possible to adapt the antenna according to the wavelengths that we want it to transmit or receive. The higher the potential difference between the wire and the electrode, the more the drop tends to deform to cover the electrode and therefore to lengthen the conductive element.
  • a single electrode is used to change the length of the antenna, but it is understood that the use of several electrodes forming a path is within the scope of the present invention.
  • the representation of the antenna of the figure 1 is schematic. It is understood that in practice, it would be possible to contain the drop in a tube in which the wire 4 would penetrate, the electrode 12 being fixed on the tube, which would make it possible to offer an easily applicable antenna, for example to a portable device.
  • the length of the antenna is equal to 1/2 or 1/4 of the wavelength or a multiple of the wavelength of the carrier.
  • a maximum variation of 2.2 mm beyond 60 mm from the antenna is therefore required to reach the four channels. It is therefore possible to realize a wire 4 60 mm at the end of which is placed a drop of conductive liquid 6. Without electrostatic action, the drop 6 is collected and exceeds only 0.7 mm the end of the antenna wire (a drop of 0.7 mm radius of 2.05 ⁇ L), the antenna then has a length of 60.7 mm, which corresponds to the channel 2.471 GHz.
  • the application of a polarization to the electrode 12 causes the electrostatic attraction of the drop 6 which can reach a length of 2.2 mm beyond the end of the antenna wire 4 (rod shape liquid of about 0.9 mm section and 2.2 mm long).
  • the antenna then has a length of 62.2 mm, which corresponds to the 2.411 GHz channel.
  • an antenna according to the invention is a slot antenna.
  • the volumes of liquid are used to adjust the length of the slot, the greater part of the antenna being made of a highly conductive solid material, for example copper or gold.
  • the antenna 202 of the figure 2 comprises two plates 204 of highly conductive material, for example copper or gold, arranged next to each other and defining by their edges 204.1 vis-à-vis, a slot 208. Plus the material of the plates 204 is a good driver, the higher the quality factor of the antenna, and consequently its efficiency.
  • the antenna also comprises a polarization electrode 210 disposed in the slot 208.
  • Each plate 204 is covered with a volume of conductive liquid 206.
  • Each plate 104 is connected to a transmission / reception circuit.
  • the width of the slot 208 makes it possible to adjust the transmission / reception characteristics of the antenna.
  • the two volumes of liquid define a slot 208 'by their edges 206.1 vis-à-vis.
  • the slot 208 and the slot 208 ' are identical.
  • the width of the slot is therefore equal to the distance separating the plates 204.
  • the plates 204 form electrodes whose potential is imposed for example by a differential source via the signal to be transmitted 214.
  • the potential of the two plates 204 may be different or not.
  • the liquid volumes 206 are therefore at the potentials of the plates 204.
  • the potential of the electrode 110 is imposed (schematized by the DC component 212). There is then the appearance of electrostatic forces tending to attract the liquid towards the electrode 210.
  • the edges of the liquid volumes 206 are then attracted towards the electrode 210, overflowing with plates, which has the effect of reducing the width of the slot 208 '.
  • the width of the slot 208 'defined by the volumes 206 therefore varies as a function of the potential difference between the plates 204 and the bias electrode.
  • a central wall may be provided at the level of the electrode 210 to prevent the two liquid volumes 206 coming into contact, this wall defining a minimum slot width.
  • the adjustment of the slot makes it possible to adjust, for example the resonance frequency, the directivity of the transmission, the bandwidth width ).
  • FIG. 4A and 4B other exemplary embodiments of a planar antenna according to the present invention can be seen for which a plurality of checkered electrodes are used.
  • the entire antenna is formed by the volumes of liquid, the liquid not only serving to adjust a relatively limited area of the antenna.
  • connection means 104 to a data transmission / reception circuit, two volumes of conductive liquid 106.1, 106.2 in electrical contact with the connection means 104, and means for modifying the form these volumes of liquid.
  • the two liquid volumes 106.1, 106.2 are intended to delimit between them a slot 108 of given width and orientation.
  • a ground plane may be provided above or below the liquid volumes.
  • the means for modifying the shape of these liquid volumes comprise a plurality of electrodes 112 distributed in a plane so as to allow the contour of each of the volumes 106.1, 106.2 to be modified with sufficient precision.
  • the electrodes 112 are distributed in checkerboard, thus forming a surface divided into a multitude of sources of electrostatic force generation able to move the volumes 106.1, 106.2 with great precision.
  • the electrodes are covered with a dielectric layer and a layer having a low wettability vis-à-vis the liquid volumes 106.1, 106.2, and on which the volumes 106.1, 106.2.
  • Each electrode 112 is individually connected to a control unit which applies a potential to specific electrodes in order to arrange the volumes 106.1, 106.2 to obtain the desired slot width and / or orientation of the desired band.
  • the conductive liquid spreads over all the electrodes to which a potential is applied.
  • all the hatched electrodes are polarized. If it is desired to change the width of the slot, it is sufficient to no longer polarize the designated electrodes 112.1 and / or the designated electrodes 112.2.
  • the width of the minimum slot is substantially equal to the width of the electrodes. The smaller the electrodes, the more precise the width of the slot can be, as well as the variation in wavelength.
  • the size of the slot and its orientation can be changed in real time, during a conversation in the case of a mobile phone.
  • the slot can therefore rotate to orient the transmission / reception in a high power direction.
  • the slot can rotate so as to scan the directions to find the one of higher energy.
  • the antenna of the Figure 4A can allow to reach frequency channels of some Gigahertz.
  • the antenna of the figure 1 wherein the liquid volumes are in a configuration such that they form a broadband antenna.
  • the liquid volumes have concave shapes facing each other and defining a slot 108 "substantially in the shape of an inverted triangle.This slot is obtained by a simple control of the electrodes.
  • This antenna makes it possible to transmit over a wide frequency band, for example it allows a higher bit rate transmission of a few megahertz.
  • the structure makes it possible to produce antennas other than slot antennas or wide bands.
  • the liquid may be of the same type as that used in the antenna of the figure 1 .
  • Antenna 32 Figures 5A and 5B comprises a ground plane 303 connected to the ground and a solid electrode 304 disposed at a distance from the ground plane 303, for example by means of an electrical insulating support 305.
  • the electrode 304 in the example shown has the shape of a disc, but this form is in no way limiting.
  • the electrode 304 is connected to the transmission / reception circuit.
  • the electrode 304 is covered with a liquid film 306. At rest, the film is uniformly distributed on the upper face 304.1 and on the underside 304.2.
  • the desired parameter is the distance d between the plate and the ground plane, more particularly the distance between the ground plane 303 and the film covering the underside 304.2.
  • an electrode 304 having a very good wettability with respect to the liquid.
  • the liquid is then distributed spontaneously around the electrode 304 to form a uniform layer all around the electrode 304.
  • Drowning the antenna in an insulating liquid makes it possible to reduce the risks of evaporation, but also to make the antenna less sensitive to any sudden handling that could cause the conductive liquid to leave the support surfaces, despite the electrostatic forces attraction exerted by the electrodes. This is particularly interesting in the case of an antenna equipping a portable system.
  • the structure of the antenna may be more complex, and it may be provided to add polarization electrodes to improve the control of the deformation of the liquid film.
  • the antenna 402 has a wire portion 403 and a cylindrical member 405 surrounding the portion wired, whose inner face is intended to be covered with a film of liquid 406.
  • the cylindrical element 405 comprises a cylindrical support 410 electrical insulator whose inner face is covered with the film 406, and electrodes 408 disposed on its outer face.
  • the electrodes 408 form a checkerboard on the entire outer face of the cylindrical support 410.
  • Each electrode can be controlled individually or by row or column.
  • an antenna 502 can be seen whose control is such that the liquid is in the form of a ring 504 centered on the catenary 403.
  • the distance between the liquid portion and the wired part of the antenna can be adjusted by adding a DC component to the signal to be transmitted or received, and the shape of the antenna can be be adjusted by the electrical control of the electrodes, to cover more or less the liquid support.
  • the antenna 902 comprises a wire or point portion 903 and a support 904 of spherical shape covered on its outer surface with individually controllable electrodes.
  • the film 906 covers a portion of the inner face of the support 904 to form a cap whose concavity is orientable by means of the electrodes.
  • the concavity of the cap is automatically directed upwards to ensure satellite communications.
  • FIG. 12A and 12B another embodiment of antennas according to the present invention can be seen using electromagnetic forces to modify the shape of the antenna.
  • the electrodes are replaced by individually fed coils 1004 and a ferromagnetic liquid, for example a magneto-rheological liquid, is used as liquid 1006.
  • a ferromagnetic liquid for example a magneto-rheological liquid
  • the coils when powered by an electric current, generate a magnetic field and attract the magnetorheological fluid that deforms according to the presence or absence of a magnetic field
  • the coils 1004 are distributed in rows and columns under a surface 1008 insulating and having a low wettability with respect to the liquid 1006.
  • the liquid 1006 is an electrically conductive magnetorheological fluid.
  • the antenna also comprises two separate liquid volumes 1006.1, 1006.2 delimiting a slit 1010 of adjustable shape. Each volume of liquid 1006.1, 1006.2 is connected to the transmission / reception circuit by a conductor 1012. The volumes 1006.1 and 1006.2 are hatched to make them more visible.
  • it is a folded slot 1010, offering a large length for a small footprint.
  • the minimum width of the slot is determined by the spacing between the coils 1004.
  • the antenna comprises a plurality of coils 1104 distributed in rows and columns under an insulating support 1108, a ground plane 1103 above the support and at a distance from it and the magnetorheological liquid 1006 deposited on the support.
  • the ground plane and the liquid 1106 are connected to the transmission / reception circuit by the connectors 1112.
  • the liquid 1106 (hatched for clarity on the figure 12B ) draws, in the example shown, spirals.
  • Antennas in three dimensions as represented on the Figures 5A to 11 are of course achievable by using the electromagnetic forces to adapt the distribution of the magnetorheological fluid.
  • the present invention it is possible to adjust the parameters of an antenna of conventional type, for example by changing its length, in the case of a wire antenna or the width of the slot in the case of an antenna. slot. It is also possible to make antennas shapes completely editable by performing most of the transmitting and receiving parts with a conductive liquid that can move, on command, on a surface.
  • Any type of antenna can be made, such as folded GSM antennas, rake antennas ...
  • the electrodes or the coils have identical sizes, but it is of course that one can provide to achieve structures whose electrode sizes vary.
  • the electrodes are smaller and more numerous at the slot, to increase the displacement sensitivity of the edges of the liquid volumes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

    DOMAINE TECHNIQUE ET ART ANTÉRIEUR
  • La présente invention se rapporte à une antenne radiofréquence dont les paramètres d'émission-réception sont modifiables.
  • De nombreuses antennes utilisées dans les systèmes de communication radiofréquence ont une géométrie fixe, i.e. leur longueur et leur configuration sont déterminées lors de leur fabrication et ne peuvent pas être modifiées par la suite, ou alors avec des opérations complexes. Par conséquent la bande de fréquence de fonctionnement de ces antennes n'est pas modifiable, et plus généralement leurs paramètres d'émission-réception ne sont pas modifiables.
  • Afin de pallier cet inconvénient et rendre le fonctionnement des systèmes équipés d'un tel type d'antenne indépendant de son orientation, l'antenne est généralement dimensionnée de façon à ce que le rayonnement de l'antenne soit le plus isotrope possible, c'est-à-dire que l'énergie transmise soit sensiblement la même dans toutes les directions. Ceci est le cas dans les systèmes sans fil. En effet, par exemple dans le cas d'un téléphone portable, l'orientation de l'antenne est pratiquement en permanence modifiée. Grâce à de telles antennes, les systèmes permettent de communiquer dans n'importe quelle direction. Cependant, cette émission multidirectionnelle présente l'inconvénient d'être consommatrice d'énergie. Or, on cherche à réduire la consommation d'énergie des systèmes portables de télécommunication.
  • Dans le cas de systèmes nécessitant un changement régulier de bande de fréquence, il est envisageable d'utiliser plusieurs antennes adaptées à chacune de ces bandes de fréquence et de passer régulièrement d'une antenne à une autre. Cependant, cette solution présente un encombrement non négligeable et demande des moyens de commande pour passer d'une antenne à l'autre.
  • Le document US 7 260 424 décrit une antenne en plusieurs morceaux connectables les uns aux autres à l'aide d'interrupteurs mécaniques commandables électriquement. Il est alors possible, en commutant les interrupteurs, de modifier l'impédance de l'antenne et de l'adapter à différentes fréquences de communication cependant, hormis la complexité de réalisation de l'antenne et de commande, il n'est possible de faire varier l'impédance de l'antenne que par palier. Par ailleurs, se pose également le problème de l'encombrement, ce type d'antenne est donc peu adapté à une implantation dans des systèmes type téléphone portable.
  • En outre les interrupteurs, même à l'état ouvert, présentent une impédance capacitive qui ne permet pas de considérer une déconnexion totale de l'élément d'antenne (ou de l'élément parasite) que l'on veut déconnecter. Enfin, même si on arrive à isoler chacun des morceaux de cette antenne, il peut exister un couplage radiofréquence entre chacun de ces morceaux, qui dégrade le fonctionnement global.
  • Il existe également des antennes réalisées à partir d'un liquide conducteur électrique, la fréquence de résonance de l'antenne étant adaptée en modifiant la longueur de l'antenne liquide. Ce type d'antenne est décrit dans le document GB 2 435 720 . Pour cela, le liquide est contenu dans un tube présentant une géométrie donnée, par exemple en forme d'hélice, la longueur de l'antenne étant modifié par exemple par un dispositif de commande de la température, par une pompe ou un piston.
  • D'une part la forme de l'antenne est imposée par la forme du tube, et ne peut donc pas être modifiée au cours de l'utilisation de l'antenne. En outre, la modification de la longueur de l'antenne nécessite des moyens encombrants et dont le temps de réaction est relativement long.
  • Une autre antenne modifiable est décrite dans le document US 2005/0057415 A1 . C'est par conséquent un but de la présente invention de réaliser une antenne radiofréquence dont les paramètres d'émission-réception peuvent être modifiés rapidement et présentant un encombrement réduit.
  • EXPOSÉ DE L'INVENTION
  • Le but précédemment énoncé est atteint par une antenne radiofréquence selon la revendication 1 comportant au moins une partie réalisée en un liquide conducteur, dont la forme est modifiée par des forces électromagnétiques.
  • En d'autres termes, on déplace des volumes de liquide par électromouillage ou en générant un champ magnétique, pour former, à partir des volumes de liquide, une antenne dont la forme et/ou la longueur est adapté à une bande de fréquence donnée et/ou à une orientation donnée.
  • Cette antenne est de réalisation relativement simple, et permet de réaliser un grand nombre de formes. Par ailleurs, le déplacement des gouttes de liquide est très rapide. La bande de fréquence de l'antenne selon l'invention peut donc être adaptée très rapidement, en fonction de l'orientation du système de radiofréquence.
  • La présente invention a alors principalement pour objet une antenne radioélectrique d'émission et de réception, comportant une zone d'émission et de réception, des moyens de connexion à un circuit d'émission et/ou de réception, ladite zone d'émission et de réception étant formée au moins en partie par au moins un volume de liquide, et des moyens pour modifier la forme dudit volume de liquide, lesdits moyens pour modifier la forme dudit volume de liquide mettant en oeuvre des forces électromagnétiques, dans ce cas le liquide offre des propriétés ferromagnétiques, et une unité de commande des moyens pour déformer le volume de fluide.
  • Dans un mode de réalisation, la majeure partie de la zone d'émission et de réception de l'antenne est sous forme solide, le volume de liquide formant une extension de la partie solide d'émission et de réception, de forme ajustable.
  • Dans un exemple de réalisation, la partie solide peut être un fil destiné à être connecté à un circuit d'émission et/ou de réception, et le volume de liquide est prévu à une extrémité libre du fil, les moyens de modification de la forme du volume de liquide étant formé par au moins une électrode, le volume de liquide étant déposé sur une surface isolante électriquement, offrant une faible mouillabilité vis-à-vis du liquide, l'électrode étant disposée à l'opposé du volume de liquide par rapport à la surface isolante.
  • Dans un autre exemple de réalisation, la partie solide peut être formée par deux plaques conductrices électriques délimitant entre elles une fente pour former une antenne fente, chaque plaque étant recouverte d'un volume de liquide délimitant une fente se superposant sensiblement avec la fente délimitée par les plaques, les plaques formant des électrodes isolées électriquement des volumes de liquide, une différence de potentiel pouvant être imposée entre les deux plaques pour provoquer une modification de la largeur de la fente, par rapprochement ou éloignement des volumes de liquide. On peut également prévoir de disposer une électrode de polarisation dans la fente entre les deux plaques, une différence de potentiel pouvant être imposée entre l'électrode de polarisation et les deux plaques pour provoquer une modification de la largeur de la fente, par rapprochement ou éloignement des volumes de liquide de l'électrode de polarisation. De manière avantageuse, l'antenne comporte une paroi disposée au niveau de la fente pour éviter une mise en contact des deux volumes de liquide.
  • Dans un autre mode de réalisation, la majeure partie de la zone d'émission et de réception est sous forme liquide, les moyens de modification de la forme du ou des volumes de liquide comportant une pluralité d'électrodes ou de bobines électromagnétiques, répartie sous une surface électriquement isolante sur laquelle le ou les volumes de liquide peuvent se déplacer, ladite surface présentant une faible mouillabilité vis-à-vis du liquide.
  • L'unité de commande peut envoyer des ordres individuels à chacune des électrodes ou des bobines.
  • L'antenne radioélectrique selon l'invention peut comporter un volume de liquide destiné à être connecté au circuit d'émission et/ou de réception et un plan de masse connecté au circuit d'émission/réception. L'antenne radioélectrique peut alors former une antenne GSM.
  • L'antenne selon l'invention peut comporter deux volumes de liquide séparés par une fente dont la largeur est sensiblement constante sur toute sa longueur et formant une antenne fente, ou séparés par une fente dont la largeur croît le long de la fente et formant une antenne large bande.
  • L'unité de commande peut alors avantageusement générer des ordres aux électrodes ou bobines tel qu'il provoque la rotation de ladite fente afin de détecter l'orientation de plus haute énergie par balayage.
  • Dans un autre exemple de réalisation, l'antenne comporte un plan de masse et une électrode sensiblement plane maintenue à distance de ce plan de masse sensiblement parallèlement à celui-ci, ladite électrode étant recouverte d'un film liquide, ladite électrode offrant une très bonne mouillabilité vis-à-vis du liquide, l'ajustement du potentiel entre le plan de masse et l'électrode permettant de modifier la répartition du film de liquide sur la face de l'électrode en vis-à-vis du plan de masse.
  • Dans un autre exemple de réalisation, l'antenne peut comporter une partie filaire ou ponctuelle et une partie liquide à distance de la partie filaire, la partie liquide recouvrant une surface munie de moyens apte à modifier la forme de la partie liquide. Par exemple, la surface est sphérique, de sorte à former une antenne parabolique.
  • L'antenne radioélectrique comporte avantageusement un boîtier étanche enfermant la partie d'émission et de réception, ladite partie d'émission et de réception étant noyée dans un liquide isolant électrique non-missible avec le liquide formant au moins une partie de l'antenne.
  • Par exemple, dans le cas de la mise en oeuvre des forces électrostatiques, le liquide peut être le mercure, l'«Indalloy® 46L Ga-In-Sn-Zn Alloy » ou l'eau comprenant un ou des additifs tels qu'un acide, une poudre d'argent, une poudre de carbone, ou dans le cas de la mise en oeuvre des forces électromagnétiques, le liquide peut être un liquide magnéto-rhéologique.
  • La présente invention a également pour objet un appareil portable de communication, de type téléphone portable, comportant un circuit d'émission et de réception et au moins une antenne selon la présente invention connectée audit circuit.
  • La présente invention a également pour objet l'utilisation de moyens pour modifier la forme d'au moins un volume de liquide de fluide hydraulique par des forces électrostatiques ou par des forces électromagnétiques pour modifier les paramètres d'émission et de réception d'une antenne radioélectrique.
  • BRÈVE DESCRIPTION DES DESSINS
  • La présente invention sera mieux comprise à l'aide de la description qui va suivre et des dessins en annexe, sur lesquels :
    • les figures 1A et 1B sont des vues en perspective d'un exemple de réalisation d'une antenne de longueur variable selon la présente invention,
    • la figure 2 est une vue de dessus d'un autre exemple de réalisation d'une antenne selon la présente invention,
    • les figures 3A et 3B sont des schémas illustrant la polarisation des électrodes de l'exemple de la figure 2,
    • les figures 4A et 4B sont des vues de dessus d'un exemple de réalisation d'une antenne de forme variable, les figures 4A et 4B illustrant une configuration en antenne fente et une configuration en antenne large bande respectivement,
    • la figure 4A' est une vue de dessus de l'antenne de la figure 4A dans laquelle la fente a une orientation modifiée,
    • la figure 5A est une vue en perspective d'une antenne selon la présente invention en trois dimensions,
    • la figure 5B est une vue de côté de l'antenne de la figure 5A,
    • la figure 5C est un exemple de réalisation de la figure 5A dans la zone d'émission liquide est enfermée dans un boîtier étanche,
    • les figures 6 à 11 sont des vues en perspective d'autres exemples de réalisation d'antennes selon la présente invention,
    • les figures 12A et 12B sont des vues de dessus d'un exemple de réalisation d'une antenne de forme variable utilisant les forces électromagnétiques, les figures 12A et 12B illustrant une configuration en antenne fente repliée et une configuration en antenne GSM repliée avec plan de masse respectivement.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Dans la description qui va suivre, nous allons décrire principalement des dispositifs mettant en oeuvre un déplacement par électromouillage. Nous allons donc au préalable décrire de manière générale le déplacement de gouttes de liquide utilisant le principe de l'électromouillage. Cependant des dispositifs utilisant des moyens de déplacement mettant en oeuvre des forces électromagnétiques entrent de la cadre de la présente invention, comme nous le verrons par la suite.
  • Le déplacement par électromouillage de goutte de liquide sur un diélectrique est, par exemple décrit dans l'article de M.G. Pollack, A.D. Shendorov, R.B. Fair, intitulé « Electro-wetting-based actuation of droplets for integrated microfluidics », Lab Chip 2 (1) (2002) 96-101.
  • Les forces utilisées pour le déplacement sont des forces électrostatiques.
  • Le document FR 2 841 063 décrit un dispositif mettant en oeuvre une caténaire en regard des électrodes activées pour le déplacement.
  • Le principe de ce type de déplacement est décrit ci-dessous.
  • Une goutte repose sur une succession d'électrodes, dont elle est isolée par une couche diélectrique et une couche hydrophobe.
  • Lorsqu'une électrode située à proximité de la goutte est activée, la couche diélectrique et la couche hydrophobe, entre cette électrode activée et la goutte polarisée par une électrode, agissent comme une capacité. Les effets de charge électrostatique induisent le déplacement de la goutte sur cette électrode. L'électrode peut être une caténaire, elle maintient alors un contact électrique avec la goutte pendant son déplacement, comme décrit dans le document FR 2 841 063 .
  • La goutte peut ainsi être déplacée de proche en proche, ou s'étaler plus ou moins sur la surface hydrophobe, par activation successive des électrodes de la matrice d'électrodes.
  • Sur les figures 1A et 1B, on peut voir un exemple de réalisation d'une antenne 2 selon la présente invention. Dans cette exemple, il s'agit d'une antenne filaire.
  • L'antenne 2 est formée par un fil conducteur électrique 4 et une goutte 6 de liquide conducteur recouvrant une extrémité libre 4.1 du fil 4. Le fil 4 et la goutte 6 forme un élément conducteur dont la longueur détermine la bande de fréquence de fonctionnement de l'antenne.
  • L'antenne comporte également des moyens 8 de variation de la longueur de l'élément conducteur, par modification de la forme de la goutte 6.
  • Ces moyens 8 sont formés par un plan 10 sur lequel l'extrémité 4.1 du fil 4 et la goutte 6 reposent, et une électrode 12 disposée à l'opposé du fil 4 par rapport au plan 6. Le fil 4 forme également une caténaire.
  • Le plan 10 comporte une couche diélectrique pour isoler électriquement la goutte 6 et l'électrode 12, et une couche non mouillante vis-à-vis du liquide envisagé sur la couche diélectrique, i.e. hydrophobe pour une solution aqueuse ou oléophobe, vis-à-vis d'un corps gras. La couche diélectrique et la couche hydrophobe peuvent être confondues.
  • Le liquide constituant la goutte est choisi de sorte qu'il soit apte à transporter le signal électrique à émettre. On peut utiliser par exemple de l'eau. Avantageusement, on choisit des liquides formant de bon conducteur électrique, tels que le mercure, l'«Indalloy® 46L Ga-In-Sn-Zn Alloy » ou l'eau avec un ou des additifs tels qu'un acide, une poudre d'argent, une poudre de carbone.... En effet, le facteur de qualité de l'antenne est d'autant plus élevé que le liquide est bon conducteur. On recherche une conductivité la plus grande possible, par exemple au moins égale à 105 S.m-1.
  • L'argent offre la conductivité la plus élevée à température ambiante, il offre une conductivité électrique égale à 62,5.106 S.m-1. Le cuivre a une conductivité électrique égale à 58,8.106 S.m-1, et le mercure, une conductivité électrique égale à 1,04.106 S.m-1.
  • Des moyens (non représentés) sont prévus pour polariser l'électrode 12. Le fil 4 est à un potentiel fixe, la goutte 6 est au même potentiel.
  • Quand l'électrode 12 n'est pas polarisée, la goutte 6 a tendance à être sphérique de part ses propres propriétés et des propriétés hydrophobes du plan 10. Elle entoure l'extrémité 4.1 du fil 4 en formant une faible saillie. Par conséquent, la longueur de l'élément conducteur est sensiblement égale à celle du fil.
  • Lorsque l'électrode 12 est polarisée de sorte à être amenée à un potentiel significatif par rapport à la valeur efficace du signal d'information qui transite sur l'antenne, un champ électrique continu apparaît entre le fil 4 et l'électrode 12. Il y a apparition de forces électrostatiques, le liquide de la goutte est alors attiré par l'électrode 12, la goutte se déforme et tend à prendre la forme de l'électrode 12. Ceci a pour effet d'augmenter la longueur de l'élément conducteur.
  • En faisant varier la valeur du potentiel de polarisation de l'électrode 12, on est alors capable de faire varier la longueur de l'élément conducteur de l'antenne entre la longueur du fil 4 et la longueur du fil à laquelle s'ajoute la longueur de la goutte déformée. Il est donc possible d'adapter l'antenne en fonction des longueurs d'onde que l'on veut lui faire transmettre ou recevoir. Plus la différence de potentiel entre le fil et l'électrode est élevée, plus la goutte a tendance à se déformer pour recouvrir l'électrode et donc à allonger l'élément conducteur.
  • Plus la longueur de l'antenne est importante, plus la fréquence de résonance de l'antenne est faible, plus la porteuse qui sert à transmettre le signal est basse fréquence.
  • Dans l'exemple représenté, une seule électrode est utilisée pour modifier la longueur de l'antenne, mais il est bien entendu que l'utilisation de plusieurs électrodes formant un chemin entre dans le cadre de la présente invention.
  • En outre, la représentation de l'antenne de la figure 1 est schématique. Il est bien entendu que dans la pratique, on pourrait prévoir de contenir la goutte dans un tube dans lequel pénétrerait le fil 4, l'électrode 12 étant fixée sur le tube, ce qui permettrait d'offrir une antenne facilement applicable, par exemple à un appareil portable.
  • Nous allons maintenant donner un exemple numérique des longueurs d'onde qui peuvent être obtenues grâce à l'invention.
  • Classiquement, la longueur de l'antenne est égale à 1/2 ou 1/4 de la longueur d'onde ou un multiple de la longueur d'onde de la porteuse.
  • La relation entre la longueur d'onde λ et la fréquence f est : λ = 3. 10 8 / f
    Figure imgb0001
  • Considérons que l'on souhaite réaliser une antenne pour un système de transmission à quatre canaux, à savoir par exemple les canaux de fréquence 2,411 GHz, 2,431 GHz, 2,451 GHz et 2,471 GHz utilisés pour la transmission sans fil de vidéo à domicile. Quand l'un des canaux est utilisé par un autre utilisateur, le système doit pouvoir passer d'un canal à un autre.
  • Par ailleurs, on considère que l'on veut réaliser une antenne en λ/2, i.e. que sa longueur soit égale à la moitié de sa longueur d'onde.
  • Partant de la relation (I), on peut calculer λ1 et λ2 pour les deux valeurs extrêmes des longueurs d'onde des canaux, i.e. 2,411 GHz et 2,471 GHz respectivement : λ 2 = 0 , 1244 m et λ 2 = 0 , 1214 m .
    Figure imgb0002
  • On en déduit la longueur L1 maximale et la longueur minimale L2 de l'antenne : L 1 = 62 , 2 mm et L 2 = 60 , 7 mm .
    Figure imgb0003
  • Une variation maximale de 2,2 mm au delà de 60 mm de l'antenne est donc requise pour atteindre les quatre canaux. Il est donc envisageable de réaliser un fil 4 de 60 mm au bout duquel on place une goutte de liquide conducteur 6. Sans action électrostatique, la goutte 6 est ramassée et ne dépasse que de 0.7 mm l'extrémité du fil d'antenne (forme d'une goutte de 0.7 mm de rayon, soit 2.05 µL), l'antenne a alors une longueur de 60.7 mm, ce qui correspond au canal 2.471 GHz. L'application d'une polarisation à l'électrode 12 provoque l'attraction électrostatique de la goutte 6 qui peut atteindre une longueur de 2,2 mm au-delà de l'extrémité du fil d'antenne 4 (forme d'une tige liquide d'environ 0.9 mm de section et de 2.2 mm de long). L'antenne a alors pour longueur 62,2 mm, ce qui correspond au canal 2.411 GHz.
  • Sur la figure 2, on peut voir un autre exemple de réalisation d'une antenne selon l'invention. Il s'agit d'une antenne fente. On utilise dans ce cas les volumes de liquide pour ajuster la longueur de la fente, la plus grande partie de l'antenne étant réalisée avec un matériau solide très conducteur, par exemple du cuivre ou de l'or.
  • Plus particulièrement, l'antenne 202 de la figure 2 comporte deux plaques 204 en matériau très conducteurs, par exemple en cuivre ou en or, disposées l'une à côté de l'autre et définissant par leurs bords 204.1 en vis-à-vis, une fente 208. Plus le matériau des plaques 204 est bon conducteur, plus le facteur de qualité de l'antenne est élevée, et par voie de conséquent son efficacité.
  • Dans l'exemple représenté, l'antenne comporte également une électrode de polarisation 210 disposée dans le fente 208.
  • Chaque plaque 204 est recouverte d'un volume de liquide 206 conducteur.
  • Chaque plaque 104 est connectée à un circuit d'émission/réception.
  • On peut prévoir de recouvrir les plaques d'un film présentant une bonne mouillabilité vis-à-vis du liquide pour assurer un étalement du liquide sur les plaques 204. Cependant, les forces de capillarité peuvent être suffisantes.
  • Nous allons maintenant expliquer le fonctionnement de cette antenne à l'aide du schéma du circuit électrique de la figure 3A.
  • La largeur de la fente 208 permet d'ajuster les caractéristiques d'émission/réception de l'antenne.
  • Les deux volumes de liquide définissent une fente 208' par leur bords 206.1 en vis-à-vis. Au repos, i.e. en l'absence de polarisation de l'électrode 210, la fente 208 et la fente 208' sont identiques. La largeur de la fente est donc égale à la distance séparant les plaques 204.
  • Les plaques 204 forment des électrodes dont le potentiel est imposé par exemple par une source différentielle via le signal à transmettre 214. Le potentiel des deux plaques 204 peut être différent ou non. Les volumes de liquides 206 sont donc aux potentiels des plaques 204. Le potentiel de l'électrode 110 est imposé (schématisé par la composante continue 212). Il y a alors l'apparition de forces électrostatiques tendant à attirer le liquide vers l'électrode 210. Les bords des volumes de liquide 206 sont alors attirés vers l'électrode 210, débordant des plaques, ce qui a pour effet de réduire la largeur de la fente 208'.
  • Plus l'électrode 210 est fortement polarisée, plus les bords des volumes de liquide sont rapprochés et plus la fente est étroite.
  • La largeur de la fente 208' définie par les volumes 206 varie donc en fonction de la différence de potentiel entre les plaques 204 et l'électrode de polarisation.
  • On peut prévoir un paroi centrale au niveau de l'électrode 210 pour éviter une mise en contact des deux volumes de liquide 206, cette paroi définit une largeur de fente minimale.
  • En alternative, on peut prévoir d'imposer un potentiel sensiblement fixe à l'électrode 210 et de faire varier le potentiel des plaques 204.
  • Dans une autre variante de réalisation symbolisée sur la figure 3B, on peut prévoir de ne pas utiliser d'électrode 210, et de polariser différemment les deux plaques 204 en superposant une composante continue 212 au signal à transmettre 214. En effet, si une différence de potentielle relativement importante est appliquée entre les plaques 204, les liquides placés sur chacune des surfaces conductrices solides ont tendance à s'attirer au niveau de la fente 208 et donc ont tendance à réduire la largeur de cette fente. Ceci a donc pour effet d'augmenter la fréquence de fonctionnement de l'antenne.
  • On pourrait également prévoir d'agir uniquement sur un seul volume de liquide 206 pour modifier la largeur de la fente, il y aurait alors une variation dissymétrique de la largeur de la fente.
  • L'ajustement de la fente permet de régler, par exemple la fréquence de résonance, la directivité de la transmission, la largeur de bande passante...)
  • Sur les figures 4A et 4B, on peut voir d'autres exemples de réalisation d'une antenne planaire selon la présente invention, pour lesquelles une pluralité d'électrodes répartie en damier est utilisée. Dans ces exemples de réalisation, l'antenne entière est formée par les volumes de liquide, le liquide ne servant pas uniquement à un ajustement d'un zone relativement limitée de l'antenne.
  • Sur la figure 4A, est réalisée une antenne fente bipolaire 102 comportant des moyens de connexion 104 à un circuit d'émission/réception de données, deux volumes de liquide conducteur 106.1, 106.2 en contact électrique avec les moyens de connexion 104, et des moyens de modification de la forme des ces volumes de liquide.
  • Les deux volumes de liquide 106.1, 106.2 sont destinés à délimiter entre eux une fente 108 de largeur et d'orientation données.
  • Un plan de masse peut être prévu en dessus ou en dessous des volumes de liquide.
  • Les moyens de modification de la forme des ces volumes de liquide comportent une pluralité d'électrodes 112 réparties dans un plan de sorte à permettre de modifier le contour de chacun des volumes 106.1, 106.2 avec suffisamment de précision. Dans l'exemple représenté, les électrodes 112 sont réparties en damier, formant ainsi une surface divisée en une multitude de source de génération de forces électrostatiques aptes à déplacer les volumes 106.1, 106.2 avec une grande précision. Les électrodes sont recouvertes d'une couche diélectrique et d'une couche présentant une faible mouillabilité vis-à-vis du liquide des volumes 106.1, 106.2, et sur laquelle reposent les volumes 106.1, 106.2.
  • Chaque électrode 112 est reliée individuellement à une unité de commande qui applique un potentiel à des électrodes déterminées afin de disposer les volumes 106.1, 106.2 pour obtenir la largeur de fente souhaitée et/ou l'orientation de la bande souhaitée.
  • Le liquide conducteur s'étale sur l'ensemble des électrodes auxquelles un potentiel est appliqué.
  • Dans la configuration représentée, toutes les électrodes hachurées sont polarisées. Si l'on souhaite modifier la largeur de la fente, il suffit de ne plus polariser les électrodes désignées 112.1 et/ou les électrodes désignées 112.2.
  • La largeur de la fente minimale est égale sensiblement à la largeur des électrodes. Plus les électrodes sont de petites dimensions, plus la variation de la largeur de la fente peut être précise, ainsi que celle de la longueur d'onde.
  • On peut également modifier l'orientation de la fente. On peut imaginer de délimiter une fente 108' inclinée en polarisant les électrodes comme représentées sur la figure 4A', les électrodes hachurées sont polarisées.
  • La taille de la fente et son orientation peuvent être modifiées en temps réel, pendant une conversation dans le cas d'un téléphone portable. La fente peut donc tourner pour orienter l'émission/réception dans une direction de puissance élevée. La fente peut tourner de sorte à effectuer un balayage des directions pour trouver celle de plus haute énergie.
  • On peut également faire varier les longueurs d'onde, et adapter en temps réel l'impédance de l'antenne à l'impédance du circuit d'émission/réception.
  • L'antenne de la figure 4A peut permettre d'atteindre des canaux de fréquences de quelques Gigahertz.
  • Sur la figure 4B, on peut voir l'antenne de la figure 1 dans laquelle les volumes de liquide sont dans une configuration telle qu'ils forment une antenne large bande. Les volumes de liquide ont des formes concaves se faisant face et définissant une fente 108" sensiblement en forme de triangle renversé. Cette fente est obtenue par une simple commande des électrodes.
  • Cette antenne permet d'émettre sur une large bande de fréquence, par exemple elle permet une transmission plus haut débit de quelques mégahertz. La structure permet bien entendu de réaliser des antennes autres que des antennes fentes ou larges bandes.
  • Le liquide peut être du même type que celui utilisé dans l'antenne de la figure 1.
  • Sur les figures 5A et 5B, on peut voir une application du principe selon l'invention appliqué à des antennes en trois dimensions.
  • L'antenne 32 des figures 5A et 5B comporte un plan de masse 303 relié à la terre et une électrode solide 304 disposée à distance du plan de masse 303, par exemple au moyen d'un support 305 isolant électrique. L'électrode 304 dans l'exemple représenté a la forme d'un disque, mais cette forme n'est en aucun cas limitative.
  • L'électrode 304 est connectée au circuit d'émission/réception.
  • Selon l'invention l'électrode 304 est recouverte d'un film liquide 306. Au repos, le film est uniformément réparti sur la face supérieure 304.1 et sur la face inférieure 304.2.
  • Le paramètre que l'on souhaite réglé est la distance d entre la plaque et le plan de masse, plus particulièrement la distance entre le plan de masse 303 et le film recouvrant la face inférieure 304.2.
  • En superposant une valeur continue au signal à transmettre (ou au signal reçu), on peut déplacer une partie du liquide situé sur la face supérieure 304.1 de l'électrode 304 vers la face inférieure 304.2 de l'électrode 304. Ce déplacement a pour effet de réduire la distance d. Les caractéristiques de l'antenne sont donc modifiées.
  • De manière avantageuse, on peut prévoir d'utiliser un électrode 304 offrant une très bonne mouillabilité vis-à-vis du liquide. A l'arrêt de la polarisation électrique, le liquide se répartit alors spontanément autour de l'électrode 304 pour former une couche uniforme tout autour de l'électrode 304.
  • Sur la figure 5C, on peut voir une réalisation pratique de l'antenne des figures 5A et 5B, dans laquelle l'électrode 304, qui est recouverte du film 306, et le plan de masse 303 sont enfermer dans un boîtier étanche 308 pour limiter les risques d'évaporation ou de perte du liquide conducteur.
  • En outre, de manière avantageuse, on prévoit de remplir le boîtier 308 d'un liquide isolant 310, de type huile diélectrique par exemple, pour compléter le volume global de l'antenne, qui ne se mélangera pas avec le liquide du film 306.
  • Le fait de noyer l'antenne dans un liquide isolant permet de réduire les risques d'évaporation, mais aussi de rendre l'antenne moins sensible à toutes manipulations brutales qui pourraient faire partir le liquide conducteur des surfaces support, et ceci malgré les efforts électrostatiques d'attraction exercés par les électrodes. Ceci est particulièrement intéressant dans le cas d'une antenne équipant un système portable.
  • Il est bien entendu que la structure de l'antenne peut être plus complexe, et que l'on peut prévoir d'ajouter des électrodes de polarisation pour améliorer le contrôle de la déformation du film liquide.
  • Sur la figure 6, on peut voir un autre exemple de réalisation d'une antenne 402 en trois dimensions.
  • L'antenne 402 comporte une partie filaire 403 et un élément cylindrique 405 entourant la partie filaire, dont la face intérieure est destinée à être recouverte d'un film de liquide 406.
  • Pour cela, l'élément cylindrique 405 comporte un support cylindrique 410 isolant électrique dont la face intérieure est recouverte du film 406, et des électrodes 408 disposées sur sa face extérieure. Dans l'exemple représenté, les électrodes 408 forment un damier sur toute la face extérieure du support cylindrique 410. Chaque électrodes peut être commandée individuellement ou par rangée ou colonne.
  • En modifiant le potentiel entre la partie filaire 403 et les électrodes, on peut modifier la répartition du film sur la face intérieure du support cylindrique 410, pour ne recouvrir qu'une partie de cette face intérieure. Cette modification de répartition a pour effet de modifier par exemple la direction d'émission et de réception.
  • Sur les figures 7, 8, 9 et 10, on peut voir des exemples de forme que peut prendre l'antenne liquide pour différents types de commandes de la structure de la figure 6, le support cylindrique 410 n'étant pas représenté.
  • Sur la figure 7, on peut voir une antenne 702 dont la commande est telle que le liquide se répartit sur une bande de cylindre 704
  • Sur la figure 8, on peut voir une antenne 502 dont la commande est telle que le liquide a la forme d'un anneau 504 centré sur la caténaire 403.
  • Sur la figure 9, on peut voir une antenne 602 dont la commande est telle que le film de liquide forme un fil parallèle 604 à la partie filaire 403.
  • Sur la figure 10, on peut voir une antenne 702 dont la commande est telle que le liquide forme une hélice 804 entourant la partie filaire 403.
  • Dans les exemples décrits ci-dessus, la distance entre la partie liquide et la partie filaire de l'antenne peut être ajustée par l'ajout d'une composante continue au signal à transmettre ou à recevoir, et la forme de l'antenne peut être ajustée par le pilotage électrique des électrodes, afin de recouvrir plus au moins le support de liquide.
  • Sur la figure 11, on peut voir un exemple de réalisation d'une antenne parabolique selon la présente invention.
  • Pour cela, l'antenne 902 comporte une partie filaire ou ponctuelle 903 et un support 904 de forme sphérique recouvert sur sa face extérieure d'électrodes commandables individuellement. Le film 906 recouvre une partie de la face intérieure du support 904 pour former une calotte dont la concavité est orientable au moyen des électrodes.
  • Avantageusement, on peut prévoir que, grâce à la force de gravité, la concavité de la calotte soit automatiquement orientée vers le haut pour assurer des communications satellites.
  • Il est bien entendu que l'exemple de réalisation pratique de la figure 5C, s'applique à tous les modes de réalisation décrits.
  • Nous avons décrit des exemples de réalisation dans lesquels le déplacement des volumes de liquide est obtenu par des efforts électrostatiques, mais on peut aussi envisager de les faire se déplacer via des forces électromagnétiques. Pour cela, on utilise des liquides qui offrent des propriétés ferromagnétiques et qui peuvent alors être sensibles au champ magnétique, par exemple des liquides magnéto-rhéologiques. On peut alors prévoir des moyens pour générer des champs magnétiques, par exemple des bobinages en remplacement des électrodes. Cette structure a l'avantage de ne pas présenter de risque de claquage diélectrique. Il est bien entendu que les configurations des exemples représentés sur les figures 1 à 11 s'appliquent aux moyens de déplacement par les forces électromagnétiques.
  • Dans le cas d'un déplacement par application de forces électrostatique, l'application d'un effort revient à placer une certaine charge électrique sur les électrodes. Dans le cas d'un déplacement par application de forces électromagnétiques, cela revient à appliquer un certain courant électrique dans les bobinages.
  • Sur les figures 12A et 12B, on peut voir un autre mode de réalisation d'antennes selon la présente invention utilisant les forces électromagnétiques pour modifier la forme de l'antenne.
  • Pour cela, on remplace les électrodes par des bobines 1004 alimentées individuellement, et on utilise comme liquide 1006 un liquide ferromagnétiques, par exemple un liquide magnéto-rhéologique.
  • Les bobines, lorsqu'elles sont alimentées par un courant électrique, génèrent un champ magnétique et attirent le fluide magnéto-rhéologique qui se déforme en fonction de la présence ou non d'un champ magnétique
  • Sur la figure 12A, on peut voir une antenne qui peut être obtenue par les forces électromagnétiques.
  • Les bobines 1004 sont réparties en lignes et en colonnes sous une surface 1008 isolante et présentant une faible mouillabilité par rapport au liquide 1006.
  • Le liquide 1006 est un fluide magnéto-rhéologique conducteur électrique.
  • L'antenne comporte également deux volumes de liquide 1006.1, 1006.2 distincts délimitant une fente 1010 de forme ajustable. Chaque volume de liquide 1006.1, 1006.2 est connecté au circuit d'émission/réception par un conducteur 1012. Les volumes 1006.1 et 1006.2 sont hachurés pour les rendre plus visibles.
  • Dans l'exemple représenté, il s'agit d'une fente repliée 1010, offrant une grande longueur pour un faible encombrement.
  • La largeur minimale de la fente est déterminée par l'écartement entre les bobines 1004.
  • Grâce à une commande adaptée de chacune des bobines, il est possible de réaliser tout type de forme, comme représenté sur la figure 12B, représentant une antenne GSM repliée avec plan de masse.
  • L'antenne comporte une pluralité de bobines 1104 répartie en lignes et en colonnes sous un support isolant 1108, un plan de masse 1103 au dessus du support et à distance de celui-ci et du liquide magnéto-rhéologique 1006 déposé sur le support.
  • Le plan de masse et le liquide 1106 sont reliés au circuit d'émission/réception par les connecteurs 1112.
  • Le liquide 1106 (hachuré à des fins de clartés sur la figure 12B) dessine, dans l'exemple représenté, des spirales.
  • Les antennes en trois dimensions telles que représentées sur le figures 5A à 11 sont bien entendu réalisables en utilisant les forces électromagnétiques pour adapter la répartition du fluide magnéto-rhéologique.
  • Grâce à la présente invention, il est possible d'ajuster les paramètres d'une antenne de type classique, par exemple en modifiant sa longueur, dans le cas d'une antenne filaire ou la largeur de la fente dans le cas d'une antenne fente. Il est également possible de réaliser des antennes de formes entièrement modifiables en réalisant la majeure partie des parties d'émission et de réception avec un liquide conducteur pouvant se déplacer, sur commande, sur une surface.
  • On peut réaliser tout type d'antenne, tel que les antennes GSM repliés, les antennes râteaux...
  • Ainsi, grâce à l'invention, on peut réaliser simplement des antennes adaptables en fonction des bandes de fréquence libre ou de l'orientation de celle-ci, rendant l'émission et la réception de l'appareil ainsi équipé plus efficaces.
  • Dans les exemples décrits, les électrodes ou les bobines ont des tailles identiques, mais il est bien entendu que l'on peut prévoir de réaliser des structures dont les tailles d'électrode varient. Par exemple dans le cas d'une antenne à fente, on peut prévoir que les électrodes soient de plus petites tailles et plus nombreuses au niveau de la fente, pour augmenter la sensibilité de déplacement des bords des volumes de liquide.

Claims (15)

  1. Antenne radioélectrique d'émission et de réception, comportant une zone d'émission et de réception, des moyens de connexion à une circuit d'émission et/ou de réception, ladite zone d'émission et de réception étant formée au moins en partie par au moins un volume de liquide (1006.1, 1006.2, 1106), et des moyens pour modifier la forme dudit volume de liquide, lesdits moyens pour modifier la forme dudit volume de liquide mettant en oeuvre des forces électromagnétiques comportant au moins une bobine (1004), le volume de liquide étant déposé sur une surface isolante électriquement, offrant une faible mouillabilité vis-à-vis du liquide, ladite au moins une bobine (1004) étant disposée à l'opposé du volume de liquide par rapport à la surface isolante électriquement, le liquide étant conducteur électrique et offrant des propriétés ferromagnétiques, et une unité de commande des moyens pour déformer le volume de fluide.
  2. Antenne radioélectrique selon la revendication 1, dans laquelle la majeure partie de la zone d'émission et de réception de l'antenne est sous forme solide, le volume de liquide formant une extension de la partie solide d'émission et de réception, de forme ajustable.
  3. Antenne radioélectrique selon la revendication précédente, dans laquelle la partie solide est un fil destiné à être connecté à un circuit d'émission et/ou de réception, et le volume de liquide est prévu à une extrémité libre du fil.
  4. Antenne radioélectrique selon la revendication 1, dans laquelle la majeure partie de la zone d'émission et de réception est sous forme liquide et dans laquelle les moyens de modification de la forme du ou des volumes de liquide comportent une pluralité de bobines électromagnétiques (1004, 1104), répartie sous la surface électriquement isolante sur laquelle le ou les volumes de liquide (1006.1, 1006.2, 1106) peut ou peuvent se déplacer, ladite surface présentant une faible mouillabilité vis-à-vis du liquide.
  5. Antenne radioélectrique selon la revendication précédente, dans lequel l'unité de commande envoie des ordres individuels à chacune des bobines (1004, 1104).
  6. Antenne radioélectrique selon la revendication 4 ou 5, comportant un volume de liquide (1106) destiné à être connecté au circuit d'émission et/ou de réception et un plan de masse (1103) destiné à être connecté au circuit d'émission/réception.
  7. Antenne radioélectrique selon la revendication précédente, formant un antenne GSM.
  8. Antenne radioélectrique selon la revendication 4 ou 5, comportant deux volumes de liquide séparés par une fente dont la largeur est sensiblement constante sur toute sa longueur, et formant une antenne fente, ou séparés par une fente dont la largeur croît le long de la fente, et formant une antenne large bande.
  9. Antenne radioélectrique selon la revendication précédente, dans lequel l'unité de commande génère des ordres aux bobines (1004, 1104) tel qu'il provoque la rotation de ladite fente (108') afin de détecter l'orientation de plus haute énergie par balayage.
  10. Antenne radioélectrique selon la revendication 1, comportant une partie filaire ou ponctuelle (403, 503, 603, 703, 803, 903) et une partie liquide à distance de la partie filaire (403, 503, 603, 703, 803, 903), la partie liquide recouvrant une surface (405, 504, 604, 704, 804, 904) munie de moyens apte à modifier la forme de la partie liquide.
  11. Antenne radioélectrique selon la revendication 10, dans laquelle la surface (904) est sphérique, formant une antenne parabolique (902).
  12. Antenne radioélectrique selon l'une des revendications précédentes, comportant un boîtier étanche (308) enfermant la partie d'émission et de réception, ladite partie d'émission et de réception étant noyée dans un liquide isolant électrique (310) non-miscible avec le liquide formant au moins une partie de l'antenne.
  13. Antenne radioélectrique selon l'une des revendications précédentes, dans laquelle le liquide est un liquide magnéto-rhéologique.
  14. Appareil portable de communication, de type téléphone portable, comportant un circuit d'émission et de réception et au moins une antenne selon l'une des revendications précédentes connectée audit circuit.
  15. Utilisation de moyens pour modifier la forme d'au moins un volume de liquide conducteur électrique et offrant des propriétés ferromagnétiques par des forces électromagnétiques pour modifier les paramètres d'émission et de réception d'une antenne radioélectrique selon les revendications 1-13.
EP09170873.5A 2008-09-26 2009-09-21 Antenne radiofréquence d'émission-réception à paramètres d'émission-réception modifiables Not-in-force EP2169764B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0856497A FR2936654B1 (fr) 2008-09-26 2008-09-26 Antenne radiofrequence d'emission-reception a parametres d'emission-reception modifiables

Publications (2)

Publication Number Publication Date
EP2169764A1 EP2169764A1 (fr) 2010-03-31
EP2169764B1 true EP2169764B1 (fr) 2016-07-13

Family

ID=40756987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09170873.5A Not-in-force EP2169764B1 (fr) 2008-09-26 2009-09-21 Antenne radiofréquence d'émission-réception à paramètres d'émission-réception modifiables

Country Status (4)

Country Link
US (1) US8730109B2 (fr)
EP (1) EP2169764B1 (fr)
JP (1) JP5426297B2 (fr)
FR (1) FR2936654B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075004A (zh) * 2013-03-28 2015-11-18 小岛冲压工业株式会社 一种车辆附属部件以及车载用天线

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934361B1 (fr) * 2008-07-22 2012-12-28 Commissariat Energie Atomique Dispositif de variation de pression d'un fluide pneumatique par deplacement de gouttes de liquide et pompe a chaleur utilisant un tel dispositif
US9293821B2 (en) 2009-07-08 2016-03-22 The Charles Stark Draper Laboratory, Inc. Electronic devices, such as antennas, having fluidic constructs that permit reconfiguration of the devices
US9184496B2 (en) * 2009-07-08 2015-11-10 The Charles Stark Draper Laboratory, Inc. Inductors having fluidic constructs that permit reconfiguration of the inductors
US8587493B2 (en) * 2010-09-23 2013-11-19 North Carolina State University Reversibly deformable and mechanically tunable fluidic antennas
US8797221B2 (en) 2011-12-07 2014-08-05 Utah State University Reconfigurable antennas utilizing liquid metal elements
WO2013106106A2 (fr) 2012-01-09 2013-07-18 Utah State University Antennes reconfigurables utilisant des couches de pixel parasites
US9331389B2 (en) 2012-07-16 2016-05-03 Fractus Antennas, S.L. Wireless handheld devices, radiation systems and manufacturing methods
CN102969562B (zh) * 2012-11-14 2015-06-03 中兴通讯股份有限公司 液态金属天线自适应方法及控制装置
CN104577307B (zh) 2013-10-21 2019-07-05 中兴通讯股份有限公司 一种天线、天线控制方法及移动终端
JP6444744B2 (ja) * 2015-01-20 2018-12-26 シャープ株式会社 情報処理装置
US10104805B2 (en) * 2016-05-09 2018-10-16 The United States Of America As Represented By The Secretary Of The Army Self cooling stretchable electrical circuit having a conduit forming an electrical component and containing electrically conductive liquid
CN108270070A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种液态天线结构及其控制方法
US10944178B1 (en) * 2017-03-17 2021-03-09 Government Of The United States, As Represented By The Secretary Of The Air Force Physically reconfigurable structurally embedded vascular antenna
CN107425269B (zh) * 2017-06-21 2023-04-21 苏州博海创业微系统有限公司 多频共口径宽带辐射体
US10249947B1 (en) * 2017-09-28 2019-04-02 The United States Of America As Represented By The Secretary Of The Navy Multi-mode conductive liquid antenna
DE102019203472B3 (de) 2019-03-14 2020-07-09 Siemens Healthcare Gmbh MR-Oberflächenspule
KR102232164B1 (ko) * 2020-01-16 2021-03-25 공주대학교 산학협력단 신장가능한 주파수 선택구조
DE102020211505B3 (de) 2020-09-14 2021-11-25 Continental Automotive Gmbh Glasscheibe, Kraftfahrzeug und Verfahren
CN112736437B (zh) * 2020-12-22 2022-08-30 厦门智锐星科技有限公司 5g天线及射频器件电路板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057415A1 (en) * 2003-08-25 2005-03-17 Rawnick James J. Antenna with dynamically variable operating band
EP2139066A1 (fr) * 2008-06-27 2009-12-30 France Telecom Antenne électromagnétique reconfigurable

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1420254A (en) 1912-05-20 1922-06-20 Jr John Hays Hammond Electric-wave transmission
US4498086A (en) * 1983-02-10 1985-02-05 Geo-Centers, Inc. Broad band liquid loaded dipole antenna
JP2000357912A (ja) * 1999-06-15 2000-12-26 Nec Eng Ltd マイクロストリップアンテナ
US7260424B2 (en) 2002-05-24 2007-08-21 Schmidt Dominik J Dynamically configured antenna for multiple frequencies and bandwidths
FR2841063B1 (fr) * 2002-06-18 2004-09-17 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
US6967628B2 (en) * 2003-06-13 2005-11-22 Harris Corporation Dynamically reconfigurable wire antennas
JP4579017B2 (ja) * 2005-03-09 2010-11-10 株式会社リコー マイクロストリップアンテナ
KR100691626B1 (ko) 2006-02-28 2007-03-12 삼성전기주식회사 다중 공진 액체 안테나
KR100735355B1 (ko) 2006-02-28 2007-07-04 삼성전기주식회사 누설 방지 구조를 갖는 액체 안테나
KR100771819B1 (ko) * 2006-03-03 2007-10-30 삼성전기주식회사 주파수 조절이 가능한 액체 안테나
KR100703219B1 (ko) 2006-03-16 2007-04-09 삼성전기주식회사 내장형 액체 결합 안테나 및 이를 구비한 이동통신단말기
EP2229601B1 (fr) 2007-11-08 2018-09-12 Orange Antenne electromagnetique reconfigurable par electromouillage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057415A1 (en) * 2003-08-25 2005-03-17 Rawnick James J. Antenna with dynamically variable operating band
EP2139066A1 (fr) * 2008-06-27 2009-12-30 France Telecom Antenne électromagnétique reconfigurable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075004A (zh) * 2013-03-28 2015-11-18 小岛冲压工业株式会社 一种车辆附属部件以及车载用天线
US10090582B2 (en) 2013-03-28 2018-10-02 Kojima Industries Corporation Vehicle attached component, and on-board antenna

Also Published As

Publication number Publication date
EP2169764A1 (fr) 2010-03-31
FR2936654B1 (fr) 2010-10-22
US20100095762A1 (en) 2010-04-22
US8730109B2 (en) 2014-05-20
JP2010081612A (ja) 2010-04-08
FR2936654A1 (fr) 2010-04-02
JP5426297B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
EP2169764B1 (fr) Antenne radiofréquence d'émission-réception à paramètres d'émission-réception modifiables
EP2139066B1 (fr) Antenne électromagnétique reconfigurable
EP1805848B1 (fr) Antenne helice imprimee multibande a fente
WO2005036697A1 (fr) Antenne interne de faible volume
EP1589608A1 (fr) Antenne compacte RF
EP0604338A1 (fr) Antenne large bande à encombrement réduit, et dispositf d'émission/réception correspondant
FR2825517A1 (fr) Antenne a plaque
FR2978875A1 (fr) Antenne bibande
EP2422403B1 (fr) Antenne multiple large bande a faible profil
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP3417507B1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
EP2229601B1 (fr) Antenne electromagnetique reconfigurable par electromouillage
WO2015007746A1 (fr) Antenne de type bouchon et structure antennaire et ensemble antennaire associés
FR2896341A1 (fr) Antenne compacte portable
WO2004001900A1 (fr) Antenne a brins a polarisation circulaire
EP0860895A1 (fr) Antenne résonnante pour l'émission ou la réception d'ondes polarisées
EP3692596B1 (fr) Antenne radioelectrique a bas profil multi-bande
EP0005396B1 (fr) Circuit hyperfréquence à cavité résonnante équipée de paires de diodes périphériques
WO2009004128A1 (fr) Antenne miniaturisee pour utilisation grand public
FR2980647A1 (fr) Antenne ultra-large bande
EP4203189A1 (fr) Antenne fil plaque monopolaire à bande passante élargie
FR2905803A1 (fr) Dispositif de dephasage dielectrique rotatif pour elements rayonnants
FR2901063A1 (fr) Antenne compacte portable pour la television numerique terrestre
WO2002037606A1 (fr) Antenne multibande
FR2599899A1 (fr) Antenne plane a reseau avec conducteurs d'alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

17P Request for examination filed

Effective date: 20100715

17Q First examination report despatched

Effective date: 20100809

17Q First examination report despatched

Effective date: 20110118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 812965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009039678

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 812965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009039678

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

26N No opposition filed

Effective date: 20170418

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160921

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200921

Year of fee payment: 12

Ref country code: FR

Payment date: 20200930

Year of fee payment: 12

Ref country code: DE

Payment date: 20200910

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009039678

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210921

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401