EP2122270A1 - Verfahren zur herstellung dünner schichten von metall-keramik- verbundwerkstoffen - Google Patents

Verfahren zur herstellung dünner schichten von metall-keramik- verbundwerkstoffen

Info

Publication number
EP2122270A1
EP2122270A1 EP07846323A EP07846323A EP2122270A1 EP 2122270 A1 EP2122270 A1 EP 2122270A1 EP 07846323 A EP07846323 A EP 07846323A EP 07846323 A EP07846323 A EP 07846323A EP 2122270 A1 EP2122270 A1 EP 2122270A1
Authority
EP
European Patent Office
Prior art keywords
cermet
metal
ceramic
layers
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07846323A
Other languages
English (en)
French (fr)
Inventor
Rolf Clasen
Mohammadreza Nejati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dritte Patentportfolio Beteiligungs GmbH and Co KG
Original Assignee
Dritte Patentportfolio Beteiligungs GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dritte Patentportfolio Beteiligungs GmbH and Co KG filed Critical Dritte Patentportfolio Beteiligungs GmbH and Co KG
Publication of EP2122270A1 publication Critical patent/EP2122270A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3605Coatings of the type glass/metal/inorganic compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component

Definitions

  • the invention relates to a method for producing thin layers of metal-ceramic composites containing metallic nanoparticles and the use of the method.
  • the absorber surface is the most important component of thermal solar collectors.
  • a high photothermal conversion yield for such collectors can be achieved through the use of spectrally selective absorbers. These are surfaces that well absorb radiation in the terrestrial solar spectrum but strongly reflect thermal wavelengths, i. they radiate little heat from the heat they absorb. Since there is no natural material with these surface properties, the selectivity must be generated by special coatings.
  • the effect of a spectral selectivity of an absorber can usually be achieved by an absorber-reflector tandem.
  • the absorber layer ensures the highest solar absorption with at the same time least influence on the thermal emissivity, which is dominated by the reflector layer or the metallic substrate.
  • This optical property has numerous metal-ceramic composite layers on a metallic substrate.
  • Simple commercial selective solar absorbers are produced by electroplating, anodizing and chemical oxidation techniques.
  • Black chrome, black zinc, Copper oxide, black cobalt, black nickel, iron oxide and pigmented alumina are the most commonly used, electrochemically produced, selective photothermal absorber layers.
  • Such absorbers have solar absorptions of 0.9 and thermal emissivities of 0.1 to 0.3 and are usually temperature stable up to temperatures of 425 to 500 degrees Kelvin.
  • These manufacturing processes require toxic acid baths as well as complicated combinations of metal salts.
  • the wastes occurring in this manufacturing process are toxic, not environmentally friendly and difficult to handle (disposal).
  • Metal-ceramic composites also called cermets, consist of a ceramic matrix in which metallic nano-particles are dispersed.
  • cermets consist of a ceramic matrix in which metallic nano-particles are dispersed.
  • the rather high IR transparency and simultaneous high solar absorption of many cermet layers predestine them for use as selective absorbers.
  • the use of such cermet layers as absorbers is therefore widespread.
  • coatings are long-term stable even under different thermal conditions.
  • Optical properties of a nanocomposite coating can be easily influenced by the thickness of the layer, the volume fraction of the metallic phase, the geometry and the particle size.
  • the distribution characteristic of the conductive particles can decisively influence the normalized refractive index of cermet layers. For example, a gradual increase in the concentration of metallic particles from the air cermet to the substrate causes Cermet interface a higher degree of absorption by reducing the surface reflections.
  • Deposition via sputtering techniques provides a very clean process without the need for chemical baths and hazardous acids.
  • This deposition technique enables high-quality optical coatings with controlled layer thickness to be obtained from high purity target materials.
  • the sputtering is relatively complex and expensive, since high-tech voltage sources and large vacuum chambers or clean room conditions are required, as well as a precise control and regulation system, the composition of the gas, the layer thickness and the pressure conditions to be able to adjust. Overall, the technology is also relatively energy consuming.
  • solar absorber coatings are a cheaper option, but they have a very high thermal emissivity of 80-90%, which is caused by vibration modes of the built-in organic polymer binder, and suffer from poor long-term stability.
  • the use of organically modified silicone resins has improved the stability of such paints.
  • paint-based absorbers are generally classified in the group of non-selective or moderately selective absorbers.
  • Niihara Reduction and Sintering of a Nickel-Dispersed Alumina Composite and Us Properties J. Am. Ceram Soc 50 (1997) 1139-1148 and T. Sekino, T. Nakajima and K. Nuhara, Mechanical and Magnetic properties of nickel dispersed alumina-based nanocomposites. Mater. Lett. 29_ (1996) 165-169). These methods have been used to prepare bulk samples having metal contents of 5-30% in the composite at metal particle sizes of about 40-150 nm. In recent decades, various spectrally selective Ni-Al 2 O 3 composite films have been produced by different methods. These were prepared on a laboratory scale by planar RF magnetron sputtering using hot pressed Ni-Al 2 O 3 targets.
  • pigmented alumina coatings are used commercially in solar collectors, they are generally not considered to be particularly selective.
  • Ni-aluminum layers were fabricated from a Ni-Al 2 O 3 -SoI having a solar absorption of 0.83 and a thermal emission of 0.03 with a cermet layer having a nickel content of 65%.
  • the invention has for its object to provide a method for producing thin layers of metal-ceramic composites, which is very simple, reliable and inexpensive, allows layers of good spectral selectivity, which are resistant to humidity and high temperatures and which are different Apply materials. According to the invention this object is achieved by a method having the features of claim 1.
  • the dependent claims indicate advantageous embodiments.
  • a preferred use of the method is the coating of cermet-based selective solar absorber.
  • one or more thin cermet layers with a thickness of 50 to 2000 nm are deposited on the substrate by immersing metallic substrates in a stabilized aqueous or organic suspension.
  • the suspension consists of alcoholic or aqueous solution in which ceramic nanoparticles whose primary particle size is smaller than 30 nm are dispersed.
  • the metallic portion of the cermet is as metal ions.
  • the suspension is electrostatically or sterically stabilized depending on the type of solvent (water or alcohol). In order to eliminate agglomerates or aggregates, the suspension is well dispersed by means of mechanical and ultrasonic dispersion techniques.
  • the materials required for this are relatively inexpensive and easy to obtain. It proves to be advantageous that no toxic acid baths, which must be disposed of appropriately, are necessary.
  • the metallic and the ceramic filling degree in the thin film or the composite material can be easily adjusted by adjusting the concentration of the dissolved metal ions in the solution.
  • the prepared suspension can be used up by spraying or dipping onto a reflector substrate.
  • this procedure is also suitable for mass production for coating large surfaces.
  • another advantage of this process is the coating of almost any surface, not just flat surfaces.
  • any substrate suitable for solar absorber can be used.
  • the substrate is made of a low emissivity metal or metal alloy, for example, copper or aluminum. If glass tubes or glass substrates are used, the glass can first coated with silver using Tollens reagent to achieve a similar effect. After drying, the cermet layer can be applied.
  • the metallic portion of the cermet from the group Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd and Zr can be formed in the form of corresponding metal salts.
  • AlN can, SiO 2, TiO 2, ZrO 2, Y 2 O 3, WO 3, Ta 2 O 5, V 2 O 5 , Nb 2 O 5 , CeO 2 or a mixture of 2 or 3 different nanopowders.
  • multiple layers of different metal content are sequentially applied to reduce reflection loss at the surface.
  • the optical properties of the coating overall can thus be adjusted particularly well.
  • the individual layers can be applied one after the other, whenever the previously applied layer has dried.
  • Starting material are substrates of copper and aluminum.
  • the surfaces are subjected to a fine polishing before their coating.
  • the removal of the surface roughness allows a uniform application of the layers without unwanted deposits on disturbing bumps.
  • the substrates are cleaned by means of ethanol and distilled water.
  • a metal salt eg here nickel salt (the amount depends on the desired metallic content in the layer)
  • a metal salt eg here nickel salt (the amount depends on the desired metallic content in the layer)
  • nano-Al 2 O 3 powder having an average particle size of 5-30 nm is added.
  • the mixture is allowed to mechanically disperse for 30 minutes under controlled temperature (cooling) and at high speed.
  • the entire suspension is stabilized electrostatically or electrosterically (depends on the solvent).
  • Ultrasonic dispersion can additionally be used to achieve a finer particle size distribution.
  • wetting and adhesion agents are added to the suspension to improve substrate wetting and film adhesion.
  • the solution is filtered with sub-micron filters.
  • the substrates are immersed in the vorumblete suspension.
  • the part to be coated should remain submerged for a few seconds to reach a state of equilibrium between the substrate and the solution.
  • the substrate is withdrawn from the bath under controlled conditions and at a constant rate.
  • the part to be coated After the part to be coated has been removed from the bath, it is dried in a drying cabinet.
  • the dried samples of a thermal treatment subjected to a corresponding hardness of the coating can be done in an oven at about 500 K up to 1000 K.
  • the sintering is carried out under a pure hydrogen or forming gas atmosphere to reduce oxide phases of nickel and to avoid any oxidation of the substrate.
  • FIG. 1 shows an absorber-reflector tandem for a Ni-Al 2 O 3 absorber with (FIG. 1 b) and without antireflection coating (FIG. described.
  • FIG. 2 shows microscopic 2 images of the surface (FIG. 2 a) and of the cross section (FIG. 2 b) of a deposited Ni-Al 2 O 3 layer which has been deposited by the method according to claim 1.
  • Ni content in the cermet layer to 20% by weight and depositing individual cermet layers with different layer thicknesses (obtainable by changing the pulling rate) on a polished Al substrate gives the selectivity shown in FIG.
  • the sample which contains adhesives, proves the absorbance of 0.87 and a thermal emissivity of 0.08.
  • a final antireflection coating can further enhance the optical properties.
  • FIG. 3 shows the reflectance of Ni-Al 2 O 3 absorbers without antireflection layer, which contain 20% by weight of Ni and were deposited on an aluminum substrate by means of dipping processes with different drawing speeds (different layer thicknesses). The influence of adhesive on the reflection curve is additionally shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung dünner Schichten von Metall-Keramik-Verbundwerkstoffen, die metallische Nano-Teilchen enthalten. Eine mögliche Anwendung für dieses Verfahren ist die Beschichtung eines Solarabsorbers mit einer Cermet-basierten selektiv absorbierenden Oberflächenschicht, welche sehr einfach, zuverlässig und kostengünstig herzustellen ist und gute Spektralselektivität aufweist. In diesem Verfahren werden erfindungsgemäß eine oder mehrere dünne Cermet-Schichten mittels Tauchen metallischer Substrate in eine stabilisierte wässrige oder organische Suspension auf dem Substrat abgeschieden. Die Suspension besteht aus alkoholischer oder wässriger Lösung, in der keramische Nano-Pulvern dispergiert sind. In der Lösung befindet sich der metallische Anteil des Cermets als Metall-Ionen.

Description

BESCHREIBUNG
Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen
Die Erfindung betrifft ein Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen, die metallische Nanoteilchen enthalten und die Verwendung des Verfahrens.
In thermischen Solarkollektoren mit hohem Wirkungsgrad wird nahezu das gesamte Strahlungsspektrum des Sonnenlichtes von der Oberfläche des Solarabsorbers in thermische Energie umgewandelt. Die Absorberfläche und mit ihr verbundene Röhren geben die Wärme an eine die Röhren durchfließende Wärmeträgerflüssigkeit, zum Beispiel Wasser, ab.
Die Absorberfläche ist der wichtigste Bestandteil von thermischen Solarkollektoren. Eine hohe photothermale Umwandlungsausbeute für solche Kollektoren kann durch den Einsatz spektral selektiver Absorber erreicht werden. Das sind Oberflächen, die eine Strahlung im terrestrischen Solarspektrum gut absorbieren aber thermische Wellenlängen stark reflektieren, d.h. sie strahlen die aufgenommene Wärme nur wenig ab. Da es keinen natürlichen Werkstoff mit diesen Oberflächeneigenschaften gibt, muss die Selektivität durch spezielle Beschichtungen erzeugt werden.
Der Effekt einer spektralen Selektivität eines Absorbers kann in der Regel durch ein Absorber-Reflektor-Tandem erzielt werden. Eine Absorberschicht, die geringe Reflexion (hohe solare Absorption) für Wellenlängen < 2,5 μm besitzt, aber gleichzeitig für thermische Wellenlängen im IR-B ereich transparent ist, wird auf eine Metallfläche, die hohe Reflexion (geringer thermischer Emissionsgrad) für Wellenlängen > 2,5 μm aufweist, abgeschieden (Abb. 1). So gewährleistet die Absorberschicht die höchste Solarabsorption bei gleichzeitig geringstem Einfluss auf den thermischen Emissionsgrad, der hingegen durch die Reflektorschicht oder das metallische Substrat dominiert wird. Diese optische Eigenschaft besitzen zahlreiche Metall-Keramik- Verbundschichten auf einem metallischen Substrat.
Einfache kommerzielle selektive Solarabsorber werden mittels Galvanik, Eloxieren und chemischen Oxidierungstechniken produziert. Schwarzes Chrom, schwarzes Zink, Kupferoxid, schwarzes Kobalt, schwarzes Nickel, Eisenoxid und pigmentiertes Aluminiumoxid sind die gebräuchlichsten, elektrochemisch hergestellten, selektiven photothermalen Absorberschichten.
Derartige Absorber weisen solare Absorptionsgrade von 0,9 und thermische Emissionsgrade von 0,1 bis 0,3 auf und sind üblicherweise temperaturstabil bis zu Temperaturen von 425 bis zu 500 Grad Kelvin. Für diese Herstellungsverfahren werden giftige Säurebäder benötigt sowie komplizierte Kombinationen von Metallsalzen. Außerdem sind die bei diesem Herstellprozess auftretenden Abfälle toxisch, nicht umweltfreundlich und problematisch in der Handhabung (Entsorgung).
Darüber hinaus ist bei diesen Methoden eine gezielte Anpassung der optischen Eigenschaften des Absorbers an die gewünschte Charakteristik sehr schwer oder manchmal sogar unmöglich.
Seit etwa zwei Jahrzehnten werden dünne Schichten von Metall-Keramik- Verbundwerkstoffen, auf Grund ihrer geeigneten und anpassbaren optischen Eigenschaften intensiv bezüglich ihrer Eignung als selektive Solarabsorber untersucht.
Metall-Keramik- Verbundmaterialen, die auch Cermet genannt werden, bestehen aus einer keramischen Matrix, in der metallische Nano-Teilchen dispergiert sind. Die ziemlich hohe IR- Transparenz und gleichzeitige hohe solare Absorption vieler Cermetschichten prädestiniert sie für den Einsatz als selektive Absorber. Die Verwendung solcher Cermetschichten als Absorber ist daher weit verbreitet. Weiterhin sind derartige Beschichtungen auch unter verschiedenen thermischen Bedingungen langzeitstabil.
Optische Eigenschaften einer Beschichtung aus einem Nano- Verbundwerkstoff können in einfacher Weise beeinflusst werden durch die Dicke der Schicht, den Volumenanteil der metallischen Phase, die Geometrie und die Teilchengröße. Außerdem kann die Verteilungscharakteristik der leitfähigen Teilchen die normalisierte Brechungszahl von Cermetschichten entscheidend beeinflussen. Zum Beispiel verursacht eine stufenweise Zunahme der Konzentration der metallischen Teilchen von der Luft-Cermet- bis zur Substrat- Cermet-Grenzfläche einen höheren Absorptionsgrad durch Reduzierung der Oberflächereflexion.
Die Abscheidung über Sputter-Techniken stellt einen sehr sauberen Prozess ohne die Notwendigkeit von chemischen Bädern und gefährlichen Säuren dar. Mittels dieser Abscheidemethode können hochwertige optische Beschichtungen mit kontrollierter Schichtdicke aus hochreinen Target-Materialien erzielt werden. Unter Verwendung von Zylinder- oder Abroll-Sputter-Techniken wurden bereits verschiedene selektive Metall- Dielektrikum-B eschichtungen wie SS-C, SS-AlN (SS = Stainless Steel), Al-N und TiNOx kommerziell hergestellt.
Hierbei erweist es sich als problematisch, dass die Sputtertechnik vergleichsweise aufwändig und teuer ist, da High-tech-Spannungsquellen und große Vakuumkammern bzw. Reinraumbedingungen benötigt werden, sowie ein präzises Kontroll- und Regelungssystem, um die Zusammensetzung des Gases, die Schichtdicke und die Druckverhältnisse einstellen zu können. Insgesamt ist die Technik auch vergleichsweise energieaufwändig.
Betrachtet man die momentanen Bedingungen im sich in der Anfangsphase seiner Entwicklung befindlichen Solarmarkt, wo die Absorberschichten noch immer die teuerste Komponente eines Kollektors sind, ist das Sputtern momentan kein Weg zur ökonomischen Herstellung von kostengünstigeren thermischen Solarkollektoren.
Im Gegensatz zu gesputterten Schichten sind Solarabsorber- Anstriche eine billigere Variante, die allerdings eine sehr hohe thermische Emissivität von 80-90 % aufweisen, die durch Schwingungsmoden der eingebauten organischen Polymer-Binder verursacht wird, sowie unter schlechter Langzeitstabilität leiden. Durch die Verwendung organisch modifizierter Silikonharze wurde die Stabilität solcher Anstriche verbessert. In der Regel werden die Absorber auf Anstrichbasis wegen ihrer schlechten optischen Eigenschaften bisher jedoch eher in die Gruppe der nicht-selektiven oder mäßig selektiven Absorber eingereiht.
Durch Kombination einer Graphitschicht mit einem mechanisch polierten Substrat wurde ein kostengünstiger mechanisch erzeugter Solarabsorber geschaffen. Solche Beschichtungen sind sehr empfindlich hinsichtlich der Polierparameter und weisen eine solare Absorption um 0.9 und eine thermale Emission bis zu 0,22 auf.
Die DE 196 20 645 C2 beschreibt eine Sol-Gel-Technik, bei der leitfähige Partikel in das Ausgangssol oder in das noch nicht allzu viskose entstehende Gel eingebracht werden. Bei diesem Verfahren müssen die leitfähigen Teilchen in einer Inertgasatmosphäre unter hohem Druck (10 Pa bis 1000 Pa) bis unter 70 nm zerstäubt werden. Größere Teilchen werden danach durch Siebverfahren getrennt. In diesem Verfahren müssen die metallischen Teilchen zum Schutz gegen chemische Einflüsse und Diffusion mit einer dielektrischen Schicht überzogen werden. Die sehr große reaktive Oberfläche der hergestellten metallischen Nanoteilchen, führt zu Problemen durch die chemische Oxidation von Teilchen, die verhindert werden muss. Außerdem sind Oberflächenbehandlung, Teilchenzerstäuben und Sieben aufwändige Extraschritte, die dieses Produktionsverfahren verteuern.
Bisherige Untersuchungen beschränken sich hauptsächlich auf die Mikrostruktur und die Verbesserung mechanischer Eigenschaften von Metall-Keramik-Nanokompositen durch Änderungen in der Verteilung der Nanoteilchen und deren Plastizität. Vor allem Sekino et al. untersuchten die mechanischen Eigenschaften verschiedener Metall-Keramik-Nanokomposite unter Verwendung konventioneller pulvermetallurgischer Methoden, der Reduktion und anschließenden Sinterung keramischer und metalloxidischer Pulver wie W-Al2O3 (T Sekino, A. Nakahira and K. Nühara, Relationship between microstructure and high temperature mechanical properties for A12O3/W nanocomposites. Transactions ofthe materials research society ofJapon 16B (1994) 1513-1516 und T Sekino, A. Nakahira, M. Nawa and K. Niihara, Fabrication of A12O3/W Nanocomposite. J. Japan Soc. ofPowd. and Powd. Metall 38_ (1991) 326-330) oder durch chemische Verfahren, wie Sol-Gel, zur Herstellung von Metall-Keramik- Kompositpulvern wie Ni-Al2O3 (T Sekino, T. Nakajima, S. Ueda and K. Niihara, Reduction and sintering of a Nickel-dispersed-alumina composite and Us properties. J. Am. Ceram. Soc. 50 (1997) 1139-1148 und T. Sekino, T. Nakajima and K. Nühara, Mechanical and magnetic properties of Nickel dispersed alumina-based nanocomposite. Mater. Lett. 29_ (1996) 165- 169). Diese Verfahren wurden zur Herstellung von Bulk-Proben genutzt, die Metallgehalte von 5-30 % im Komposit bei Metallpartikelgrößen von etwa 40-150 nm aufweisen. In den letzten Jahrzehnten wurden verschiedene spektral selektive Ni-Al2O3- Kompositschichten mittels unterschiedlicher Verfahren hergestellt. Diese wurden im Labormaßstab durch planares RF-Magnetron-Sputtern unter Verwendung heißgepresster Ni- Al2O3-Targets hergestellt. Bei dieser Methode ist eine Änderung des Nickelgehalts in der Kompositschicht nicht einfach zu erreichen und es mussten zusätzliche Ni-Pellets in einer speziellen Geometrie auf dem Komposit-Target angeordnet werden, um höhere Metall- Volumenateile zu erlangen. So wurden bei Verwendung einer 78 um SiO2- Antireflexionsschicht für die solare Absorption Werte von etwa 0,94 und für die thermale Emission von 0,07 erreicht.
Es ist auch bekannt, Aluminiumsubstrate mittels Phosphorsäure zu eloxieren und anschließend das eloxierte Aluminium durch Wechselstrom-Elektrolyse in einem NiSO4- hnprägnierbad zu färben. Hierbei wird eine solare Absorption von 0,93-0,96 erreicht und ein thermischer Emissionsgrad von 0,1-0,2. Bei Verwendung derselben Herstellungsmethode und Untersuchung des Effektes verschiedener Imprägnierparameter auf die optischen Eigenschaften der Schichten wurden solare Absorptionsgrade größer 0,9 und ein thermischer Emissionsgrad von 0,14 erreicht.
Obwohl pigmentierte Aluminiumoxidbeschichtungen kommerziell in Solarkollektoren eingesetzt werden, werden sie in der Regel nicht als besonders selektiv eingeschätzt.
Aufbauend auf ihre vorausgehenden Arbeiten zu Sol-Gel-basierten Antireflexionsschichten und C-SiO2-Kompositschichten, wurden Ni-Aluminium-Schichten aus einem Ni-Al2O3-SoI hergestellt, die eine solare Absorption von 0,83 und eine thermale Emission von 0,03 mit einer Cermetschicht erreichten, welche einen Nickelgehalt von 65 % besitzt.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen zu schaffen, das sehr einfach, zuverlässig und kostengünstig ist, Schichten guter spektraler Selektivität ermöglicht, die gegen Luftfeuchtigkeit und hohe Temperaturen beständig sind und welches sich auf verschiedene Werkstoffe anwenden lässt. Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben vorteilhafte Ausgestaltungen an. Eine bevorzugte Verwendung des Verfahrens ist die Beschichtung Cermet-basierter selektiver Solarabsorber.
In diesem Verfahren werden erfindungsgemäß ein oder mehrere dünner Cermetschichten mit der Dicke von 50 bis 2.000 nm mittels Tauchen metallischer Substrate in eine stabilisierte wässerige oder organische Suspension auf dem Substrat abgeschieden. Die Suspension besteht aus alkoholischer oder wässeriger Lösung, in der keramische Nano-Teilchen, deren Primärteilchengröße kleiner als 30 nm ist, dispergiert sind. In der Lösung befindet sich der metallische Anteil des Cermets als Metall-Ionen.
Die Suspension wird abhängig von der Art des Lösungsmittels (Wasser oder Alkohol) elektrostatisch oder sterisch stabilisiert. Um Agglomerate oder Aggregate zu beseitigen, wird die Suspension mittels mechanischer und Ultraschall- Dispergiertechnik gut dispergiert.
Die dafür benötigen Materialien sind vergleichsweise kostengünstig und einfach zu erhalten. Dabei erweist es sich als vorteilhaft, dass keine giftigen Säurebäder, die entsprechend entsorgt werden müssen, notwendig sind. Außerdem lassen sich mit diesem Verfahren der metallische und der keramische Füllgrad in der Dünnschicht bzw. dem Verbundwerkstoff einfach über die Einstellung der Konzentration der gelösten Metallionen in der Lösung einstellen.
Die vorbereitete Suspension kann mittels Sprühen oder Tauchen auf ein Reflektor-Substrat aufgebraucht werden. Außerdem eignet sich diese Vorgehensweise auch zur Massenfertigung zur Beschichtung großer Oberflächen. Neben den geringen Anforderungen an die Anlage und Prozesskontrolle liegt ein weiterer Vorteil dieses Verfahrens in der Beschichtung nahezu beliebiger und nicht nur flacher Flächen.
Als Substrate für das erfindungsgemäße Beschichtungsverfahren kann jedes Substrat, das für Solarabsorber geeignet ist, verwendet werden. Bevorzugt besteht das Substrat aus einem Metall oder einer Metalllegierung mit geringem Emissionsgrad, zum Beispiel Kupfer oder Aluminium. Falls Glasrohre oder Glasssubstrate verwendet werden, kann das Glas zunächst mittels Tollens-Reagenz mit Silber beschichtet werden um einen ähnlichen Effekt zu erzielen. Nach der Trocknung kann die Cermetschicht aufgebracht werden.
Entsprechend der Ausgestaltung nach Anspruch 8 kann der metallische Anteil des Cermets aus der Gruppe Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd und Zr in Form entsprechender Metallsalze gebildet werden.
Bei der Ausgestaltung nach Anspruch 9 kann der keramische Anteil aus Nano-pulvern der Gruppe Al2O3, AlN, SiO2, TiO2, ZrO2, Y2O3, , WO3, Ta2O5, , V2O5, Nb2O5, CeO2 oder einer Mischung von 2 oder 3 verschiedenen Nanopulvern ausgewählt werden.
Bei der Ausgestaltung nach Anspruch 10 werden mehrere Schichten mit verschiedenem Metallgehalt (von niedrig zu hoch) nacheinander aufgetragen um einen Reflexionsverlust an der Oberfläche zu reduzieren. Vorteilhaft lassen sich damit die optischen Eigenschaften der Beschichtung insgesamt besonders gut einstellen. Die einzelnen Schichten können nacheinander aufgetragen werden immer dann, wenn die zuvor aufgetragene Schicht getrocknet ist.
Gegenüber den ebenfalls bekannten Sol-Gel-Systemen erweist es sich als vorteilhaft, dass bei der vorliegenden Erfindung keine metallischen Alkoxide verwendet werden müssen, die entsprechend teuer sind. Außerdem finden keine komplizierten chemischen Reaktionen statt, die für eine präzise Einstellung der Schichten und deren Eigenschaften auch entsprechend exakt beherrscht werden müssten. Dies gilt insbesondere auch für den Hydrolyseprozesse, der bei den Sol-Gel-Systemen stattfindet. Ein weiteres Problem bei den Sol-Gel-Systemen ist die kurze Haltbarkeit sowie zu früh einsetzende Netzwerkbildung, die mit der Zeit wächst und die Verarbeitung entsprechend schwierig macht. Ebenfalls werden Probleme vermieden, die bei den Sol-Gel-Systemen durch die Rissbildung in dünnen Schichten beim Trocknen auftreten. Außerdem erweist sich bei den flüssigen Pulversuspensionen gegenüber den Sol-Gel- Systemen als vorteilhaft, dass die flüssigen Pulversuspensionen stabiler und besser lagerbar sind. Dies gilt insbesondere denn, wenn diese flüssigen Pulversuspensionen gerührt werden. Auch nach Einstellen des Rührens ist die stabilisierte Suspension noch einige Stunden verarbeitbar. Selbst gealterte Suspensionen sind wieder dispergierbar. Ein Ausführungsbeispiel der Erfindung wird im Folgenden naher beschreiben. Nachfolgend wird die Erfindung anhand eines Ausfuhrungsbeispiels näher erläutert.
Ausfuhrungsbeispiel: Ni-AbC^ Cermet Solarabsorber
Ausgangsmaterial sind Substrate aus Kupfer und Aluminium. Um negative Einflüsse der Oberflächenbeschaffenheit auf die solare Absorption zu eliminieren, werden die Oberflächen vor deren Beschichtung einer Feinpolierung unterzogen. Außerdem ermöglicht das Beseitigen der Oberflächenrauhigkeit ein gleichmäßiges Auftragen der Schichten ohne unerwünschte Anlagerungen an störenden Unebenheiten.
Danach werden die Substrate mittels Ethanol und destilliertem Wasser gereinigt.
Zur Herstellung von Suspensionen mit Feststoffgehalten von 2 bis 20 Gew.% wird in einem Becherglas zunächst ein Metallsalz, z.B. hier Nickel-Salz (die Menge hängt vom gewünschten metallischen Anteil in der Schicht ab), in 200 ml destilliertem Wasser gelöst. Danach wird Nano-Al2O3-Pulver mit einer durchschnittlichen Teilchengröße von 5-30 nm zugegeben. Das Gemisch lässt man 30 Minuten unter kontrollierter Temperatur (Kühlung) und bei hoher Drehzahl mechanisch dispergieren. Um Sedimentation und Agglomeration zu vermeiden, wird die gesamte Suspension elektrostatisch oder elektrosterisch (hängt vom Lösungsmittel ab) stabilisiert. Ultraschalldispergierung kann zusätzlich verwendet werden um eine feinere Teilchengrößenverteilung zu erreichen.
Vorzugsweise werden der Suspension noch Benetzungs- und Haftungsmittel zur Verbesserung der Substratbenetzung und Filmadhäsion zugegeben.
Nach 30-minütiger Dispergierung wird die Lösung mit sub-micron-Filtern gefiltert.
Die Substrate werden in die vorbreitete Suspension eingetaucht. Das zu beschichtende Teil sollte einige Sekunden eingetaucht bleiben, um einen Gleichgewichtszustand zwischen dem Substrat und der Lösung zu erreichen. Anschließend wird das Substrat unter kontrollierten Bedingungen und mit konstanter Geschwindigkeit aus dem Bad herausgezogen. Nachdem das zu beschichtende Teil aus dem Bad entnommen wurde, wird es in einem Trocknungsschrank getrocknet. Anschließend werden die getrockneten Proben einer thermischen Behandlung unterzogen, um eine entsprechende Härte der Beschichtung zu erreichen. Diese Wärmebehandlung kann in einem Ofen bei etwa 500 K bis zu 1.000 K erfolgen. Die Sinterung wird unter reiner Wasserstoff- oder Formiergas-Atmosphäre durchgeführt um Oxidphasen von Nickel zu reduzieren und jegliche Oxidation des Substrats zu vermeiden.
Das Ausführungsbeispiel der Erfindung wird anhand der Abbildungen 1 bis 3 erläutert, m Abb. 1 wird ein Absorber-Reflektor-Tandem für einen Ni-Al2O3-Absorber mit (Abb. Ib) und ohne Antireflex-Beschichtung (Abb. Ia) beschrieben. Abb.2 zeigt mikroskopische 2 Aufnahmen der Oberfläche (Abb. 2a) und des Querschnitt (Abb. 2b) einer abgeschiedenen Ni-Al2O3-Schicht, die durch das Verfahren nach Anspruch 1 abgeschieden worden ist.
Bei Einstellung des Ni-Gehalts in der Cermetschicht auf 20 Gew.% und Abscheiden einzelner Cermetschichten mit verschiedenen Schichtdicken (erhältlich durch Änderung der Ziehgeschwindigkeit) auf einem polierten AI-Substrat, erhält man die in Abbildung 3 gezeigte Selektivität. Die Probe, die Adhäsionsmittel enthält, beweist den Absorptionsgrad von 0,87 und einen thermischen Emissionsgrad von 0,08. Eine abschließende Antireflexionsschicht kann die optischen Eigenschaften weiter verbessern.
Abb.3 zeigt den Reflexionsgrad von Ni-Al2O3-Absorbern ohne Antireflexionsschicht, die 20 Gew.% Ni enthalten und durch Tauchverfahren mit verschiedenen Ziehgeschwindigkeiten (verschiedene Schichtdicken) auf ein Aluminiumsubstrat abgeschieden wurden. Der Einfluss von Haftungsmittel auf Reflexionskurve wird zusätzlich dargestellt.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen, die metallische Nanoteilchen enthalten, dadurch gekennzeichnet, dass
a. von einer wässrigen oder alkoholischen Lösung ausgegangen wird, in der sich der metallische Anteil des Cermets als gelöste Metall-Ionen befindet,
b. obige Lösung als Basis eines pulverbasierten Prozesses dient, wobei eine stabile wässrige oder alkoholische Suspension hergestellt wird, in der keramische Nanoteilchen dispergiert sind,
c. keramische Nanoteilchen sterisch oder elektrostatisch stabilisiert werden,
d. agglomerierte Feststoffeilchen in der Suspension mittels mechanischer oder Ultraschall-Dispergierungstechnik unter Kühlung beseitigt werden,
e. anorganische Benetzungsmittel und Haftungsmittel zur Verbesserung von Substratbenetzung und Schicht-Substrathaftung eingesetzt werden,
f. die vorbereitete Suspension mittels Sprühen oder Tauchen auf ein Reflektor- Substrat aufgebraucht wird,
g. nach der Trocknung die Proben einer Sinterung in einer H2- oder Formiergas- Atmosphäre unterzogen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Größe der Metallteilchen weniger als 40 ran beträgt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass einzelne Schichten von etwa 50 nm bis 2 μm Schichtdicke erzeugt werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Sinterung bei Temperaturen bis 1000 ° Kelvin erfolgt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat aus einem Reflektor-Metall oder einer Metalllegierung mit geringem Emissionsgrad, zum Beispiel Kupfer oder Aluminium, besteht.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Glassubstrat durch Tollens-Reagenz zunächst mit Silber beschichtet wird, und nach der Trocknung nach Anspruch 1 mit dem Cermet beschichtet wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der metallische und der keramische Füllgrad in der Dünnschicht bzw. dem Verbundwerkstoff einfach durch Änderung der Konzentration der Metallionen in der Lösung einstellbar ist.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der metallische Anteil des Cermets aus der Gruppe Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd und Zr in Form entsprechender Metallsalze gebildet wird.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der keramische Anteil des Cermets aus Nanopulvern der Gruppe Al2O3, AlN, SiO2, TiO2, ZrO2, Y2O3, , WO3, Ta2O5, , V2O5, Nb2O5, CeO2 gebildet wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Cermet-Schichten nacheinander aufgetragen werden, wobei sich die einzelnen Schichten im Metallgehalt unterscheiden und bei dem außerdem für bessere optische Eigenschaften und thermische Stabilität eine abschließende Antireflexionsschicht auf den Cermet-Schichten abgeschieden wird.
11. Verfahren nach Anspruch 1 und 10, dadurch gekennzeichnet, dass eine Antireflexionsschicht mittels verdünnter stabilisierter keramischer Suspension ohne metallischen Anteil aufgebracht wird.
12. Verwendung des Verfahrens gemäß den Ansprüchen 1 bis 11 zur Beschichtung Cermet-basierter selektiver Solarabsorber.
EP07846323A 2006-11-10 2007-11-12 Verfahren zur herstellung dünner schichten von metall-keramik- verbundwerkstoffen Withdrawn EP2122270A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006053361 2006-11-10
PCT/DE2007/002039 WO2008055496A1 (de) 2006-11-10 2007-11-12 Verfahren zur herstellung dünner schichten von metall-keramik- verbundwerkstoffen

Publications (1)

Publication Number Publication Date
EP2122270A1 true EP2122270A1 (de) 2009-11-25

Family

ID=39156153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07846323A Withdrawn EP2122270A1 (de) 2006-11-10 2007-11-12 Verfahren zur herstellung dünner schichten von metall-keramik- verbundwerkstoffen

Country Status (11)

Country Link
US (1) US20100035081A1 (de)
EP (1) EP2122270A1 (de)
JP (1) JP2010509498A (de)
KR (1) KR20090080093A (de)
CN (1) CN101600915A (de)
AU (1) AU2007317053B2 (de)
BR (1) BRPI0718831A2 (de)
CA (1) CA2668736A1 (de)
IL (1) IL198351A0 (de)
MX (1) MX2009005005A (de)
WO (1) WO2008055496A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854131B (zh) * 2009-04-01 2012-10-03 中国科学院金属研究所 一种耐高温的选择性太阳能吸收膜及其制备方法
DE102009035238A1 (de) * 2009-07-29 2011-02-10 Behr Gmbh & Co. Kg Solarkollektor und Verfahren zur Herstellung einer lichtabsorbierenden Oberfläche
RU2453640C2 (ru) * 2010-04-15 2012-06-20 Юрий Рэмович Залыгин Тонкослойное керамическое покрытие, способ его получения, поверхность трения на основе тонкослойного керамического покрытия и способ ее получения
DE102010034901B4 (de) * 2010-08-18 2016-06-02 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Solarthermische Anordnung
CN102328476B (zh) * 2011-08-23 2014-03-12 北京天瑞星光热技术有限公司 一种具有TiO2和Al2O3双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
CN102328475B (zh) * 2011-08-23 2013-12-18 北京天瑞星光热技术有限公司 一种具有SiO2和TiO2的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
CN103029365A (zh) * 2011-09-30 2013-04-10 中国科学院大连化学物理研究所 一种中高温太阳能选择性吸收涂层
US20130220312A1 (en) * 2012-01-05 2013-08-29 Norwich Technologies, Inc. Cavity Receivers for Parabolic Solar Troughs
CN103474533B (zh) * 2012-06-07 2016-10-19 清华大学 发光二极管
CN103230858B (zh) * 2013-05-03 2015-06-17 中国科学院上海光学精密机械研究所 圆筒式成膜装置
WO2014204671A1 (en) * 2013-06-20 2014-12-24 University Of Houston System GRADIENT SiNO ANTI-REFLECTIVE LAYERS IN SOLAR SELECTIVE COATINGS
US10234172B2 (en) 2013-09-06 2019-03-19 Massachusetts Institute Of Technology Localized solar collectors
CN104596137A (zh) * 2014-12-02 2015-05-06 浙江大学 一种纳米石墨晶电介质复合薄膜结构及应用
WO2017200617A2 (en) * 2016-02-23 2017-11-23 Massachusetts Institute Of Technology Localized solar collectors
CN107504701A (zh) * 2016-06-14 2017-12-22 淄博环能海臣环保技术服务有限公司 一种复合耐高温选择性吸收功能膜及其制造方法
CN108613423A (zh) * 2016-12-02 2018-10-02 北京有色金属研究总院 一种高温太阳光谱选择性吸收薄膜及其制备方法
CN106422781A (zh) * 2016-12-15 2017-02-22 江苏立能环保水处理工程有限公司 一种陶瓷膜过滤器及其制备方法
CN107192150A (zh) * 2017-05-23 2017-09-22 南京工业大学 一种太阳能选择性吸收涂层结构及制备方法
CN109676127B (zh) * 2019-01-30 2020-07-17 中南大学 一种高性能TiN基金属陶瓷及其制备方法
US11508641B2 (en) * 2019-02-01 2022-11-22 Toyota Motor Engineering & Manufacturing North America, Inc. Thermally conductive and electrically insulative material
CN110257773B (zh) * 2019-07-24 2021-08-31 常州瞻驰光电科技股份有限公司 一种用于蒸镀高吸收膜层的蒸镀材料及其制备方法
CN115710690A (zh) * 2022-11-30 2023-02-24 江苏伊斯达尔精密科技有限公司 一种抗氧化金属陶瓷材料及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454346A (en) * 1977-10-11 1979-04-28 Teijin Ltd Window for use in solar heat calorifier
JPS5837451U (ja) * 1981-09-08 1983-03-11 昭和アルミニウム株式会社 太陽熱温水器
DE4100990C2 (de) * 1991-01-15 1995-06-01 Fraunhofer Ges Forschung Verfahren zur Herstellung von dielektrischen Komposit-Materialien und deren Verwendung
IN185567B (de) * 1991-07-19 2001-03-03 Univ Sydney
JPH0737363B2 (ja) * 1992-08-19 1995-04-26 工業技術院長 抗菌抗カビ性セラミックス及びその製造方法
US5912045A (en) * 1995-05-22 1999-06-15 Eisenhammer; Thomas Process for producing selective absorbers
US6632542B1 (en) * 2000-05-11 2003-10-14 Sandia Corporation Solar selective absorption coatings
DE10121812C2 (de) * 2001-05-04 2003-04-10 Dieter Hoenicke Verfahren zur Herstellung von langzeit- und temperaturstabilen Absorberschichten zur Konversion solarer Strahlung
US6921546B2 (en) * 2003-02-20 2005-07-26 Gemtron Corporation Antimicrobial glass and glass-like products and method of preparing same
DE202005007474U1 (de) * 2005-05-11 2006-09-21 Bayerisches Zentrum für angewandte Energieforschung e.V. (ZAE Bayern) Leichter Sonnenkollektor mit integriertem Überhitzungsschutz
DE102006028429B3 (de) * 2006-06-21 2007-06-28 Fachhochschule Kiel Verfahren zur Herstellung einer Absorberbeschichtung auf Sol-Gel-Basis für Solarthermie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008055496A1 *

Also Published As

Publication number Publication date
WO2008055496A1 (de) 2008-05-15
CN101600915A (zh) 2009-12-09
AU2007317053B2 (en) 2011-04-28
US20100035081A1 (en) 2010-02-11
KR20090080093A (ko) 2009-07-23
CA2668736A1 (en) 2008-05-15
AU2007317053A1 (en) 2008-05-15
MX2009005005A (es) 2009-07-31
IL198351A0 (en) 2010-02-17
JP2010509498A (ja) 2010-03-25
BRPI0718831A2 (pt) 2014-02-04

Similar Documents

Publication Publication Date Title
EP2122270A1 (de) Verfahren zur herstellung dünner schichten von metall-keramik- verbundwerkstoffen
KR102371492B1 (ko) 근적외선 차폐 재료 미립자와 이의 제조 방법 및 근적외선 차폐 재료 미립자 분산액
DE69328197T2 (de) Transparente, leitende schicht, transparentes, leitendes basismaterial und leitendes material
DE69801290T2 (de) Metallisches Material mit photokatalytischer Aktivität und Verfahren zur Herstellung
DE69125644T2 (de) Interferenz-Filter
DE102009016708B4 (de) Solarabsorber-Schichtsystem und Verfahren zu seiner Herstellung
DE102006028429B3 (de) Verfahren zur Herstellung einer Absorberbeschichtung auf Sol-Gel-Basis für Solarthermie
DE19620645C2 (de) Verfahren zur Herstellung selektiver Absorber
DE2616662B1 (de) Verfahren zur herstellung einer selektiven solarabsorberschicht aus aluminium
WO2003068682A1 (de) Nanoskaliger rutil oder nanoskaliges oxid sowie verfahren zu dessen herstellung
DE112009002056T5 (de) Transparenter elektrisch leitfähiger Film für Solarzellen, Zusammensetzung für transparente elektrisch leitfähige Filme und Mehrfach-Solarzellen
EP2460035B1 (de) Verfahren zur herstellung von beschichtungen mit antireflexionseigenschaften
Eshaghi et al. Preparation and characterization of TiO 2 sol–gel modified nanocomposite films
DE102010052032A1 (de) Verfahren zur Herstellung von metallischen Strukturen
DE4227720C2 (de) Verfahren zur Herstellung von Beschichtungen aus Spinell sowie Verwendung der danach hergestellten Träger
WO2008006566A2 (de) Stabile suspensionen von kristallinen tio2-partikeln aus hydrothermal behandelten sol-gel-vorstufenpulvern
EP2243862A2 (de) Solarabsorberbeschichtung und Verfahren zur Herstellung einer derartigen Solarabsorberbeschichtung
EP1458654B1 (de) Verfahren zur erzeugung lokal funktioneller photokatalytischer bereiche und damit erhältliche gegenstände
DE69504678T2 (de) Elektrophoretisches verfahren zum aufbringen mehrfacher beschichtungen auf fasern
DE102016122132A1 (de) Katalytisch aktives Material, Verfahren zu dessen Herstellung sowie dessen Verwendung
DE102007026866A1 (de) Photokatalytisch aktive Schicht sowie Zusammensetzung und Verfahren zu ihrer Herstellung
DE102006032759A1 (de) Stabile Suspensionen von kristallinen ZrO2-Partikeln aus hydrothermal behandelten Sol-Gel-Vorstufenpulvern
Shabrina et al. Characterization of the structure, morphology, and optical properties of titanium dioxide thin film deposited by spray pyrolysis technique for self-cleaning glass
DE10339824B4 (de) Beschichtungsverfahren zur Deposition und Fixierung von Partikeln auf einer Substratoberfläche und Solarzellen mit funkionellem Schichtenaufbau
Ijeoma et al. Visible Light Activity of Enhanced Screen-printed Titanium Dioxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120601