EP2122270A1 - Method for the production of thin layers of metal-ceramic composite materials - Google Patents
Method for the production of thin layers of metal-ceramic composite materialsInfo
- Publication number
- EP2122270A1 EP2122270A1 EP07846323A EP07846323A EP2122270A1 EP 2122270 A1 EP2122270 A1 EP 2122270A1 EP 07846323 A EP07846323 A EP 07846323A EP 07846323 A EP07846323 A EP 07846323A EP 2122270 A1 EP2122270 A1 EP 2122270A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cermet
- metal
- ceramic
- layers
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000000919 ceramic Substances 0.000 title claims abstract description 23
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000006096 absorbing agent Substances 0.000 claims abstract description 26
- 239000011195 cermet Substances 0.000 claims abstract description 24
- 239000000725 suspension Substances 0.000 claims abstract description 20
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 239000002105 nanoparticle Substances 0.000 claims abstract description 9
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 5
- 230000001476 alcoholic effect Effects 0.000 claims abstract description 4
- 239000011858 nanopowder Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 3
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 3
- 238000009736 wetting Methods 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000002923 metal particle Substances 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910017083 AlN Inorganic materials 0.000 claims 1
- 239000000080 wetting agent Substances 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 abstract description 3
- 239000007864 aqueous solution Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract 2
- 239000002344 surface layer Substances 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 230000009102 absorption Effects 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 11
- 229910003310 Ni-Al Inorganic materials 0.000 description 7
- 239000002114 nanocomposite Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3605—Coatings of the type glass/metal/inorganic compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3644—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3668—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
- C03C17/3678—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/08—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1225—Deposition of multilayers of inorganic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1262—Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
- C23C18/127—Preformed particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1275—Process of deposition of the inorganic material performed under inert atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1283—Control of temperature, e.g. gradual temperature increase, modulation of temperature
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/30—Auxiliary coatings, e.g. anti-reflective coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/47—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
- C03C2217/475—Inorganic materials
- C03C2217/479—Metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
Definitions
- the invention relates to a method for producing thin layers of metal-ceramic composites containing metallic nanoparticles and the use of the method.
- the absorber surface is the most important component of thermal solar collectors.
- a high photothermal conversion yield for such collectors can be achieved through the use of spectrally selective absorbers. These are surfaces that well absorb radiation in the terrestrial solar spectrum but strongly reflect thermal wavelengths, i. they radiate little heat from the heat they absorb. Since there is no natural material with these surface properties, the selectivity must be generated by special coatings.
- the effect of a spectral selectivity of an absorber can usually be achieved by an absorber-reflector tandem.
- the absorber layer ensures the highest solar absorption with at the same time least influence on the thermal emissivity, which is dominated by the reflector layer or the metallic substrate.
- This optical property has numerous metal-ceramic composite layers on a metallic substrate.
- Simple commercial selective solar absorbers are produced by electroplating, anodizing and chemical oxidation techniques.
- Black chrome, black zinc, Copper oxide, black cobalt, black nickel, iron oxide and pigmented alumina are the most commonly used, electrochemically produced, selective photothermal absorber layers.
- Such absorbers have solar absorptions of 0.9 and thermal emissivities of 0.1 to 0.3 and are usually temperature stable up to temperatures of 425 to 500 degrees Kelvin.
- These manufacturing processes require toxic acid baths as well as complicated combinations of metal salts.
- the wastes occurring in this manufacturing process are toxic, not environmentally friendly and difficult to handle (disposal).
- Metal-ceramic composites also called cermets, consist of a ceramic matrix in which metallic nano-particles are dispersed.
- cermets consist of a ceramic matrix in which metallic nano-particles are dispersed.
- the rather high IR transparency and simultaneous high solar absorption of many cermet layers predestine them for use as selective absorbers.
- the use of such cermet layers as absorbers is therefore widespread.
- coatings are long-term stable even under different thermal conditions.
- Optical properties of a nanocomposite coating can be easily influenced by the thickness of the layer, the volume fraction of the metallic phase, the geometry and the particle size.
- the distribution characteristic of the conductive particles can decisively influence the normalized refractive index of cermet layers. For example, a gradual increase in the concentration of metallic particles from the air cermet to the substrate causes Cermet interface a higher degree of absorption by reducing the surface reflections.
- Deposition via sputtering techniques provides a very clean process without the need for chemical baths and hazardous acids.
- This deposition technique enables high-quality optical coatings with controlled layer thickness to be obtained from high purity target materials.
- the sputtering is relatively complex and expensive, since high-tech voltage sources and large vacuum chambers or clean room conditions are required, as well as a precise control and regulation system, the composition of the gas, the layer thickness and the pressure conditions to be able to adjust. Overall, the technology is also relatively energy consuming.
- solar absorber coatings are a cheaper option, but they have a very high thermal emissivity of 80-90%, which is caused by vibration modes of the built-in organic polymer binder, and suffer from poor long-term stability.
- the use of organically modified silicone resins has improved the stability of such paints.
- paint-based absorbers are generally classified in the group of non-selective or moderately selective absorbers.
- Niihara Reduction and Sintering of a Nickel-Dispersed Alumina Composite and Us Properties J. Am. Ceram Soc 50 (1997) 1139-1148 and T. Sekino, T. Nakajima and K. Nuhara, Mechanical and Magnetic properties of nickel dispersed alumina-based nanocomposites. Mater. Lett. 29_ (1996) 165-169). These methods have been used to prepare bulk samples having metal contents of 5-30% in the composite at metal particle sizes of about 40-150 nm. In recent decades, various spectrally selective Ni-Al 2 O 3 composite films have been produced by different methods. These were prepared on a laboratory scale by planar RF magnetron sputtering using hot pressed Ni-Al 2 O 3 targets.
- pigmented alumina coatings are used commercially in solar collectors, they are generally not considered to be particularly selective.
- Ni-aluminum layers were fabricated from a Ni-Al 2 O 3 -SoI having a solar absorption of 0.83 and a thermal emission of 0.03 with a cermet layer having a nickel content of 65%.
- the invention has for its object to provide a method for producing thin layers of metal-ceramic composites, which is very simple, reliable and inexpensive, allows layers of good spectral selectivity, which are resistant to humidity and high temperatures and which are different Apply materials. According to the invention this object is achieved by a method having the features of claim 1.
- the dependent claims indicate advantageous embodiments.
- a preferred use of the method is the coating of cermet-based selective solar absorber.
- one or more thin cermet layers with a thickness of 50 to 2000 nm are deposited on the substrate by immersing metallic substrates in a stabilized aqueous or organic suspension.
- the suspension consists of alcoholic or aqueous solution in which ceramic nanoparticles whose primary particle size is smaller than 30 nm are dispersed.
- the metallic portion of the cermet is as metal ions.
- the suspension is electrostatically or sterically stabilized depending on the type of solvent (water or alcohol). In order to eliminate agglomerates or aggregates, the suspension is well dispersed by means of mechanical and ultrasonic dispersion techniques.
- the materials required for this are relatively inexpensive and easy to obtain. It proves to be advantageous that no toxic acid baths, which must be disposed of appropriately, are necessary.
- the metallic and the ceramic filling degree in the thin film or the composite material can be easily adjusted by adjusting the concentration of the dissolved metal ions in the solution.
- the prepared suspension can be used up by spraying or dipping onto a reflector substrate.
- this procedure is also suitable for mass production for coating large surfaces.
- another advantage of this process is the coating of almost any surface, not just flat surfaces.
- any substrate suitable for solar absorber can be used.
- the substrate is made of a low emissivity metal or metal alloy, for example, copper or aluminum. If glass tubes or glass substrates are used, the glass can first coated with silver using Tollens reagent to achieve a similar effect. After drying, the cermet layer can be applied.
- the metallic portion of the cermet from the group Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd and Zr can be formed in the form of corresponding metal salts.
- AlN can, SiO 2, TiO 2, ZrO 2, Y 2 O 3, WO 3, Ta 2 O 5, V 2 O 5 , Nb 2 O 5 , CeO 2 or a mixture of 2 or 3 different nanopowders.
- multiple layers of different metal content are sequentially applied to reduce reflection loss at the surface.
- the optical properties of the coating overall can thus be adjusted particularly well.
- the individual layers can be applied one after the other, whenever the previously applied layer has dried.
- Starting material are substrates of copper and aluminum.
- the surfaces are subjected to a fine polishing before their coating.
- the removal of the surface roughness allows a uniform application of the layers without unwanted deposits on disturbing bumps.
- the substrates are cleaned by means of ethanol and distilled water.
- a metal salt eg here nickel salt (the amount depends on the desired metallic content in the layer)
- a metal salt eg here nickel salt (the amount depends on the desired metallic content in the layer)
- nano-Al 2 O 3 powder having an average particle size of 5-30 nm is added.
- the mixture is allowed to mechanically disperse for 30 minutes under controlled temperature (cooling) and at high speed.
- the entire suspension is stabilized electrostatically or electrosterically (depends on the solvent).
- Ultrasonic dispersion can additionally be used to achieve a finer particle size distribution.
- wetting and adhesion agents are added to the suspension to improve substrate wetting and film adhesion.
- the solution is filtered with sub-micron filters.
- the substrates are immersed in the vorumblete suspension.
- the part to be coated should remain submerged for a few seconds to reach a state of equilibrium between the substrate and the solution.
- the substrate is withdrawn from the bath under controlled conditions and at a constant rate.
- the part to be coated After the part to be coated has been removed from the bath, it is dried in a drying cabinet.
- the dried samples of a thermal treatment subjected to a corresponding hardness of the coating can be done in an oven at about 500 K up to 1000 K.
- the sintering is carried out under a pure hydrogen or forming gas atmosphere to reduce oxide phases of nickel and to avoid any oxidation of the substrate.
- FIG. 1 shows an absorber-reflector tandem for a Ni-Al 2 O 3 absorber with (FIG. 1 b) and without antireflection coating (FIG. described.
- FIG. 2 shows microscopic 2 images of the surface (FIG. 2 a) and of the cross section (FIG. 2 b) of a deposited Ni-Al 2 O 3 layer which has been deposited by the method according to claim 1.
- Ni content in the cermet layer to 20% by weight and depositing individual cermet layers with different layer thicknesses (obtainable by changing the pulling rate) on a polished Al substrate gives the selectivity shown in FIG.
- the sample which contains adhesives, proves the absorbance of 0.87 and a thermal emissivity of 0.08.
- a final antireflection coating can further enhance the optical properties.
- FIG. 3 shows the reflectance of Ni-Al 2 O 3 absorbers without antireflection layer, which contain 20% by weight of Ni and were deposited on an aluminum substrate by means of dipping processes with different drawing speeds (different layer thicknesses). The influence of adhesive on the reflection curve is additionally shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Nanotechnology (AREA)
- Sustainable Development (AREA)
- Ceramic Engineering (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemically Coating (AREA)
Abstract
The invention relates to a method for producing thin layers of metal-ceramic composite materials containing metallic nanoparticles. Said method can be used for coating a solar absorber with a cermet-based selectively absorbing surface layer that is very easy and inexpensive to produce in a reliable manner and has good spectral selectivity. In said method, one or more thin cermet layers are deposited on a substrate by immersing metallic substrates into a stabilized aqueous or organic suspension. The suspension is composed of alcoholic or aqueous solution in which ceramic nanopowders are dispersed and which contains the metallic portion of the cermet in the form of metal ions.
Description
BESCHREIBUNG DESCRIPTION
Verfahren zur Herstellung dünner Schichten von Metall-Keramik- VerbundwerkstoffenMethod for producing thin layers of metal-ceramic composite materials
Die Erfindung betrifft ein Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen, die metallische Nanoteilchen enthalten und die Verwendung des Verfahrens.The invention relates to a method for producing thin layers of metal-ceramic composites containing metallic nanoparticles and the use of the method.
In thermischen Solarkollektoren mit hohem Wirkungsgrad wird nahezu das gesamte Strahlungsspektrum des Sonnenlichtes von der Oberfläche des Solarabsorbers in thermische Energie umgewandelt. Die Absorberfläche und mit ihr verbundene Röhren geben die Wärme an eine die Röhren durchfließende Wärmeträgerflüssigkeit, zum Beispiel Wasser, ab.In solar thermal collectors with high efficiency almost the entire radiation spectrum of sunlight is converted from the surface of the solar absorber into thermal energy. The absorber surface and connected tubes give off the heat to a heat transfer fluid flowing through the tubes, for example water.
Die Absorberfläche ist der wichtigste Bestandteil von thermischen Solarkollektoren. Eine hohe photothermale Umwandlungsausbeute für solche Kollektoren kann durch den Einsatz spektral selektiver Absorber erreicht werden. Das sind Oberflächen, die eine Strahlung im terrestrischen Solarspektrum gut absorbieren aber thermische Wellenlängen stark reflektieren, d.h. sie strahlen die aufgenommene Wärme nur wenig ab. Da es keinen natürlichen Werkstoff mit diesen Oberflächeneigenschaften gibt, muss die Selektivität durch spezielle Beschichtungen erzeugt werden.The absorber surface is the most important component of thermal solar collectors. A high photothermal conversion yield for such collectors can be achieved through the use of spectrally selective absorbers. These are surfaces that well absorb radiation in the terrestrial solar spectrum but strongly reflect thermal wavelengths, i. they radiate little heat from the heat they absorb. Since there is no natural material with these surface properties, the selectivity must be generated by special coatings.
Der Effekt einer spektralen Selektivität eines Absorbers kann in der Regel durch ein Absorber-Reflektor-Tandem erzielt werden. Eine Absorberschicht, die geringe Reflexion (hohe solare Absorption) für Wellenlängen < 2,5 μm besitzt, aber gleichzeitig für thermische Wellenlängen im IR-B ereich transparent ist, wird auf eine Metallfläche, die hohe Reflexion (geringer thermischer Emissionsgrad) für Wellenlängen > 2,5 μm aufweist, abgeschieden (Abb. 1). So gewährleistet die Absorberschicht die höchste Solarabsorption bei gleichzeitig geringstem Einfluss auf den thermischen Emissionsgrad, der hingegen durch die Reflektorschicht oder das metallische Substrat dominiert wird. Diese optische Eigenschaft besitzen zahlreiche Metall-Keramik- Verbundschichten auf einem metallischen Substrat.The effect of a spectral selectivity of an absorber can usually be achieved by an absorber-reflector tandem. An absorber layer that has low reflection (high solar absorption) for wavelengths <2.5 μm, but at the same time is transparent for thermal wavelengths in the IR range, is coated on a metal surface, the high reflection (low thermal emissivity) for wavelengths> 2 , 5 μm, deposited (Fig. 1). Thus, the absorber layer ensures the highest solar absorption with at the same time least influence on the thermal emissivity, which is dominated by the reflector layer or the metallic substrate. This optical property has numerous metal-ceramic composite layers on a metallic substrate.
Einfache kommerzielle selektive Solarabsorber werden mittels Galvanik, Eloxieren und chemischen Oxidierungstechniken produziert. Schwarzes Chrom, schwarzes Zink,
Kupferoxid, schwarzes Kobalt, schwarzes Nickel, Eisenoxid und pigmentiertes Aluminiumoxid sind die gebräuchlichsten, elektrochemisch hergestellten, selektiven photothermalen Absorberschichten.Simple commercial selective solar absorbers are produced by electroplating, anodizing and chemical oxidation techniques. Black chrome, black zinc, Copper oxide, black cobalt, black nickel, iron oxide and pigmented alumina are the most commonly used, electrochemically produced, selective photothermal absorber layers.
Derartige Absorber weisen solare Absorptionsgrade von 0,9 und thermische Emissionsgrade von 0,1 bis 0,3 auf und sind üblicherweise temperaturstabil bis zu Temperaturen von 425 bis zu 500 Grad Kelvin. Für diese Herstellungsverfahren werden giftige Säurebäder benötigt sowie komplizierte Kombinationen von Metallsalzen. Außerdem sind die bei diesem Herstellprozess auftretenden Abfälle toxisch, nicht umweltfreundlich und problematisch in der Handhabung (Entsorgung).Such absorbers have solar absorptions of 0.9 and thermal emissivities of 0.1 to 0.3 and are usually temperature stable up to temperatures of 425 to 500 degrees Kelvin. These manufacturing processes require toxic acid baths as well as complicated combinations of metal salts. In addition, the wastes occurring in this manufacturing process are toxic, not environmentally friendly and difficult to handle (disposal).
Darüber hinaus ist bei diesen Methoden eine gezielte Anpassung der optischen Eigenschaften des Absorbers an die gewünschte Charakteristik sehr schwer oder manchmal sogar unmöglich.In addition, in these methods, a targeted adjustment of the optical properties of the absorber to the desired characteristics is very difficult or even impossible.
Seit etwa zwei Jahrzehnten werden dünne Schichten von Metall-Keramik- Verbundwerkstoffen, auf Grund ihrer geeigneten und anpassbaren optischen Eigenschaften intensiv bezüglich ihrer Eignung als selektive Solarabsorber untersucht.For about two decades, thin layers of metal-ceramic composites have been extensively studied for their suitability as selective solar absorbers because of their suitable and adaptable optical properties.
Metall-Keramik- Verbundmaterialen, die auch Cermet genannt werden, bestehen aus einer keramischen Matrix, in der metallische Nano-Teilchen dispergiert sind. Die ziemlich hohe IR- Transparenz und gleichzeitige hohe solare Absorption vieler Cermetschichten prädestiniert sie für den Einsatz als selektive Absorber. Die Verwendung solcher Cermetschichten als Absorber ist daher weit verbreitet. Weiterhin sind derartige Beschichtungen auch unter verschiedenen thermischen Bedingungen langzeitstabil.Metal-ceramic composites, also called cermets, consist of a ceramic matrix in which metallic nano-particles are dispersed. The rather high IR transparency and simultaneous high solar absorption of many cermet layers predestine them for use as selective absorbers. The use of such cermet layers as absorbers is therefore widespread. Furthermore, such coatings are long-term stable even under different thermal conditions.
Optische Eigenschaften einer Beschichtung aus einem Nano- Verbundwerkstoff können in einfacher Weise beeinflusst werden durch die Dicke der Schicht, den Volumenanteil der metallischen Phase, die Geometrie und die Teilchengröße. Außerdem kann die Verteilungscharakteristik der leitfähigen Teilchen die normalisierte Brechungszahl von Cermetschichten entscheidend beeinflussen. Zum Beispiel verursacht eine stufenweise Zunahme der Konzentration der metallischen Teilchen von der Luft-Cermet- bis zur Substrat-
Cermet-Grenzfläche einen höheren Absorptionsgrad durch Reduzierung der Oberflächereflexion.Optical properties of a nanocomposite coating can be easily influenced by the thickness of the layer, the volume fraction of the metallic phase, the geometry and the particle size. In addition, the distribution characteristic of the conductive particles can decisively influence the normalized refractive index of cermet layers. For example, a gradual increase in the concentration of metallic particles from the air cermet to the substrate causes Cermet interface a higher degree of absorption by reducing the surface reflections.
Die Abscheidung über Sputter-Techniken stellt einen sehr sauberen Prozess ohne die Notwendigkeit von chemischen Bädern und gefährlichen Säuren dar. Mittels dieser Abscheidemethode können hochwertige optische Beschichtungen mit kontrollierter Schichtdicke aus hochreinen Target-Materialien erzielt werden. Unter Verwendung von Zylinder- oder Abroll-Sputter-Techniken wurden bereits verschiedene selektive Metall- Dielektrikum-B eschichtungen wie SS-C, SS-AlN (SS = Stainless Steel), Al-N und TiNOx kommerziell hergestellt.Deposition via sputtering techniques provides a very clean process without the need for chemical baths and hazardous acids. This deposition technique enables high-quality optical coatings with controlled layer thickness to be obtained from high purity target materials. Using cylindrical or Roll-sputtering techniques, various selective metal-dielectric-B have been oatings as SS-C, SS-AlN (SS = Stainless Steel), AlN and TiNO x produced commercially.
Hierbei erweist es sich als problematisch, dass die Sputtertechnik vergleichsweise aufwändig und teuer ist, da High-tech-Spannungsquellen und große Vakuumkammern bzw. Reinraumbedingungen benötigt werden, sowie ein präzises Kontroll- und Regelungssystem, um die Zusammensetzung des Gases, die Schichtdicke und die Druckverhältnisse einstellen zu können. Insgesamt ist die Technik auch vergleichsweise energieaufwändig.It proves to be problematic that the sputtering is relatively complex and expensive, since high-tech voltage sources and large vacuum chambers or clean room conditions are required, as well as a precise control and regulation system, the composition of the gas, the layer thickness and the pressure conditions to be able to adjust. Overall, the technology is also relatively energy consuming.
Betrachtet man die momentanen Bedingungen im sich in der Anfangsphase seiner Entwicklung befindlichen Solarmarkt, wo die Absorberschichten noch immer die teuerste Komponente eines Kollektors sind, ist das Sputtern momentan kein Weg zur ökonomischen Herstellung von kostengünstigeren thermischen Solarkollektoren.Considering the current conditions in the solar market in the initial phase of its development, where the absorber layers are still the most expensive component of a collector, sputtering is currently no way to economically produce cheaper solar thermal collectors.
Im Gegensatz zu gesputterten Schichten sind Solarabsorber- Anstriche eine billigere Variante, die allerdings eine sehr hohe thermische Emissivität von 80-90 % aufweisen, die durch Schwingungsmoden der eingebauten organischen Polymer-Binder verursacht wird, sowie unter schlechter Langzeitstabilität leiden. Durch die Verwendung organisch modifizierter Silikonharze wurde die Stabilität solcher Anstriche verbessert. In der Regel werden die Absorber auf Anstrichbasis wegen ihrer schlechten optischen Eigenschaften bisher jedoch eher in die Gruppe der nicht-selektiven oder mäßig selektiven Absorber eingereiht.In contrast to sputtered layers, solar absorber coatings are a cheaper option, but they have a very high thermal emissivity of 80-90%, which is caused by vibration modes of the built-in organic polymer binder, and suffer from poor long-term stability. The use of organically modified silicone resins has improved the stability of such paints. However, because of their poor optical properties, paint-based absorbers are generally classified in the group of non-selective or moderately selective absorbers.
Durch Kombination einer Graphitschicht mit einem mechanisch polierten Substrat wurde ein kostengünstiger mechanisch erzeugter Solarabsorber geschaffen. Solche Beschichtungen sind
sehr empfindlich hinsichtlich der Polierparameter und weisen eine solare Absorption um 0.9 und eine thermale Emission bis zu 0,22 auf.By combining a graphite layer with a mechanically polished substrate, a cost-effective mechanically generated solar absorber was created. Such coatings are very sensitive to the polishing parameters and have a solar absorption of 0.9 and a thermal emission of up to 0.22.
Die DE 196 20 645 C2 beschreibt eine Sol-Gel-Technik, bei der leitfähige Partikel in das Ausgangssol oder in das noch nicht allzu viskose entstehende Gel eingebracht werden. Bei diesem Verfahren müssen die leitfähigen Teilchen in einer Inertgasatmosphäre unter hohem Druck (10 Pa bis 1000 Pa) bis unter 70 nm zerstäubt werden. Größere Teilchen werden danach durch Siebverfahren getrennt. In diesem Verfahren müssen die metallischen Teilchen zum Schutz gegen chemische Einflüsse und Diffusion mit einer dielektrischen Schicht überzogen werden. Die sehr große reaktive Oberfläche der hergestellten metallischen Nanoteilchen, führt zu Problemen durch die chemische Oxidation von Teilchen, die verhindert werden muss. Außerdem sind Oberflächenbehandlung, Teilchenzerstäuben und Sieben aufwändige Extraschritte, die dieses Produktionsverfahren verteuern.DE 196 20 645 C2 describes a sol-gel technique in which conductive particles are introduced into the starting oil or into the not-too-viscous resulting gel. In this method, the conductive particles must be sputtered in an inert gas atmosphere under high pressure (10 Pa to 1000 Pa) to below 70 nm. Larger particles are then separated by sieving. In this process, the metallic particles must be coated with a dielectric layer for protection against chemical attack and diffusion. The very large reactive surface area of the produced metallic nanoparticles leads to problems due to the chemical oxidation of particles, which must be prevented. In addition, surface treatment, particle sputtering and sieving are expensive extra steps, which make this production process more expensive.
Bisherige Untersuchungen beschränken sich hauptsächlich auf die Mikrostruktur und die Verbesserung mechanischer Eigenschaften von Metall-Keramik-Nanokompositen durch Änderungen in der Verteilung der Nanoteilchen und deren Plastizität. Vor allem Sekino et al. untersuchten die mechanischen Eigenschaften verschiedener Metall-Keramik-Nanokomposite unter Verwendung konventioneller pulvermetallurgischer Methoden, der Reduktion und anschließenden Sinterung keramischer und metalloxidischer Pulver wie W-Al2O3 (T Sekino, A. Nakahira and K. Nühara, Relationship between microstructure and high temperature mechanical properties for A12O3/W nanocomposites. Transactions ofthe materials research society ofJapon 16B (1994) 1513-1516 und T Sekino, A. Nakahira, M. Nawa and K. Niihara, Fabrication of A12O3/W Nanocomposite. J. Japan Soc. ofPowd. and Powd. Metall 38_ (1991) 326-330) oder durch chemische Verfahren, wie Sol-Gel, zur Herstellung von Metall-Keramik- Kompositpulvern wie Ni-Al2O3 (T Sekino, T. Nakajima, S. Ueda and K. Niihara, Reduction and sintering of a Nickel-dispersed-alumina composite and Us properties. J. Am. Ceram. Soc. 50 (1997) 1139-1148 und T. Sekino, T. Nakajima and K. Nühara, Mechanical and magnetic properties of Nickel dispersed alumina-based nanocomposite. Mater. Lett. 29_ (1996) 165- 169). Diese Verfahren wurden zur Herstellung von Bulk-Proben genutzt, die Metallgehalte von 5-30 % im Komposit bei Metallpartikelgrößen von etwa 40-150 nm aufweisen.
In den letzten Jahrzehnten wurden verschiedene spektral selektive Ni-Al2O3- Kompositschichten mittels unterschiedlicher Verfahren hergestellt. Diese wurden im Labormaßstab durch planares RF-Magnetron-Sputtern unter Verwendung heißgepresster Ni- Al2O3-Targets hergestellt. Bei dieser Methode ist eine Änderung des Nickelgehalts in der Kompositschicht nicht einfach zu erreichen und es mussten zusätzliche Ni-Pellets in einer speziellen Geometrie auf dem Komposit-Target angeordnet werden, um höhere Metall- Volumenateile zu erlangen. So wurden bei Verwendung einer 78 um SiO2- Antireflexionsschicht für die solare Absorption Werte von etwa 0,94 und für die thermale Emission von 0,07 erreicht.Previous research has focused mainly on the microstructure and the improvement of mechanical properties of metal-ceramic nanocomposites through changes in the distribution of nanoparticles and their plasticity. Especially Sekino et al. studied the mechanical properties of various metal-ceramic nanocomposites using conventional powder metallurgy techniques, the reduction and subsequent sintering of ceramic and metal oxide powders such as W-Al 2 O 3 (T Sekino, A. Nakahira and K. Nuhara, Relationship between microstructure and high temperature mechanical properties for A12O3 / W nanocomposites.Transactions of the materials research society ofJapon 16B (1994) 1513-1516 and T Sekino, A.Nakahira, M.Nawa and K.Niihara, Fabrication of A12O3 / W nanocomposites J.Japan Soc. of Powd and Powd., Metal 38_ (1991) 326-330) or by chemical processes, such as sol-gel, for the production of metal-ceramic composite powders, such as Ni-Al 2 O 3 (T Sekino, T. Nakajima, S. Ueda and K. Niihara, Reduction and Sintering of a Nickel-Dispersed Alumina Composite and Us Properties J. Am. Ceram Soc 50 (1997) 1139-1148 and T. Sekino, T. Nakajima and K. Nuhara, Mechanical and Magnetic properties of nickel dispersed alumina-based nanocomposites. Mater. Lett. 29_ (1996) 165-169). These methods have been used to prepare bulk samples having metal contents of 5-30% in the composite at metal particle sizes of about 40-150 nm. In recent decades, various spectrally selective Ni-Al 2 O 3 composite films have been produced by different methods. These were prepared on a laboratory scale by planar RF magnetron sputtering using hot pressed Ni-Al 2 O 3 targets. In this method, changing the nickel content in the composite layer is not easy to achieve and additional Ni pellets had to be placed in a special geometry on the composite target to obtain higher metal volume fraction. Thus, using a 78 μm SiO 2 antireflection coating for solar absorption, values of about 0.94 and for thermal emission of 0.07 were achieved.
Es ist auch bekannt, Aluminiumsubstrate mittels Phosphorsäure zu eloxieren und anschließend das eloxierte Aluminium durch Wechselstrom-Elektrolyse in einem NiSO4- hnprägnierbad zu färben. Hierbei wird eine solare Absorption von 0,93-0,96 erreicht und ein thermischer Emissionsgrad von 0,1-0,2. Bei Verwendung derselben Herstellungsmethode und Untersuchung des Effektes verschiedener Imprägnierparameter auf die optischen Eigenschaften der Schichten wurden solare Absorptionsgrade größer 0,9 und ein thermischer Emissionsgrad von 0,14 erreicht.It is also known to anodize aluminum substrates using phosphoric acid and then to dye the anodized aluminum by AC electrolysis in a NiSO 4 impregnation bath. Here a solar absorption of 0.93-0.96 is achieved and a thermal emissivity of 0.1-0.2. Using the same production method and examining the effect of different impregnation parameters on the optical properties of the layers, solar absorptions greater than 0.9 and a thermal emissivity of 0.14 were achieved.
Obwohl pigmentierte Aluminiumoxidbeschichtungen kommerziell in Solarkollektoren eingesetzt werden, werden sie in der Regel nicht als besonders selektiv eingeschätzt.Although pigmented alumina coatings are used commercially in solar collectors, they are generally not considered to be particularly selective.
Aufbauend auf ihre vorausgehenden Arbeiten zu Sol-Gel-basierten Antireflexionsschichten und C-SiO2-Kompositschichten, wurden Ni-Aluminium-Schichten aus einem Ni-Al2O3-SoI hergestellt, die eine solare Absorption von 0,83 und eine thermale Emission von 0,03 mit einer Cermetschicht erreichten, welche einen Nickelgehalt von 65 % besitzt.Building on their previous work on sol-gel-based antireflection layers and C-SiO 2 composite layers, Ni-aluminum layers were fabricated from a Ni-Al 2 O 3 -SoI having a solar absorption of 0.83 and a thermal emission of 0.03 with a cermet layer having a nickel content of 65%.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen zu schaffen, das sehr einfach, zuverlässig und kostengünstig ist, Schichten guter spektraler Selektivität ermöglicht, die gegen Luftfeuchtigkeit und hohe Temperaturen beständig sind und welches sich auf verschiedene Werkstoffe anwenden lässt.
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben vorteilhafte Ausgestaltungen an. Eine bevorzugte Verwendung des Verfahrens ist die Beschichtung Cermet-basierter selektiver Solarabsorber.The invention has for its object to provide a method for producing thin layers of metal-ceramic composites, which is very simple, reliable and inexpensive, allows layers of good spectral selectivity, which are resistant to humidity and high temperatures and which are different Apply materials. According to the invention this object is achieved by a method having the features of claim 1. The dependent claims indicate advantageous embodiments. A preferred use of the method is the coating of cermet-based selective solar absorber.
In diesem Verfahren werden erfindungsgemäß ein oder mehrere dünner Cermetschichten mit der Dicke von 50 bis 2.000 nm mittels Tauchen metallischer Substrate in eine stabilisierte wässerige oder organische Suspension auf dem Substrat abgeschieden. Die Suspension besteht aus alkoholischer oder wässeriger Lösung, in der keramische Nano-Teilchen, deren Primärteilchengröße kleiner als 30 nm ist, dispergiert sind. In der Lösung befindet sich der metallische Anteil des Cermets als Metall-Ionen.In this process, according to the invention, one or more thin cermet layers with a thickness of 50 to 2000 nm are deposited on the substrate by immersing metallic substrates in a stabilized aqueous or organic suspension. The suspension consists of alcoholic or aqueous solution in which ceramic nanoparticles whose primary particle size is smaller than 30 nm are dispersed. In the solution, the metallic portion of the cermet is as metal ions.
Die Suspension wird abhängig von der Art des Lösungsmittels (Wasser oder Alkohol) elektrostatisch oder sterisch stabilisiert. Um Agglomerate oder Aggregate zu beseitigen, wird die Suspension mittels mechanischer und Ultraschall- Dispergiertechnik gut dispergiert.The suspension is electrostatically or sterically stabilized depending on the type of solvent (water or alcohol). In order to eliminate agglomerates or aggregates, the suspension is well dispersed by means of mechanical and ultrasonic dispersion techniques.
Die dafür benötigen Materialien sind vergleichsweise kostengünstig und einfach zu erhalten. Dabei erweist es sich als vorteilhaft, dass keine giftigen Säurebäder, die entsprechend entsorgt werden müssen, notwendig sind. Außerdem lassen sich mit diesem Verfahren der metallische und der keramische Füllgrad in der Dünnschicht bzw. dem Verbundwerkstoff einfach über die Einstellung der Konzentration der gelösten Metallionen in der Lösung einstellen.The materials required for this are relatively inexpensive and easy to obtain. It proves to be advantageous that no toxic acid baths, which must be disposed of appropriately, are necessary. In addition, with this method, the metallic and the ceramic filling degree in the thin film or the composite material can be easily adjusted by adjusting the concentration of the dissolved metal ions in the solution.
Die vorbereitete Suspension kann mittels Sprühen oder Tauchen auf ein Reflektor-Substrat aufgebraucht werden. Außerdem eignet sich diese Vorgehensweise auch zur Massenfertigung zur Beschichtung großer Oberflächen. Neben den geringen Anforderungen an die Anlage und Prozesskontrolle liegt ein weiterer Vorteil dieses Verfahrens in der Beschichtung nahezu beliebiger und nicht nur flacher Flächen.The prepared suspension can be used up by spraying or dipping onto a reflector substrate. In addition, this procedure is also suitable for mass production for coating large surfaces. In addition to the low demands on the plant and process control, another advantage of this process is the coating of almost any surface, not just flat surfaces.
Als Substrate für das erfindungsgemäße Beschichtungsverfahren kann jedes Substrat, das für Solarabsorber geeignet ist, verwendet werden. Bevorzugt besteht das Substrat aus einem Metall oder einer Metalllegierung mit geringem Emissionsgrad, zum Beispiel Kupfer oder Aluminium. Falls Glasrohre oder Glasssubstrate verwendet werden, kann das Glas zunächst
mittels Tollens-Reagenz mit Silber beschichtet werden um einen ähnlichen Effekt zu erzielen. Nach der Trocknung kann die Cermetschicht aufgebracht werden.As substrates for the coating method of the present invention, any substrate suitable for solar absorber can be used. Preferably, the substrate is made of a low emissivity metal or metal alloy, for example, copper or aluminum. If glass tubes or glass substrates are used, the glass can first coated with silver using Tollens reagent to achieve a similar effect. After drying, the cermet layer can be applied.
Entsprechend der Ausgestaltung nach Anspruch 8 kann der metallische Anteil des Cermets aus der Gruppe Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd und Zr in Form entsprechender Metallsalze gebildet werden.According to the embodiment of claim 8, the metallic portion of the cermet from the group Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd and Zr can be formed in the form of corresponding metal salts.
Bei der Ausgestaltung nach Anspruch 9 kann der keramische Anteil aus Nano-pulvern der Gruppe Al2O3, AlN, SiO2, TiO2, ZrO2, Y2O3, , WO3, Ta2O5, , V2O5, Nb2O5, CeO2 oder einer Mischung von 2 oder 3 verschiedenen Nanopulvern ausgewählt werden.In the embodiment according to claim 9 of the ceramic portion of nano-powders of the group Al 2 O 3, AlN can, SiO 2, TiO 2, ZrO 2, Y 2 O 3, WO 3, Ta 2 O 5, V 2 O 5 , Nb 2 O 5 , CeO 2 or a mixture of 2 or 3 different nanopowders.
Bei der Ausgestaltung nach Anspruch 10 werden mehrere Schichten mit verschiedenem Metallgehalt (von niedrig zu hoch) nacheinander aufgetragen um einen Reflexionsverlust an der Oberfläche zu reduzieren. Vorteilhaft lassen sich damit die optischen Eigenschaften der Beschichtung insgesamt besonders gut einstellen. Die einzelnen Schichten können nacheinander aufgetragen werden immer dann, wenn die zuvor aufgetragene Schicht getrocknet ist.In the embodiment of claim 10, multiple layers of different metal content (from low to high) are sequentially applied to reduce reflection loss at the surface. Advantageously, the optical properties of the coating overall can thus be adjusted particularly well. The individual layers can be applied one after the other, whenever the previously applied layer has dried.
Gegenüber den ebenfalls bekannten Sol-Gel-Systemen erweist es sich als vorteilhaft, dass bei der vorliegenden Erfindung keine metallischen Alkoxide verwendet werden müssen, die entsprechend teuer sind. Außerdem finden keine komplizierten chemischen Reaktionen statt, die für eine präzise Einstellung der Schichten und deren Eigenschaften auch entsprechend exakt beherrscht werden müssten. Dies gilt insbesondere auch für den Hydrolyseprozesse, der bei den Sol-Gel-Systemen stattfindet. Ein weiteres Problem bei den Sol-Gel-Systemen ist die kurze Haltbarkeit sowie zu früh einsetzende Netzwerkbildung, die mit der Zeit wächst und die Verarbeitung entsprechend schwierig macht. Ebenfalls werden Probleme vermieden, die bei den Sol-Gel-Systemen durch die Rissbildung in dünnen Schichten beim Trocknen auftreten. Außerdem erweist sich bei den flüssigen Pulversuspensionen gegenüber den Sol-Gel- Systemen als vorteilhaft, dass die flüssigen Pulversuspensionen stabiler und besser lagerbar sind. Dies gilt insbesondere denn, wenn diese flüssigen Pulversuspensionen gerührt werden. Auch nach Einstellen des Rührens ist die stabilisierte Suspension noch einige Stunden verarbeitbar. Selbst gealterte Suspensionen sind wieder dispergierbar. Ein Ausführungsbeispiel der Erfindung wird im Folgenden naher beschreiben.
Nachfolgend wird die Erfindung anhand eines Ausfuhrungsbeispiels näher erläutert.Compared to the likewise known sol-gel systems, it proves to be advantageous that in the present invention, no metallic alkoxides must be used, which are correspondingly expensive. In addition, no complicated chemical reactions take place, which would also have to be controlled precisely for a precise adjustment of the layers and their properties. This is especially true for the hydrolysis processes that take place in the sol-gel systems. Another problem with the sol-gel systems is the short shelf life and too early onset of network formation that grows over time and makes processing accordingly difficult. It also avoids the problems that occur in the sol-gel systems due to cracking in thin layers during drying. In addition, it proves to be advantageous for the liquid powder suspensions over the sol-gel systems that the liquid powder suspensions are more stable and better storable. This is especially true when these liquid powder suspensions are stirred. Even after adjusting the stirring, the stabilized suspension can be processed for a few hours. Even aged suspensions are redispersible. An embodiment of the invention will be described in more detail below. The invention will be explained in more detail with reference to an exemplary embodiment.
Ausfuhrungsbeispiel: Ni-AbC^ Cermet SolarabsorberExemplary embodiment: Ni-AbC ^ Cermet solar absorber
Ausgangsmaterial sind Substrate aus Kupfer und Aluminium. Um negative Einflüsse der Oberflächenbeschaffenheit auf die solare Absorption zu eliminieren, werden die Oberflächen vor deren Beschichtung einer Feinpolierung unterzogen. Außerdem ermöglicht das Beseitigen der Oberflächenrauhigkeit ein gleichmäßiges Auftragen der Schichten ohne unerwünschte Anlagerungen an störenden Unebenheiten.Starting material are substrates of copper and aluminum. In order to eliminate negative influences of the surface condition on the solar absorption, the surfaces are subjected to a fine polishing before their coating. In addition, the removal of the surface roughness allows a uniform application of the layers without unwanted deposits on disturbing bumps.
Danach werden die Substrate mittels Ethanol und destilliertem Wasser gereinigt.Thereafter, the substrates are cleaned by means of ethanol and distilled water.
Zur Herstellung von Suspensionen mit Feststoffgehalten von 2 bis 20 Gew.% wird in einem Becherglas zunächst ein Metallsalz, z.B. hier Nickel-Salz (die Menge hängt vom gewünschten metallischen Anteil in der Schicht ab), in 200 ml destilliertem Wasser gelöst. Danach wird Nano-Al2O3-Pulver mit einer durchschnittlichen Teilchengröße von 5-30 nm zugegeben. Das Gemisch lässt man 30 Minuten unter kontrollierter Temperatur (Kühlung) und bei hoher Drehzahl mechanisch dispergieren. Um Sedimentation und Agglomeration zu vermeiden, wird die gesamte Suspension elektrostatisch oder elektrosterisch (hängt vom Lösungsmittel ab) stabilisiert. Ultraschalldispergierung kann zusätzlich verwendet werden um eine feinere Teilchengrößenverteilung zu erreichen.For the preparation of suspensions with solids contents of 2 to 20 wt.% In a beaker first a metal salt, eg here nickel salt (the amount depends on the desired metallic content in the layer), dissolved in 200 ml of distilled water. Thereafter, nano-Al 2 O 3 powder having an average particle size of 5-30 nm is added. The mixture is allowed to mechanically disperse for 30 minutes under controlled temperature (cooling) and at high speed. In order to avoid sedimentation and agglomeration, the entire suspension is stabilized electrostatically or electrosterically (depends on the solvent). Ultrasonic dispersion can additionally be used to achieve a finer particle size distribution.
Vorzugsweise werden der Suspension noch Benetzungs- und Haftungsmittel zur Verbesserung der Substratbenetzung und Filmadhäsion zugegeben.Preferably, wetting and adhesion agents are added to the suspension to improve substrate wetting and film adhesion.
Nach 30-minütiger Dispergierung wird die Lösung mit sub-micron-Filtern gefiltert.After 30 minutes of dispersion, the solution is filtered with sub-micron filters.
Die Substrate werden in die vorbreitete Suspension eingetaucht. Das zu beschichtende Teil sollte einige Sekunden eingetaucht bleiben, um einen Gleichgewichtszustand zwischen dem Substrat und der Lösung zu erreichen. Anschließend wird das Substrat unter kontrollierten Bedingungen und mit konstanter Geschwindigkeit aus dem Bad herausgezogen. Nachdem das zu beschichtende Teil aus dem Bad entnommen wurde, wird es in einem Trocknungsschrank getrocknet. Anschließend werden die getrockneten Proben einer thermischen Behandlung
unterzogen, um eine entsprechende Härte der Beschichtung zu erreichen. Diese Wärmebehandlung kann in einem Ofen bei etwa 500 K bis zu 1.000 K erfolgen. Die Sinterung wird unter reiner Wasserstoff- oder Formiergas-Atmosphäre durchgeführt um Oxidphasen von Nickel zu reduzieren und jegliche Oxidation des Substrats zu vermeiden.The substrates are immersed in the vorbreitete suspension. The part to be coated should remain submerged for a few seconds to reach a state of equilibrium between the substrate and the solution. Subsequently, the substrate is withdrawn from the bath under controlled conditions and at a constant rate. After the part to be coated has been removed from the bath, it is dried in a drying cabinet. Subsequently, the dried samples of a thermal treatment subjected to a corresponding hardness of the coating. This heat treatment can be done in an oven at about 500 K up to 1000 K. The sintering is carried out under a pure hydrogen or forming gas atmosphere to reduce oxide phases of nickel and to avoid any oxidation of the substrate.
Das Ausführungsbeispiel der Erfindung wird anhand der Abbildungen 1 bis 3 erläutert, m Abb. 1 wird ein Absorber-Reflektor-Tandem für einen Ni-Al2O3-Absorber mit (Abb. Ib) und ohne Antireflex-Beschichtung (Abb. Ia) beschrieben. Abb.2 zeigt mikroskopische 2 Aufnahmen der Oberfläche (Abb. 2a) und des Querschnitt (Abb. 2b) einer abgeschiedenen Ni-Al2O3-Schicht, die durch das Verfahren nach Anspruch 1 abgeschieden worden ist.The exemplary embodiment of the invention is explained with reference to FIGS. 1 to 3, FIG. 1 shows an absorber-reflector tandem for a Ni-Al 2 O 3 absorber with (FIG. 1 b) and without antireflection coating (FIG. described. FIG. 2 shows microscopic 2 images of the surface (FIG. 2 a) and of the cross section (FIG. 2 b) of a deposited Ni-Al 2 O 3 layer which has been deposited by the method according to claim 1.
Bei Einstellung des Ni-Gehalts in der Cermetschicht auf 20 Gew.% und Abscheiden einzelner Cermetschichten mit verschiedenen Schichtdicken (erhältlich durch Änderung der Ziehgeschwindigkeit) auf einem polierten AI-Substrat, erhält man die in Abbildung 3 gezeigte Selektivität. Die Probe, die Adhäsionsmittel enthält, beweist den Absorptionsgrad von 0,87 und einen thermischen Emissionsgrad von 0,08. Eine abschließende Antireflexionsschicht kann die optischen Eigenschaften weiter verbessern.Setting the Ni content in the cermet layer to 20% by weight and depositing individual cermet layers with different layer thicknesses (obtainable by changing the pulling rate) on a polished Al substrate gives the selectivity shown in FIG. The sample, which contains adhesives, proves the absorbance of 0.87 and a thermal emissivity of 0.08. A final antireflection coating can further enhance the optical properties.
Abb.3 zeigt den Reflexionsgrad von Ni-Al2O3-Absorbern ohne Antireflexionsschicht, die 20 Gew.% Ni enthalten und durch Tauchverfahren mit verschiedenen Ziehgeschwindigkeiten (verschiedene Schichtdicken) auf ein Aluminiumsubstrat abgeschieden wurden. Der Einfluss von Haftungsmittel auf Reflexionskurve wird zusätzlich dargestellt.
FIG. 3 shows the reflectance of Ni-Al 2 O 3 absorbers without antireflection layer, which contain 20% by weight of Ni and were deposited on an aluminum substrate by means of dipping processes with different drawing speeds (different layer thicknesses). The influence of adhesive on the reflection curve is additionally shown.
Claims
1. Verfahren zur Herstellung dünner Schichten von Metall-Keramik- Verbundwerkstoffen, die metallische Nanoteilchen enthalten, dadurch gekennzeichnet, dass1. A method for producing thin layers of metal-ceramic composites containing metallic nanoparticles, characterized in that
a. von einer wässrigen oder alkoholischen Lösung ausgegangen wird, in der sich der metallische Anteil des Cermets als gelöste Metall-Ionen befindet,a. starting from an aqueous or alcoholic solution in which the metallic portion of the cermet is dissolved metal ions,
b. obige Lösung als Basis eines pulverbasierten Prozesses dient, wobei eine stabile wässrige oder alkoholische Suspension hergestellt wird, in der keramische Nanoteilchen dispergiert sind,b. above solution serves as the basis of a powder-based process, whereby a stable aqueous or alcoholic suspension is prepared in which ceramic nanoparticles are dispersed,
c. keramische Nanoteilchen sterisch oder elektrostatisch stabilisiert werden,c. ceramic nanoparticles are sterically or electrostatically stabilized,
d. agglomerierte Feststoffeilchen in der Suspension mittels mechanischer oder Ultraschall-Dispergierungstechnik unter Kühlung beseitigt werden,d. agglomerated solid particles are removed in the suspension by means of mechanical or ultrasonic dispersion technology with cooling,
e. anorganische Benetzungsmittel und Haftungsmittel zur Verbesserung von Substratbenetzung und Schicht-Substrathaftung eingesetzt werden,e. inorganic wetting agents and adhesives are used to improve substrate wetting and layer substrate adhesion,
f. die vorbereitete Suspension mittels Sprühen oder Tauchen auf ein Reflektor- Substrat aufgebraucht wird,f. the prepared suspension is used up by spraying or dipping onto a reflector substrate,
g. nach der Trocknung die Proben einer Sinterung in einer H2- oder Formiergas- Atmosphäre unterzogen werden.G. After drying, the samples are subjected to sintering in an H 2 or Formiergas- atmosphere.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Größe der Metallteilchen weniger als 40 ran beträgt.2. The method according to claim 1, characterized in that the size of the metal particles is less than 40 ran.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass einzelne Schichten von etwa 50 nm bis 2 μm Schichtdicke erzeugt werden. 3. The method according to claim 1, characterized in that individual layers of about 50 nm to 2 microns layer thickness are generated.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Sinterung bei Temperaturen bis 1000 ° Kelvin erfolgt.4. The method according to claim 1, characterized in that the sintering takes place at temperatures up to 1000 ° Kelvin.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat aus einem Reflektor-Metall oder einer Metalllegierung mit geringem Emissionsgrad, zum Beispiel Kupfer oder Aluminium, besteht.5. The method according to claim 1, characterized in that the substrate consists of a reflector metal or a metal alloy with a low emissivity, for example copper or aluminum.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Glassubstrat durch Tollens-Reagenz zunächst mit Silber beschichtet wird, und nach der Trocknung nach Anspruch 1 mit dem Cermet beschichtet wird.6. The method according to claim 1, characterized in that a glass substrate is first coated by Tollens reagent with silver, and after drying according to claim 1 is coated with the cermet.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der metallische und der keramische Füllgrad in der Dünnschicht bzw. dem Verbundwerkstoff einfach durch Änderung der Konzentration der Metallionen in der Lösung einstellbar ist.7. The method according to claim 1, characterized in that the metallic and the ceramic degree of filling in the thin layer or the composite material is easily adjustable by changing the concentration of the metal ions in the solution.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der metallische Anteil des Cermets aus der Gruppe Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd und Zr in Form entsprechender Metallsalze gebildet wird.8. The method according to claim 1, characterized in that the metallic portion of the cermet from the group Cu, Ni, Fe, Cr, Zn, Ti, Ag, Co, Al, Pd and Zr is formed in the form of corresponding metal salts.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der keramische Anteil des Cermets aus Nanopulvern der Gruppe Al2O3, AlN, SiO2, TiO2, ZrO2, Y2O3, , WO3, Ta2O5, , V2O5, Nb2O5, CeO2 gebildet wird.9. The method according to claim 1, characterized in that the ceramic portion of the cermet of nanopowders of the group Al 2 O 3 , AlN, SiO 2 , TiO 2 , ZrO 2 , Y 2 O 3 ,, WO 3 , Ta 2 O 5 , , V 2 O 5 , Nb 2 O 5 , CeO 2 is formed.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Cermet-Schichten nacheinander aufgetragen werden, wobei sich die einzelnen Schichten im Metallgehalt unterscheiden und bei dem außerdem für bessere optische Eigenschaften und thermische Stabilität eine abschließende Antireflexionsschicht auf den Cermet-Schichten abgeschieden wird.10. The method according to any one of the preceding claims, characterized in that a plurality of cermet layers are applied successively, wherein the individual layers differ in metal content and in which also for final optical properties and thermal stability, a final anti-reflection layer is deposited on the cermet layers ,
11. Verfahren nach Anspruch 1 und 10, dadurch gekennzeichnet, dass eine Antireflexionsschicht mittels verdünnter stabilisierter keramischer Suspension ohne metallischen Anteil aufgebracht wird. 11. The method according to claim 1 and 10, characterized in that an antireflection layer is applied by means of dilute stabilized ceramic suspension without metallic portion.
12. Verwendung des Verfahrens gemäß den Ansprüchen 1 bis 11 zur Beschichtung Cermet-basierter selektiver Solarabsorber. 12. Use of the method according to claims 1 to 11 for coating cermet-based selective solar absorber.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006053361 | 2006-11-10 | ||
PCT/DE2007/002039 WO2008055496A1 (en) | 2006-11-10 | 2007-11-12 | Method for the production of thin layers of metal-ceramic composite materials |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2122270A1 true EP2122270A1 (en) | 2009-11-25 |
Family
ID=39156153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07846323A Withdrawn EP2122270A1 (en) | 2006-11-10 | 2007-11-12 | Method for the production of thin layers of metal-ceramic composite materials |
Country Status (11)
Country | Link |
---|---|
US (1) | US20100035081A1 (en) |
EP (1) | EP2122270A1 (en) |
JP (1) | JP2010509498A (en) |
KR (1) | KR20090080093A (en) |
CN (1) | CN101600915A (en) |
AU (1) | AU2007317053B2 (en) |
BR (1) | BRPI0718831A2 (en) |
CA (1) | CA2668736A1 (en) |
IL (1) | IL198351A0 (en) |
MX (1) | MX2009005005A (en) |
WO (1) | WO2008055496A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101854131B (en) * | 2009-04-01 | 2012-10-03 | 中国科学院金属研究所 | High-temperature-resistant selective solar energy-absorbing film and preparation method thereof |
DE102009035238A1 (en) * | 2009-07-29 | 2011-02-10 | Behr Gmbh & Co. Kg | Solar collector and method for producing a light-absorbing surface |
RU2453640C2 (en) * | 2010-04-15 | 2012-06-20 | Юрий Рэмович Залыгин | Thin-layer ceramic coating, method of making same, friction surface based on thin-layer ceramic coating and method of making same |
DE102010034901B4 (en) * | 2010-08-18 | 2016-06-02 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Solar thermal arrangement |
CN102328476B (en) * | 2011-08-23 | 2014-03-12 | 北京天瑞星光热技术有限公司 | High-temperature solar energy selective absorption coating comprising TiO2 and Al2O3 double ceramic structures and preparation method thereof |
CN102328475B (en) * | 2011-08-23 | 2013-12-18 | 北京天瑞星光热技术有限公司 | High-temperature solar selective absorption coating with SiO2 and TiO2 bi-ceramic structure and preparation method thereof |
CN103029365A (en) * | 2011-09-30 | 2013-04-10 | 中国科学院大连化学物理研究所 | Medium-high temperature solar selective absorbing coating |
US20130220312A1 (en) * | 2012-01-05 | 2013-08-29 | Norwich Technologies, Inc. | Cavity Receivers for Parabolic Solar Troughs |
CN103474533B (en) * | 2012-06-07 | 2016-10-19 | 清华大学 | Light emitting diode |
CN103230858B (en) * | 2013-05-03 | 2015-06-17 | 中国科学院上海光学精密机械研究所 | Drum type film forming device |
WO2014204671A1 (en) * | 2013-06-20 | 2014-12-24 | University Of Houston System | GRADIENT SiNO ANTI-REFLECTIVE LAYERS IN SOLAR SELECTIVE COATINGS |
US10234172B2 (en) | 2013-09-06 | 2019-03-19 | Massachusetts Institute Of Technology | Localized solar collectors |
CN104596137A (en) * | 2014-12-02 | 2015-05-06 | 浙江大学 | Graphite nano-crystalline dielectric composite film structure and application |
WO2017200617A2 (en) * | 2016-02-23 | 2017-11-23 | Massachusetts Institute Of Technology | Localized solar collectors |
CN107504701A (en) * | 2016-06-14 | 2017-12-22 | 淄博环能海臣环保技术服务有限公司 | A kind of complex fire resistant selective absorbing functional membrane and its manufacture method |
CN108613423A (en) * | 2016-12-02 | 2018-10-02 | 北京有色金属研究总院 | A kind of high temperature selective solar spectrum absorbing membrane and preparation method thereof |
CN106422781A (en) * | 2016-12-15 | 2017-02-22 | 江苏立能环保水处理工程有限公司 | Ceramic membrane filter and preparation method thereof |
CN107192150A (en) * | 2017-05-23 | 2017-09-22 | 南京工业大学 | Solar selective absorption coating structure and preparation method thereof |
CN109676127B (en) * | 2019-01-30 | 2020-07-17 | 中南大学 | High-performance TiN-based metal ceramic and preparation method thereof |
US11508641B2 (en) * | 2019-02-01 | 2022-11-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Thermally conductive and electrically insulative material |
CN110257773B (en) * | 2019-07-24 | 2021-08-31 | 常州瞻驰光电科技股份有限公司 | Evaporation material for evaporating high-absorption film layer and preparation method thereof |
CN115710690A (en) * | 2022-11-30 | 2023-02-24 | 江苏伊斯达尔精密科技有限公司 | Oxidation-resistant cermet material and preparation method thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5454346A (en) * | 1977-10-11 | 1979-04-28 | Teijin Ltd | Window for use in solar heat calorifier |
JPS5837451U (en) * | 1981-09-08 | 1983-03-11 | 昭和アルミニウム株式会社 | solar water heater |
DE4100990C2 (en) * | 1991-01-15 | 1995-06-01 | Fraunhofer Ges Forschung | Process for the preparation of composite dielectric materials and their use |
IN185567B (en) * | 1991-07-19 | 2001-03-03 | Univ Sydney | |
JPH0737363B2 (en) * | 1992-08-19 | 1995-04-26 | 工業技術院長 | Antibacterial and antifungal ceramics and method for producing the same |
US5912045A (en) * | 1995-05-22 | 1999-06-15 | Eisenhammer; Thomas | Process for producing selective absorbers |
US6632542B1 (en) * | 2000-05-11 | 2003-10-14 | Sandia Corporation | Solar selective absorption coatings |
DE10121812C2 (en) * | 2001-05-04 | 2003-04-10 | Dieter Hoenicke | Process for the production of long-term and temperature-stable absorber layers for the conversion of solar radiation |
US6921546B2 (en) * | 2003-02-20 | 2005-07-26 | Gemtron Corporation | Antimicrobial glass and glass-like products and method of preparing same |
DE202005007474U1 (en) * | 2005-05-11 | 2006-09-21 | Bayerisches Zentrum für angewandte Energieforschung e.V. (ZAE Bayern) | Solar collector for converting solar radiation into heat, has film with reversibly alterable transmissivity to allow normal operation and overheating prevention |
DE102006028429B3 (en) * | 2006-06-21 | 2007-06-28 | Fachhochschule Kiel | Coating production method for producing a solar absorber coating coats a substrate with a titanium precursor solution so as to generate a layer of titanium dioxide according to a sol-gel technique |
-
2007
- 2007-11-12 WO PCT/DE2007/002039 patent/WO2008055496A1/en active Application Filing
- 2007-11-12 MX MX2009005005A patent/MX2009005005A/en not_active Application Discontinuation
- 2007-11-12 CN CNA2007800416481A patent/CN101600915A/en active Pending
- 2007-11-12 US US12/513,902 patent/US20100035081A1/en not_active Abandoned
- 2007-11-12 CA CA002668736A patent/CA2668736A1/en not_active Abandoned
- 2007-11-12 EP EP07846323A patent/EP2122270A1/en not_active Withdrawn
- 2007-11-12 JP JP2009535560A patent/JP2010509498A/en active Pending
- 2007-11-12 BR BRPI0718831-5A patent/BRPI0718831A2/en not_active IP Right Cessation
- 2007-11-12 AU AU2007317053A patent/AU2007317053B2/en not_active Ceased
- 2007-11-12 KR KR1020097010327A patent/KR20090080093A/en not_active Application Discontinuation
-
2009
- 2009-04-23 IL IL198351A patent/IL198351A0/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2008055496A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008055496A1 (en) | 2008-05-15 |
CN101600915A (en) | 2009-12-09 |
AU2007317053B2 (en) | 2011-04-28 |
US20100035081A1 (en) | 2010-02-11 |
KR20090080093A (en) | 2009-07-23 |
CA2668736A1 (en) | 2008-05-15 |
AU2007317053A1 (en) | 2008-05-15 |
MX2009005005A (en) | 2009-07-31 |
IL198351A0 (en) | 2010-02-17 |
JP2010509498A (en) | 2010-03-25 |
BRPI0718831A2 (en) | 2014-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2122270A1 (en) | Method for the production of thin layers of metal-ceramic composite materials | |
KR102371492B1 (en) | Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion | |
DE69328197T2 (en) | TRANSPARENT, CONDUCTIVE LAYER, TRANSPARENT, CONDUCTIVE BASE MATERIAL AND CONDUCTIVE MATERIAL | |
DE69801290T2 (en) | Metallic material with photocatalytic activity and manufacturing process | |
DE69125644T2 (en) | Interference filter | |
DE102009016708B4 (en) | Solar absorber coating system and method for its production | |
DE102006028429B3 (en) | Coating production method for producing a solar absorber coating coats a substrate with a titanium precursor solution so as to generate a layer of titanium dioxide according to a sol-gel technique | |
DE19620645C2 (en) | Process for the production of selective absorbers | |
DE2616662B1 (en) | PROCESS FOR PRODUCING A SELECTIVE SOLAR ABSORBING LAYER FROM ALUMINUM | |
WO2003068682A1 (en) | Nanoscale rutile or nanoscale oxide and method for producing the same | |
DE112009002056T5 (en) | Transparent electrically conductive film for solar cells, composition for transparent electrically conductive films and multiple solar cells | |
EP2460035B1 (en) | Method for producing coatings having anti-reflection properties | |
Eshaghi et al. | Preparation and characterization of TiO 2 sol–gel modified nanocomposite films | |
DE102010052032A1 (en) | Process for the production of metallic structures | |
DE4227720C2 (en) | Process for the production of coatings from spinel and use of the carrier produced thereafter | |
WO2008006566A2 (en) | Stable suspensions of crystalline tio2 particles of hydrothermally treated sol gel precursor powders | |
EP2243862A2 (en) | Solar absorber coating and method for producing such a solar absorber coating | |
EP1458654B1 (en) | Method for the production of locally functional areas and objects obtained therewith | |
DE69504678T2 (en) | ELECTROPHORETIC METHOD FOR APPLYING MULTIPLE COATINGS ON FIBERS | |
DE102016122132A1 (en) | Catalytically active material, process for its preparation and its use | |
DE102007026866A1 (en) | Coating composition for producing photocatalytically active layer for cleaning air and water, comprises mixture of nanocrystalline titanium dioxide material and sol of photocatalytically active metal oxide | |
DE102006032759A1 (en) | Stable suspensions of crystalline ZrO2 particles from hydrothermally treated sol-gel precursor powders | |
Shabrina et al. | Characterization of the structure, morphology, and optical properties of titanium dioxide thin film deposited by spray pyrolysis technique for self-cleaning glass | |
DE10339824B4 (en) | Coating process for the deposition and fixation of particles on a substrate surface and solar cells with funkionellem layer structure | |
Ijeoma et al. | Visible Light Activity of Enhanced Screen-printed Titanium Dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090529 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100517 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120601 |