EP2160299A2 - Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme - Google Patents

Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme

Info

Publication number
EP2160299A2
EP2160299A2 EP08749439A EP08749439A EP2160299A2 EP 2160299 A2 EP2160299 A2 EP 2160299A2 EP 08749439 A EP08749439 A EP 08749439A EP 08749439 A EP08749439 A EP 08749439A EP 2160299 A2 EP2160299 A2 EP 2160299A2
Authority
EP
European Patent Office
Prior art keywords
resins
plasticizing
rubber composition
composition according
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08749439A
Other languages
German (de)
English (en)
French (fr)
Inventor
Garance Lopitaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Michelin Recherche et Technique SA France, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP2160299A2 publication Critical patent/EP2160299A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to rubber compositions intended in particular for the manufacture of tire treads, it relates more particularly to plasticizer systems that can be used for the plasticization of such compositions.
  • a tire tread must, as is known, obey a large number of technical, often antithetical, requirements including low rolling resistance, high wear resistance, and high adhesion on dry roads. as wet.
  • hydrocarbon plasticizing resins in their rubber compositions, as described, for example, in patents or patent applications US 3,927,144, GB 2,178,046, JP 61-190538, JP 09-328577, WO 91/18947, WO 02/088238, WO 02/072688, WO 02/072689.
  • plasticizer systems comprising in combination non-aromatic oils of the MES or TDAE type with resins.
  • terpene hydrocarbons such as polylimonene, or alternatively with hydrocarbon resins of C5 / vinylaromatic cut copolymer or of terpene / vinylaromatic copolymer (see patent applications WO 2005/087859, WO 2006/061064 and WO 2007/017060).
  • the Applicants have discovered a new plasticizer system based on a hydrocarbon plasticizing resin which makes it possible, in comparison with a combination of a hydrocarbon resin and an MES oil, to further improve the adhesion on wet ground of pneumatic tires without penalizing their resistance to wear.
  • a first subject of the invention relates to a rubber composition
  • a rubber composition comprising at least one diene elastomer, a reinforcing filler and a plasticizer system, characterized in that said plasticizer system comprises at least:
  • radicals R identical or different, represent a hydrocarbon radical.
  • Phthalate diesters of formula (I) are well known as plasticisers of plastics and various other polymers. They have been described in particular in the article "OiIs,
  • the invention also relates, in itself, to a plasticizer system that can be used for plasticizing a diene rubber composition, said system comprising at least one combination, a hydrocarbon plasticizing resin whose Tg is greater than 0 ° C. and a compound of formula (I), as well as the use of such a system for the plasticization of a diene rubber composition for a tire.
  • the invention also relates to a process for preparing a rubber composition having improved wear resistance, this composition being based on a diene elastomer, a reinforcing filler and a plasticizer system, said process comprising the following steps:
  • the invention also relates to the use of a composition according to the invention for the manufacture of a finished article or a semi-finished rubber product intended for any system of ground connection of a motor vehicle, such as pneumatic, internal safety support for tire, wheel, rubber spring, elastomeric joint, other suspension and anti-vibration element.
  • the subject of the invention is particularly the use of a composition according to the invention for the manufacture of tires or semi-finished rubber products intended for these tires, these semi-finished products being in particular chosen from the group consisting of treads, crown reinforcement plies, sidewalls, carcass reinforcement plies, beads, guards, underlayments, rubber blocks and other internal rubbers, in particular decoupling erasers, intended to provide the connection or interface between the aforementioned zones of the tires.
  • the invention more particularly relates to the use of a composition according to the invention for the manufacture of a tire tread.
  • the invention also relates to the tires themselves and the semi-finished products, especially tire treads, when they comprise a rubber composition according to the invention.
  • the tires of the invention are particularly intended for equipping tourism-type motor vehicles, SUVs ("Sport Utility Vehicles"), two wheels (in particular motorcycles), planes, such as industrial vehicles chosen from light trucks, "heavy vehicles”. - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-road vehicles such as agricultural or civil engineering vehicles, and other transport or handling vehicles.
  • the rubber compositions are characterized, before and after firing, as indicated below.
  • the Mooney plasticity measurement is carried out according to the following principle: the raw composition (i.e., before firing) is molded in a cylindrical chamber heated to 100 ° C. After one minute of preheating, the rotor rotates within the test tube at 2 revolutions / minute and the useful torque is measured to maintain this movement after 4 minutes of rotation.
  • the measurements are carried out at 150 ° C. with an oscillating chamber rheometer, according to the standard
  • the Shore A hardness of the compositions after curing is assessed according to ASTM D 2240-86.
  • Dynamic properties are measured on a viscoanalyzer (Metravib VA4000) according to ASTM D 5992-96.
  • the response of a sample of vulcanized composition (cylindrical specimen 4 mm in thickness and 400 mm 2 in section), subjected to sinusoidal stress in alternating simple shear, at the frequency of 10 Hz, at a temperature of 40 is recorded. ° C.
  • a strain amplitude sweep of 0.1 to 50% is carried out
  • Rolling resistance is measured on a steering wheel according to ISO 87-67 (1992). A value greater than that of the control, arbitrarily set at 100, indicates an improved result that is to say a lower rolling resistance.
  • the tires are subjected to actual driving on the road, on a specific motor vehicle, until the wear due to rolling reaches the wear indicators arranged in the grooves of the tread.
  • the rubber composition according to the invention which can be used in particular for the manufacture of a tire or a tire tread, comprises at least one diene elastomer, a reinforcing filler and a specific plasticizer system.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • elastomer or “diene” rubber it is to be understood in a known manner (one or more elastomers) are understood to come from at least a part (ie, a homopolymer or a copolymer) of diene monomers (monomers carrying two carbon-to-carbon double bonds , conjugated or not). These diene elastomers can be classified into two categories: "essentially unsaturated” or "essentially saturated”.
  • essentially unsaturated is generally understood to mean a diene elastomer derived at least in part from conjugated diene monomers, having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%);
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the above definition and may in particular be described as "essentially saturated” diene elastomers ( low or very low diene origin, always less than 15%).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • iene elastomer can be understood more particularly to be used in the compositions according to the invention:
  • diene elastomer any type of diene elastomer, one skilled in the art of the tire will understand that the present invention is preferably implemented with essentially unsaturated diene elastomers, in particular of the type (a) or (b). ) above.
  • conjugated dienes 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di (C 1 -C 8) alkyl-1,3-butadienes, such as, for example, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-isopropyl-1 3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene.
  • Suitable vinylaromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, the "vinyl-toluene" commercial mixture, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene.
  • the copolymers may contain between 99% and 20% by weight of diene units and between 1% and 80% by weight of vinylaromatic units.
  • the elastomers may have any microstructure which is a function of the polymerization conditions used, in particular the presence or absence of a modifying and / or randomizing agent and the amounts of modifying and / or randomizing agent used.
  • the elastomers can be for example block, statistical, sequence, microsequential, and be prepared in dispersion or in solution; they can be coupled and / or star or functionalized with a coupling agent and / or starring or functionalization.
  • alkoxysilane groups such as as described for example in FR 2,765,882 or US 5,977,238), carboxylic groups (as described for example in WO 01/92402 or US 6,815,473, WO 2004/096865 or US 2006/0089445) or groups polyethers (as described for example in EP 1 127 909 or US Pat. No. 6,503,973).
  • Tg glass transition temperature
  • styrene content between 5% and 60% by weight and more particularly between 20% and 50%, a content (% molar) in -1,2 bonds of the butadiene part of between 4% and 75%, a content (% molar) in trans-1,4 bonds between 10% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content of between 5% and 90% by weight and a Tg of -40 ° C. to 80 0 C, isoprene-styrene copolymers and especially those having a styrene content of between 5% and 50% by weight and a Tg comp between -25 ° C. and -50 ° C.
  • butadiene-styrene-isoprene copolymers those having a styrene content of between 5% and 50% by weight and more particularly between 10% and 40% are particularly suitable.
  • an isoprene content of between 15% and 60% by weight and more particularly between 20% and 50% a butadiene content of between 5% and 50% by weight and more particularly between 20% and 40%
  • a content of (mol%) in units - 1,2 of the butadiene part of between 4% and 85% a content (mol%) in trans units 1,4 of the butadiene part of between 6% and 80%
  • a content ( mol%) in units -1,2 plus -3,4 of the isoprene part of between 5% and 70% and a content (mol%) in trans units -1,4 of the isoprenic part of between 10% and 50% and more generally any butadiene-styrene-isoprene copolymer having a Tg between -20 ° C and -70
  • the diene elastomer of the composition in accordance with the invention is preferably chosen from the group of highly unsaturated diene elastomers consisting of polybutadienes (abbreviated as "BR"), synthetic polyisoprenes (IR) and natural rubber (NR), butadiene copolymers, isoprene copolymers and mixtures of these elastomers.
  • BR polybutadienes
  • IR synthetic polyisoprenes
  • NR natural rubber
  • butadiene copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR) and isoprene-copolymers.
  • SBIR butadiene-styrene
  • the diene elastomer is predominantly (ie, for more than 50 phr) an SBR, whether it is an emulsion-prepared SBR ("ESBR") or an SBR prepared in solution (“SSBR”), or a blend (mixture) SBR / BR, SBR / NR (or SBR / IR), BR / NR (or BRTIR), or SBR / BR / NR (or SBR / BR / IR) .
  • SBR emulsion-prepared SBR
  • SSBR SBR prepared in solution
  • a blend mixture (mixture) SBR / BR, SBR / NR (or SBR / IR), BR / NR (or BRTIR), or SBR / BR / NR (or SBR / BR / IR) .
  • an SBR elastomer In the case of an SBR elastomer (ESBR or SSBR), an SBR having an average styrene content, for example between 20% and 35% by weight, or a high styrene content, for example 35 to 35% by weight, is used in particular. 45%, a vinyl ring content of the butadiene part of between 15% and 70%, a content (mol%) of trans-1,4 bonds of between 15% and 75% and a Tg of between -10 ° C. and - 55 ° C; such an SBR can be advantageously used in admixture with a BR preferably having more than 90% (mol%) of cis-1,4 bonds.
  • the diene elastomer is predominantly (for more than 50 phr) an isoprene elastomer.
  • the compositions of the invention are intended to constitute, in tires, the rubber matrices of certain treads (for example for industrial vehicles), crown reinforcing plies (for example webs, webs, or webs), carcass reinforcement webs, sidewalls, beads, protectors, underlayments, rubber blocks, and other internal gums providing the interface between webs aforementioned areas of the tires.
  • isoprene elastomer in known manner a homopolymer or a copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), different isoprene copolymers and mixtures of these elastomers.
  • NR natural rubber
  • IR synthetic polyisoprenes
  • isoprene copolymers examples include isobutene-isoprene copolymers (butyl rubber-HR), isoprene-styrene copolymers (SIR), isoprene-butadiene copolymers (BIR) or isoprene-butadiene-styrene copolymers. (SBIR).
  • This isoprene elastomer is preferably natural rubber or a synthetic cis-1,4 polyisoprene; of these synthetic polyisoprenes, preferably polyisoprenes having a content (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%.
  • the composition according to the invention may contain less than an essentially saturated diene elastomer, in particular at least one EPDM copolymer or a butyl rubber (optionally chlorinated or brominated), that these copolymers are used alone or in admixture with highly unsaturated diene elastomers as mentioned above, in particular NR or IR, BR or SBR.
  • the rubber composition comprises a blend of one (or more) diene elastomers called “high Tg” having a Tg between -70 ° C and 0 ° C and d one (or more) diene elastomers, called “low Tg", of between -110 ° C and -80 ° C, more preferably between -105 ° C and -90 ° C.
  • the high Tg elastomer is preferably selected from the group consisting of S-SBR, E-SBR, natural rubber, synthetic polyisoprenes (having a (mol%) content of cis-1,4 linkages of preferably greater than 95%), BIRs, SIRs, SBIRs, and mixtures of these elastomers.
  • the low Tg elastomer preferably comprises butadiene units at a level (mol%) of at least 70%; it consists preferably of a polybutadiene (BR) having a content (mol%) of cis-1,4 chains greater than 90%.
  • the rubber composition comprises, for example, from 30 to 100 phr, in particular from 50 to 100 phr, of a high Tg elastomer in a blend with 0 to 70 phr, in particular from 0 to 50 phr, of a low Tg elastomer; according to another example, it comprises for all 100 pce one or more SBR prepared (s) in solution.
  • the diene elastomer of the composition according to the invention comprises a blend of a BR (as low elastomer Tg) having a rate (mol%) of cis chains -1.4 greater than 90%, with one or more S-SBR or E-SBR (as elastomer (s) high Tg).
  • compositions of the invention may contain a single diene elastomer or a mixture of several diene elastomers, the diene elastomer (s) may be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers, for example thermoplastic polymers.
  • reinforcing charge Any type of reinforcing filler known for its ability to reinforce a rubber composition that can be used for manufacturing tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica, or a cutting of these two types of filler, including a cut of carbon black and silica.
  • an organic filler such as carbon black
  • a reinforcing inorganic filler such as silica
  • a cutting of these two types of filler including a cut of carbon black and silica.
  • Carbon blacks are suitable for all carbon blacks, in particular blacks of the HAF, ISAF, SAF type conventionally used in tires (so-called pneumatic grade blacks).
  • the reinforcing carbon blacks of the 100, 200 or 300 series for example blacks Nl 15, Nl 34, Nt34, N326, N330, N339, N347 or N375, or more particularly , depending on the intended applications, blacks of higher series (for example N660, N683, N772).
  • the carbon blacks could for example already be incorporated into the isoprene elastomer in the form of a masterbatch (see for example WO 97/36724 or WO 99/16600).
  • organic fillers other than carbon blacks
  • any inorganic or mineral filler (regardless of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or “non-blackfiller” as opposed to carbon black, capable of reinforcing on its own, without any other means than an intermediate coupling agent, a rubber composition intended for the manufacture of tires, in other words capable of replacing, in its reinforcing function, a conventional carbon black of pneumatic grade, such a charge is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • the physical state in which the reinforcing inorganic filler is present is indifferent whether in the form of powder, microbeads, granules, beads or any other suitable densified form.
  • the term "reinforcing inorganic filler” also refers to mixtures of different reinforcing inorganic fillers, in particular highly dispersible siliceous and / or aluminous fillers as described below.
  • Suitable reinforcing inorganic fillers are mineral fillers of the siliceous type, in particular silica (SiO 2), or of the aluminous type, in particular alumina (Al 2 O 3).
  • the silica used may be any reinforcing silica known to those skilled in the art, especially any precipitated or fumed silica having a BET surface and a CTAB specific surface area both of less than 450 mVg, preferably 30 to 400 m 2 / g.
  • HDS highly dispersible precipitated silicas
  • the Ultrasil 7000 and Ultrasil 7005 silicas from Degussa the Zeosil 1165MP, 1135MP and 1115MP silicas from Rhodia
  • the Hi-SiI silica EZ150G from the PPG company
  • the Zeopol 8715, 8745 and 8755 silicas of the Huber Company the high surface area silicas as described in the application WO 03/16837.
  • the reinforcing inorganic filler used in particular if it is silica, preferably has a BET surface area of between 45 and 400. mVg, more preferably between 60 and 300 m 2 / g.
  • the total reinforcing filler content (carbon black and / or reinforcing inorganic filler such as silica) is between 20 and 200 phr, more preferably between 30 and 150 phr, the optimum being in a known manner different according to particular applications targeted: the level of reinforcement expected on a bicycle tire, for example, is of course less than that required on a tire capable of running at high speed in a sustained manner, for example a motorcycle tire, a tire for a passenger vehicle or for commercial vehicles such as heavy goods vehicles.
  • a reinforcing filler comprising between 30 and 150 phr, more preferably between 50 and 120 phr of inorganic filler, particularly of silica, and optionally carbon black; the carbon black, when present, is preferably used at a level of less than 20 phr, more preferably less than 10 phr (for example between 0.1 and 10 phr).
  • an at least bifunctional coupling agent is used in known manner to ensure a sufficient chemical and / or physical connection between the inorganic filler ( surface of its particles) and the diene elastomer, in particular organosilanes or bifunctional polyorganosiloxanes.
  • Polysulphurized silanes called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, for example, as described for example in applications WO 03/002648 (or US 2005/016651) and WO 03/002649 (or US 2005/016650). ).
  • polysulphide silanes known as "symmetrical" silanes having the following general formula (II) are suitable, but not limited to, below:
  • A is a divalent hydrocarbon radical (preferably C 1 -C 18 alkylene groups or C 6 -C 12 arylene groups, more particularly C 1 -C 10 and especially C 1 -C 4 alkylenes, in particular propylene; );
  • radicals R 1 substituted or unsubstituted, identical or different, represent an alkyl group in C 1 -C 18 cycloalkyl, C 5 -C 8 aryl or C 6 -C 18 (preferably C 1 -C 6 alkyl, cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
  • the radicals R 2 substituted or unsubstituted, which are identical to or different from each other, represent a C 1 -C 8 alkoxyl or C 5 -C 8 cycloalkoxyl group (preferably a group chosen from C 8 -C 8 alkoxides and C 5 cycloalkoxyls); 5 -C 8 , more preferably still a group selected from C 1 -C 4 alkoxyls, in particular methoxyl and ethoxyl).
  • silane polysulfides are more particularly the bis (mono, trisulfide or tetrasulfide) of bis (alkoxyl (Ci-C 4) alkyl (Ci-C 4) alkyl silyl (Ci-C 4 )), such as polysulfides of bis (3-trimethoxysilylpropyl) or bis (3-triethoxysilylpropyl).
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis-disulfide ( triethoxysilylpropyl)
  • polysulfides in particular disulfides, trisulphides or tetrasulfides
  • bis- (monoalkoxyl (Ci-C 4 ) -dialkyl (Ci-C 4 ) silylpropyl) more particularly bis-monoethoxydimethylsilylpropyl tetrasulfide.
  • POS polyorganosiloxanes
  • the content of coupling agent is preferably between 4 and 12 phr, more preferably between 3 and 8 phr.
  • the essential characteristics of the rubber compositions of the invention are to use a plasticizer system comprising at least one hydrocarbon-based plasticizing resin whose Tg is greater than 0 ° C. and a phthalate diester corresponding to formula (I), as explained in detail. below.
  • plasticizing resin is reserved in this application, by definition, to a compound which is solid on the one hand at room temperature (23 ° C.) (as opposed to a compound liquid plasticizer such as an oil), on the other hand compatible (that is to say miscible with the rate used, typically greater than 5 phr) with the rubber composition for which it is intended, so as to act as a true diluent.
  • Hydrocarbon resins are polymers well known to those skilled in the art, which are therefore miscible in nature in diene (s) elastomer compositions when they are further qualified as "plasticizers".
  • They may be aliphatic, aromatic or aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether or not based on petroleum (if so, also known as petroleum resins). They are preferably exclusively hydrocarbon, that is to say that they contain in this case only carbon and hydrogen atoms.
  • the plasticizing hydrocarbon resin has at least one, more preferably all, of the following characteristics:
  • this plasticizing hydrocarbon resin has at least one, even more preferably all, of the following characteristics:
  • Tg greater than 30 ° C; a mass Mn of between 500 and 1500 g / mol; an index Ip less than 2.
  • the glass transition temperature Tg is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the ASTM D3418 (1999) standard.
  • the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ m porosity filter before injection; Moore calibration with polystyrene standards; set of 3 "WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection (“WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
  • SEC steric exclusion chromatography
  • the plasticizing hydrocarbon resin is chosen from the group consisting of homopolymer or copolymer resins of cyclopentadiene (abbreviated as CPD) or dicyclopentadiene (abbreviated as DCPD), terpene homopolymer or copolymer resins, C5 homopolymer or copolymer resins, and mixtures of these resins.
  • CPD cyclopentadiene
  • DCPD dicyclopentadiene
  • terpene homopolymer or copolymer resins C5 homopolymer or copolymer resins, and mixtures of these resins.
  • copolymer resins are preferably used those selected from the group consisting of copolymer resins (D) CPD / vinylaromatic, copolymer resins (D) CPD / terpene, copolymer resins (D) CPD / cut C5, terpene / vinylaromatic copolymer resins, C5 / vinylaromatic cut copolymer resins, and mixtures of these resins.
  • pene here combines in a known manner the alpha-pinene, beta-pinene and limonene monomers; preferably, a limonene monomer is used which is in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
  • vinyl aromatic monomers examples include styrene, alpha-methylstyrene, ortho-, meta-, para-methylstyrene, vinyl-toluene, para-tertiarybutylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene and divinylbenzene.
  • vinyl naphthalene any vinylaromatic monomer from a C 9 cut (or more generally from a C 10 to C 10 cut).
  • the vinylaromatic monomer is styrene or a vinylaromatic monomer resulting from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinylaromatic monomer is the minor monomer, expressed as a mole fraction, in the copolymer under consideration.
  • the plasticizing hydrocarbon resin is chosen from the group consisting of homopolymer resins (D) CPD, copolymer resins (D) CPD / styrene, polylimonene resins, copolymer resins limonene / styrene, limonene / D (CPD) copolymer resins, C5 / styrene cut copolymer resins, C5 / C9 cut copolymer resins, and mixtures of these resins.
  • C 5 / vinylaromatic copolymer resins in particular C 5 / styrene or C 5 / C 9 cuts: by Neville Chemical Company under the names "Super Nevtac 78", “Super Nevtac 85” or “Super Nevtac 99", by Goodyear Chemicals under "Wingtack Extra” denomination, by Kolon under the names “Hikorez T 1095” and “Hikorez Tl 100”, by Exxon under the names "Escorez 2101" and "ECR 373";
  • Limonene / styrene copolymer resins by DRT under the name "Dercolyte TS 105" from the company DRT, by ARIZONA Chemical Company under the names
  • the content of hydrocarbon resin is preferably between 5 and 60 phr. Below the minimum indicated, the technical effect may be insufficient, whereas beyond 60 pce the stickiness of the compositions in the green state, on the mixing tools, can in some cases become unacceptable. industrial point of view. For these reasons, the content of hydrocarbon resin is more preferably between 5 and 40 phr, more preferably between 10 and 30 phr.
  • the phthalate diester of the plasticizing system of the invention corresponds to formula (I):
  • radicals R which may be identical or different, represent a hydrocarbon radical (or chain) any, the latter preferably having from 1 to 30 carbon atoms and which may comprise a heteroatom chosen in particular from S, O and N.
  • the radicals R are chosen from the group consisting of alkyls, linear, branched or cyclic, having from 1 to 30 carbon atoms, and aryls, aralkyls or alkaryls containing from 6 to 30 carbon atoms.
  • radicals R represent a linear, branched or cyclic alkyl group containing from 1 to 20, even more preferably from 1 to 15 carbon atoms.
  • R radicals containing from 1 to 15 carbon atoms which are identical or different in formula (I) above, mention may be made, for example, of methyl, ethyl, butoxyethyl, ethoxyethyl, propyl and propenyl radicals. , butyl, isobutyl, heptyl, isoheptyl, hexyl, cyclohexyl, ethylhexyl, benzyl, octyl, isooctyl, nonyl, isononyl, isodecyl, tridecyl, dodecyl, isotridecyl, undecyl.
  • R radicals are dimethyl, diethyl, butoxyethoxyethyl, dibutyl, diisobutyl, benzylbutyl, diisoheptyl, dicyclohexyl, ethylhexyl or diethylhexyl, dibenzyl phthalates, dioctyl, di-isooctyl, butyloctyl, benzyloctyl, di-isononyl, ethylnonyl, di-isodecyl, octyldecyl, di-isotridecyl, di-undecyl, nonyl and undecyl, dodecyl and undecyl.
  • Such preferred phthalate diesters are commercially available, they have been developed primarily for the plasticization of rigid plastics such as
  • phthalates of the "Jayflex” series marketed by the company Exxon MOBIL in particular phthalates “Jayflex 77” (di-isoheptyl phthalate),
  • phthalate diesters include the phthalates of the Palatinol series of BASF (eg "Palatinol DINP” (diisononyl phthalate), “Palatinol DIDP” (di-isodecyl phthalate), “Palatinol DOP “(dioctyl phthalate),” Palatinol 91 IP “(nonyl phthalate and undecyl)), the Phthalate series” Diplast “from LONZA, or the Phthalate” Plasthall “from CP HALL.
  • Palatinol DINP diisononyl phthalate
  • Palatinol DIDP di-isodecyl phthalate
  • Palatinol DOP (dioctyl phthalate)
  • Palatinol 91 IP (nonyl phthalate and undecyl)
  • the Phthalate series Diplast "from LONZA, or the Phthalate” Plasthall "from CP
  • the phthalate ester level is preferably between 5 and 60 phr. Below the minimum indicated, the intended technical effect may prove to be insufficient, whereas beyond 60 phr it is liable to a decrease in tire adhesion when the compositions of the invention are used in the belts. of these tires. For these reasons, the level of phthalate ester is more preferably between 5 and 40 phr, more preferably between 10 and 30 phr.
  • the rubber composition of the invention in the rubber composition of the invention, it is preferably between 10 and 100 phr, more preferably between 20 and 80 phr (in particular between 20 and 50 phr). All phthalate diesters described in this section are liquid at room temperature (23 ° C). They have a Tg typically less than -60 ° C. In this respect, according to a particular embodiment of the invention, they could be used wholly or partly as extension oil for the diene elastomers present in the rubber composition of the invention.
  • the rubber compositions in accordance with the invention may also comprise all or part of the usual additives normally used in elastomer compositions intended for the manufacture of tires or semi-finished products for tires, for example other plasticizers (other than the plasticizer system of the invention), preferably non-aromatic or very weakly aromatic, for example naphthenic oils, paraffinic oils, MES or TDAE oils, esters (in particular trioleates) of glycerol including natural esters such as vegetable oils of rapeseed or sunflower, pigments, protective agents such as anti-ozone waxes, chemical anti-ozonants, anti-oxidants, anti-fatigue agents, reinforcing resins, acceptors (eg phenolic novolac resin) or donors methylene (for example HMT or H3M), a crosslinking system based on either sulfur or sulfur donors and / or or peroxide and / or bismaleimides, vulcanization accelerators, vulcanization activators, anti-reversion agents.
  • other plasticizers
  • compositions may also contain, in addition to the coupling agents, coupling activators, inorganic charge-covering agents or, more generally, processing aids that can be used in a known manner, thanks to an improvement in the dispersion. the charge in the rubber matrix and a lowering of the viscosity of the compositions, to improve their processability in the green state, these agents being for example hydrolysable silanes such as alkylalkoxysilanes, polyols, polyethers, amines primary, secondary or tertiary, hydroxylated or hydrolyzable polyorganosiloxanes.
  • hydrolysable silanes such as alkylalkoxysilanes, polyols, polyethers, amines primary, secondary or tertiary, hydroxylated or hydrolyzable polyorganosiloxanes.
  • compositions are manufactured in appropriate mixers, using two successive preparation phases well known to those skilled in the art: a first phase of work or thermomechanical mixing (so-called “non-productive” phase) at high temperature, up to a maximum of maximum temperature between 110 ° C and 190 ° C, preferably between 130 ° C and
  • the method according to the invention for preparing a rubber composition having in particular an improved wear resistance comprises the following steps:
  • a first stage (so-called “non-productive"), incorporating at least one reinforcing filler and a plasticizing system into a diene elastomer, by thermomechanically kneading the whole, in one or more times, until a maximum temperature between 110 0 C and 190 0 C;
  • said plasticizer system comprises at least one plasticizing hydrocarbon resin whose Tg is greater than 0 0 C and a phthalate diester corresponding to the formula (I) above.
  • the non-productive phase is carried out in a single thermomechanical step in which one introduces, in one or more times, in a suitable mixer such as a conventional internal mixer, in a first step all the constituents of base necessary (diene elastomer, reinforcing filler and coupling agent if necessary, plasticizer system), then in a second step, for example after one to two minutes of mixing, the other additives, any additional coating or implementation agents, with the exception of the crosslinking system. After cooling the mixture thus obtained, it is then incorporated in an external mixer such as a roll mill, maintained at low temperature (for example between 40 0 C and 100 0 C), the crosslinking system. The whole is then mixed (productive phase) for a few minutes, for example between 2 and 15 min.
  • a suitable mixer such as a conventional internal mixer
  • the crosslinking system is preferably a vulcanization system based on sulfur and an accelerator.
  • Any compound capable of acting as a vulcanization accelerator for diene elastomers in the presence of sulfur especially those selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), N-cyclohexyl-2-benzothiazyl, may be used.
  • MBTS 2-mercaptobenzothiazyl disulfide
  • N-cyclohexyl-2-benzothiazyl may be used.
  • CBS C-bis(trimethyl)-2-benzothiazyl sulfenamide
  • DCBS N-dicyclohexyl-2-benzothiazyl sulfenamide
  • TBBS N-tert-butyl-2-benzothiazyl sulfenamide
  • TBSI N-tert-butyl -2-benzothiazyl sulfenimide
  • a primary accelerator of the sulfenamide type is used.
  • the sulfur content is for example between 0.5 and 3.0 phr, that of the primary accelerator between 0.5 and 5.0 pce.
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else extruded in the form of a rubber profile that can be used, for example, as a tread. tire for passenger vehicle.
  • the vulcanization (or cooking) is conducted in a known manner at a temperature generally between 130 ° C and 200 ° C, for a sufficient time which may vary for example between 5 and 90 min depending in particular on the cooking temperature, the system of vulcanization adopted and the kinetics of vulcanization of the composition under consideration.
  • the invention relates to the rubber compositions described above both in the so-called “raw” state (i.e., before firing) and in the so-called “cooked” or vulcanized state (i.e. after vulcanization).
  • the mixture thus obtained is recovered, cooled and then sulfur and a sulfenamide type accelerator are incorporated on an external mixer (homo-finisher) at 30 ° C., mixing the whole (productive phase) for a suitable time (for example between 5 and 12 minutes).
  • compositions thus obtained are then calendered either in the form of plates (thickness of 2 to 3 mm) or thin sheets of rubber for the measurement of their properties. physical or mechanical, or extruded in the form of tire treads tourism.
  • This test aims to demonstrate the improved performance of a rubber composition according to the invention, compared to a control composition of the prior art.
  • compositions based on diene elastomers (SSBR and BR cut) reinforced with silica and carbon black, denoted C-I and C-2, are prepared for this purpose.
  • the two compositions are prepared in a mixer of sufficient size to allow the manufacture of treads and the performance of tire rolling tests comprising these treads.
  • the two compositions tested are identical, except for the plasticizer system used which comprises in combination a same hydrocarbon plasticizing resin (polylimonene) as the first plasticizer and two other types of compounds as a second plasticizer:
  • composition C-I polylimonene resin + MES oil
  • composition C-2 polylimonene resin + diester phthalate.
  • composition C-I is a reference composition for the applicants, having also proved its excellent performance in terms of resistance to wear or abrasion.
  • MES Medium Extracted Solvates
  • oil is a "non-aromatic” type of oil, characterized by a very low level of polyaromatics (about 20 to 50 times less) compared to conventional aromatic oils derived from petroleum and strongly aromatics, known as DAE oils (for "Distillate Aromatic Extracts").
  • composition C-2 comprising the plasticizer system according to the invention, is therefore itself in accordance with the invention.
  • Tables 1 and 2 give the formulation of the two compositions (Table 1 - rate of the different products expressed in "phr” or parts by weight per hundred parts of elastomer (s)), their properties before and after baking (30 min at 150.degree. 0 C); the vulcanization system is sulfur and sulfenamide.
  • compositions of passenger tires with radial carcass of dimensions 195/65 Rl 5 (speed index H), conventionally manufactured and in all respects identical except for the constitutive rubber composition of the tread: IC composition for the control tires (denoted by PI) and composition C-2 for the tires of the invention (denoted P-2).
  • control tires were prepared using in combination a polylimonene resin and another plasticizer of the family of ester plasticizers, in this case an alkyl oleate ("Plasthall 7049" from CP HALL) as described for example in the aforementioned application WO 02/088238.
  • the wear resistance test revealed a higher wear resistance of 12% for the P-2 tires according to the invention, compared to the P-3 tires, which demonstrates the superiority of the plasticizer diester phthalate on a another ester type plasticizer in the presence of the same hydrocarbon plasticizing resin.
  • the novel plasticizer system of the invention offers the tire rubber compositions a particularly advantageous compromise of properties, with improved wet-floor adhesion without penalizing any of the other properties, particularly that of wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Tires In General (AREA)
EP08749439A 2007-05-15 2008-05-13 Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme Withdrawn EP2160299A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0703508A FR2916201B1 (fr) 2007-05-15 2007-05-15 Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme
PCT/EP2008/003808 WO2008141748A2 (fr) 2007-05-15 2008-05-13 Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme

Publications (1)

Publication Number Publication Date
EP2160299A2 true EP2160299A2 (fr) 2010-03-10

Family

ID=38529397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08749439A Withdrawn EP2160299A2 (fr) 2007-05-15 2008-05-13 Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme

Country Status (5)

Country Link
US (1) US20100204358A1 (ja)
EP (1) EP2160299A2 (ja)
JP (1) JP2010526923A (ja)
FR (1) FR2916201B1 (ja)
WO (1) WO2008141748A2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383698B2 (en) 2008-09-10 2013-02-26 Bridgestone Corporation Esters of cyclohexane polycarboxylic acids as plasticizers in rubber compounds
DE102009028975A1 (de) 2009-08-28 2011-03-03 Evonik Oxeno Gmbh Esterderivate der 2,5-Furandicarbonsäure und ihre Verwendung als Weichmacher
DE102009028976A1 (de) * 2009-08-28 2011-03-03 Evonik Oxeno Gmbh Ester der 2,5-Furandicarbonsäure mit isomeren Decanolen und ihre Verwendung
FR2968307B1 (fr) 2010-11-26 2018-04-06 Societe De Technologie Michelin Bande de roulement de pneumatique
FR2968006B1 (fr) 2010-11-26 2012-12-21 Michelin Soc Tech Bande de roulement de pneumatique
US9361715B2 (en) 2011-06-02 2016-06-07 Microsoft Technology Licensing, Llc Global composition system
JP5351220B2 (ja) * 2011-07-26 2013-11-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
BR112014005815A2 (pt) * 2011-09-14 2017-03-28 Michelin & Cie baixa rigidez da banda de rodagem de pneu
WO2013040425A1 (en) * 2011-09-14 2013-03-21 Compagnie Generale Des Etablissements Michelin Tread with ultra efficient vulcanization system
BR112014006179A2 (pt) 2011-09-14 2017-04-11 Michelin & Cie banda de rodagem de pneu
CN103987531A (zh) * 2011-12-12 2014-08-13 米其林集团总公司 具有填料在弹性体基体中非常好的分散性的弹性体组合物
FR2984692B1 (fr) * 2011-12-23 2014-01-17 Michelin Soc Tech Semelle de chaussure comportant une composition de caoutchouc a base de caoutchouc nitrile-butadiene, d'une huile et d'une resine
FR2996851B1 (fr) * 2012-10-15 2014-11-28 Michelin & Cie Gomme interieure de pneumatique.
US9764594B2 (en) 2014-12-09 2017-09-19 The Goodyear Tire & Rubber Company Pneumatic tire
US9757987B2 (en) 2014-12-09 2017-09-12 The Goodyear Tire & Rubber Company Pneumatic tire
WO2017011065A1 (en) * 2015-07-10 2017-01-19 Galata Chemicals Llc Thiodiester plasticizers
US20170114212A1 (en) * 2015-10-22 2017-04-27 The Goodyear Tire & Rubber Company Pneumatic tire
US10563050B2 (en) 2015-12-15 2020-02-18 The Goodyear Tire & Rubber Company Pneumatic tire
EP3397488B1 (en) 2015-12-31 2021-10-06 Kraton Chemical, LLC Resin-extended rubber composition and tire rubber compositions prepared therewith
US10947368B2 (en) 2019-03-04 2021-03-16 The Goodyear Tire & Rubber Company Pneumatic tire
JP7234758B2 (ja) * 2019-04-08 2023-03-08 横浜ゴム株式会社 空気入りタイヤ
JP2021134246A (ja) * 2020-02-25 2021-09-13 住友ゴム工業株式会社 タイヤ用組成物及びタイヤ
US11440350B2 (en) 2020-05-13 2022-09-13 The Goodyear Tire & Rubber Company Pneumatic tire
CN112126131A (zh) * 2020-08-07 2020-12-25 山东玲珑轮胎股份有限公司 一种抑菌橡胶组合物和轮胎

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927144A (en) * 1970-02-20 1975-12-16 Bridgestone Tire Co Ltd Elastomer composition
JPS59206208A (ja) * 1983-05-09 1984-11-22 Bridgestone Corp 雪氷路に好適な空気入りタイヤ
DE3941246A1 (de) * 1989-12-14 1991-06-20 Uniroyal Englebert Gmbh Vulkanisierbare kautschukmischungsmasse
JP3047680B2 (ja) * 1993-06-25 2000-05-29 東洋インキ製造株式会社 感熱性粘着剤および感熱性粘着シートの製造方法
US5679744A (en) * 1994-11-11 1997-10-21 The Yokohama Rubber Co., Ltd. Rubber composition
JP3350291B2 (ja) * 1995-06-06 2002-11-25 株式会社ブリヂストン タイヤトレッド用ゴム組成物
JPH1135920A (ja) * 1997-07-14 1999-02-09 Toyo Ink Mfg Co Ltd 易剥離型感熱性接着剤および接着シート
US6221990B1 (en) * 1999-02-16 2001-04-24 The Goodyear Tire & Rubber Company Polymeric resinous material derived from limonene, dicyclopentadiene and tertiary-butyl styrene
US6242550B1 (en) * 1999-05-07 2001-06-05 The Goodyear Tire & Rubber Company Polymeric dimethyl- dicyclopentadiene/limonene resin
US6265478B1 (en) * 1999-08-18 2001-07-24 The Goodyear Tire & Rubber Company Polymeric resinous material derived from limonene dicyclopentadiene indene and alpha-methyl styrene
JP2001164215A (ja) * 1999-12-03 2001-06-19 Yazaki Corp ノンハロゲンテープ用粘着組成物及びこれを被覆したノンハロゲン粘着テープ
DE60117042T2 (de) * 2000-10-13 2006-10-26 Société de Technologie Michelin Polyfunktionelle organosilane für den einsatz als kupplungsmittel sowie verfahren zu deren gewinnung
ATE330993T1 (de) * 2000-10-13 2006-07-15 Michelin Soc Tech Kautschukzusammensetzung mit einem polyfunktionellen organosilan als haftvermittler
DE60218446T2 (de) * 2001-03-12 2007-11-29 Société de Technologie Michelin Kautschukzusammensetzung für reifenlauffläche
FR2821849A1 (fr) * 2001-03-12 2002-09-13 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique et enveloppe de pneumatique l'incorporant
FR2821848A1 (fr) * 2001-03-12 2002-09-13 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique et enveloppe de pneumatique l'incorporant
FR2823215B1 (fr) * 2001-04-10 2005-04-08 Michelin Soc Tech Pneumatique et bande de roulement de pneumatique comportant a titre d'agent de couplage un tetrasulfure de bis-alkoxysilane
EP1419195B1 (fr) * 2001-06-28 2010-04-21 Société de Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
DE10221287A1 (de) * 2002-05-14 2003-11-27 Bayer Ag Terpolymere enthaltende Kautschukmischungen
DE10222887A1 (de) * 2002-05-23 2003-12-11 Bayer Ag Quaterpolymere und polare Weichmacher enthaltende Kautschukmischungen
DE10227733A1 (de) * 2002-06-21 2004-01-08 Bayer Ag Copolymere enthaltende Kautschukmischungen für die Herstellung von Reifen
FR2866028B1 (fr) * 2004-02-11 2006-03-24 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
JP2005350535A (ja) * 2004-06-09 2005-12-22 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物
FR2877348B1 (fr) * 2004-10-28 2007-01-12 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
FR2886305B1 (fr) * 2005-05-26 2007-08-10 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
FR2886306B1 (fr) * 2005-05-26 2007-07-06 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
FR2886304B1 (fr) * 2005-05-26 2007-08-10 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
JP4708154B2 (ja) * 2005-10-24 2011-06-22 花王株式会社 ゴム用カーボンブラック分散剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008141748A2 *

Also Published As

Publication number Publication date
US20100204358A1 (en) 2010-08-12
FR2916201B1 (fr) 2009-07-17
WO2008141748A2 (fr) 2008-11-27
JP2010526923A (ja) 2010-08-05
WO2008141748A3 (fr) 2009-01-15
FR2916201A1 (fr) 2008-11-21

Similar Documents

Publication Publication Date Title
EP2150422B1 (fr) Composition de caoutchouc pour pneumatique comportant un plastifiant diester
EP2104705B1 (fr) Bande de roulement pour pneumatique
EP2501558B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique hydrogene.
EP2104619B1 (fr) Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme
EP2449023B1 (fr) Pneumatique dont la bande de roulement comprend un elastomere thermoplastique sature
WO2008141748A2 (fr) Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme
EP2542427B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique
EP1828302B1 (fr) Systeme plastifiant pour composition de caoutchouc
EP2516537B1 (fr) Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
EP2516536B1 (fr) Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique.
EP2569365B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique vulcanisat (tpv)
EP2379638B1 (fr) Composition de caoutchouc pour pneumatique a base de caoutchouc naturel epoxyde et d'une resine plastifiante
FR2933417A1 (fr) Bande de roulement de pneumatique
FR2943065A1 (fr) Composition de caoutchouc
WO2011120966A1 (fr) Pneumatique dont la bande de roulement comporte une composition de caoutchouc comprenant une resine poly(vinylester).
WO2013164203A1 (fr) Bande de roulement de pneumatique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100810