EP2147270B1 - Procédé et appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique - Google Patents

Procédé et appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique Download PDF

Info

Publication number
EP2147270B1
EP2147270B1 EP08805696.5A EP08805696A EP2147270B1 EP 2147270 B1 EP2147270 B1 EP 2147270B1 EP 08805696 A EP08805696 A EP 08805696A EP 2147270 B1 EP2147270 B1 EP 2147270B1
Authority
EP
European Patent Office
Prior art keywords
column
liquid
methane
head
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08805696.5A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2147270A2 (fr
Inventor
Jean Billy
Antoine Hernandez
Marie-Khuny Khy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2147270A2 publication Critical patent/EP2147270A2/fr
Application granted granted Critical
Publication of EP2147270B1 publication Critical patent/EP2147270B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0271Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/CO mixtures, i.e. of synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/20Quasi-closed internal or closed external hydrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/30Quasi-closed internal or closed external helium refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/50Quasi-closed internal or closed external oxygen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/58Quasi-closed internal or closed external argon refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Definitions

  • the synthesis gas comprises a mixture at high pressure (between 15 and 60 bar) containing the following compounds: H 2 , CO, CH 4 , N 2 , Ar.
  • methane washing allows the production of pressurized hydrogen with good purity, whose CO content can range from 0.5% mol to a few ppm.
  • the residual content of CH 4 can not generally fall below 1 mol%.
  • US Patent 4488890 and US Patent 6098424 propose processes with a liquid carbon monoxide scrubbing column in which substantially all the frigories are produced by a carbon monoxide cycle.
  • the idea is to cool the synthesis gas to a similar temperature level. of -167 ° C (thus 20 ° warmer than in a partial condensation scheme), the vapor phase being treated in a CO washing column where liquid CO is injected at the top of the column.
  • WO2008 / 113494 form part of the state of the art with respect to novelty and discloses a process according to claim 1 except that the refrigeration cycle does not include two vaporization steps at different pressures.
  • synthesis gas 1 available under high pressure (generally between 15 and 60 bar) is cooled in the main exchanger 3 and partially condensed in the exchange line to a temperature level of the order of -167 ° vs.
  • the vapor phase is sent to the bottom of a washing column 5 where it is washed with liquid CO 51 injected at the top of the column 5. This makes it possible to lower the CH 4 content in the steam 7 produced at the top of the column 5. washing column 5 to less than 1 mol% to be able to treat after heating in the exchange line in a unit of MeOH for example.
  • the liquid phase 11, in the liquid CO column 5, is very rich in CH 4 and also contains CO and dissolved hydrogen.
  • This liquid 11 is sent to the top of a depletion column 13, having a bottom reboiler 15, to separate hydrogen and lower its content in the flash column tank liquid 17 to reduce the amount of hydrogen. incondensable hydrogen during CO and CH 4 separation in column 33.
  • the leading gas 21 of the exhaustion column heats up in the line exchange 3 and serves as fuel.
  • the bottom liquid 17 of the depletion column 13 is subcooled by the exchanger 19 and is then sent to a two-part CO / CH 4 separation column.
  • a portion 27 is expanded in the valve 31 and sent to the top of the column 33.
  • the remainder 23 is expanded in the valve 29, then heated by the heater 25 and then sent to the bottom of the column 33.
  • the CO is produced in liquid form 47 at the head and is sent to pumps 49 to raise its pressure up to the pressure level of the CO 5 washing column.
  • a portion of the liquid CO 55 may be passed through the overhead gas valve 57 of the washing column 5 to form a mixed flow rate 9. This allows the CO / H 2 ratio of the gas to be adjusted.
  • CH 4 39 is produced in a CO / CH 4 33 column vat in liquid form.
  • the column CO / CH 4 has a bottom reboiler 37 and a top condenser 35.
  • This CH 4 liquid 39 output tank CO / CH 4 column will be subcooled in the exchange line 41 before sending it to storage to limit the production of vaporized liquid said boil off.
  • a valve 43 makes it possible to short-circuit the line 41.
  • overhead gas 59 of column CO / CO 4 33 is compressed in a compressor 61 to form flow 63, condensed in the exchange line and sent to the top of the washing column 5 in place of or in addition to the pumped flow from the pump 49.
  • the separation energy is provided by a closed external cycle. This cycle will also bring the liquefaction energy of this CH 4 39.
  • the gas used for the cycle can be chosen from the list N 2 , CH 4 , O 2 , Ar, He, H2 ....
  • the gas 65 serves to reboil the CO / CH 4 column and then forms the liquid 67 which is divided in two.
  • a portion 71 passes through the valve 73 and is sent to the head condenser 35.
  • the vaporized flow rate in the condenser is sent as flow 81, 83 to the series compressor 85, 87, 89.
  • the flow 91 compressed in the compressor 89 is divided into two portions 93, 95 which are compressed into two compressors 97, 99 in parallel.
  • the compressed flow rates 95, 101 are combined to form a flow 103 which is divided in two.
  • Part 105 is partially cooled in the exchange line 3 before being divided into two.
  • a fraction 109 is expanded to an intermediate temperature in the turbine 111 and the expanded flow rate 113 is returned to the flow 81 at an intermediate temperature level of the exchange line 3.
  • the other fraction is sent to the turbine 115 at a level of temperature lower than the cooling temperature of the 109 of the exchange line 3 and reaches the flow 81 upstream of the exchange line 3.
  • the flow 107 cools completely in the exchange line 3 and is sent in as debit 65 reboil CO / CH4 column.
  • Spraying flow rates 77, 81 in the exchanger 3 at two different pressures optimizes the heat exchange.
  • synthesis gas 1 available under high pressure contains 15 mol%. of methane. It is divided in two, a part 1A being cooled in the main heat exchanger 3 and the rest 1B bypassing the main heat exchanger before being remixed with the flow 1A and sent to the bottom reboiler 37 of the column CO / CH 4 33 like the flow 3 circled.
  • the encircled flow rate 4 cooled in the bottom reboiler is returned to an intermediate level of the main exchanger 3 and partially condensed in the exchange line to a temperature level of the order of -167 ° C. It is sent to the bottom of a washing column 5 where it is washed with liquid CO 51 injected at the top of the column 5. This makes it possible to lower the CH 4 content in the steam 7 produced at the top of the washing column. 5 to less than 1 mol%. to be able to treat it after heating in the exchange line in a unit of MeOH for example.
  • the liquid phase 11, in the liquid CO column 5, is very rich in CH 4 and also contains CO and dissolved hydrogen.
  • This liquid 11 is sent to the top of a depletion column 13, having a bottom reboiler 15, to separate hydrogen and lower its content in the flash column tank liquid 17 to reduce the amount of hydrogen. incondensable hydrogen during CO and CH 4 separation in column 33.
  • the overhead gas 21 of the depletion column heats up in the exchange line 3 and serves as fuel.
  • the bottom liquid 17 of the depletion column 13 is subcooled by the exchanger 19 and is then sent to a two-part CO / CH 4 separation column.
  • a portion 27 is expanded in the valve 31 and sent to the top of the column 33.
  • the remainder 23 is expanded in the valve 29, and then heated by heating 25 and then sent to the lower part of column 33.
  • the CO is produced in liquid form at the top and is sent to pumps 49 to raise its pressure up to the pressure level of the CO 5 scrubbing column. therefore an internal loop of liquid CO through at least one cryogenic pump 49 and a valve 53 between the CO / CH 4 column head 33 and the CO 5 scrub head.
  • a portion of the liquid CO 55 can be passed through the valve 55 to the overhead gas 7 of the washing column 5 to form a mixed flow 9. This allows to adjust the CO / H 2 ratio of the gas.
  • CH 4 39 is produced in a CO / CH 4 33 column vat in liquid form.
  • the column CO / CH 4 has a bottom reboiler 37 and a top condenser 35.
  • This CH 4 liquid 39 outlet column CO / CH 4 will be subcooled in the exchange line 41 before sending it to storage to limit the production of vaporized liquid called boa off.
  • a valve 43 makes it possible to short-circuit the line 41.
  • the overhead gas 59 of the CO / CO 4 33 column is compressed in a compressor 61 to form the flow 63, condensed in the exchange line 3 and sent to the top of the washing column 5 in addition to the pumped flow from pump 49.
  • the separation energy is provided by a closed external cycle. This cycle will also bring the liquefaction energy of this CH 4 39.
  • the gas used for the cycle can be chosen from the list N 2 , CH 4 , O 2 , Ar, He, H 2
  • the reboiling of the depletion column 13 is ensured by a cycle gas flow rate 169.
  • the cooled flow rate 171 is expanded in a valve 173 and sent to the head condenser 35 of the CO / CH 4 column 33 as the flow rate.
  • the flow 175 is divided to form the flow rates 177 and 179.
  • the flow 177 cools the condenser 35.
  • the flow 179 is passed through the valve 181 to the exchanger 3 where it heats up.
  • the flow 180 heated in the reboiler 35 is mixed with the flow rates 167 and 194 to become the flow 183. This flow 183, when slightly warmed mixes with the flow 179.
  • the mixed flow 185 at 10-bar is sent to the compressors cycle 85,87 in series and then in part of the compressor 89.
  • a portion 169 of the 89 compressed flow rate is sent to 39 bars at the reboiling of the column 13 and the remainder 191 is compressed in the compressor 197 at 50 bar to form the flow 201.
  • Debit 201 is divided into two to form the flow 203 which goes through the valve 205 to the turbine 211 to become the expanded flow rate 167.
  • the flow 202 passes entirely through the exchanger 3 and is divided into three.
  • the flow 190 is sent to the turbine 211 too, the flow 174 is mixed with the flow 171 and the flow 186 is heated in the exchanger 3 before being mixed with the flow 192 from the compressor 87 to form a mixed flow 189.
  • the flow 189 is sent to the compressor 199, cools partially in the exchanger 3 and is expanded in the turbine 215 to form the expanded flow 194.
  • the compressor 197 is coupled to the turbine 211 and the compressor 199 is coupled to the turbine 215.
  • top of column includes positions ranging from the head of the column stricto sensu to a position at most 10 theoretical plateaux below this position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
EP08805696.5A 2007-05-04 2008-04-23 Procédé et appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique Active EP2147270B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754859A FR2915791B1 (fr) 2007-05-04 2007-05-04 Procede et appareil de separation d'un melange d'hydrogene, de methane et de monoxyde de carbonne par distillation cryogenique
PCT/FR2008/050742 WO2008148971A2 (fr) 2007-05-04 2008-04-23 Procede et appareil de separation d'un melange d'hydrogene, de methane et de monoxyde de carbone par distillation cryogenique

Publications (2)

Publication Number Publication Date
EP2147270A2 EP2147270A2 (fr) 2010-01-27
EP2147270B1 true EP2147270B1 (fr) 2019-11-06

Family

ID=39057273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805696.5A Active EP2147270B1 (fr) 2007-05-04 2008-04-23 Procédé et appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique

Country Status (6)

Country Link
US (1) US20100162754A1 (zh)
EP (1) EP2147270B1 (zh)
JP (1) JP5551063B2 (zh)
CN (1) CN101688753B (zh)
FR (1) FR2915791B1 (zh)
WO (1) WO2008148971A2 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353233B (zh) * 2011-08-03 2014-05-07 成都蜀远煤基能源科技有限公司 煤制气甲烷化后气体深冷分离液化的工艺方法和装置
CN102288008B (zh) * 2011-08-04 2013-06-12 成都蜀远煤基能源科技有限公司 煤制气来原料气的一氧化碳提取方法
CN102674347A (zh) * 2012-05-17 2012-09-19 四川亚连科技有限责任公司 一种低温蒸馏制备一氧化碳的方法
FR3018599B1 (fr) 2014-03-17 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation cryogenique d’un gaz de synthese contenant du monoxyde de carbone, du methane et de l’hydrogene
FR3052159B1 (fr) * 2016-06-06 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation pour la production combinee d'un melange d'hydrogene et d'azote ainsi que de monoxyde de carbone par distillation et lavage cryogeniques
FR3057056B1 (fr) * 2016-10-03 2020-01-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de recuperation d’argon dans une unite de separation d’un gaz de purge de synthese d’ammoniac
CN107417495A (zh) * 2017-05-27 2017-12-01 李大鹏 一种煤制甲醇、lng、液体燃料的多联产方法及装置
FR3084453B1 (fr) 2018-07-25 2020-11-27 Air Liquide Procede et appareil de separation cryogenique d'un melange de monoxyde de carbone, d'hydrogene et de methane pour la production de ch4
FR3097951B1 (fr) 2019-06-26 2022-05-13 Air Liquide Procede et appareil de separation cryogenique d’un gaz de synthese pour la production de ch4

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030740B2 (de) * 1970-06-23 1978-05-11 Basf Ag, 6700 Ludwigshafen Verfahren zur Gewinnung von methanfreiem Synthesegas aus dem Spaltgas des Tauchflammverfahrens
DE3247782A1 (de) * 1982-12-23 1984-06-28 Linde Ag, 6200 Wiesbaden Verfahren zum zerlegen eines in einer methanolsynthesegasanlage zu verwendenden gasgemisches bei tiefen temperaturen
US4727723A (en) * 1987-06-24 1988-03-01 The M. W. Kellogg Company Method for sub-cooling a normally gaseous hydrocarbon mixture
FR2664263B1 (fr) * 1990-07-04 1992-09-18 Air Liquide Procede et installation de production simultanee de methane et monoxyde de carbone.
JP3044564B2 (ja) * 1990-09-28 2000-05-22 日本酸素株式会社 ガス分離方法及び装置
FR2681131A1 (fr) * 1991-09-11 1993-03-12 Air Liquide Procede et installation de production de monoxyde de carbone et d'hydrogene.
JP4139374B2 (ja) * 1997-06-26 2008-08-27 富士通株式会社 半導体記憶装置
FR2775276B1 (fr) * 1998-02-20 2002-05-24 Air Liquide Procede et installation de production de monoxyde de carbone et d'hydrogene
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
JP2009503186A (ja) * 2005-07-28 2009-01-29 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 重炭化水素含有混合ガスからのcoリッチ生成物の回収
DE102007013325A1 (de) * 2007-03-20 2008-09-25 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Gasprodukten und flüssigem Methan aus Synthesegas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN101688753A (zh) 2010-03-31
JP5551063B2 (ja) 2014-07-16
EP2147270A2 (fr) 2010-01-27
CN101688753B (zh) 2013-08-14
WO2008148971A2 (fr) 2008-12-11
US20100162754A1 (en) 2010-07-01
JP2010526271A (ja) 2010-07-29
WO2008148971A3 (fr) 2010-01-07
FR2915791B1 (fr) 2009-08-21
FR2915791A1 (fr) 2008-11-07

Similar Documents

Publication Publication Date Title
EP2147270B1 (fr) Procédé et appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique
EP2268989B1 (fr) Procédé et appareil de séparation cryogénique d'un mélange d'hydrogène et de monoxyde de carbone
CA2899564C (fr) Separation a temperature subambiante d'un melange gazeux contenant du dioxyde de carbone et un contaminant plus leger
EP3724573A1 (fr) Procede et appareil de separation cryogenique d'un gaz de synthese contenant une etape de separation de l'azote
EP2137474B1 (fr) Procede et appareil de production de monoxyde de carbone par distillation cryogenique
EP2504646B1 (fr) Procédé et appareil de séparation cryogénique d'un mélange d'azote et de monoxyde de carbone
WO2015140460A2 (fr) Procédé et appareil de séparation cryogénique d'un gaz de synthèse contenant du monoxyde de carbone, du méthane et de l'hydrogène
EP3350119B1 (fr) Procédé et appareil de production d'un mélange de monoxyde de carbone et d'hydrogène
EP3252408B1 (fr) Procédé de purification de gaz naturel et de liquéfaction de dioxyde de carbone
WO2018020091A1 (fr) Procédé et appareil de lavage à température cryogénique pour la production d'un mélange d'hydrogène et d'azote
FR3013106A1 (fr) Procede de separation cryogenique pour la production d'un melange d'hydrogene et d'azote contenant une faible teneur en co et en ch4
WO2017212136A1 (fr) Procédé et installation pour la production combinée d'un mélange d'hydrogène et d'azote ainsi que de monoxyde de carbone par distillation et lavage cryogéniques
EP3599438A1 (fr) Procede et appareil de separation cryogenique d'un melange de monoxyde de carbone, d'hydrogene et de methane pour la production de ch4
WO2022175204A1 (fr) Procédé et appareil de liquéfaction d'hydrogène
WO2013064765A1 (fr) Procédé et appareil de séparation d'un gaz riche en dioxyde de carbone par distillation
FR3118144A3 (fr) Procede et appareil de separation cryogenique d’un melange d’hydrogene, de methane, d’azote et de monoxyde de carbone
FR3057942A1 (fr) Procede et appareil de separation cryogenique d’un gaz de synthese par condensation partielle
FR3097951A1 (fr) Procede et appareil de separation cryogenique d’un gaz de synthese pour la production de ch4
FR2903766A1 (fr) Appareil et procede de production de monoxyde de carbone et/ou d'hydrogene par distillation cryogenique
FR3058996A1 (fr) Procede et installation de separation cryogenique d’un melange gazeux par lavage au methane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

R17D Deferred search report published (corrected)

Effective date: 20100107

17P Request for examination filed

Effective date: 20100707

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190531

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190912

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1199301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008061587

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200420

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008061587

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1199301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008061587

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240418

Year of fee payment: 17