WO2022175204A1 - Procédé et appareil de liquéfaction d'hydrogène - Google Patents
Procédé et appareil de liquéfaction d'hydrogène Download PDFInfo
- Publication number
- WO2022175204A1 WO2022175204A1 PCT/EP2022/053519 EP2022053519W WO2022175204A1 WO 2022175204 A1 WO2022175204 A1 WO 2022175204A1 EP 2022053519 W EP2022053519 W EP 2022053519W WO 2022175204 A1 WO2022175204 A1 WO 2022175204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- heat exchanger
- rich
- cooled
- gas
- Prior art date
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 146
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 146
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 71
- 238000000926 separation method Methods 0.000 claims abstract description 31
- 238000004821 distillation Methods 0.000 claims abstract description 14
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 13
- 238000009833 condensation Methods 0.000 claims abstract description 11
- 230000005494 condensation Effects 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- 238000005057 refrigeration Methods 0.000 claims description 9
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000000746 purification Methods 0.000 description 10
- 238000004172 nitrogen cycle Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0223—H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0005—Light or noble gases
- F25J1/001—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0252—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0261—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/76—Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/02—Multiple feed streams, e.g. originating from different sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/18—H2/CO mixtures, i.e. synthesis gas; Water gas, shifted synthesis gas or purge gas from HYCO synthesis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/02—Separating impurities in general from the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/60—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/24—Quasi-closed internal or closed external carbon monoxide refrigeration cycle
Definitions
- the present invention relates to a process and an apparatus for the liquefaction of hydrogen, preferably integrated with the cryogenic separation of a mixture of carbon monoxide and hydrogen.
- the hydrogen is cooled and then liquefied in three stages:
- the heat exchange between 300K and 20K is done through brazed aluminum multi-passage plate heat exchangers.
- the passages corresponding to the flow of gas to be liquefied contain catalyst and allow continuous conversion of hydrogen until a para-hydrogen content greater than 95% is reached.
- the cooling down to approximately 80K is carried out in an enclosure thermally insulated with perlite.
- This cooling is carried out using a closed nitrogen cycle or with the cold of an addition of cryogenic liquid (usually liquid nitrogen) called in French “biberonnage", both consuming lot of energy.
- Cooling from approximately 80K to 20K takes place in a vacuum enclosure maintained at approximately 10 -6 mm Hg, with the equipment in the enclosure surrounded by multi-layer insulation.
- This cooling which includes liquefaction, is carried out using a hydrogen or helium cycle.
- a nitrogen cycle in particular, could not be used at such low temperatures.
- An object of the present invention is to reduce the energy consumption of the process and possibly to eliminate part of the equipment by eliminating the precooling step.
- a hydrogen liquefaction process integrated with the cryogenic separation of a first mixture (1) of hydrogen and another component in which:
- a flow rich in hydrogen is cooled in a second heat exchanger of the liquefier from a temperature greater than 103K, preferably greater than 0°C and the flow then cooled is cooled in the second heat exchanger heat, the hydrogen-rich gas is mixed with the hydrogen-rich stream having substantially the same pressure and composition as the hydrogen-rich gas and cooled in the second heat exchanger to the temperature of the hydrogen-rich gas to form a second mixture and the second mixture is liquefied either in the first heat exchanger or after cooling in the first heat exchanger to form liquid hydrogen.
- a hydrogen liquefaction apparatus comprising a liquefier comprising a first heat exchanger, a separation apparatus by distillation and/or exhaustion and/or partial condensation, means for sending a hydrogen-rich gas originating from the apparatus for separation by distillation and/or stripping and/or partial condensation at a temperature of at most 103K containing at least 99.9% mol of hydrogen, preferably at least 99.99%, mol of hydrogen or even at least 99.999% mol of hydrogen and at a pressure between 20 and 30 bars in the hydrogen liquefier, without having heated the hydrogen-rich gas to a temperature above 0°C and means for sending the hydrogen-rich gas is cooled from the temperature of at most 103K and at the pressure between 20 and 30 bars in the first heat exchanger characterized in that it comprises a second heat exchanger, means for sending a rich flow into hydrogen to be cooled in the second heat exchanger, means for mixing the hydrogen-rich gas with the hydrogen-rich stream cooled in the second heat exchanger
- the first exchanger is preferably located in a first thermally insulated enclosure and the second exchanger is located in a second thermally insulated enclosure, the point where the hydrogen-rich gas and the hydrogen-rich flow mix being located outside the first and second pregnant.
- the apparatus may comprise comprising a refrigeration cycle using helium or hydrogen to cool and optionally liquefy the second mixture.
- the means for liquefying the cooled gas to form liquid hydrogen can be constituted by the first heat exchanger and/or by expansion means downstream of the latter.
- the expansion means are preferably located in the same insulated enclosure as the heat exchanger but may be in a dedicated thermally insulated enclosure.
- phase separator 9 shows a process using a phase separator 9, a methane washing column 15, a stripping column 25 and a carbon monoxide and methane separation column 45, containing for example structured packings for the columns and capable of operate at cryogenic temperatures.
- the syngas 1 containing carbon monoxide, methane and carbon monoxide is purified into water and/or carbon dioxide in the purification unit 3 before arriving at the heat exchanger 7 where it cools to cryogenic temperature and partially condenses.
- the two phases are separated in a phase separator 9, to form a gas 11 enriched in hydrogen and a liquid depleted in hydrogen 13.
- the gas 11 is sent to the bottom of the methane scrubbing column 15 which produces a gas 19 enriched in hydrogen which heats up in the exchanger. Part of this gas 19 is used to regenerate the purification unit 3.
- At least one intermediate gas 210, 211 withdrawn from column 15 is cooled in a heat exchanger 23 by heat exchange with a process fluid, here the liquid 51.
- a top gas 27 from the stripping column contains at least 95% mol of hydrogen as well as carbon monoxide, nitrogen and methane. It is between 20 and 30 bars which is the operating pressure of column 25 and has a temperature between 103 and 120K.
- the gas 27 is not heated but is purified in an adsorption unit 29 operating at cryogenic temperatures to remove carbon monoxide and/or methane and/or nitrogen to provide a gas 31 capable of being liquefied. containing at least 99.9% mol of hydrogen, preferably at least 99.99% mol of hydrogen or even at least 99.999% mol of hydrogen.
- Such a purification is described in "The low temperature removal of small quantities of nitrogen or methane from hydrogen gas by physical adsorption on a synthetic zeolite", Kidnay et al, AIChE Journal, Vol 12, no. 1, January 1966.
- a liquid 33 taken from the bottom of the stripping column 25 cools in the exchanger 7 and is sent to the separation column 45. Another part of the same liquid 35 vaporizes in a bottom reboiler 37 and is returned to the bottom. of the exhaustion column.
- the separation column comprises several distillation separation sections and optionally a capacity 99. It has a bottom reboiler 73 which is used to heat the bottom liquid 75, the gas formed being returned to the bottom.
- the bottom liquid 77 enriched in methane is divided into two. Part 83 vaporizes in exchanger 7 to form fuel.
- the rest 85 is pressurized by a pump 87 and is sent to the top of the washing column 15.
- the overhead gas from column 43 enriched in carbon monoxide is sent to a product compressor 57 which produces a gas enriched in carbon monoxide 57.
- a portion of the gas enriched in carbon monoxide 61 is cooled and splits into two.
- Part 65 is expanded in a turbine 67 to supply cold.
- the expanded gas 89 is returned to the inlet of the compressor 57.
- the rest of the gas 69 continues its cooling in the exchanger 7 and is used to heat the reboilers 73 and 37 (flows 93 and 73).
- the gas used for reboiling is thus partially condensed and supplies as flow 97 capacity 99 at the head of separation column 45.
- Gas 41 from capacity 99 supplies compressor 57.
- Liquid 47 from capacity 99 is sent to a phase separator 49, the liquid 51 from the separator serves as refrigerant in the heat exchanger 23 to cool the intermediate gases 21A, 21B, 21C as well as the top gas 27 of the stripping column.
- a liquid withdrawn from the separation section of the separation column can replace liquid 47 or another process liquid.
- hydrogen 27 can be produced by a phase separator at between 20 and 30 bar abs in a partial condensation process associated or not with distillation.
- separation processes are also capable of supplying hydrogen at cryogenic temperature and pressure between 20 and 30 bar, for example the separation of purge gas from an ammonia production process.
- the hydrogen produced at low temperature and at a pressure between 20 and 30 bars can be purified in the thermally insulated enclosure in which the separation column and/or the phase separator from which it comes is located. Otherwise, and in particular in the case of the modification of an existing apparatus, the hydrogen can leave the enclosure where the separation column and/or the phase separator from which it comes and be sent by at least one pipe thermally insulated in an enclosure 102 containing the purification device to reduce its content of impurities, for example at least one of carbon monoxide, methane and nitrogen.
- impurities for example at least one of carbon monoxide, methane and nitrogen.
- the “cold” purification is a necessary step in order to eliminate all the impurities which could freeze along the exchange line which goes down to approximately 20K, and consequently clog the heat exchangers.
- TSA Temporal Swing Adsorption
- 80K where the adsorption capacity is high. Removing 2% or even 1% d impurities involves short cycles (a few hours) and a high regeneration rate.
- the gaseous purified hydrogen 27 leaves either the thermally insulated enclosure E in which the separation column and/or the phase separator C is located, from which it comes, or from a dedicated purification enclosure 102 at a pressure between 20 and 30 bar abs.
- This enclosure 104 contains a heat exchanger 101 with brazed aluminum multi-passage plates.
- the passages corresponding to the flow of gas to be liquefied contain catalyst and allow continuous conversion of hydrogen until a para-hydrogen content greater than 95% is reached.
- the enclosure 104 is under vacuum maintained at approximately 10 -6 mm Hg, the equipment inside the enclosure being surrounded by multilayer insulation. This cooling that takes place there includes liquefaction and is carried out using a hydrogen or helium cycle.
- the exchanger 101 may simply contain at least one passage for cooling and liquefying the hydrogen, all the hydrogen being produced in liquid form and removed as product 111, as well as the passages necessary for the refrigeration cycle or cycles.
- the purified hydrogen can be introduced at the hot end of the heat exchanger 101.
- the purified hydrogen is the only source of hydrogen to be liquefied or if all the hydrogen to be liquefied is available at the temperature of the hydrogen to be purified, no precooling will be necessary and the second conventional exchanger to cool hydrogen up to around 120K with its nitrogen cycle or other refrigerant will not be required.
- the second exchanger 103 will be present but preferably the purified hydrogen 27 coming from the low temperature separation will be mixed with the flow rich in hydrogen 127 cooled in the second exchanger outside the enclosure 106 of the second exchanger 103 and then the mixture formed will be cooled in the liquefaction heat exchanger 101 inside the enclosure 104.
- the hydrogen-rich flow 127 is cooled by traversing the second exchanger 103 from the hot end to the cold end and a common cycle 105 provides cold temperatures for the first and second exchangers while a cycle 107 provides cold temperatures only for the second exchanger 103.
- Hydrogen liquefaction as such can be:
- the invention can also be used by modifying an existing synthesis gas separation apparatus. Consideration should be given to increasing the size of the refrigeration cycle, the size of the turbines and the size of the cycle compressor coolers.
- liquid nitrogen bottle feeding can provide the cold temperatures necessary to extract one of the main products at subambient temperature.
- the synthesis gas 1 can be cooled at least partially in the heat exchanger 103 upstream of the separation.
- At least part of the apparatus for separation by distillation and/or exhaustion and/or partial condensation can be arranged in the same thermally insulated enclosure as the second heat exchanger.
- the hydrogen to be liquefied is usually expanded at the end of cooling in a turbine and/or a valve. This last step is not illustrated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
- De la température ambiante jusqu’à 230K par un groupe frigorifique
- De 230K à environ 80K par un premier cycle frigorifique
- D’environ 80K à environ 20 K par un deuxième cycle frigorifique
- On refroidit le premier mélange dans un échangeur de chaleur auxiliaire jusqu’à au moins 120K, on sépare le premier mélange refroidi par condensation partielle et/ou par distillation et/ou par épuisement à une température en dessous de 120K pour produire un débit riche en hydrogène contenant au moins une impureté à entre 20 et 30 bars et on épure le débit riche en hydrogène à une température cryogénique d’au plus 103K pour réduire sa teneur en l’au moins une impureté pour former un gaz riche en hydrogène,
- On envoie le gaz riche en hydrogène provenant de l’appareil de séparation par distillation et/ou épuisement et/ou condensation partielle, le gaz sortant de l’appareil de séparation à la température d’au plus 103K contenant au moins 99,9% mol d’hydrogène, de préférence au moins 99.99%, mol d’hydrogène voire au moins 99,999% mol d’hydrogène et à une pression entre 20 et 30 bars à un liquéfacteur d’hydrogène, sans avoir réchauffé le gaz riche en hydrogène à une température au-dessus de 0°C.
- On refroidit le gaz riche en hydrogène à partir de la température d’au plus 103K et à la pression entre 20 et 30 bars dans un premier échangeur de chaleur du liquéfacteur
- le gaz riche en hydrogène est épuré par adsorption pour enlever l’au moins une impureté qui est du monoxyde de carbone et/ou de l’azote et/ou méthane.
- le premier mélange comprend comme composants principaux l’hydrogène et le monoxyde de carbone et éventuellement le méthane et/ou l’azote.
- le gaz riche en hydrogène est soutiré d’une colonne de distillation ou d’épuisement ou d’un séparateur de phases, ladite colonne ou séparateur opérant à entre 20 et 30 bars abs.
- le procédé est tenu en froid au moins partiellement par un cycle de réfrigération, le fluide du cycle se réchauffant et se refroidissant dans le premier échangeur de chaleur et éventuellement dans un deuxième échangeur de chaleur.
- l’hydrogène liquéfié est stocké dans un stockage dont le gaz d’évaporation est réchauffé dans le premier et le deuxième échangeur de chaleur.
- le gaz riche en hydrogène se liquéfie dans le premier échangeur de chaleur ou en aval de celui-ci à l’intérieur d’une première enceinte isolée et on refroidit et/ou sépare le premier mélange et éventuellement on épure le débit riche en hydrogène à l’intérieur d’une deuxième enceinte isolée.
- le gaz riche en hydrogène est mélangé avec un débit riche en hydrogène ayant substantiellement la même pression, température et composition et le deuxième mélange est liquéfié dans le premier échangeur de chaleur ou après refroidissement dans le premier échangeur de chaleur.
- le débit riche en hydrogène se refroidit dans le deuxième échangeur de chaleur et ensuite est mélangé avec le gaz riche en hydrogène.
- le gaz riche en hydrogène n’est pas mélangé avec un autre gaz en amont du premier échangeur de chaleur.
Pureté molaire moyen avant épuration | Gamme de puretés possibles avant épuration | Pureté après épuration | |
H2 | 98% | 95% à 99% | > 99.999% |
CO | 0.4% | ppm à 1% | < 10 ppb |
CH4 | 1.2% | 0.5% à 3% | < 10 ppb |
N2 | 0.4% | ppm to 1% | < 10 ppb |
- a) soit directement faite avec le surplus d’hydrogène gazeux qui ne sera pas liquéfié (approximativement 5000 Nm3/h à 29 bars peuvent être liquéfiés par 50000 Nm3/h d’hydrogène à la même pression). Dans ce cas, cet hydrogène excédentaire (et ultra pur → pas de PSA requis) peut être renvoyé au client à basse pression ou partiellement à moyenne pression à 6 bara par exemple ou, en rajoutant une compresseur d’hydrogène, à des pressions d’au moins 20+bara),
- b1) soit via un cycle H2 indépendant, par exemple où une grande quantité d’hydrogène liquide est souhaitée,
- b2) soit via un cycle He indépendant.
Claims (12)
- Procédé de liquéfaction d’hydrogène intégré avec la séparation cryogénique d’un premier mélange (1) d’hydrogène et d’un autre composant dans lequel
- On refroidit le premier mélange dans un échangeur de chaleur auxiliaire (7) jusqu’à au moins 120K, on sépare le premier mélange refroidi par condensation partielle et/ou par distillation et/ou par épuisement à une température en dessous de 120K pour produire un débit riche en hydrogène contenant au moins une impureté à entre 20 et 30 bars et on épure le débit riche en hydrogène à une température cryogénique d’au plus 103K pour réduire sa teneur en l’au moins une impureté pour former un gaz riche en hydrogène,
- On envoie le gaz riche en hydrogène (27) provenant de l’appareil de séparation par distillation et/ou épuisement et/ou condensation partielle, le gaz sortant de l’appareil de séparation à la température d’au plus 103K contenant au moins 99,9% mol d’hydrogène, de préférence au moins 99.99%, mol d’hydrogène voire au moins 99,999% mol d’hydrogène et à une pression entre 20 et 30 bars à un liquéfacteur d’hydrogène, sans avoir réchauffé le gaz riche en hydrogène à une température au-dessus de 0°C
- On refroidit le gaz riche en hydrogène à partir de la température d’au plus 103K et à la pression entre 20 et 30 bars dans un premier échangeur de chaleur (101) du liquéfacteur
- Procédé selon la revendication 1 dans lequel le gaz riche en hydrogène (27) est épuré par adsorption (102) pour enlever l’au moins une impureté qui est du monoxyde de carbone et/ou de l’azote et/ou méthane.
- Procédé selon la revendication 1 ou 2 où le premier mélange (1) comprend comme composants principaux l’hydrogène et le monoxyde de carbone et éventuellement le méthane et/ou l’azote.
- Procédé selon la revendication 1,2 ou 3 où le gaz riche en hydrogène (27) est soutiré d’une colonne de distillation ou d’épuisement (C) ou d’un séparateur de phases, ladite colonne ou séparateur opérant à entre 20 et 30 bars abs.
- Procédé selon l’une des revendications 1 à 4 dans lequel le procédé est tenu en froid au moins partiellement par un cycle de réfrigération (105), le fluide du cycle se réchauffant et se refroidissant dans le premier échangeur de chaleur (101) et éventuellement dans un deuxième échangeur de chaleur (103).
- Procédé selon l’une des revendications 1 à 5 dans lequel l’hydrogène liquéfié est stocké dans un stockage dont le gaz d’évaporation est réchauffé dans le premier et le deuxième échangeur de chaleur (101, 103).
- Procédé selon l’une des revendications 1 à 6 dans lequel le gaz riche en hydrogène (27) se liquéfie dans le premier échangeur de chaleur (101) ou en aval de celui-ci à l’intérieur d’une première enceinte isolée (104) et on refroidit et/ou sépare le premier mélange (1) et éventuellement on épure le débit riche en hydrogène (127) à l’intérieur d’une deuxième enceinte isolée (106).
- Procédé selon l’une des revendications 1 à 7 dans lequel le débit riche en hydrogène (127) se refroidit dans le deuxième échangeur de chaleur (103) à partir d’une température supérieure à 0°C.
- Procédé selon l’une des revendications 1 à 8 dans lequel le débit riche en hydrogène (127) se refroidit dans le deuxième échangeur de chaleur (103) et ensuite est mélangé avec le gaz riche en hydrogène (27).
- Appareil de liquéfaction d’hydrogène comprenant un liquéfacteur comprenant un premier échangeur de chaleur (101), un appareil (102) de séparation par distillation et/ou épuisement et/ou condensation partielle, des moyens pour envoyer un gaz riche en hydrogène (27) provenant de l’appareil de séparation par distillation et/ou épuisement et/ou condensation partielle à une température d’au plus 103K contenant au moins 99,9% mol d’hydrogène, de préférence au moins 99.99%, mol d’hydrogène voire au moins 99,999% mol d’hydrogène et à une pression entre 20 et 30 bars au liquéfacteur d’hydrogène, sans avoir réchauffé le gaz riche en hydrogène à une température au-dessus de 0°C et des moyens pour envoyer le gaz riche en hydrogène se refroidir à partir de la température d’au plus 103K et à la pression entre 20 et 30 bars dans le premier échangeur de chaleur caractérisé en ce qu’il comprend un deuxième échangeur de chaleur (103), des moyens pour envoyer un débit riche en hydrogène (127) se refroidir dans le deuxième échangeur de chaleur, des moyens pour mélanger le gaz riche en hydrogène (27) avec le débit riche en hydrogène (127) refroidi dans le deuxième échangeur de chaleur et ayant substantiellement la même pression, température et composition que le gaz riche en hydrogène pour former un deuxième mélange et des moyens pour envoyer le deuxième mélange se liquéfier dans le premier échangeur de chaleur (101) ou après refroidissement dans le premier échangeur de chaleur se liquéfier pour former de l’hydrogène liquide (111).
- Appareil selon la revendication 10 dans lequel le premier échangeur (101) se trouve dans une première enceinte (104) isolée thermiquement et le deuxième échangeur (103) se trouve dans une deuxième enceinte (106) isolée thermiquement, le point où le gaz riche en hydrogène et le débit riche en hydrogène se mélangent se trouvant en dehors des première et deuxième enceintes.
- Appareil selon la revendication 10 ou 11 comprenant un cycle de réfrigération (105) utilisant de l’hélium ou de l’hydrogène pour refroidir et éventuellement liquéfier le deuxième mélange.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280010999.0A CN116724208A (zh) | 2021-02-18 | 2022-02-14 | 用于液化氢气的方法和设备 |
US18/277,796 US20240053094A1 (en) | 2021-02-18 | 2022-02-14 | Method and apparatus for liquefying hydrogen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2101587 | 2021-02-18 | ||
FR2101587A FR3119883B1 (fr) | 2021-02-18 | 2021-02-18 | Procédé et appareil de liquéfaction d’hydrogène |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022175204A1 true WO2022175204A1 (fr) | 2022-08-25 |
Family
ID=74860320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2022/053519 WO2022175204A1 (fr) | 2021-02-18 | 2022-02-14 | Procédé et appareil de liquéfaction d'hydrogène |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240053094A1 (fr) |
CN (1) | CN116724208A (fr) |
FR (1) | FR3119883B1 (fr) |
WO (1) | WO2022175204A1 (fr) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3398545A (en) * | 1965-03-19 | 1968-08-27 | Conch Int Methane Ltd | Hydrogen recovery from a refinery tail gas employing two stage scrubbing |
DE2460515A1 (de) * | 1974-12-20 | 1976-07-01 | Linde Ag | Verfahren und vorrichtung zur entfernung von verunreinigungen aus solche enthaltenden tiefsiedenden gasen |
US20050091991A1 (en) * | 2003-10-29 | 2005-05-05 | Consultoria Ss-Soluciones Sociedad Anonima | System and method for storing gases at low temperature using a cold recovery system |
FR2934581A1 (fr) * | 2008-08-04 | 2010-02-05 | Air Liquide | Procede et appareil de generation et de purification de gaz de synthese. |
EP3339605A1 (fr) | 2016-12-23 | 2018-06-27 | Linde Aktiengesellschaft | Procédé de compression d'un mélange de gaz comprenant néon |
EP3368844A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Nouveau procédé en cascade destiné à refroidir et à liquéfier de l'hydrogène à grande échelle |
EP3368631A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Cycle de réfrigération d'un mélange hydrogène-néon pour le refroidissement et la liquéfaction d'hydrogène à grande échelle |
EP3368630A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Réfrigérant mixte à basse température pour le pré-refroidissement d'hydrogène à grande échelle |
EP3368845A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Liquéfaction d'hydrogène à grande échelle au moyen d'un cycle de réfrigération d'hydrogène à haute pression combiné avec un nouveau pré-refroidissement unique à fluide frigorigène mélangé |
EP3759192A1 (fr) | 2018-03-02 | 2021-01-06 | Linde GmbH | Système de refroidissement |
-
2021
- 2021-02-18 FR FR2101587A patent/FR3119883B1/fr active Active
-
2022
- 2022-02-14 US US18/277,796 patent/US20240053094A1/en active Pending
- 2022-02-14 WO PCT/EP2022/053519 patent/WO2022175204A1/fr active Application Filing
- 2022-02-14 CN CN202280010999.0A patent/CN116724208A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3398545A (en) * | 1965-03-19 | 1968-08-27 | Conch Int Methane Ltd | Hydrogen recovery from a refinery tail gas employing two stage scrubbing |
DE2460515A1 (de) * | 1974-12-20 | 1976-07-01 | Linde Ag | Verfahren und vorrichtung zur entfernung von verunreinigungen aus solche enthaltenden tiefsiedenden gasen |
US20050091991A1 (en) * | 2003-10-29 | 2005-05-05 | Consultoria Ss-Soluciones Sociedad Anonima | System and method for storing gases at low temperature using a cold recovery system |
FR2934581A1 (fr) * | 2008-08-04 | 2010-02-05 | Air Liquide | Procede et appareil de generation et de purification de gaz de synthese. |
EP3368844A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Nouveau procédé en cascade destiné à refroidir et à liquéfier de l'hydrogène à grande échelle |
EP3368631A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Cycle de réfrigération d'un mélange hydrogène-néon pour le refroidissement et la liquéfaction d'hydrogène à grande échelle |
EP3368630A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Réfrigérant mixte à basse température pour le pré-refroidissement d'hydrogène à grande échelle |
EP3368845A1 (fr) | 2015-10-27 | 2018-09-05 | Linde Aktiengesellschaft | Liquéfaction d'hydrogène à grande échelle au moyen d'un cycle de réfrigération d'hydrogène à haute pression combiné avec un nouveau pré-refroidissement unique à fluide frigorigène mélangé |
EP3339605A1 (fr) | 2016-12-23 | 2018-06-27 | Linde Aktiengesellschaft | Procédé de compression d'un mélange de gaz comprenant néon |
EP3759192A1 (fr) | 2018-03-02 | 2021-01-06 | Linde GmbH | Système de refroidissement |
Non-Patent Citations (5)
Title |
---|
BERSTAD, D.O.J.H. STANGP. NEKSÂ: "Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 35, no. 10, 2010, pages 4512 - 4523, XP027028434 |
HUANG C ET AL: "Analysis of liquid hydrogen production from methane and and landfill gas", SCIENCE, TECHNOLOGY AND EXHIBITON - NEW TREND IN HYDROGEN AND FUEL CELL : 15TH WORLD HYDROGEN ENERGY CONFERENCE, YOKOHAMA, JUNE 27 - JULY 2, 2004,, 1 June 2004 (2004-06-01), pages 1 - 9, XP009126102 * |
KIDNAY ET AL., AICHE JOURNAL, vol. 12, no. 1, January 1966 (1966-01-01) |
QUACK, H: "Conceptual design of a high efficiency large capacity hydrogen liquefier", ADVANCES IN CRYOGENIC ENGINEERING: PROCEEDINGS OF THE CRYOGÉNIE ENGINEERING CONFÉRENCE - CEC, 2002 |
WALNUM ET AL.: "Principles for the liquéfaction of hydrogen with emphasis on precooling processes", IIR CONFÉRENCE, 2012 |
Also Published As
Publication number | Publication date |
---|---|
CN116724208A (zh) | 2023-09-08 |
FR3119883B1 (fr) | 2023-03-31 |
FR3119883A1 (fr) | 2022-08-19 |
US20240053094A1 (en) | 2024-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2146736C (fr) | Procede et installation de production de monoxyde de carbone | |
EP2122282B1 (fr) | Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et d'azote par distillation cryogénique | |
FR2885679A1 (fr) | Procede et installation de separation de gaz naturel liquefie | |
EP0605262B1 (fr) | Procédé et installation de production d'oxygène gazeux sous pression | |
EP2147270B1 (fr) | Procédé et appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique | |
EP0677483A1 (fr) | Procédé et installation de séparation d'un mélange gazeux | |
EP0968959B1 (fr) | Procédé de production de monoxyde de carbone | |
EP3406993A1 (fr) | Dispositif et procédé d'épuration d'un mélange de gaz | |
CA2154985A1 (fr) | Procede et installation de liquefaction d'hydrogene | |
FR2911390A1 (fr) | Procede et appareil de production de monoxyde de carbone par distillation cryogenique | |
EP3350119B1 (fr) | Procédé et appareil de production d'un mélange de monoxyde de carbone et d'hydrogène | |
WO2022175204A1 (fr) | Procédé et appareil de liquéfaction d'hydrogène | |
WO2018020091A1 (fr) | Procédé et appareil de lavage à température cryogénique pour la production d'un mélange d'hydrogène et d'azote | |
EP3252408A1 (fr) | Procédé de purification de gaz naturel et de liquéfaction de dioxyde de carbone | |
FR2971044A1 (fr) | Procede et appareil de separation d'un gaz contenant du dioxyde de carbone pour produire un debit liquide riche en dioxyde de carbone | |
FR2972793A1 (fr) | Procede et appareil de liquefaction d'un gaz riche en co2 contenant au moins une impurete legere | |
WO2022162041A1 (fr) | Procédé et appareil de séparation d'un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide | |
WO2023222637A1 (fr) | Procédé et appareil de séparation à basse température d'un gaz contenant du co2 pour produire un fluide riche en co2 | |
FR2982168A1 (fr) | Procede et appareil de separation d'un gaz riche en dioxyde de carbone par distillation | |
FR2974361A1 (fr) | Procede et appareil de purification d'un debit riche en dioxyde de carbone | |
FR2910603A1 (fr) | Procede de separation d'un melange de monoxyde de carbone, de methane, d'hydrogene et eventuellement d'azote par distillation cryogenetique | |
EP3913310A1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
FR3033397A1 (fr) | Procede de compression et de refroidissement d’un melange gazeux | |
FR3120431A1 (fr) | Purification de monoxyde de carbone par distillation cryogénique | |
FR3127558A1 (fr) | Procédé et appareil de séparation à basse température d’un gaz contenant du CO2 pour produire un fluide riche en CO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22709976 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280010999.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18277796 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22709976 Country of ref document: EP Kind code of ref document: A1 |