WO2015007746A1 - Antenne de type bouchon et structure antennaire et ensemble antennaire associés - Google Patents

Antenne de type bouchon et structure antennaire et ensemble antennaire associés Download PDF

Info

Publication number
WO2015007746A1
WO2015007746A1 PCT/EP2014/065176 EP2014065176W WO2015007746A1 WO 2015007746 A1 WO2015007746 A1 WO 2015007746A1 EP 2014065176 W EP2014065176 W EP 2014065176W WO 2015007746 A1 WO2015007746 A1 WO 2015007746A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pattern
conductive pattern
antennal
antenna structure
Prior art date
Application number
PCT/EP2014/065176
Other languages
English (en)
Inventor
Jean-Philippe Coupez
Original Assignee
Institut Mines Telecom / Telecom Bretagne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Mines Telecom / Telecom Bretagne filed Critical Institut Mines Telecom / Telecom Bretagne
Priority to EP14739168.4A priority Critical patent/EP3022802B1/fr
Priority to US14/905,605 priority patent/US10944163B2/en
Priority to CN201480046398.0A priority patent/CN105556748B/zh
Publication of WO2015007746A1 publication Critical patent/WO2015007746A1/fr
Priority to HK16111528.0A priority patent/HK1223455A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the invention relates to radio frequency antennas including those that can be used in wireless radio systems.
  • Antenna is an essential part of a wireless radio device.
  • GB 2 292 638 A discloses an antenna formed of a cylindrical dielectric bar (of high relative dielectric permittivity - greater than 5), said bar being hollowed out to allow the passage of a feed structure.
  • the antenna comprises a plurality of radiating elements on the outer surface of the bar, the radiating elements being connected in parallel between the power supply and a ground plane.
  • the invention proposes a compact antenna solution that is easily achievable.
  • an antenna structure adapted to be disposed on a ground plane comprising:
  • a three-dimensional support substrate of partially hollowed dielectric material comprising a peripheral wall extending between a proximal end and a distal end, said support substrate defining an internal volume;
  • the first conductive pattern inscribed on the peripheral wall of the support substrate, the first conductive pattern comprising a lower end adapted to be connected to a ground plane and an upper end;
  • antennal structure alone or in combination are:
  • the support substrate has a cylindrical shape of revolution, truncated cone, cube, hexagonal base straight prism, truncated pyramid, sinuous profile volume;
  • the first pattern is a conductive thread or a conductive ribbon;
  • the first pattern is inscribed on the peripheral wall so as to be helically wound around the support substrate;
  • the first pattern is meandering, sinusoid-shaped, a combination of rectilinear (s) and sinuous (s), shaped fractal (s);
  • the second pattern is configured to at least partially seal the distal end of the support substrate
  • the second conductive pattern comprises a transverse profile selected from the following group: right, slot, succession of straight lines, successions of straight lines and curves, succession of curved lines;
  • the second conductive pattern comprises: a hollow section having a peripheral wall extending between a lower end and an upper end, said section extending into the internal volume defined by the support substrate; a flange extending from the upper end of the section to the distal end of the support substrate;
  • the second conductive pattern also comprises a bottom completely closing the lower end of the section.
  • the invention provides an antenna comprising a ground plane and an antenna structure according to the first aspect of the invention disposed above said ground plane, the lower end of the first conductive pattern being connected to the plane of the earth. mass.
  • the antenna of the invention further comprises an excitation probe adapted to feed the antenna structure, the excitation probe being connected via the central conductor of said excitation probe to the first conductive pattern via a point of contact. connection located along the first conductive pattern on the peripheral wall.
  • the invention proposes an antenna assembly comprising a ground plane; a plurality of identical antenna structures according to the first aspect of the invention, an excitation probe connected via the central conductor of said excitation probe to the first conductive pattern of a single antenna structure among the plurality of antenna structures , said antenna structure and excited element defining a primary element for the antennal assembly, the at least one other antennal structure defining at least one passive "passive" non-powered element.
  • the antenna assembly comprises two antenna structures arranged on the ground plane side by side and separated by a distance less than a fraction of the operating wavelength ⁇ of the antenna assembly, typically less than ⁇ / 20; it comprises three antennal structures arranged on the ground plane in a triangular manner;
  • It comprises at least one conductive wall adapted to reduce the coupling between the antenna structures, the conductive wall forming an electrical screen between the antennal structures.
  • the antenna of the invention has extremely small dimensions compared to the wavelength of the signal (that is to say of the order of ⁇ / 50, or even less than this value).
  • the invention makes it possible to have an antenna or an extremely compact antenna assembly for a fixed operating frequency.
  • the invention offers a very great simplicity of performance adjustment.
  • the operating frequency is particularly easy to adjust since it is a function of the value of the developed length of the first conductive pattern, as well as the shape factor and the dimensions chosen for the second conductive pattern.
  • the level of adaptation of the antenna of the invention can also be easily optimized by a suitable choice of the position of the excitation point on the first pattern vis-à-vis the lower end the first pattern, itself connected to the ground.
  • the invention makes it possible to have an antenna solution or an antenna assembly which has a very great ease of realization at low cost.
  • FIG. 1 illustrates an antenna according to one embodiment of the invention
  • FIGS. 2a, 2b, 2c, 2d, 2e, 2f and 2g illustrate several forms of the support substrate of an antenna structure according to the invention
  • FIGS. 3a, 3b and 3c illustrate several forms of the first conductive pattern of an antenna structure according to the invention
  • FIGS. 4a, 4b, 4c, 4d, 4e, 4f, 4g and 4h illustrate the shape of the transverse profile of the second conductive pattern of an antenna structure according to the invention
  • FIGS. 5a, 5b and 5c respectively illustrate a perspective view, a sectional view B-B 'and a side view of an antenna according to one embodiment of the invention
  • FIG. 6 illustrates a perspective view of a first conductive pattern inscribed on a support substrate of an antenna structure according to one embodiment of the invention
  • FIG. 7 illustrates a perspective view of a second conductive pattern of an antenna structure according to one embodiment of the invention.
  • FIG. 8 illustrates an antenna assembly according to a first embodiment of the invention
  • FIG. 9 illustrates an antenna assembly according to a second embodiment of the invention.
  • FIG. 10 illustrates an antenna assembly according to a third embodiment of the invention.
  • an antenna A comprises an antenna structure Ai and a ground plane M, the antenna structure is disposed above the ground plane M.
  • the antenna structure Ai comprises: a substrate S support three-dimensional dielectric material partially hollowed out, a first conductive pattern Ml and a second conductive pattern M2.
  • the partially recessed substrate S comprises a peripheral side wall S1 which extends between a proximal end S2 and a distal end S3.
  • the support substrate S defines an internal volume S4 which can be partially filled with dielectric material. The internal volume S4 is thus surrounded by the peripheral wall SI.
  • the support substrate S may be a dielectric material of plastic type or plastic foam, whose electrical characteristics are preferably very close to those of air, or even simply be air.
  • the relative dielectric permittivity of the support substrate S is preferably close to 1, that is to say between 1 and 1.5.
  • the first pattern M1 is inscribed on the peripheral side wall S1 of the substrate S and comprises a lower end Einf adapted to be connected to the ground plane M and an upper end Esup.
  • the second conductive pattern M2 is configured to be contained in the volume S4 of the substrate S and is electrically connected to the upper end Esup of the first pattern M1.
  • the second pattern M2 is preferably made on a three-dimensional surface. This is typically a pellet conductive pattern.
  • the three-dimensional surface may be a surface of the substrate S or a surface of a separate element inserted in the volume S4.
  • the second conductive pattern M2 is further configured to close off the distal end S3 of the support substrate S.
  • the antenna comprises a coaxial excitation probe 10 whose central conductor 11 is connected at a point P of the first conductive pattern M1 on the peripheral wall SI of the support S.
  • the support substrate S can take several forms: cylinder of revolution (FIG.
  • FIG. 2a truncated cone
  • FIG. 2b truncated cone
  • FIG. 2c spherical cap
  • FIG. 2d cube
  • FIG. 2d right hexagonal prism
  • FIG. 2e truncated pyramid
  • FIG. 2f truncated pyramid
  • FIG. Figure 2g any arbitrary contoured volume
  • the first pattern M1 can take many forms.
  • FIGS. 3a, 3b and 3c illustrate developed views of the peripheral side wall S1 of the support substrate S with several forms for the first M1: multi-turn helix pattern (FIG. 3a), m horrndre geometry (FIG. 3b) or FIG. well any form (Figure 3c). It can also be a combination of rectilinear (s) and sinuous (s) or shaped fractal (s) (not shown) or sinusoidal (not shown).
  • the first conductive pattern Ml may be either a conductive wire or a conductive ribbon.
  • the diameter of the conducting wire is between 0.25 mm and 5 mm, preferably 1 mm.
  • the width of the ribbon is between 0.5 mm and 10 mm, preferably 2 mm.
  • the developed length of the conductive wire or conductor ribbon is one of the operating frequency control elements. The longer this length is, the lower the frequency of the corresponding antenna.
  • the second pattern M2 can also take several forms.
  • FIGS. 4a, 4b, 4c, 4d, 4e, 4f, 4g and 4h illustrate the shape of the transverse profile for the second pattern M2: right (FIG. 4a), slot (FIG. 4b), succession of straight lines (FIGS. 4c and 4e). ), successions of straight lines and curves ( Figures 4d and 4f), succession of curved lines ( Figures 4g and 4h).
  • the second pattern M2 may have a part that extends inside the internal volume S4 of the support substrate S towards the proximal end S2 of the substrate support S.
  • the second pattern M2 may comprise a solid form factor as is the case in FIGS. 4a, 4b, 4c, 4d, 4e, 4f, 4g and 4h or hollowed out at its center (for example a ring). .
  • the volume of the support substrate S is used both to support and to contain an overall conductive pattern that is electrically as long as possible so that the antenna can operate at the lowest possible frequency.
  • FIGS. 5a, 5b, 5c and FIGS. 6 and 7 show an antenna according to a preferred embodiment of the invention.
  • the support substrate S is of cylindrical shape and the first conductive pattern M1 is in a helix.
  • the support substrate S is a cylinder of revolution whose cross section is equal to a disk of diameter d ⁇ ⁇ and whose height is equal to h " ⁇ (with ⁇ the wavelength associated with the frequency of operation of the corresponding antenna).
  • the first pattern M1 comprises several turns wound on the peripheral side wall S1 of the support substrate S.
  • the second pattern M2 is here of the pellet type inscribed in its entirety within the volume S4 defined by the support substrate S.
  • the second conductive M2 pattern consists of three parts: a hollow section C having a peripheral side wall C1 which extends between a lower end C2 and an upper end C3;
  • a flange C which extends from the upper end C3 of the section to the distal end S3 of the substrate S support;
  • This bottom C is characterized by a surface whose outer perimeter corresponds to the lower end C2 of the section C.
  • the flange C takes the form here of an annular conductive pattern of outside diameter d and inner diameter of (with 0 ⁇ d ⁇ d), completed by a section C of conductive tube of diameter and height h ' (With 0 ⁇ h ' ⁇ h), closed at its base by the bottom C "in the form of a conductive disk of diameter D.
  • the second conductive pattern M2 closes the entire upper part of the support substrate S.
  • section C extends in the internal volume S4 defined by the substrate S support and the bottom C "is contained within this same volume.
  • the second pattern M2 comes as an inverted cap above the support substrate S with a portion (that is to say the section C and the bottom C ") inserted inside the internal volume of the substrate S support
  • the inverted hat thus forms the three-dimensional support.
  • the antenna is plug type.
  • the first and second conductive patterns M1, M2 are electrically connected: the second pattern M2 is in particular electrically connected to the upper end Esup of the first conductive pattern M1.
  • a radiating element formed by the association of the first conductive pattern M1 and the second conductive pattern M2 is contained in a cylindrical volume, with a diameter of 30 mm and a height of 20 mm. .
  • the largest dimension of the antenna (that is to say the diameter of the support substrate S of 30mm) is then of the order of ⁇ / 52, which implies an extremely compact antenna.
  • the antenna is perfectly adapted (that is to say a level of adaptation ⁇ -25 dB) and its bandwidth (for an adaptation level lower than -10 dB) is 1.3MHz.
  • such an antenna can be used for applications developed at VHF and UHF frequencies.
  • the invention also relates to an antenna assembly comprising a ground plane M; a plurality of identical antenna structures Ai (i> 2) as described above and an excitation probe 10 connected at a point P of the first conductive pattern Ml of a single antenna structure among the plurality of antenna structures A1, A2 , so as to feed an antenna structure.
  • the antenna structure thus excited defines a primary element for the antennal assembly, the at least one other antennal structure defining at least one non-powered "passive" secondary element.
  • the antennal assembly comprises an antenna and at least one antenna structure that acts as a parasitic element located near the antenna.
  • the antenna assembly has an enlarged bandwidth.
  • FIG. 8 illustrates an antenna assembly comprising two antenna structures A1, A2 arranged one beside the other.
  • the configuration consists in associating a first and a second antenna structures A1, A2, positioned relative to one another at a very small distance D with respect to the wavelength of the signal ⁇ , and this in order to maintain overall dimensions for the antennal assembly particularly reduced.
  • the distance D between the two structures (that is to say the distance between the central axes of symmetry of the structures A1 , A2) is 70mm, or about ⁇ / 22 (hence D ⁇ ⁇ ). Note that this very great proximity between the structures is made possible by the miniature nature of the antennal structures used (the size of the antennal structures is of the order of ⁇ / 52).
  • the first antenna structure A1 fed by the coaxial excitation probe 10 acts as a primary radiating element, supplied at a connection point P by the central conductor 11 of the excitation probe 10.
  • the first fed Al antenna structure is electromagnetically coupled to the second antennal structure, of identical configuration, but which is, in turn, unpowered.
  • This second antennal structure therefore plays the role of a "passive" secondary element, initially operating at the same resonant frequency as the first antenna structure A1 and positioned in its close environment, in order to be physically coupled thereto.
  • the electrical response obtained on the first antennal structure A1 is then of the two-frequency type, with frequency values relatively close to each other.
  • the frequency difference is a function of the value of the coupling level existing between the first antenna structure A1 and the second antenna structure A2. The lower this level, the closer the frequencies are.
  • the level of the first antenna structure A1 coupled to the second antenna structure A2 we thus obtain, finally, a response equivalent to that of a two-pole band pass filter, which results in a significant widening of the bandwidth compared to that which would be obtained if only the first antennal structure was used.
  • the two resonance frequencies involved in the electrical response must be very close to one another, which leads, a priori, to fix a level of coupling between the antenna structures Al, A2 very weak.
  • the reduction of the coupling can simply be obtained thanks to the presence of an electric screen between the two antenna structures A1, A2, this screen can be achieved, for example, by the use of a conductive wall 100 electrically connected to its base on the ground plane, as shown in Figure 9.
  • the position of the conductive wall 100, as well as its geometry and its dimensions allow to adjust the value of the coupling and thus to finely control the appearance of the electrical response in the bandwidth.
  • the basic principle consists in constructing at the primary element level an electrical response of the multi-pole bandpass filter type by exploiting the coupling of this primary element Al with all the elements.
  • other "passive" secondary elements Ai i> l.
  • the number n of antennal structures, their geometrical disposition on the ground plane, as well as the number, the positions and the characteristics of the conducting walls constitute parameters of freedom as for the design and the optimization of such antennal set.
  • FIG. 10 illustrates an antenna assembly comprising three antenna structures A1, A2, A3 disposed on the ground plane M in a triangular manner and comprising two conducting walls.
  • This prototype corresponds to the association of two antenna structures such as the antenna of the embodiment illustrated in FIG. 5a.
  • each antenna structure of this prototype is ⁇ / 52.
  • the antennal set operates at a frequency of 193MHz.
  • the two antennal structures are separated by a distance D of 70mm, ie ⁇ / 22 and the electric screen allowing to control the level of coupling between the two elements is a simple rectangular conducting wall of dimensions 30x70mm 2 , positioned between the two structures antennal.

Landscapes

  • Details Of Aerials (AREA)

Abstract

L'invention concerne une structure antennaire adaptée pour être disposée sur un plan de masse comprenant : un substrat support tridimensionnel en matériau diélectrique partiellement évidé comprenant une paroi périphérique qui s'étend entre une extrémité proximale et une extrémité distale, ledit substrat support définissant un volume interne; un premier motif conducteur inscrit sur la paroi périphérique du substrat support, le premier motif conducteur comprenant une extrémité inférieure adaptée pour être connectée à un plan de masse et une extrémité supérieure; un second motif conducteur contenu dans le volume du substrat, le second motif étant connecté électriquement à l'extrémité supérieure du premier motif.

Description

Antenne de type bouchon et structure antennaire et ensemble antennaire associés
DOMAINE TECHNIQUE GENERAL
L'invention est relative aux antennes radio-fréquences notamment de celles pouvant être utilisées dans les systèmes de radiocommunication sans fil.
ETAT DE LA TECHNIQUE
L'antenne est un élément incontournable d'un dispositif de radiocommunication sans fil.
Le développement des applications radio sans fil ainsi que le développement de nouvelles normes de télécommunications impliquent de disposer d'antennes susceptibles d'être intégrées dans différents types de matériels.
On cherche donc des solutions d'antennes particulièrement performantes en taille, volume et poids, notamment pour des solutions d'antennes destinées à des applications dans les gammes de fréquences VHF ou UHF.
En effet, dans ces gammes de fréquences, les longueurs d'ondes impliquées sont grandes ce qui engendre classiquement des solutions d'antennes qui sont encombrantes.
Le document GB 2 292 638 A divulgue une antenne formée d'un barreau diélectrique cylindrique (de permittivité diélectrique relative élevée - supérieure à 5), ledit barreau étant évidé pour permettre le passage d'une structure d'alimentation. L'antenne comprend une pluralité d'éléments rayonnants sur la surface extérieure du barreau, les éléments rayonnants étant reliés en parallèle entre l'alimentation et un plan de masse.
PRESENTATION DE L'INVENTION
L'invention propose une solution d'antenne compacte et qui est facilement réalisable.
A cet effet, l'invention propose, selon un premier aspect, une structure antennaire adaptée pour être disposée sur un plan de masse comprenant :
un substrat support tridimensionnel en matériau diélectrique partiellement évidé comprenant une paroi périphérique qui s'étend entre une extrémité proximale et une extrémité distale, ledit substrat support définissant un volume interne ;
un premier motif conducteur inscrit sur la paroi périphérique du substrat support, le premier motif conducteur comprenant une extrémité inférieure adaptée pour être connectée à un plan de masse et une extrémité supérieure ;
un second motif conducteur contenu dans le volume du substrat, le second motif étant connecté électriquement à l'extrémité supérieure du premier motif. D'autres aspects de la structure antennaire seuls ou en combinaison sont les suivants :
le substrat support a une forme de cylindre de révolution, cône tronqué, cube, prisme droit à base hexagonale, pyramide tronquée, volume à profil sinueux ; - le premier motif est un fil conducteur ou un ruban conducteur ;
le premier motif est inscrit sur la paroi périphérique de sorte à être enroulé en hélice autour du substrat support ;
le premier motif est en forme de méandres, en forme de sinusoïde, une combinaison de forme rectiligne(s) et sinueuse(s), en forme de motif(s) fractal(s) ;
le second motif est configuré pour obturer au moins partiellement l'extrémité distale du substrat support ;
le second motif conducteur comprend un profil transversal choisi parmi le groupe suivant : droit, créneau, succession de lignes droites, successions de lignes droites et courbes, succession de lignes courbes ;
le second motif conducteur comprend : un tronçon creux ayant une paroi périphérique qui s'étend entre une extrémité inférieure et une extrémité supérieure, ledit tronçon s'étendant dans le volume interne défini par le substrat support ; une collerette qui s'étend à partir de l'extrémité supérieure du tronçon jusqu'à l'extrémité distale du substrat support ;
le second motif conducteur comprend également un fond obturant complètement l'extrémité inférieure du tronçon.
Selon un second aspect, l'invention propose une antenne comprenant un plan de masse et une structure antennaire selon le premier aspect de l'invention disposée au-dessus dudit plan de masse, l'extrémité inférieure du premier motif conducteur étant connectée au plan de masse.
L'antenne de l'invention comprend en outre une sonde d'excitation adaptée pour alimenter la structure antennaire, la sonde d'excitation étant connectée par l'intermédiaire du conducteur central de ladite sonde d'excitation au premier motif conducteur via un point de connexion situé le long du premier motif conducteur sur la paroi périphérique.
Selon un troisième aspect, l'invention propose un ensemble antennaire comprenant un plan de masse ; une pluralité de structures antennaires identiques selon le premier aspect de l'invention, une sonde d'excitation connectée par l'intermédiaire du conducteur central de ladite sonde d'excitation au premier motif conducteur d'une unique structure antennaire parmi la pluralité de structures antennaires, ladite structure antennaire ainsi excitée définissant un élément primaire pour l'ensemble antennaire, l'au moins autre structure antennaire définissant au moins un élément secondaire « passif » non alimenté.
D'autres aspects de l'ensemble antennaire de l'invention sont les suivants seuls ou en combinaison :
- il comprend deux structures antennaires disposées sur le plan de masse côte à côte et séparées d'une distance inférieure à une fraction de la longueur d'ondes λ de fonctionnement de l'ensemble antennaire, typiquement inférieure à λ/20 ; il comprend trois structures antennaires disposées sur le plan de masse de manière triangulaire ;
- il comprend au moins un mur conducteur adapté pour diminuer le couplage entre les structures antennaires, le mur conducteur formant un écran électrique entre les structures antennaires.
Les avantages de l'invention sont multiples.
L'antenne de l'invention présente des dimensions extrêmement réduites par rapport à la longueur d'onde du signal (c'est-à-dire de l'ordre de λ/50, voire inférieures à cette valeur).
Ceci facilite l'utilisation pour toute application impliquant de très fortes contraintes d'encombrement et de poids, comme, par exemple, les applications de télé-relevé dans les gammes de fréquences VHF ou UHF.
De par une imbrication étroite des deux motifs conducteurs au sein d'un même volume, l'invention permet d'avoir une antenne ou un ensemble antennaire extrêmement compact pour une fréquence de fonctionnement fixée.
En outre, l'invention offre une très grande simplicité de réglage des performances. En effet, la fréquence de fonctionnement est particulièrement facile à régler puisqu'elle est fonction de la valeur de la longueur développée du premier motif conducteur, ainsi que du facteur de forme et des dimensions choisis pour le second motif conducteur.
D'autre part, le niveau d'adaptation de l'antenne de l'invention peut également être aisément optimisé de par un choix approprié de la position du point d'excitation sur le premier motif vis-à-vis de l'extrémité inférieure du premier motif, elle-même connectée à la masse.
En outre, l'invention permet d'avoir une solution d'antenne ou un ensemble antennaire qui présente une très grande facilité de réalisation à faible coût. PRESENTATION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention rassortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 illustre une antenne selon un mode de réalisation de l'invention ;
- les figures 2a, 2b, 2c, 2d, 2e, 2f et 2g illustrent plusieurs formes du substrat support d'une structure antennaire selon l'invention ;
- les figures 3a, 3b et 3c illustrent plusieurs formes du premier motif conducteur d'une structure antennaire selon l'invention ;
- les figures 4a, 4b, 4c, 4d, 4e, 4f, 4g et 4h illustrent des allures du profil transversal du second motif conducteur d'une structure antennaire selon l'invention ;
- les figures 5a, 5b et 5c illustrent respectivement une vue en perspective, une vue en coupe B-B' et une vue de côté d'une antenne selon un mode de réalisation de l'invention ;
- la figure 6 illustre une vue en perspective d'un premier motif conducteur inscrit sur un substrat support d'une structure antennaire selon un mode de réalisation de l'invention ;
- la figure 7 illustre une vue en perspective d'un second motif conducteur d'une structure antennaire selon un mode de réalisation de l'invention ;
- la figure 8 illustre un ensemble antennaire selon un premier mode de réalisation de l'invention ;
- la figure 9 illustre un ensemble antennaire selon un second mode de réalisation de l'invention ;
- la figure 10 illustre un ensemble antennaire selon un troisième mode de réalisation de l'invention.
Sur l'ensemble des figures, les éléments similaires portent des références identiques.
DESCRIPTION DETAILLEE DE L'INVENTION
Antenne
En relation avec la figure 1, une antenne A selon l'invention comprend une structure antennaire Ai et un plan de masse M, la structure antennaire est disposée au-dessus du plan de masse M. La structure antennaire Ai comprend : un substrat S support tridimensionnel en matériau diélectrique partiellement évidé, un premier motif Ml conducteur et un second motif conducteur M2. Le substrat S partiellement évidé comprend une paroi latérale périphérique SI qui s'étend entre une extrémité proximale S2 et une extrémité distale S3. En outre, le substrat S support définit un volume interne S4 qui peut être partiellement rempli de matériau diélectrique. Le volume interne S4 est ainsi entouré par la paroi périphérique SI.
Le substrat support S peut être un matériau diélectrique de type plastique ou mousse plastique, dont les caractéristiques électriques sont de préférence très proches de celles de l'air, voire être tout simplement de l'air. Notamment, la permittivité diélectrique relative du substrat support S est préférablement proche de 1, c'est à dire comprise entre 1 et 1,5.
Le premier motif Ml est inscrit sur la paroi latérale périphérique SI du substrat S support et comprend une extrémité inférieure Einf adaptée pour être connectée au plan de masse M et une extrémité supérieure Esup.
Le second motif M2 conducteur est configuré pour être contenu dans le volume S4 du substrat S et est connecté électriquement à l'extrémité supérieure Esup du premier motif Ml. Le second motif M2 est préférablement réalisé sur une surface tridimensionnelle. Il s'agit typiquement d'un motif conducteur pastille. La surface tridimensionnelle peut être une surface du substrat S ou une surface d'un élément distinct inséré dans le volume S4.
Le second motif M2 conducteur est en outre configuré pour obturer comme un capot l'extrémité distale S3 du substrat support S.
Toujours en relation avec la figure 1, l'antenne comprend une sonde d'excitation 10 coaxiale dont le conducteur central 11 est connecté en un point P du premier motif conducteur Ml sur la paroi périphérique SI du support S.
Le substrat support S peut prendre plusieurs formes : cylindre de révolution (figure
2a), cône tronqué (figure 2b), calotte sphérique (figure 2c), cube (figure 2d), prisme droit à base hexagonale (figure 2e), pyramide tronquée (figure 2f), ou tout volume quelconque à profil sinueux par exemple (figure 2g).
Le premier motif Ml peut prendre plusieurs formes. Les figures 3a, 3b et 3c illustrent des vues en développé de la paroi latérale périphérique SI du substrat support S avec plusieurs formes pour le premier motif Ml : hélice multi-spires (figure 3a), géométrie m ulti- méandres (figure 3b) ou bien une forme quelconque (figure 3c). Il peut également être une combinaison de formes rectiligne(s) et sinueuse(s) ou bien en forme de motif(s) fractal(s) (non représentée) ou de forme sinusoïdale (non représentée).
Le premier motif conducteur Ml peut être soit un fil conducteur ou bien un ruban conducteur. Dans le cas d'un fil conducteur, le diamètre du fil conducteur est compris entre 0,25mm et 5mm, de préférence 1mm.
Dans le cas d'un ruban conducteur, la largeur du ruban est comprise entre 0,5mm et 10mm, de préférence 2mm.
En outre, la longueur développée du fil conducteur ou du ruban conducteur est l'un des éléments de réglage de la fréquence de fonctionnement. Plus cette longueur est grande plus la fréquence de l'antenne correspondante est basse.
Le second motif M2 peut également prendre plusieurs formes. Les figures 4a, 4b, 4c, 4d, 4e, 4f, 4g et 4h illustrent des allures du profil transversal pour le second motif M2 : droit (figure 4a), créneau (figure 4b), succession de lignes droites (figures 4c et 4e), successions de lignes droites et courbes (figures 4d et 4f), succession de lignes courbes (figures 4g et 4h).
Comme illustré sur les figures 4b, 4c, 4d, 4e, 4f, 4g et 4h le second motif M2 peut avoir une partie qui s'étend à l'intérieur du volume interne S4 du substrat support S vers l'extrémité proximale S2 du substrat support S.
En outre, le second motif M2 peut comprendre un facteur de forme plein comme c'est le cas sur les figures 4a, 4b, 4c, 4d, 4e, 4f, 4g et 4h ou bien évidé en son centre (par exemple un anneau).
Par conséquent, le volume du substrat support S est utilisé à la fois pour supporter et pour contenir un motif conducteur global qui soit électriquement le plus long possible et cela pour que l'antenne puisse fonctionner à la fréquence la plus basse possible.
On décrit en relation avec les figures 5a, 5b, 5c et les figures 6 et 7 une antenne selon un mode de réalisation préféré de l'invention.
Selon ce mode de réalisation préféré, le substrat support S est de forme cylindrique et le premier motif conducteur Ml est en hélice.
En outre, le substrat support S est un cylindre de révolution dont la section transverse est égale à un disque de diamètre d << λ et dont la hauteur est égale à h « λ (avec λ la longueur d'ondes associée à la fréquence de fonctionnement de l'antenne correspondante).
Le premier motif Ml comporte plusieurs spires enroulées sur la paroi latérale périphérique SI du substrat support S.
Le second motif M2 est ici de type pastille inscrit dans sa totalité à l'intérieur du volume S4 défini par le substrat support S.
Le second motif M2 conducteur est constitué de trois parties : un tronçon C creux ayant une paroi latérale périphérique Cl qui s'étend entre une extrémité inférieure C2 et une extrémité supérieure C3 ;
une collerette C qui s'étend à partir de l'extrémité supérieure C3 du tronçon jusqu'à l'extrémité distale S3 du substrat S support ;
- un fond C" qui obture complètement l'extrémité inférieure du tronçon C.
Ce fond C" est caractérisé par une surface dont le périmètre externe correspond à l'extrémité inférieure C2 du tronçon C.
La collerette C prend la forme ici d'un motif conducteur annulaire de diamètre extérieur d et de diamètre intérieur d' (avec 0<d'<d), complété par un tronçon C de tube conducteur de diamètre d' et de hauteur h' (avec 0<h'<h), obturé à sa base par le fond C" sous la forme d'un disque conducteur de diamètre d'. Notons que, dans ce cas précis, le second motif conducteur M2 obture toute la partie supérieure du substrat support S.
En outre, le tronçon C s'étend dans le volume S4 interne défini par le substrat S support et le fond C" est contenu à l'intérieur de ce même volume.
Ainsi, le second motif M2 vient comme un chapeau inversé au-dessus du substrat support S avec une partie (c'est-à-dire le tronçon C et le fond C") insérée à l'intérieur du volume interne du substrat S support. Le chapeau inversé forme ainsi le support tridimensionnel.
De par sa structure, on dit que l'antenne est de type bouchon.
Les premier et second motifs conducteurs Ml, M2 sont électriquement connectés : le second motif M2 est notamment connecté électriquement à l'extrémité supérieure Esup du premier motif conducteur Ml.
Un prototype d'une antenne selon ce mode de réalisation préféré a été développé et expérimenté.
Les caractéristiques de ce prototype sont les suivantes : hors plan de masse M, un élément rayonnant constitué par l'association du premier motif conducteur Ml et du second motif conducteur M2 est contenu dans un volume cylindrique, de diamètre égal à 30mm et de hauteur 20mm.
Etant donné la fréquence de fonctionnement mesurée, d'une valeur de 193MHz (correspondant à une longueur d'onde λ de 1554mm), la plus grande dimension de l'antenne (c'est-à-dire le diamètre du substrat support S de 30mm) est alors de l'ordre de λ/52, ce qui implique une antenne extrêmement compacte. En outre, à cette fréquence de 193MHz, l'antenne est parfaitement adaptée (c'est-à-dire un niveau d'adaptation < -25dB) et sa largeur de bande passante (pour un niveau d'adaptation inférieur à -lOdB) est de 1,3MHz. Ainsi une telle antenne est utilisable pour des applications développées aux fréquences VHF et UHF.
Ensemble antennaire
En relation avec les figures 8, 9 et 10, l'invention concerne également un ensemble antennaire comprenant un plan de masse M ; une pluralité de structures antennaires Ai (i>2) identiques telles que décrites ci-dessus et une sonde d'excitation 10 connectée en un point P du premier motif conducteur Ml d'une unique structure antennaire parmi la pluralité de structures antennaires Al, A2, de manière à alimenter une structure antennaire.
La structure antennaire ainsi excitée définit un élément primaire pour l'ensemble antennaire, l'au moins autre structure antennaire définissant au moins un élément secondaire « passif » non alimenté.
Ainsi, l'ensemble antennaire comprend une antenne et au moins une structure antennaire qui agit comme un élément parasite situé à proximité de l'antenne.
Par rapport à l'antenne, l'ensemble antennaire présente une bande passante élargie.
La figure 8 illustre un ensemble antennaire comprenant deux structures antennaires Al, A2 disposées l'une à côté de l'autre.
Dans ce mode de réalisation, la configuration consiste à associer une première et une seconde structures antennaires Al, A2, positionnées l'une par rapport à l'autre à une très faible distance D par rapport à la longueur d'onde du signal λ, et cela afin de conserver des dimensions globales pour l'ensemble antennaire particulièrement réduites.
Dans ce mode de réalisation, pour une fréquence de fonctionnement de 193MHz correspondant à une longueur d'onde λ de 1554mm, la distance D entre les deux structures (c'est-à-dire la distance entre les axes de symétrie centraux des structures Al, A2) est de 70mm, soit d'environ λ/22 (d'où D << λ). Notons que cette très grande proximité entre les structures est rendue possible de par le caractère miniature des structures antennaires utilisées (la taille des structures antennaires est de l'ordre de λ/52).
Toujours en relation avec le mode de réalisation de la figure 8, la première structure antennaire Al alimentée par la sonde d'excitation coaxiale 10 joue le rôle d'un élément rayonnant primaire, alimenté en un point de connexion P par le conducteur central 11 de la sonde d'excitation 10. La première structure antennaire Al alimentée est couplée électro- magnétiquement à la seconde structure antennaire, de configuration identique, mais qui est, quant à elle, non alimentée. Cette seconde structure antennaire joue, par conséquent, le rôle d'un élément secondaire « passif », fonctionnant initialement à la même fréquence de résonance que la première structure antennaire Al et positionné dans son environnement proche, afin de lui être couplé physiquement.
De par la combinaison des deux structures antennaires Al, A2, la réponse électrique obtenue sur la première structure antennaire Al est alors de type bi-fréquence, avec des valeurs de fréquence relativement proches l'une de l'autre.
L'écart en fréquence est fonction de la valeur du niveau de couplage existant entre la première structure antennaire Al et la seconde structure antennaire A2. Plus ce niveau diminue, plus les fréquences se rapprochent. Au niveau de la première structure antennaire Al couplée à la seconde structure antennaire A2, nous obtenons donc, en définitive, une réponse équivalente à celle d'un filtre passe bande à deux pôles, ce qui entraine un élargissement significatif de la bande passante comparativement à celle qui serait obtenue si seule la première structure antennaire était utilisée.
Afin de maintenir un bon niveau d'adaptation sur toute la bande passante de la première structure antennaire Al couplée à la seconde structure antennaire A2, les deux fréquences de résonance intervenant dans la réponse électrique doivent être très proches l'une de l'autre, ce qui conduit, a priori, à fixer un niveau de couplage entre les structures antennaires Al, A2 très faible.
Cette condition peut être satisfaite très simplement en augmentant la distance D entre les deux structures antennaires, mais au détriment de la compacité de l'ensemble antennaire.
Afin de pouvoir conserver le caractère compact de l'ensemble antennaire, en choisissant D égale à une valeur très petite par rapport à la longueur d'onde λ, la diminution du couplage peut être simplement obtenue grâce à la présence d'un écran électrique entre les deux structures antennaires Al, A2, cet écran pouvant être réalisé, par exemple, par l'utilisation d'un mur conducteur 100 connecté électriquement à sa base sur le plan de masse, comme cela est illustré sur la figure 9. Dans ce cas, la position du mur conducteur 100, ainsi que sa géométrie et ses dimensions permettent d'ajuster la valeur du couplage et donc de maîtriser finement l'allure de la réponse électrique dans la bande passante.
Pour augmenter la largeur de la bande passante, il est possible de rajouter des structures antennaires.
Comme cela a été précisé dans le cas de deux éléments, le principe de base consiste alors à construire au niveau de l'élément primaire une réponse électrique de type filtre passe bande multi-pôles en exploitant le couplage de cet élément primaire Al avec tous les autres éléments secondaires « passifs » Ai (i> l). Dans cette structure, le nombre n de structures antennaires, leur disposition géométrique sur le plan de masse, ainsi que le nombre, les positions et les caractéristiques des murs conducteurs constituent des paramètres de liberté quant à la conception et l'optimisation d'un tel ensemble antennaire.
A titre d'exemple, la figure 10 illustre un ensemble antennaire comprenant trois structures antennaires Al, A2, A3 disposées sur le plan de masse M de manière triangulaire et comprenant deux murs conducteurs.
Un prototype d'un ensemble antennaire comme illustré sur la figure 9 a été développé et expérimenté.
Ce prototype correspond à l'association de deux structures antennaires telles de l'antenne du mode de réalisation illustré sur la figure 5a.
Il a été relevé une augmentation de la bande passante de plus de 50% par rapport à l'antenne selon le mode de réalisation illustré sur la figure 5a.
La taille de chaque structure antennaire de ce prototype est de λ/52. L'ensemble antennaire fonctionne à une fréquence de 193MHz. Les deux structures antennaires sont séparées d'une distance D de 70mm, soit λ/22 et l'écran électrique permettant de contrôler le niveau de couplage entre les deux éléments est un simple mur conducteur rectangulaire de dimensions 30x70mm2, positionné entre les deux structures antennaires.

Claims

REVENDICATIONS
1. Structure antennaire adaptée pour être disposée sur un plan de masse (M) comprenant : un substrat (S) support tridimensionnel en matériau diélectrique partiellement évidé comprenant une paroi périphérique (SI) qui s'étend entre une extrémité proximale (S2) et une extrémité distale (S3), ledit substrat (S) support définissant un volume interne (S4) ; un premier motif (Ml) conducteur inscrit sur la paroi périphérique du substrat (S) support, le premier motif (Ml) conducteur comprenant une extrémité inférieure (Einf) adaptée pour être connectée à un plan de masse (M) et une extrémité supérieure (Esup) ; un second motif (M2) conducteur contenu dans le volume (S4) du substrat (S), le second motif (M2) étant connecté électriquement à l'extrémité supérieure (Esup) du premier motif (Ml).
2. Structure antennaire selon la revendication précédente, dans laquelle le substrat support a une forme de cylindre de révolution, cône tronqué, cube, prisme droit à base hexagonale, pyramide tronquée, volume à profil sinueux.
3. Structure antennaire selon l'une des revendications précédentes, dans laquelle le premier motif (Ml) est un fil conducteur ou un ruban conducteur.
4. Structure antennaire selon l'une des revendications précédentes, dans laquelle le premier motif (Ml) est inscrit sur la paroi périphérique de sorte à être enroulé en hélice autour du substrat support.
5. Structure antennaire selon l'une des revendications 1 à 3, dans laquelle le premier motif (Ml) est en forme de méandres, en forme de sinusoïde, une combinaison de forme(s) rectiligne(s) et sinueuse(s), en forme de motif(s) fractal(s).
6. Structure antennaire selon l'une des revendications précédentes, dans laquelle le second motif (M2) est configuré pour obturer au moins partiellement l'extrémité distale (S3) du substrat support (S).
7. Structure antennaire selon l'une des revendications précédentes, dans laquelle le second motif conducteur (M2) comprend un profil transversal choisi parmi le groupe suivant : droit, créneau, succession de lignes droites, successions de lignes droites et courbes, succession de lignes courbes.
8. Structure antennaire selon l'une des revendications précédentes, dans laquelle le second motif conducteur (M2) comprend :
un tronçon (C) creux ayant une paroi périphérique (Cl) qui s'étend entre une extrémité inférieure (C2) et une extrémité supérieure (C3), ledit tronçon s'étendant dans le volume (S4) interne défini par le substrat (S) support ;
une collerette (C) qui s'étend à partir de l'extrémité supérieure (C3) du tronçon jusqu'à l'extrémité distale (S3) du substrat (S) support.
9. Structure antennaire selon la revendication 8, dans laquelle le second motif conducteur (M2) comprend également un fond (C") obturant complètement l'extrémité inférieure du tronçon (C).
10. Antenne comprenant un plan de masse (M) et une structure antennaire (Ai) selon l'une des revendications précédentes disposée au-dessus dudit plan de masse, l'extrémité inférieure (Einf) du premier motif conducteur (Ml) étant connectée au plan de masse (M).
11. Antenne selon la revendication 10, comprenant une sonde d'excitation (10) adaptée pour alimenter la structure antennaire (Ai), la sonde d'excitation (10) étant connectée par l'intermédiaire du conducteur central (11) de ladite sonde d'excitation au premier motif conducteur (Ml) via un point de connexion (P) situé le long du premier motif conducteur (Ml) sur la paroi périphérique (SI).
12. Ensemble antennaire comprenant
un plan de masse (M) ;
une pluralité de structures antennaires identiques selon l'une des revendications 1 à
9,
une sonde d'excitation (10) connectée par l'intermédiaire du conducteur central (11) de ladite sonde d'excitation (10) au premier motif conducteur (Ml) d'une unique structure antennaire parmi la pluralité de structures antennaires, ladite structure antennaire ainsi excitée définissant un élément primaire pour l'ensemble antennaire, l'au moins autre structure antennaire définissant au moins un élément secondaire « passif » non alimenté.
13. Ensemble antennaire selon la revendication précédente, comprenant deux structures antennaires disposées sur le plan de masse côte à côte et séparées d'une distance inférieure à une fraction de la longueur d'ondes λ de fonctionnement de l'ensemble antennaire, typiquement inférieure à λ/20.
14. Ensemble antennaire selon la revendication 12, comprenant trois structures antennaires disposées sur le plan de masse de manière triangulaire.
15. Ensemble antennaire selon l'une des revendications 12 à 14, comprenant au moins un mur conducteur adapté pour diminuer le couplage entre les structures antennaires, le mur conducteur formant un écran électrique entre les structures antennaires.
PCT/EP2014/065176 2013-07-15 2014-07-15 Antenne de type bouchon et structure antennaire et ensemble antennaire associés WO2015007746A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14739168.4A EP3022802B1 (fr) 2013-07-15 2014-07-15 Antenne de type bouchon et structure antennaire et ensemble antennaire associés
US14/905,605 US10944163B2 (en) 2013-07-15 2014-07-15 Bung-type antenna and antennal structure and antennal assembly associated therewith
CN201480046398.0A CN105556748B (zh) 2013-07-15 2014-07-15 塞式天线和天线结构件以及与其相关联的天线组件
HK16111528.0A HK1223455A1 (zh) 2013-07-15 2016-10-04 塞式天線和天線結構件以及與其相關聯的天線組件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356954 2013-07-15
FR1356954A FR3008550B1 (fr) 2013-07-15 2013-07-15 Antenne de type bouchon et structure antennaire et ensemble antennaire associes

Publications (1)

Publication Number Publication Date
WO2015007746A1 true WO2015007746A1 (fr) 2015-01-22

Family

ID=49998316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/065176 WO2015007746A1 (fr) 2013-07-15 2014-07-15 Antenne de type bouchon et structure antennaire et ensemble antennaire associés

Country Status (6)

Country Link
US (1) US10944163B2 (fr)
EP (1) EP3022802B1 (fr)
CN (1) CN105556748B (fr)
FR (1) FR3008550B1 (fr)
HK (1) HK1223455A1 (fr)
WO (1) WO2015007746A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285333A1 (fr) 2016-08-16 2018-02-21 Institut Mines Telecom / Telecom Bretagne Système d'antenne multibande configurable et son procédé de conception
EP3340379A1 (fr) 2016-12-22 2018-06-27 Institut Mines Telecom / Telecom Bretagne Système d'antenne multibande configurable à capacité de large bande et son procédé de conception
EP3503293A1 (fr) 2017-12-19 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Agencement d'antenne multibande configurable et son procédé de conception
EP3503294A1 (fr) 2017-12-22 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Agencement d'antenne multibandes configurable à structure multiéléments et son procédé de conception
EP3591761A1 (fr) 2018-07-06 2020-01-08 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Agencement d'antenne multibande intégrée à une spécification d'une bibliothèque d'éléments de base

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745238B (zh) * 2021-02-18 2021-11-01 矽品精密工業股份有限公司 電子封裝件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292638A (en) * 1994-08-25 1996-02-28 Symmetricom Inc Three-dimensional antenna structure
WO1999043044A1 (fr) * 1998-02-20 1999-08-26 Ems Technologies, Inc. Systeme et procede pour accroitre la caracteristique d'isolation d'une antenne
US6075501A (en) * 1997-05-08 2000-06-13 Nec Corporation Helical antenna
US20070030210A1 (en) * 2004-09-03 2007-02-08 Murata Manufacturing Co., Ltd. Antenna apparatus

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH499888A (fr) * 1967-12-15 1970-11-30 Onera (Off Nat Aerospatiale) Antenne à un seul conducteur enroulé hélicoïdalement de dimensions réduites, et procédé pour sa fabrication
US3906509A (en) * 1974-03-11 1975-09-16 Raymond H Duhamel Circularly polarized helix and spiral antennas
FR2492540A1 (fr) * 1980-10-17 1982-04-23 Schlumberger Prospection Dispositif pour diagraphie electromagnetique dans les forages
US4612543A (en) * 1983-05-05 1986-09-16 The United States Of America As Represented By The Secretary Of The Navy Integrated high-gain active radar augmentor
US4608574A (en) * 1984-05-16 1986-08-26 The United States Of America As Represented By The Secretary Of The Air Force Backfire bifilar helix antenna
US5099249A (en) * 1987-10-13 1992-03-24 Seavey Engineering Associates, Inc. Microstrip antenna for vehicular satellite communications
SE468917B (sv) * 1991-08-16 1993-04-05 Ericsson Ge Mobile Communicat Miniatyrantenn
EP0588465A1 (fr) * 1992-09-11 1994-03-23 Ngk Insulators, Ltd. Diélectrique céramique pour antennes
GB9601250D0 (en) * 1996-01-23 1996-03-27 Symmetricom Inc An antenna
FI106895B (fi) * 1996-02-16 2001-04-30 Filtronic Lk Oy Dielektrisen levyn ja heliksiantennin yhdistetty rakenne
US6177911B1 (en) * 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
US6288682B1 (en) * 1996-03-14 2001-09-11 Griffith University Directional antenna assembly
GB9606593D0 (en) * 1996-03-29 1996-06-05 Symmetricom Inc An antenna system
US6184845B1 (en) * 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
US5943027A (en) * 1997-10-03 1999-08-24 Motorola, Inc. Telescopic antenna assembly
SE513469C2 (sv) * 1998-11-13 2000-09-18 Allgon Ab En anpassad antennanordning och en portabel radiokommunikationsanordning omfattande en anpassad antennanordning
GB9912441D0 (en) * 1999-05-27 1999-07-28 Symmetricon Inc An antenna
EP1111715A1 (fr) * 1999-06-29 2001-06-27 Mitsubishi Denki Kabushiki Kaisha Dispositif d'antenne
US6229488B1 (en) * 2000-09-08 2001-05-08 Emtac Technology Corp. Antenna for receiving signals from GPS and GSM
US6459413B1 (en) * 2001-01-10 2002-10-01 Industrial Technology Research Institute Multi-frequency band antenna
GB2373943A (en) * 2001-03-28 2002-10-02 Hewlett Packard Co Visible and infrared imaging camera
KR100406352B1 (ko) * 2001-03-29 2003-11-28 삼성전기주식회사 안테나 및 그 제조방법
US6768461B2 (en) * 2001-08-16 2004-07-27 Arc Wireless Solutions, Inc. Ultra-broadband thin planar antenna
KR100846487B1 (ko) * 2003-12-08 2008-07-17 삼성전자주식회사 등방향성 방사패턴을 갖는 초광대역 안테나
US7312758B2 (en) * 2006-04-04 2007-12-25 Harris Corporation Dual gain handheld radio antenna
US7385563B2 (en) * 2006-09-11 2008-06-10 Tyco Electronics Corporation Multiple antenna array with high isolation
JP4762126B2 (ja) * 2006-12-20 2011-08-31 株式会社東芝 電子機器
US7688275B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
US8075501B2 (en) * 2008-01-17 2011-12-13 Tensegrity Technologies, Inc. Methods for designing a foot orthotic
US8854266B2 (en) * 2011-08-23 2014-10-07 Apple Inc. Antenna isolation elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292638A (en) * 1994-08-25 1996-02-28 Symmetricom Inc Three-dimensional antenna structure
US6075501A (en) * 1997-05-08 2000-06-13 Nec Corporation Helical antenna
WO1999043044A1 (fr) * 1998-02-20 1999-08-26 Ems Technologies, Inc. Systeme et procede pour accroitre la caracteristique d'isolation d'une antenne
US20070030210A1 (en) * 2004-09-03 2007-02-08 Murata Manufacturing Co., Ltd. Antenna apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285333A1 (fr) 2016-08-16 2018-02-21 Institut Mines Telecom / Telecom Bretagne Système d'antenne multibande configurable et son procédé de conception
US10879612B2 (en) 2016-08-16 2020-12-29 Institut Mines-Telecom/Telecom Bretagne Configurable multiband antenna arrangement and design method thereof
EP3340379A1 (fr) 2016-12-22 2018-06-27 Institut Mines Telecom / Telecom Bretagne Système d'antenne multibande configurable à capacité de large bande et son procédé de conception
EP3503293A1 (fr) 2017-12-19 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Agencement d'antenne multibande configurable et son procédé de conception
WO2019121512A1 (fr) 2017-12-19 2019-06-27 Institut Mines Telecom - Imt Atlantique - Bretagne - Pays De La Loire Agencement d'antenne filaire multibande configurable et son procédé de conception
US11329380B2 (en) 2017-12-19 2022-05-10 Institut Mines Telecom—Imt Atlantique—Bretagne—Pays De La Loire Configurable multiband wire antenna arrangement and design method thereof
EP3503294A1 (fr) 2017-12-22 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Agencement d'antenne multibandes configurable à structure multiéléments et son procédé de conception
WO2019121553A1 (fr) 2017-12-22 2019-06-27 Institut Mines Telecom - Imt Atlantique - Bretagne - Pays De La Loire Agencement d'antenne multibande configurable avec une structure à éléments multiples et son procédé de conception
EP3591761A1 (fr) 2018-07-06 2020-01-08 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Agencement d'antenne multibande intégrée à une spécification d'une bibliothèque d'éléments de base
WO2020007718A1 (fr) 2018-07-06 2020-01-09 Institut Mines Telecom - Imt Atlantique - Bretagne - Pays De La Loire Agencement d'antenne multibande construit pour une spécification à partir d'une bibliothèque d'éléments de base
US11355848B2 (en) 2018-07-06 2022-06-07 Institut Mines Telecom—Imt Atlantique—Bretagne—Pays De La Loire Multiband antenna arrangement built to a specification from a library of basic elements

Also Published As

Publication number Publication date
HK1223455A1 (zh) 2017-07-28
CN105556748B (zh) 2019-06-04
US10944163B2 (en) 2021-03-09
EP3022802A1 (fr) 2016-05-25
US20160156095A1 (en) 2016-06-02
FR3008550B1 (fr) 2015-08-21
EP3022802B1 (fr) 2023-04-05
CN105556748A (zh) 2016-05-04
FR3008550A1 (fr) 2015-01-16

Similar Documents

Publication Publication Date Title
EP3022802B1 (fr) Antenne de type bouchon et structure antennaire et ensemble antennaire associés
EP1433223B1 (fr) Antenne fil-plaque multifrequences
EP2625741B1 (fr) Antenne de grande dimension à ondes de surface et à large bande
EP1979987B1 (fr) Antenne a polarisation circulaire ou lineaire
FR2936654A1 (fr) Antenne radiofrequence d&#39;emission-reception a parametres d&#39;emission-reception modifiables
FR2911725A1 (fr) Antenne ou element d&#39;antenne ultra-large bande.
WO2017155377A1 (fr) Antenne-réseau miniaturisée à quatre patchs en technologie microruban pour la détection des tumeurs infra-millimétriques du cancer du sein
EP1564842B1 (fr) Antenne ultra large bande
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d&#39;alimentation et le fil de court-circuit
EP2610966B1 (fr) Antenne compacte large bande à très faible épaisseur et à double polarisations linéaires orthogonales opérant dans les bandes V/UHF
FR2957194A1 (fr) Structure antennaire a dipoles
EP2817850A1 (fr) Dispositif a bande interdite electromagnetique, utilisation dans un dispositif antennaire et procede de determination des parametres du dispositif antennaire
EP3227960A1 (fr) Antenne reseau multicouche du type auto-complementaire
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
EP3008773B1 (fr) Procédé pour radioélectrifier un objet de mobilier urbain et objet ainsi radioélectrifié
EP3692596B1 (fr) Antenne radioelectrique a bas profil multi-bande
FR3003699A1 (fr) Antenne helice compacte a polarisation circulaire
EP2610965B1 (fr) Antenne compacte à large bande à double polarisation linéaire
EP0831550B1 (fr) Antenne-réseau polyvalente
FR3050077B1 (fr) Antenne plane
FR3131463A1 (fr) Antenne fil plaque monopolaire à bande passante élargie
FR3072215A1 (fr) Antenne a deux doublets
WO2007051931A2 (fr) Antenne miniaturisee pour utilisation grand public
WO2009004128A1 (fr) Antenne miniaturisee pour utilisation grand public
WO2014020272A1 (fr) Procédé de découplage électromagnétique entre une antenne et son mât de support et mât de support correspondant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046398.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14739168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014739168

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14905605

Country of ref document: US