EP0860895A1 - Antenne résonnante pour l'émission ou la réception d'ondes polarisées - Google Patents

Antenne résonnante pour l'émission ou la réception d'ondes polarisées Download PDF

Info

Publication number
EP0860895A1
EP0860895A1 EP98400438A EP98400438A EP0860895A1 EP 0860895 A1 EP0860895 A1 EP 0860895A1 EP 98400438 A EP98400438 A EP 98400438A EP 98400438 A EP98400438 A EP 98400438A EP 0860895 A1 EP0860895 A1 EP 0860895A1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna according
crown
skirt
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98400438A
Other languages
German (de)
English (en)
Inventor
Hervé Legay
Thierry Rostan
Frédéric Croq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel SA
Publication of EP0860895A1 publication Critical patent/EP0860895A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/12Refracting or diffracting devices, e.g. lens, prism functioning also as polarisation filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the invention relates to an antenna for transmitting or reception of the microwave domain. It relates more particularly a flat resonant antenna, for example made in microstrip technology.
  • Antennas of this type have a small footprint and a low mass. They are therefore used for applications on-board, in particular for space vehicles and the satellites.
  • the degradation of polarization purity is highest for the most distant directions of the antenna axis.
  • the invention aims to provide a resonant antenna which has maximum angular coverage with a purity of polarization preserved in this angular coverage.
  • the antenna according to the invention has a radiating element resonant central and it is characterized in that it comprises, preferably around this element, a first means diffracting to increase the emission angle of the radiating element and a second diffracting means for making a correction polarization purity at least for inclined directions relative to the axis of the antenna.
  • Each diffracting element has a dimension at more of the same order of magnitude as the wavelength to be emitted (or receive).
  • the first diffracting means intended to increase the opening angle of the beam to be emitted, has a conductive ring centered on the axis of the antenna and surrounding the radiating element, this crown being advantageously substantially in the same plane as the element radiating, and the second diffracting means comprises a skirt conductor arranged near the crown and on the side which is opposite to the direction of the radiation, the inclination of the skirt relative to the crown determining the direction in which polarization correction is mainly performed.
  • the internal rim of the skirt is integral with the internal rim of the crown, this skirt and this crown forming, for example, a single piece holding. It has been found that, with regard to the correction of polarization purity, better results were obtained if the largest diameter of the skirt is greater than the outside diameter of the crown.
  • the resonant radiating element is either an element solid conductor ("patch"), for example square or circular, either a conductive crown or a slot provided in a conductive element.
  • the ring is either conductive or in the form of a slot.
  • the antenna shown in Figure 1 is intended for receive or transmit microwave signals in two bands, namely, on the one hand, the S band at 2 GHz and, on the other hand, the UHF band at 400 MHz.
  • This antenna is mainly intended to be implanted on small satellites, such as satellites assigned to the location of objects or for measurement or remote control with conventional satellites.
  • small satellites such as satellites assigned to the location of objects or for measurement or remote control with conventional satellites.
  • it should have a bulk reduced, wide angular coverage for the two bands of frequencies as well as a circular polarization with a rate of suitable ellipticity on this wide angular coverage, especially for the directions furthest from the axis.
  • the antenna 10 shown in FIG. 1 is of the type combined. It is formed by the association of two planar antennas concentric, respectively 14 and 16. Each of the antennas 14 and 16 and the assembly 10 have an axis 12 of symmetry of rotation.
  • the central antenna 14, of smaller dimensions, is for the 2 GHz S-band and the outdoor antenna 16, of larger dimensions, is intended for the UHF band at 400 MHz.
  • Each of the individual antennas 14, 16 has a dielectric substrate, respectively 18 and 20, on which is deposited a conductive ring, respectively 22 and 24. Both rings 22 and 24 are centered on axis 12.
  • Each of the substrates is enclosed in a metal housing of cylindrical shape with an axis 12.
  • the housing for the antenna 14 has the reference 25 and the housing for the antenna 16 has the reference 26.
  • the latter housing is limited, of a on the one hand, by a cylindrical outer wall 26 1 and, on the other hand, by an inner cylindrical wall 26 2 at a short distance from the wall of the housing 25.
  • the space 28 formed between the wall of the housing 25 and the wall 26 2 has a length (in the direction of the axis 12) equal to a quarter of the length of the S-band waves, that is to say 35 mm about. It is open, in 29, on the side where the emission occurs. It constitutes a trap intended to prevent the propagation of leakage currents from the ring 22 to the ring 24.
  • a metal filling ring 36 can be arranged at the bottom of the space 28 adjust the length (parallel to axis 12) of this space 28 so that it is equal to the quarter of the wavelength of the S band.
  • the walls 25 and 26 2 can be formed from the same sheet of metal.
  • a metal ring or crown 30 Around the housing 26, substantially in the plane of the ring 24, and therefore perpendicular to the axis 12, is a metal ring or crown 30.
  • the inner rim 32 of the crown 30 is connected to a skirt 34 moving away, on the one hand, from the crown 30 in the direction from the bottom of the housing 26 and, on the other hand, from the axis 12.
  • the angle formed, in the plane of Figure 1, by the plane of the crown 30 and the skirt 34 is of the order of 45 °.
  • the ring 22 radiates in a cone of axis 12 of half angle at the top ⁇ equal to about 60 °. However, there is still a radiation outside this cone.
  • the purpose of crown 30 is to diffract waves deflected outward to increase omnidirectionality antenna 14.
  • the crown 30 tended to degrade the circular polarization of the radiation, that is, to degrade the rate of ellipticity.
  • the experience has shown that the skirt 34 made it possible to maintain a rate of ellipticity waves with circular polarization close to 1, especially for directions forming a large angle with axis 12.
  • the ellipticity rate can be adjusted empirically by varying the orientation of the skirt 34, that is to say the angle that it forms with the plane of the crown 30 as well as by making vary its dimensions.
  • the outer edge 34 1 of the skirt 34 is further from the axis-12 than the outer edge 30 1 of the crown 30.
  • the inside diameter of the crown 30 is 256 mm, its outside diameter 300 mm, while the outer diameter of the skirt 34 - which has a generally frustoconical shape - is 348 mm.
  • Skirt 34 is thought to create wave diffraction in S-band which opposes the negative effect of the diffracting crown 30 on the ellipticity rate of S-band waves
  • housings or cavities 25 and 26 contribute to symmetrizing the radiation diagram around axis 12 and to improve the ellipticity rate.
  • the dielectric substrates 18 and 20 have a relative dielectric permittivity ⁇ r of the order of 2.5. As indicated above, the higher this dielectric permittivity, the more the dimensions of the antennas can be reduced. However, the increase in the dielectric constant is unfavorable for maintaining the circular polarization. This is why, in the example, the constant ⁇ r does not exceed the value 2.5.
  • Figures 1a, 1b and 1c are diagrams allowing to highlight the advantages, on the one hand, of the quarter trap wave formed by the annular space 28 and, on the other hand, diffracting elements 30 and 34.
  • Figure 1a is a diagram for a similar antenna to that of Figure 1 but lacking, on the one hand, the quarter trap wave 28 and, on the other hand, diffracting elements 30 and 34.
  • Curve 40 corresponds to normal polarization and the curves 41 correspond to the cross polarization.
  • the purity of circular polarization is all the greater as large difference between curves 40 and 41.
  • the emission weakens appreciably as soon as moves away from axis 12.
  • Figure 1b corresponds to an antenna similar to that of FIG. 1, with a wave trap 28, however devoid of diffracting elements 30 and 34.
  • FIG. 1c corresponds to the antenna shown in FIG. 1, with a quarter-wave trap 28, the crown 30 and the skirt 34. It can be seen, compared with FIG. 1b, that omnidirectionality is everything quite satisfactory up to an angle ⁇ of 60 °. In addition, the purity of circular polarization is significantly improved between the angles 30 ° and 60 °, the distance between the curves 40 2 and 41 2 being significantly greater.
  • the compactness of the antenna is increased by giving a crenellated shape or by meanders at rings 22 and 24.
  • the ring 22 comprises, regularly distributed around the axis 12, eight internal segments 46 1 to 46 8 alternated with eight external segments 48 1 to 48 8 . These segments 46 and 48 in the form of arcs of circles are connected at their ends by rectilinear segments 50, of radial directions. Thus, in this example, the radial segments are sixteen.
  • the ring 24 is homothetic with the ring 22.
  • the guided wavelength of the radiation to be transmitted is directly proportional to the electrical length of the ring resonant antenna 14 (14 ') or 16 (16'). This length electric is equal to the sum of the lengths of all segments 46, 48 and 50.
  • an antenna according to the invention has a smaller footprint than a shaped antenna simply circular. Indeed, we note that, compared to a circular ring with the same diameter as the circle on which are arranged the segments 48, the electrical length is increased by approximately the sum of the lengths of the segments 50.
  • the longer the length of the segments 50 is large and the more the efficiency of the antenna decreases.
  • the antenna radiation impedance decreases because the ribbon metallic further obscures the opening; so the proportion of energy dissipated in the conductor or the dielectric is more important. It is therefore preferable that the ratio between the diameter outside and inside diameter be at most around of two.
  • Figure 4 shows, in exploded perspective, the various components of the antenna combined with 22 'rings and 24 ′ of the type of those in FIG. 3.
  • the crown 30 and the skirt 34 inclined at 45 ° constitute a single piece holding 50.
  • the 24 'and 22' rings are made by engraving on dielectric substrates, respectively 18 and 20, of a material called "polypenco".
  • the rings 22 'and 24' separated from the substrates 18 and 20; but it goes from these rings are deposited on the respective substrates 18 and 20.
  • a coaxial cable 60 passes through the bottom 52 of the housing 25 to bring the excitation signal to the distributor 54.
  • the role of the latter is to distribute, with appropriate phase shifts, the excitation signal between the four exterior segments 48 'of the 14 'ring.
  • a distributor 58 is arranged between the bottom 56 of the housing 26 and the dielectric 20 .
  • a coaxial cable 62 crosses the bottom 56 to bring the UHF excitation signal to the distributor 58 which distributes, with appropriate phase shifts, this excitation signal between the four outer segments of the ring 24 '.
  • FIGS 5, 6 and 7 show the distributor 54.
  • the circuits 64 shown in FIGS. 5 and 6, allow, from the excitation signal provided by the coaxial 60, to obtain a circular polarization. To this end, they feed the four outer segments 48 'with phase shifts successive 90 °.
  • the signal brought by the coaxial 60 is applied to an input 66 which, as shown in FIG. 5, is connected to the input of a 180 ° phase shifter 70 via a transformer 68.
  • the output 70 1 without phase shift of the phase shifter 70 is connected to a port 74 which is itself connected to a 90 ° phase shifter 78 via a transformer 76.
  • the output 70 2 with 180 ° phase shift from the phase shifter 70 is connected to a another port 80, which is connected to a second 90 ° phase shifter 84 by means of a transformer 82.
  • the output 78 1 without phase shift of the phase shifter 78 is connected to a first output 90 1 of the circuit 64 via a transformer 86 and an adapter 88.
  • the output 90 1 is connected to a first external segment of the 22 'ring.
  • the 90 ° phase shift output 78 2 of the phase shifter 78 is connected to a second output 90 2 , via another transformer and another adapter.
  • the outlet 90 2 is connected to a second outer segment of the ring 22 '.
  • phase-free output 84 1 of the phase shifter 84 is connected to the third output 90 3 via a transformer and an adapter.
  • This outlet 90 3 is connected to a third outer segment of the ring 22 '.
  • the output 84 2 of 90 ° phase shift from the phase shifter 84 is connected to the fourth output 90 4 of the circuit 64 by means of a transformer and an adapter.
  • This outlet 90 4 is connected to a fourth outer segment of the ring 22 '.
  • the signal on output 90 1 is in phase with the input signal on the first port 66, while the signals on outputs 90 2 , 90 3 and 90 4 are phase shifted by 90 °, 180 ° and 270 ° respectively. relative to the input signal.
  • the outlets 90 1 to 90 4 are located on the periphery of the cutouts and regularly distributed; these outputs are in line with the outer segments of the ring 22 'to which they are connected.
  • the cutouts metallic are sandwiched between dielectric distributors, 102 and 104 respectively.
  • each output 90 of circuit 64 is effected by means of a probe 92.
  • Four probes are therefore provided. In FIG. 7, the probe 92 1 is shown .
  • the distributor 64, 102, 104 is enclosed in a housing metallic 106 constituting a trap preventing excitation of surface waves on the distributor.
  • circuit 64 is made using metal engravings on a substrate.
  • a diffraction ring 30 surrounds the outermost antenna and this crown 30 is integral with a skirt 34 oriented substantially at 45 ° relative to the plane of the crown 30.
  • a quarter trap wave 28 prevents the propagation of a leakage current from the cavity excited towards the surrounding cavities.
  • a quarter wave trap 116 prevents the propagation of a current of leak to antenna 114.
  • the trap 116 is of greater length (along the axis) that the trap 28 because it is intended to eliminate lengths wave, those of the signals emitted by the antenna 112.
  • a number of antennas can be provided concentric greater than three.
  • FIG. 9 represents a resonant annular cavity which applies more particularly to a slot antenna.
  • this example could apply also to a resonant ring antenna formed by a conductor metallic.
  • the ring 130 is constituted by a slot 132 in a metallic conductor 134.
  • This ring 130 forms meanders each having substantially the shape of a petal. Number of petals is, in this embodiment, equal to 8.
  • the excitation be performed on the outer segments using a coaxial cable, it is also possible to provide excitation by coupling proximity with a microstrip line or with a slit in the ground plane, that is to say in a bottom of the cavity.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'antenne selon l'invention comprend un élément résonnant rayonnant (22) pour émettre des ondes hyperfréquences polarisées. Elle est caractérisée en ce qu'elle comporte un premier moyen diffractant, tel qu'une couronne (30), pour rayonner les ondes selon un angle supérieur à l'angle d'émission de l'élément rayonnant (22), et un second moyen diffractant, tel qu'une jupe (34), qui corrige la pureté de polarisation des ondes au moins dans des directions angulaires éloignées de la direction axiale (12) de l'antenne. <IMAGE>

Description

L'invention est relative à une antenne d'émission ou de réception du domaine des hyperfréquences. Elle concerne plus particulièrement une antenne résonnante plate, par exemple réalisée en technologie microruban.
Les antennes de ce type présentent un faible encombrement et une faible masse. Elles sont donc utilisées pour les applications embarquées, notamment pour les véhicules spatiaux et les satellites.
On a souvent besoin, en particulier pour les applications spatiales, d'antennes omnidirectionnelles, c'est-à-dire pouvant émettre ou recevoir dans un angle solide de grande valeur.
Mais on a constaté que l'exigence d'omnidirectionnalité est difficile à concilier avec l'exigence de conservation de la pureté de la polarisation des Ondes électromagnétiques à émettre ou recevoir.
En particulier, quand l'onde à émettre (ou recevoir) doit présenter une polarisation circulaire, il faut conserver un taux d'ellipticité proche de 1 dans toutes les directions d'émission (ou de réception).
Le plus souvent, la dégradation de la pureté de polarisation est la plus élevée pour les directions les plus éloignées de l'axe de l'antenne.
L'invention vise à fournir une antenne résonnante qui présente une couverture angulaire maximale avec une pureté de polarisation préservée dans cette couverture angulaire.
L'antenne selon l'invention présente un élément rayonnant central résonnant et elle est caractérisée en ce qu'elle comporte, de préférence autour de cet élément, un premier moyen diffractant pour augmenter l'angle d'émission de l'élément rayonnant et un second moyen diffractant pour apporter une correction de pureté de polarisation au moins pour des directions inclinées par rapport à l'axe de l'antenne.
Chaque élément diffractant présente une dimension au plus du même ordre de grandeur que la longueur d'onde à émettre (ou recevoir).
Dans un mode de réalisation, le premier moyen diffractant, destiné à augmenter l'angle d'ouverture du faisceau à émettre, comporte une couronne conductrice centrée sur l'axe de l'antenne et entourant l'élément rayonnant, cette couronne étant avantageusement sensiblement dans le même plan que l'élément rayonnant, et le second moyen diffractant comprend une jupe conductrice disposée à proximité de la couronne et du côté qui est opposé à la direction du rayonnement, l'inclinaison de la jupe par rapport à la couronne déterminant la direction dans laquelle la correction de polarisation est principalement effectuée.
Dans un mode de réalisation, le rebord interne de la jupe est solidaire du rebord interne de la couronne, cette jupe et cette couronne formant, par exemple, une pièce d'un seul tenant. On a constaté que, en ce qui concerne la correction de pureté de polarisation, de meilleurs résultats étaient obtenus si le plus grand diamètre de la jupe est supérieur au diamètre extérieur de la couronne.
L'élément rayonnant résonnant est soit un élément conducteur plein ("patch"), par exemple de forme carrée ou circulaire, soit une couronne conductrice, soit une fente prévue dans un élément conducteur. De toute façon, pour une longueur d'onde donnée à émettre (ou recevoir), on a intérêt, pour maximiser l'omnidirectionnalité, à prévoir une antenne en forme d'anneau, ces formes permettant de minimiser l'encombrement. L'anneau est soit conducteur, soit sous forme d'une fente. La minimisation de l'encombrement de l'élément résonnant, et donc la maximisation de l'omnidirectionnalité, peut aussi être obtenue en déposant l'élément conducteur résonnant sur un diélectrique de permittivité importante. Toutefois, l'augmentation de la permittivité n'est pas favorable à la pureté de polarisation.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1 est un schéma en coupe d'une antenne selon l'invention, utilisable pour deux bandes de fréquences, les figures 1a, 1b et 1c sont des diagrammes mettant en évidence des avantages de l'antenne de la figure 1,
  • la figure 2 est un schéma en plan d'un anneau d'une antenne conforme à l'invention,
  • la figure 3 est un schéma en plan des deux anneaux d'une antenne selon l'invention, mais un autre mode de réalisation,
  • la figure 4 est un schéma en perspective éclatée d'une antenne du type de celle de la figure 1,
  • la figure 5 est un schéma électrique d'alimentation d'un anneau de l'antenne de la figure 4,
  • la figure 6 est un schéma correspondant à un mode de réalisation de la figure 5,
  • la figure 7 est un schéma correspondant aussi à un mode de réalisation de la figure 5,
  • la figure 8 est un schéma simplifié correspondant à celui de la figure 1, mais une variante, et
  • la figure 9 est un schéma en plan d'un anneau pour une variante.
  • L'antenne représentée sur la figure 1 est destinée à recevoir ou émettre des signaux hyperfréquences selon deux bandes, à savoir, d'une part, la bande S à 2 GHz et, d'autre part, la bande UHF à 400 MHz.
    Cette antenne est principalement destinée à être implantée sur des satellites de petite taille, tels que des satellites affectés à la localisation d'objets ou pour des missions de mesure ou de télécommande avec des satellites conventionnels. Du fait de cette application, elle doit présenter un encombrement réduit, une large couverture angulaire pour les deux bandes de fréquences ainsi qu'une polarisation circulaire avec un taux d'ellipticité convenable sur cette large couverture angulaire, notamment pour les orientations les plus éloignées de l'axe.
    L'antenne 10 représentée sur la figure 1 est du type combiné. Elle est formée par l'association de deux antennes planaires concentriques, respectivement 14 et 16. Chacune des antennes 14 et 16 et l'ensemble 10 présentent un axe 12 de symétrie de rotation. L'antenne centrale 14, de plus petites dimensions, est destinée à la bande S à 2 GHz et l'antenne extérieure 16, de plus grandes dimensions, est destinée à la bande UHF à 400 MHz.
    Chacune des antennes individuelles 14, 16 comporte un substrat diélectrique, respectivement 18 et 20, sur lequel est déposé un anneau conducteur, respectivement 22 et 24. Les deux anneaux 22 et 24 sont centrés sur l'axe 12.
    Des exemples de réalisation des anneaux conducteurs 22 et 24 seront décrits ci-après en relation avec les figures 2 et 3.
    Chacun des substrats est enfermé dans un logement métallique de forme cylindrique d'axe 12. Le logement pour l'antenne 14 a la référence 25 et le logement pour l'antenne 16 a la référence 26. Ce dernier logement est limité, d'une part, par une paroi extérieure cylindrique 261 et, d'autre part, par une paroi cylindrique intérieure 262 à faible distance de la paroi du logement 25.
    L'espace 28 ménagé entre la paroi du logement 25 et la paroi 262 a une longueur (dans la direction de l'axe 12) égale au quart de la longueur des ondes en bande S, c'est-à-dire 35 mm environ. Il est ouvert, en 29, du côté où se produit l'émission. Il constitue un piège destiné à empêcher la propagation des courants de fuite de l'anneau 22 vers l'anneau 24.
    Un anneau métallique de remplissage 36 peut être disposé au fond de l'espace 28 ajuster la longueur (parallèlement à l'axe 12) de cet espace 28 afin qu'elle soit égale au quart de la longueur d'onde de la bande S.
    Les parois 25 et 262 peuvent être formées à partir de la même feuille de métal.
    Autour du logement 26, sensiblement dans le plan de l'anneau 24, et donc perpendiculaire à l'axe 12, se trouve un anneau ou couronne métallique 30.
    Le rebord intérieur 32 de la couronne 30 se raccorde à une jupe 34 s'éloignant, d'une part, de la couronne 30 en direction du fond du logement 26 et, d'autre part, de l'axe 12. Dans un exemple l'angle formé, dans le plan de la figure 1, par le plan de la couronne 30 et la jupe 34 est de l'ordre de 45°.
    L'anneau 22 rayonne dans un cône d'axe 12 de demi-angle au sommet  égal à environ 60°. Il subsiste cependant un rayonnement extérieur à ce cône. La couronne 30 a pour but de diffracter les ondes déviées vers l'extérieur afin d'augmenter l'omnidirectionnalité de l'antenne 14.
    Cependant, on a constaté que la couronne 30 avait tendance à dégrader la polarisation circulaire du rayonnement, c'est-à-dire à dégrader le taux d'ellipticité. L'expérience a montré que la jupe 34 permettait de conserver un taux d'ellipticité des ondes à polarisation circulaire proche de 1, surtout pour les directions formant un grand angle avec l'axe 12.
    Le taux d'ellipticité peut être réglé empiriquement en faisant varier l'orientation de la jupe 34, c'est-à-dire l'angle qu'elle forme avec le plan de la couronne 30 ainsi qu'en faisant varier ses dimensions.
    L'arête extérieure 341 de la jupe 34 est plus éloignée de l'axe-12 que l'arête extérieure 301 de la couronne 30.
    Dans un exemple, le diamètre intérieur de la couronne 30 est de 256 mm, son diamètre extérieur de 300 mm, tandis que le diamètre extérieur de la jupe 34 - qui a une forme générale tronconique - est de 348 mm.
    On pense que la jupe 34 crée une diffraction des ondes en bande S qui s'oppose à l'effet négatif de la couronne diffractante 30 sur le taux d'ellipticité des ondes en bande S.
    Il est à noter que les logements ou cavités 25 et 26 contribuent à symétriser le diagramme de rayonnement autour de l'axe 12 et à améliorer le taux d'ellipticité.
    Dans l'exemple, les substrats diélectriques 18 et 20 présentent une permittivité diélectrique relative εr de l'ordre de 2,5. Comme indiqué ci-dessus, plus cette permittivité diélectrique est élevée, plus les dimensions des antennes peuvent être réduites. Cependant, l'augmentation de la constante diélectrique est défavorable au maintien de la polarisation circulaire. C'est pourquoi, dans l'exemple, la constante εr ne dépasse pas la valeur 2,5.
    Les figures 1a, 1b et 1c sont des diagrammes permettant de mettre en évidence les avantages, d'une part, du piège quart d'onde constitué par l'espace annulaire 28 et, d'autre part, des éléments diffractants 30 et 34.
    Sur chacun de ces diagrammes, on a porté en abscisses, l'élévation  (en degrés), c'est-à-dire le demi-angle du cône d'émission d'axe 12, et en ordonnées, les amplitudes en décibels des rayonnements en polarisation normale et en polarisation croisée.
    La figure 1a est un diagramme pour une antenne analogue à celle de la figure 1 mais dépourvue, d'une part, du piège quart d'onde 28 et, d'autre part, des éléments diffractants 30 et 34.
    La courbe 40 correspond à la polarisation normale et les courbes 41 correspondent à la polarisation croisée. La pureté de la polarisation circulaire est d'autant plus grande qu'est grand l'écart entre les courbes 40 et 41. On voit ainsi que pour un angle  de 0°, c'est-à-dire selon l'axe 12, l'émission est selon une polarisation circulaire. Par contre, quand on s'éloigne de l'axe 12, la polarisation circulaire se dégrade notablement.
    En outre, l'émission s'affaiblit sensiblement dès qu'on s'éloigne de l'axe 12.
    La figure 1b correspond à une antenne analogue à celle de la figure 1, avec un piège 28 d'onde, cependant dépourvue des éléments diffractants 30 et 34.
    On constate que l'omnidirectionnalité ainsi que la pureté de polarisation circulaire sont améliorés par rapport au cas de la figure la. Toutefois, la pureté de polarisation circulaire n'est pas entièrement satisfaisante entre 30° et 60°, la distance entre les courbes 411 et 401 restant relativement faible.
    Le diagramme de la figure lc correspond à l'antenne représentée sur la figure 1, avec un piège quart d'onde 28, la couronne 30 et la jupe 34. On constate, par rapport à la figure 1b, que l'omnidirectionnalité est tout à fait satisfaisante jusqu'à un angle  de 60°. En outre, la pureté de polarisation circulaire est nettement améliorée entre les angles 30° et 60°, la distance entre les courbes 402 et 412 étant sensiblement plus importante.
    Selon une disposition de l'invention, la compacité de l'antenne est augmentée en conférant une forme crénelée ou en méandres aux anneaux 22 et 24.
    Dans l'exemple de la figure 2, l'anneau 22 comporte, régulièrement répartis autour de l'axe 12, huit segments internes 461 à 468 alternés avec huit segments externes 481 à 488. Ces segments 46 et 48 en forme d'arcs de cercles se raccordent à leurs extrémités par des segments rectilignes 50, de directions radiales. Ainsi, les segments radiaux sont, dans cet exemple, au nombre de seize. Bien que non représenté sur la figure 2, l'anneau 24 est homothétique de l'anneau 22.
    Dans l'exemple de la figure 3, on prévoit, pour les antennes S 22' et UHF 24', quatre segments internes et quatre segments externes.
    La longueur d'onde guidée du rayonnement à transmettre est directement proportionnelle à la longueur électrique de l'anneau de l'antenne résonnante 14 (14') ou 16 (16'). Cette longueur électrique est égale à la somme des longueurs de tous les segments 46, 48 et 50.
    Ainsi, pour une même longueur d'onde guidée, c'est-à-dire pour une même fréquence, une antenne selon l'invention présente un encombrement plus réduit qu'une antenne ayant une forme simplement circulaire. En effet, on constate que, par rapport à un anneau circulaire ayant le même diamètre que le cercle sur lequel sont disposés les segments 48, la longueur électrique est augmentée d'environ la somme des longueurs des segments 50.
    Cependant, on a constaté que plus la longueur des segments 50 est grande et plus le rendement de l'antenne diminue. L'impédance de rayonnement de l'antenne diminue car le ruban métallique masque davantage l'ouverture ; ainsi, la proportion d'énergie dissipée dans le conducteur ou le diélectrique est plus importante. Il est donc préférable que le rapport entre le diamètre extérieur et le diamètre intérieur soit au plus de l'ordre de deux.
    Par ailleurs, on a observé que la présence des segments 50 de directions radiales n'altérait pratiquement pas le taux d'ellipticité de la polarisation du rayonnement. En effet, un segment de direction radiale a aussi inconvénient de perturber le taux d'ellipticité. Toutefois, on pense que c'est la succession de segments parcourus par des courants en sens contraires qui compense l'effet négatif sur le taux d'ellipticité.
    Il faut donc prendre garde à disposer ces segments de façon telle que l'on obtienne cette compensation.
    La figure 4 montre, en perspective éclatée, les divers éléments constitutifs de l'antenne combinée avec des anneaux 22' et 24' du type de ceux de la figure 3.
    Comme on peut le voir sur cette figure, la couronne 30 et la jupe 34 inclinée à 45° constituent une pièce d'un seul tenant 50.
    Les anneaux 24' et 22' sont réalisés par gravure sur des substrats diélectriques, respectivement 18 et 20, en un matériau dénommé "polypenco". Sur la figure 4, on a représenté les anneaux 22' et 24' séparés des substrats 18 et 20 ; mais il va de soi que ces anneaux sont déposés sur les substrats respectifs 18 et 20.
    Entre le fond 52 du logement 25 et le substrat 18 est disposé un répartiteur 54 qui sera décrit plus loin en relation avec les figures 5 à 7.
    Un câble coaxial 60 traverse le fond 52 du logement 25 pour amener le signal d'excitation au répartiteur 54. Le rôle de ce dernier est de répartir, avec des déphasages appropriés, le signal d'excitation entre les quatre segments extérieurs 48' de l'anneau 14'.
    De même, entre le fond 56 du logement 26 et le diélectrique 20, est disposé un répartiteur 58.
    Un câble coaxial 62 traverse le fond 56 pour amener le signal d'excitation UHF vers le répartiteur 58 qui distribue, avec des déphasages appropriés, ce signal d'excitation entre les quatre segments extérieurs de l'anneau 24'.
    Les figures 5, 6 et 7 représentent le répartiteur 54.
    Les circuits 64, représentés sur les figures 5 et 6, permettent, à partir du signal d'excitation fourni par le coaxial 60, d'obtenir une polarisation circulaire. A cet effet, ils alimentent les quatre segments extérieurs 48' avec des déphasages successifs de 90°.
    Le signal amené par le coaxial 60 est appliqué sur une entrée 66 qui, comme montré sur la figure 5, est connectée à l'entrée d'un déphaseur 70 de 180° par l'intermédiaire d'un transformateur 68. La sortie 701 sans déphasage du déphaseur 70 est reliée à un port 74 qui est connecté lui-même à un déphaseur 78 de 90° par l'intermédiaire d'un transformateur 76. La sortie 702 à déphasage de 180° du déphaseur 70 est reliée à un autre port 80, lequel est connecté à un second déphaseur 84 de 90° par l'intermédiaire d'un transformateur 82.
    La sortie 781 sans déphasage du déphaseur 78 est reliée à une première sortie 901 du circuit 64 par l'intermédiaire d'un transformateur 86 et d'un adaptateur 88. La sortie 901 est connectée à un premier segment extérieur de l'anneau 22'.
    De même, la sortie 782 de déphasage 90° du déphaseur 78 est reliée à une seconde sortie 902, par l'intermédiaire d'un autre transformateur et d'un autre adaptateur. La sortie 902 est reliée à un second segment extérieur de l'anneau 22'.
    La sortie sans déphasage 841 du déphaseur 84 est reliée à la troisième sortie 903 par l'intermédiaire d'un transformateur et d'un adaptateur. Cette sortie 903 est reliée à un troisième segment extérieur de l'anneau 22'.
    Enfin, la sortie 842 de déphasage de 90° du déphaseur 84 est reliée à la quatrième sortie 904 du circuit 64 par l'intermédiaire d'un transformateur et d'un adaptateur. Cette sortie 904 est reliée à un quatrième segment extérieur de l'anneau 22'.
    Le signal sur la sortie 901 est en phase avec le signal d'entrée sur le premier port 66, tandis que les signaux sur les sorties 902, 903 et 904 sont déphasés respectivement de 90°, 180° et 270° par rapport au signal d'entrée.
    Les divers éléments du circuit de la figure 5 sont réalisés à l'aide de découpes métalliques représentées sur la figure 6. Sur cette dernière, on a indiqué les mêmes éléments que ceux de la figure 5, avec les mêmes chiffres de références.
    Les sorties 901 à 904 se trouvent à la périphérie des découpes et régulièrement réparties; ces sorties sont au droit des segments extérieurs de l'anneau 22' auxquels elles sont raccordées.
    Comme on peut le voir sur la figure 7, les découpes métalliques sont en sandwich entre des diélectriques répartiteurs, respectivement 102 et 104.
    La connexion de chaque sortie 90 du circuit 64 au segment extérieur correspondant de l'anneau s'effectue par l'intermédiaire d'une sonde 92. On prévoit donc quatre sondes. Sur la figure 7, on a représenté la sonde 921.
    Le répartiteur 64, 102, 104 est enfermé dans un logement métallique 106 constituant un piège empêchant l'excitation d'ondes de surface sur le répartiteur.
    En variante, à la place de rubans, ou découpes métalliques, le circuit 64 est réalisé à l'aide de gravures métalliques sur un substrat.
    Dans l'exemple représenté sur la figure 8, on prévoit trois antennes concentriques, respectivement 110, pour l'antenne centrale, 112 pour l'antenne intermédiaire et 114 pour l'antenne la plus extérieure.
    Comme dans la réalisation représentée sur la figure 1, une couronne 30 de diffraction entoure l'antenne la plus extérieure et cette couronne 30 est solidaire d'une jupe 34 orientée sensiblement à 45° par rapport au plan de la couronne 30. Également comme dans la réalisation de la figure 1, un piège quart d'onde 28 empêche la propagation d'un courant de fuite de la cavité excitée vers les cavités environnantes. De façon analogue, un piège quart d'onde 116 empêche la propagation d'un courant de fuite vers l'antenne 114.
    Le piège 116 est de longueur (selon l'axe) plus grande que le piège 28 car il est destiné à éliminer des longueurs d'onde plus grandes, celles des signaux émis par l'antenne 112.
    Bien entendu, on peut prévoir un nombre d'antennes concentriques supérieur à trois.
    Bien que les exemples décrits ci-dessus concernent des antennes à anneaux résonnants formés par un conducteur métallique, on comprend aisément que l'invention s'applique aussi à une antenne réalisée par une fente dans un conducteur. Pour certaines applications, notamment celles pour lesquelles l'échauffement doit être minimisé, cette réalisation à fente sera préférée.
    La variante représentée sur la figure 9 représente une cavité annulaire résonnante qui s'applique plus particulièrement à une antenne à fente. Toutefois, cet exemple pourrait s'appliquer aussi à une antenne à anneau résonnant formé par un conducteur métallique.
    L'anneau 130 est constitué par une fente 132 dans un conducteur métallique 134. Cet anneau 130 forme des méandres ayant chacun sensiblement la forme d'un pétale. Le nombre de pétales est, dans cette réalisation, égal à 8.
    Bien que dans les exemples décrits ci-dessus, l'excitation soit réalisée sur les segments extérieurs à l'aide d'un câble coaxial, on peut également prévoir une excitation par couplage de proximité avec une ligne microruban ou avec une fente dans le plan de masse, c'est-à-dire dans un fond de cavité.

    Claims (12)

    1. Antenne comprenant un élément résonnant rayonnant (22, 22') pour émettre des ondes hyperfréquences polarisées, caractérisée en ce qu'elle comporte un premier moyen diffractant (30) rayonner les ondes selon un angle supérieur à l'angle d'émission de l'élément rayonnant (22, 22'), et un second moyen diffractant (34) corrigeant la pureté de polarisation des ondes au moins pour certaines directions.
    2. Antenne selon la revendication 1, caractérisée en ce que le second moyen diffractant (34) augmente la pureté de polarisation dans des directions angulaires éloignées de la direction axiale (12) de l'antenne.
    3. Antenne selon la revendication 1 ou 2, caractérisée en ce que le premier moyen diffractant comporte une couronne (30) entourant l'élément rayonnant (22) et en ce que le second moyen diffractant comprend une jupe (34) disposée à proximité de la couronne (30) et à l'opposé de la direction de rayonnement de l'élément rayonnant (22).
    4. Antenne selon la revendication 3, caractérisée en ce que la jupe présente un rebord interne solidaire du rebord interne (32) de la couronne (30).
    5. Antenne selon la revendication 3 ou 4, caractérisée en ce que la jupe, qui présente une forme sensiblement tronconique, a une arête extérieure (341) de plus grand diamètre que l'arête extérieure (301) de la couronne (30).
    6. Antenne selon l'une quelconque des revendications 3 à 5, caractérisée en ce que l'inclinaison de la jupe par rapport à l'axe (12) de l'antenne détermine la direction dans laquelle est privilégiée la correction de polarisation.
    7. Antenne selon l'une quelconque des revendications 3 à 6, caractérisée en ce que les dimensions de la jupe déterminent la direction dans laquelle est privilégiée la correction de polarisation.
    8. Antenne selon l'une quelconque des revendications 3 à 7, caractérisée en ce que la couronne (30) se trouve sensiblement dans le même plan que l'élément rayonnant (22, 22').
    9. Antenne selon l'une quelconque des revendications 3 à 8, caractérisée en ce qu'entre l'élément rayonnant (22, 22') et les premier et second moyens diffractants, se trouve au moins une autre antenne (16).
    10. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'élément rayonnant (22, 22') est disposé sur un substrat diélectrique (18) enfermé dans un logement conducteur (25) présentant des parois s'étendant de façon sensiblement parallèle à un axe (12) perpendiculaire à la surface de l'élément rayonnant (22, 22').
    11. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est destinée à émettre des ondes en bande S.
    12. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est destinée à émettre des ondes à polarisation circulaire.
    EP98400438A 1997-02-24 1998-02-23 Antenne résonnante pour l'émission ou la réception d'ondes polarisées Withdrawn EP0860895A1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9702170 1997-02-24
    FR9702170A FR2760133B1 (fr) 1997-02-24 1997-02-24 Antenne resonnante pour l'emission ou la reception d'ondes polarisees
    US09/028,815 US6008772A (en) 1997-02-24 1998-02-24 Resonant antenna for transmitting or receiving polarized waves

    Publications (1)

    Publication Number Publication Date
    EP0860895A1 true EP0860895A1 (fr) 1998-08-26

    Family

    ID=26233340

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98400438A Withdrawn EP0860895A1 (fr) 1997-02-24 1998-02-23 Antenne résonnante pour l'émission ou la réception d'ondes polarisées

    Country Status (4)

    Country Link
    US (1) US6008772A (fr)
    EP (1) EP0860895A1 (fr)
    CA (1) CA2228640A1 (fr)
    FR (1) FR2760133B1 (fr)

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6552687B1 (en) * 2002-01-17 2003-04-22 Harris Corporation Enhanced bandwidth single layer current sheet antenna
    US6788264B2 (en) * 2002-06-17 2004-09-07 Andrew Corporation Low profile satellite antenna
    JP4143844B2 (ja) * 2003-11-06 2008-09-03 ミツミ電機株式会社 アンテナ装置
    US8350771B1 (en) * 2009-06-02 2013-01-08 The United States Of America, As Represented By The Secretary Of The Navy Dual-band dual-orthogonal-polarization antenna element
    TWI449445B (zh) * 2010-10-07 2014-08-11 Wistron Neweb Corp 束波調整裝置
    US10693218B2 (en) * 2014-07-01 2020-06-23 Microsoft Technology Licensing, Llc Structural tank integrated into an electronic device case
    US9985341B2 (en) 2015-08-31 2018-05-29 Microsoft Technology Licensing, Llc Device antenna for multiband communication
    US11152688B2 (en) 2018-09-27 2021-10-19 Commscope Technologies Llc Universal antenna mount and base plate therefor

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4042935A (en) * 1974-08-01 1977-08-16 Hughes Aircraft Company Wideband multiplexing antenna feed employing cavity backed wing dipoles
    US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
    EP0227121A1 (fr) * 1985-12-25 1987-07-01 Nec Corporation Antenne cornet avec une structure piège à ondes de surface sur la partie extérieure

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2802209A (en) * 1952-05-29 1957-08-06 Bell Telephone Labor Inc Antennas employing laminated conductors
    US3742510A (en) * 1971-01-12 1973-06-26 Itt Multimode discone antenna
    FR2372522A1 (fr) * 1976-11-30 1978-06-23 Thomson Csf Antenne omnidirectionnelle a diagramme de directivite reglable en site

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4042935A (en) * 1974-08-01 1977-08-16 Hughes Aircraft Company Wideband multiplexing antenna feed employing cavity backed wing dipoles
    US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
    EP0227121A1 (fr) * 1985-12-25 1987-07-01 Nec Corporation Antenne cornet avec une structure piège à ondes de surface sur la partie extérieure

    Also Published As

    Publication number Publication date
    FR2760133B1 (fr) 1999-03-26
    US6008772A (en) 1999-12-28
    FR2760133A1 (fr) 1998-08-28
    CA2228640A1 (fr) 1998-08-24

    Similar Documents

    Publication Publication Date Title
    EP0899814B1 (fr) Structure rayonnante
    EP0403910B1 (fr) Elément rayonnant diplexant
    EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
    FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
    EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
    EP0708492A1 (fr) Antenne à microbande notamment pour des applications horlogères
    EP0805512A1 (fr) Antenne imprimée compacte pour rayonnement à faible élévation
    EP1979987B1 (fr) Antenne a polarisation circulaire ou lineaire
    EP1145379A1 (fr) Antenne pourvue d&#39;un assemblage de materiaux filtrant
    EP0860893A1 (fr) Ensemble d&#39;antennes concentriques pour des ondes hyperfréquences
    EP0518271A1 (fr) Antenne hyperfréquence élémentaire bipolarisée
    EP0860895A1 (fr) Antenne résonnante pour l&#39;émission ou la réception d&#39;ondes polarisées
    EP0860894B1 (fr) Antenne miniature résonnante de type microruban de forme annulaire
    WO2012095365A1 (fr) Antenne a resonateur dielectrique
    CA2356725A1 (fr) Lentille divergente a dome pour ondes hyperfrequences et antenne comportant une telle lentille
    EP0585250B1 (fr) Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes
    CA2327371C (fr) Source rayonnante pour antenne d&#39;emission et de reception destinee a etre installee a bord d&#39;un satellite
    EP3902059A1 (fr) Antenne directive large bande à émission longitudinale
    EP0337841A1 (fr) Antenne boucle large bande à alimentation dissymétrique, notamment antenne pour émission, et antenne réseau formée d&#39;une pluralité de telles antennes
    WO2023031543A1 (fr) Antenne multi-bandes
    EP3155690A1 (fr) Antenne plate de telecommunication par satellite
    CA2800949A1 (fr) Antenne compacte a large bande a double polarisation lineaire

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    17P Request for examination filed

    Effective date: 19990226

    AKX Designation fees paid

    Free format text: DE ES FR GB IT

    RBV Designated contracting states (corrected)

    Designated state(s): DE ES FR GB IT

    17Q First examination report despatched

    Effective date: 20031119

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20040302