EP2121805B1 - Schmiermittelzusammensetzungen und verfahren zu ihrer herstellung - Google Patents
Schmiermittelzusammensetzungen und verfahren zu ihrer herstellung Download PDFInfo
- Publication number
- EP2121805B1 EP2121805B1 EP08727639A EP08727639A EP2121805B1 EP 2121805 B1 EP2121805 B1 EP 2121805B1 EP 08727639 A EP08727639 A EP 08727639A EP 08727639 A EP08727639 A EP 08727639A EP 2121805 B1 EP2121805 B1 EP 2121805B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- viscosity
- percent
- water
- polymer
- separated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000000314 lubricant Substances 0.000 title description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 256
- 229920000642 polymer Polymers 0.000 claims abstract description 160
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims abstract description 84
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims abstract description 83
- 230000001050 lubricating effect Effects 0.000 claims abstract description 8
- 229920001400 block copolymer Polymers 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 abstract description 52
- 229920001577 copolymer Polymers 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 17
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 14
- 229920005604 random copolymer Polymers 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 238000000518 rheometry Methods 0.000 description 7
- 239000013535 sea water Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 229920000359 diblock copolymer Polymers 0.000 description 5
- 229920000428 triblock copolymer Polymers 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 4
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical compound CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- 241000190019 Guaiacum Species 0.000 description 1
- 235000004440 Guaiacum sanctum Nutrition 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- -1 polyol ester Chemical class 0.000 description 1
- OJTDGPLHRSZIAV-UHFFFAOYSA-N propane-1,2-diol Chemical compound CC(O)CO.CC(O)CO OJTDGPLHRSZIAV-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
- C08G65/2606—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
- C08G65/2609—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2650/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G2650/28—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
- C08G2650/58—Ethylene oxide or propylene oxide copolymers, e.g. pluronics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/14—Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
- C08L2666/22—Macromolecular compounds not provided for in C08L2666/16 - C08L2666/20
Definitions
- Embodiments of the invention generally relate to lubricant compositions. Specifically, embodiments of the invention relate to lubricant compositions suitable for use as stern tube lubricants in ocean-going and other marine vessels.
- Lubricants are widely used in the marine industry to lubricate the bearings of various ship assemblies, particularly bearings in stern drives. Compositions that are suitable for such uses should have certain minimum properties to be useful. First, they should have a viscosity that provides acceptable lubrication over a wide temperature range. Another important property for such lubricants is their ability to maintain lubricity in the presence of up to 50 weight percent water, especially sea water. As more and more ships travel the oceans and other waterways, lubricants should also be biodegradable. Some formulated conventional lubricant compositions meet one or more of these standards.
- compositions that balance suitable lubricant properties, maintain those properties in the presence of water, and form reduced amounts of sheen on the surface of water would be useful.
- a polymer composition comprising:
- a method of lubricating a surface which method comprises providing the polymer composition of the first aspect to the surface.
- the surface is preferably selected from a stern tube bearing of a marine vessel or a fin stabilizer bearing of a marine vessel.
- alkylene oxide used herein means "ethylene oxide (EO)/propylene oxide (PO)”.
- Embodiments of the invention provide a polymer composition that includes a) from 15 weight percent (wt. percent or wt.%) to 60 wt. percent, based upon composition weight, of one or more random alkylene oxide interpolymers, each of which has a weight average molecular weight (M w ) ranging from 250 grams per mole (g/mol) to 2000 g/mol and comprises from 30 wt percent to 60 wt. percent, based upon random interpolymer weight, of polymer units derived from ethylene oxide; and b) from 40 wt. percent to 85 wt.
- M w weight average molecular weight
- composition weight percent, based upon composition weight, of one or more alkylene oxide block interpolymers, each of which has a M w ranging from 1500 g/mol to 4000 g/mol and comprises from 40 wt. percent to 90 wt. percent, based upon block copolymer weight, of blocks derived from propylene oxide.
- the amounts of the components are based upon total composition weight and when taken together total 100 wt. percent.
- the compositions have a first viscosity in the absence of water and a second viscosity in the presence of 10 to 50 wt. percent water based upon combined weight of composition and water.
- the second viscosity has a value that is at least 60 percent of the value of the first viscosity, wherein the first and second viscosities are determined according to American Society for Testing and Materials (ASTM) D-445 at 40 degrees centigrade (°C).
- ASTM American Society for Testing and Materials
- Such compositions may be used in a method of lubricating a surface and methods of reducing sheen on the surface of water due to leakage of lubricant from a marine vessel.
- the methods described herein include a) selecting a composition comprising the appropriate amounts of the one or more random alkylene oxide interpolymers and the one or more alkylene oxide block interpolymers; and b) providing the composition to the surface.
- Some methods are particularly suitable for lubricating stern tube bearings of a marine vessel or fin stabilizer bearings of a marine vessel.
- the compositions having desirable viscosity characteristics include a) from 40 wt percent to 60 wt percent of one or more random alkylene oxide interpolymers, comprising from 50 wt. percent to 55 wt. percent of polymer units derived from ethylene oxide; and b) from 40 wt. percent to 60 wt. percent of one or more alkylene oxide block interpolymers having from 40 wt. percent to 90 wt. percent of polymer units derived from propylene oxide; wherein the compositions have a first viscosity in the absence of water and a second viscosity in the presence of at least 10 wt. percent of water based upon combined weight of composition and water.
- the second viscosity has a value that is at least 60 percent of the value of the first viscosity, wherein the first and second viscosities are determined according to ASTM D445 at 40°C.
- some compositions include two random alkylene oxide interpolymers.
- R R L +k*(R U -R L ), wherein k is a variable ranging from 1% to 100% with a 1% increment, i.e., k is 1%, 2%, 3%, 4%, 5%,..., 50%, 51%, 52%,..., 95%, 96%, 97%, 98%, 99%, or 100%.
- k is a variable ranging from 1% to 100% with a 1% increment, i.e., k is 1%, 2%, 3%, 4%, 5%,..., 50%, 51%, 52%,..., 95%, 96%, 97%, 98%, 99%, or 100%.
- any numerical range defined by two R numbers as defined in the above is also specifically disclosed. All ranges disclosed herein shall be interpreted as including the lower limits, R L , and the upper limits, R U .
- Embodiments of the invention provide a polymer composition wherein one or more random alkylene oxide interpolymers are combined with one or more alkylene oxide block interpolymers to provide a composition comprising 15 wt. percent to 60 wt. percent of the random alkylene oxide interpolymer and 40 wt. percent to 85 wt. percent of the block alkylene oxide interpolymer. Unless otherwise indicated all amounts herein are based on the weight of the recited components as described below. Consequently, components that are not recited may be present in some embodiments, but those components are not considered in determining the relative amounts of the recited components.
- Alkylene oxide block interpolymers according to the invention include blocks or segments derived from two monomers of formula I. in which R is H and CH 3 for EO and PO respectively.
- Block interpolymers are generally prepared by the sequential polymerization of the monomers.
- alkylene oxide block interpolymers are made using a propylene glycol (1,2-propane diol), also referred to as monopropylene glycol, initiator wherein a propylene mid-oxide block is first formed followed by terminal ethylene oxide blocks.
- dipropylene glycol may be used as an initiator.
- block interpolymers can be described as including at least one block of a first alkylene oxide and at least one block of a second alkylene oxide. This includes, for example, a single ethylene oxide block and a single propylene oxide block.
- Block copolymers may also include those that have two blocks of a first alkylene oxide sandwiching a single block of a second alkylene oxide as in (EO) a (PO) b (EO) c or (PO) d (EO) c (PO) f , where the variables a through f denote the number of repeat units of the individual alkylene oxide blocks in the interpolymer.
- alkylene oxide block interpolymers useful herein include block polymers having any number of blocks in any desirable configuration.
- Preferred block interpolymers have three blocks (also known as triblock polymers), with a central block of one alkylene oxide and terminal blocks of another alkylene oxide.
- block interpolymers Both conventional block interpolymers and so-called “reverse block” polymers may be useful.
- block and “reverse block” refer to the arrangement of the polymer blocks within the polymer molecules.
- conventional block ethylene oxide/propylene oxide polymers comprise terminal ethylene oxide blocks and an intermediate block derived from propylene oxide.
- Such a polymer is sometimes referred to as an EO/PO/EO block polymer.
- Reverse block ethylene oxide/propylene oxide copolymers comprise terminal blocks derived from propylene oxide and an intermediate block derived from ethylene oxide and are sometimes referred to as PO/EO/PO block polymers.
- conventional triblock ethylene oxide/propylene oxide block interpolymers are preferred.
- Block copolymers are described in Non-Ionic Surfactants & Polyoxyalkylene Block Copolymers, Surfactant Science Series, Vol. 60 (Vaugh M. Nace, ed, Marcel Dekker Inc. ), incorporated herein by reference in its entirety.
- a block polymer As either a conventional block copolymer or reverse block copolymer coupled with the one or more comonomer content value, and the overall molecular weight defines the size and type of blocks that may be present. While blocks of units derived from a particular monomer are generally of substantially the same size, this need not be the case. For example, while a conventional block or "reverse block" interpolymer typically has terminal blocks of substantially the same number of polymer units, asymmetric block polymers or those having terminal blocks that have substantially different number of polymer units with respect to each other may be useful.
- the alkylene oxide block interpolymers present in compositions of the present invention comprise from 40 wt. percent to 85 wt. percent of such compositions, based upon total composition weight.
- the lower limit on the alkylene oxide block interpolymer in the composition is 45 wt. percent, 50 wt. percent, 55 wt. percent, 60 wt. percent, 65 wt. percent, 70 wt. percent, or 75 wt. percent.
- the upper limit of the range of alkylene oxide block interpolymer in some embodiments is 50 wt. percent, 55 wt. percent, 60 wt. percent, 65 wt. percent, 70 wt. percent, 75 wt. percent, or 80 wt. percent.
- compositions include from 50 wt. percent to 75 wt. percent.
- Other useful compositions include from 40 wt. percent to 60 wt. percent based upon total composition weight.
- the alkylene oxide block interpolymer comprises from 50 wt. percent to 55 wt. percent of the composition.
- the relative amounts of the block alkylene oxide interpolymer in the composition are determined with respect to the amounts of each of the random alkylene oxide interpolymers and each of the block alkylene oxide interpolymers present in the composition according to the equation: ⁇ ⁇ W block , i ⁇ ⁇ W random , i + ⁇ ⁇ W block , i wherein W block,i represents the weight of each block alkylene oxide interpolymer present in the composition and W random,i represents the weight of each random alkylene oxide interpolymer present in the composition.
- Alkylene oxide block interpolymers of the invention have a M w ranging from 1500 g/mol to 4000 g/mol.
- the alkylene oxide block interpolymers have a M w of from 1500 g/mol to 3000 g/mol, preferably from 1750 g/mol to 2250 g/mol, more preferably from 1850 g/mol to 2150 g/mol, and still more preferably from 1900 g/mol to 2100 g/mol.
- Suitable alkylene oxide block interpolymers have 40 wt. percent to 90 wt. percent of polymer units derived from propylene oxide. Some preferred alkylene oxide block interpolymers have from 85 wt. percent to 90 wt. percent of polymer units derived from propylene oxide. In particular compositions, the alkylene oxide block interpolymer comprises from 65 wt. percent to less than 85 wt. percent of polymer units derived from propylene oxide. In some compositions, the block alkylene oxide interpolymer is an ethylene oxide/propylene oxide polymer having less than 50 wt. percent of polymer units derived from ethylene oxide, more particularly those with from 10 wt. percent to less than 50 wt.
- the alkylene oxide block interpolymer includes polymer units derived from ethylene oxide and propylene oxide wherein from greater than 70 wt. percent to 90 wt. percent, preferably greater than 80 wt. percent or 85 wt. percent to 90 wt. percent, of the polymer units are derived from propylene oxide.
- Some such polymers are commercially available from The Dow Chemical Company under the DowfaxTM and TergitolTM brands.
- random polymers are generally prepared from a reaction mixture having present therein each of the constituent monomers in their desired amounts during the polymerization. Consequently, the structures of the individual polymer molecules have a random distribution of units derived from each of the monomers present during the process.
- Random alkylene oxide interpolymers have units derived from the two different monomers of Formula I. Random copolymers are described in detail in Synthetic Lubricants & High Performance Functional Fluids , Leslie Rudnick and Ronald Shubkin, eds., 2 nd ed., incorporated herein by reference in its entirety.
- the random alkylene oxide interpolymers comprise from 15 wt. percent to 60 wt. percent of the composition, but preferably comprise from 40 wt. percent to 60 wt. percent, more preferably 50 wt. percent to 55 wt. percent, of the composition.
- Determine relative amounts of the interpolymer components based only on the amounts of the random alkylene oxide interpolymer and alkylene oxide block interpolymer present in a composition.
- the weight percent of the random alkylene oxide interpolymer component can be determined by the following equation: ⁇ ⁇ W random , i ⁇ ⁇ W random , i + ⁇ ⁇ W block , i wherein W random,i and W block,i are as defined above.
- the one or more random alkylene oxide interpolymers have a M w ranging from 250 g/mol to 2000 g/mol, particularly from 250 g/mol to 1200 g/mol, preferably from 250 g/mol to 1000 g/mol.
- the random alkylene oxide interpolymer has from 30 wt. percent to 60 wt. percent of polymer units derived from ethylene oxide.
- the random alkylene oxide interpolymer has from 40 wt. percent to 60 wt. percent, preferably from 50 wt. percent to 55 wt. percent polymer units derived from ethylene oxide.
- two or more, preferably only two, of such random alkylene oxide interpolymers are used.
- the compositions comprise from 40 wt. percent to 60 wt. percent of one or more random ethylene oxide/propylene oxide interpolymers having a M w ranging from 250 g/mol to 1200 g/mol and having from 40 wt. percent to 60 wt. percent of the polymer units derived from ethylene oxide and one or more block ethylene oxide/propylene oxide interpolymers having a M w ranging from 1750 g/mol to 2500 g/mol and having from 40 wt. percent to 90 wt. percent of the polymer units derived from propylene oxide.
- Some such polymers are commercially available from The Dow Chemical Company under the UCON ® and SynaloxTM brands.
- the random and block interpolymers described herein can be combined by any convenient method.
- the M w 's of the components are low enough that the compositions can be prepared by any suitable method for mixing liquids.
- the amounts of desired random and block interpolymer components can be provided to a stainless steel mixing vessel and stirred at a temperature typically between ambient temperature (nominally 25°C) and 60°C. Blending may be accomplished in one or more steps.
- additives may be blended with the composition in any desirable manner, such as being blended contemporaneously with one or more interpolymer components or they may be provided in smaller portions or aliquots at intermediate stages of the blending process.
- the compositions are characterized by desirable viscosity behavior in the presence of relatively large amounts of water.
- the compositions have a first viscosity in the absence of water and an acceptable second viscosity when combined with water.
- the first viscosity ranges from 50 centistokes (cSt) (5 x 10 -5 square meters per second (m 2 /sec)) to 150 cSt (15 x 10 -5 m 2 /sec), preferably from 50 cSt (5 x 10 -5 m 2 /sec) to 120 cSt (12 x 10 -5 m 2 /sec), and more preferably from 70 cSt (7 x 10 -5 m 2 /sec to 110 cSt (11 x 10 -5 m 2 /sec).
- the second viscosity as determined when the amount of water present ranges from 10 wt. percent to 50 wt. percent, based upon composition weight, has a value that is at least 60 percent of the value of the first viscosity.
- some compositions have a first viscosity in the absence of water, and then in the presence of 20 wt. percent water, the mixture of the polymer composition and water has second viscosity that is at least 60 percent of the value of the viscosity when water is absent.
- the second viscosity is at least 60 percent of the value of the first viscosity when the composition includes 30 wt. percent water, 40 wt. percent water or even 50 wt. percent water.
- compositions are characterized by a value of the second viscosity that is at least 80 percent of the value of the first viscosity when the composition includes 40 wt. percent water. In other compositions, the second viscosity has a value that is at least 90 percent of the first viscosity when composition includes 40 wt. percent water.
- compositions of the mixtures of the block and random alkylene oxide interpolymer components generally decreases when water is present, some compositions show an increase in viscosity in the presence of relatively small amounts of water. Thus, some preferred compositions have a second viscosity that is up to 11 percent greater than the first viscosity when the amount of water present is 5 wt. percent.
- Particular polymer compositions having one or more of the improved viscosity properties described above comprise from 40 wt. percent to 60 wt. percent, based upon composition weight, of at least one random alkylene oxide interpolymer, each random interpolymer comprising from 50 wt. percent to 55 wt. percent of polymer units derived from ethylene oxide; and from 40 wt. percent to 60 wt. percent, based upon composition weight, of at least one alkylene oxide block interpolymer.
- Particularly useful compositions are prepared by providing two random ethylene oxide/propylene oxide interpolymers that are present in an amount totaling from 40 wt. percent to 60 wt. percent.
- compositions described herein can be used for lubricating surfaces.
- the invention relates to methods of lubricating a surface that include selecting a composition described herein; and providing the composition to the surface.
- the lubricants are particularly suitable for use in lubricating bearings in a marine vessel, particularly stern tube bearings and fin stabilizer bearings. While the compositions may be used to lubricate any bearing on a marine vessel, lignum vitae bearings, metal bearings and Cedervall type bearings are most common.
- compositions described herein form substantially less sheen on the surface of water than formulated conventional lubricant compositions.
- compositions described herein can be used to reduce sheen on the surface of water due to leakage of lubricant from a marine vessel. Typically, reduced sheen can be detected by visual comparison of the appearance of the sheen formed on the surface of the water.
- Polymers A, C, F, G, K, L and T include no viscosity profile data.
- Polymer A is a triblock ethylene oxide/propylene oxide (EO/PO) interpolymer having a M w of 3910 g/mol and a propylene oxide content of 85 wt. percent, based upon copolymer weight.
- EO/PO triblock ethylene oxide/propylene oxide
- Polymer B is a triblock EO/PO interpolymer having a M w of 2800 g/mol and a propylene oxide content of 85 wt. percent based upon copolymer weight.
- Polymer B has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cST)/ (x 10 -5 m 2 /sec) 254.5/ 25.4 365.9/ 36.6 --- --- --- --- "---" denotes that the viscosity was not determined.
- Polymer C is a butanol-initiated random EO/PO interpolymer in which the ethylene oxide content is 50 wt. percent, based upon copolymer weight, with a M w of 270 g/mol.
- Polymer D is a butanol-initiated random EO/PO interpolymer with an ethylene oxide content of 50 wt. percent, based upon copolymer weight, and a M w of 970 g/mol.
- Polymer D has the following viscosity profile. 0 wt.% water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cST) )/ (x 10 -5 m 2 /sec) 52.2/ 5.22 53.4/ 5.34 43.7/ 4.37 32.9/ 3.29 29.5/ 2.95 18.8/ 1.88
- Polymer E is a diol-initiated random EO/PO interpolymer with a M w of about 1600 g/mol and an ethylene oxide content of 45 wt. percent, based upon copolymer weight.
- Polymer E has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt.% water Viscosity (cST) )/ ((x 10 -5 m 2 /sec)) 96.1/ 9.61 100.3/ 10.03 84.5/ 8.45 66/ 6.6 46/ 4.6 28/ 2.8
- Polymer F is a triblock EO/PO interpolymer having a M w of 2500 g/mol and a propylene oxide content of 70 wt. percent, based upon copolymer weight.
- Polymer G is a triblock EO/PO interpolymer having a M w of 2750 g/mol and a propylene oxide content of 85 wt. percent, based upon copolymer weight.
- Polymer H is a triblock EO/PO interpolymer having a M w of 2600 g/mol and a propylene oxide content of 87 wt. percent, based upon copolymer weight.
- Polymer H has the following viscosity profile. 0 wt.% water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cST)/ (x 10 -5 m 2 /sec) 226.5/ 22.65 334.2/ 33.42 ---* ----* ---* ---* *"---" denotes that the viscosity was not determined.
- Polymer I is a diol-initiated random EO/PO copolymer in which the ethylene oxide content is 60 wt. percent, based upon copolymer weight, with a M w of 1000g/mol.
- Polymer I has the following viscosity profile. 0 wt.% water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cST)/ (x 10 -5 m 2 /sec) 72.9/ 7.29 68.3/ 6.83 53.9/ 5.39 34.2/ 3.42 19.5/ 1.95 15.9/ 1.59
- Polymer J is a triblock EO/PO interpolymer having a M w of 2300g/mol and a propylene oxide content of 70 wt. percent, based upon copolymer weight.
- Polymer J has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cST)/ (x 10 -5 m 2 /sec) 197.2/ 19.72 269.8/ 26.98 313.1/ 31.31 --- 671.0/ 67.1 141.6/ 14.16 denotes not determined.
- Polymer K is a polyol ester lubricant, available from Hatco as HATCOL 5068. It has a viscosity at 40°C of 68 cSt, (6.8 x 10 -5 m 2 /sec), a viscosity at 100°C of 9 cSt (0.9 x 10 -5 m 2 /sec); a pour point of -37°C, an open cup flash point of 237°C. Because Polymer K forms an immiscible mixture when water is present between 1 wt and 50 wt percent, the viscosity in the presence of water is not determined.
- Polymer L is a rapeseed oil-based lubricant having a viscosity at 40°C of 31 cSt (3.1 x 10 -5 m 2 /sec), a viscosity at 100°C of 9 cSt (0.9 x 10 -5 m 2 /sec); and a density at 15°C of 930 Kg/m 3 and flash point in excess of (>) 220°C.
- This fluid has an initial viscosity of 28 cSt (2.8 x 10 -5 m 2 /sec) at 40°C. Because Polymer L forms an immiscible mixture when water is present between 10 wt. percent and 50 wt. percent, the viscosity in the presence of water is not determined.
- Polymer M is a monopropylene glycol-initiated EO/PO triblock interpolymer (sometimes referred to as an EO/PO triblock copolymer) having a M w of 2400 g/mol and a propylene oxide content of 60 wt. percent, based upon copolymer weight.
- Polymer M has the following viscosity profile. 0 wt. 96 water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cSt)/ (x 10 -5 m 2 /sec) 248.7/ 24.87 301.3/ 30.13 ---* ---* ---* ---* "---" denote not determined.
- Polymer N is a monopropylene glycol-initiated EO/PO triblock copolymer having a M w of 1900 g/mol and an ethylene oxide content of 90 wt. percent, based upon copolymer weight.
- Polymer N has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cSt)/ (x 10 -5 m 2 /sec) 152/ 15.2 169.3/ 16.93 --- --- --- --- denotes not determined.
- Polymer O is a monopropylene glycol-initiated EO/PO triblock copolymer having a M w of 2000 g/mol and a propylene oxide content of 85 wt. percent, based upon copolymer weight.
- Polymer O has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cSt)/ (x10 -5 m 2 /sec) 154.9/ 15.49 195.2/ 19.52 276.9/ 27.69 362.5/ 36.25 --- "---" denotes not determined.
- Polymer P is a monopropylene glycol-initiated EO/PO triblock copolymer having a M w of 2700 g/mol and an propylene oxide content of 90 wt. percent, based upon copolymer weight.
- Polymer P has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40wt.% water 50 wt. % water Viscosity (cStT)/ (x 10 -5 m 2 /sec) 220.3/ 22.03 396.1/ 39.61 629.3/ 62.93 --- --- "---"denotes not determined.
- Polymer Q is a monopropylene glycol-initiated EO/PO triblock copolymer having a M w of 3800 g/mol and a propylene oxide content of 84 wt. percent, based upon copolymer weight.
- Polymer Q has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt.% water 50 wt. % water Viscosity (cSt)/ (x 10 -5 m 2 /sec) 310.2/ 31.02 1358.7/ 135.87 ---* ---* ---* ---* * "---"denotes not determined.
- Polymer R is a trimethylolpropane-initiated EO/PO diblock copolymer having a M w of 4500 g/mol and a propylene oxide content of 10 wt. percent, based upon copolymer weight.
- Polymer R has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cSt)/ (x 10 -5 m 2 /sec) 351.4/ 35.14 --- --- --- --- --- "---"denotes not determined
- Polymer S is a glycerol-initiated EO/PO reverse diblock copolymer having a M w of 4500 g/mol and a propylene oxide content of 87 wt. percent, based upon copolymer weight.
- Polymer S has the following viscosity profile. 0 wt. % water 10 wt. % water 20 wt. % water 30 wt. % water 40 wt. % water 50 wt. % water Viscosity (cSt)/ (x 10 -5 m 2 /sec) 293.9/ 29.39 309.5/ 30.95 --- --- --- "---"denotes not determined
- Polymer T is a glycerol-initiated EO/PO reverse diblock copolymer having a M w of 3500 g/mol and a propylene oxide content of 65 wt. percent, based upon copolymer weight.
- the initial viscosity of the compositions is determined according to ASTM D-445 at 40°C. To determine the effect of water on the viscosity, a sample of each composition is combined with an amount of water sufficient to yield a diluted composition with a water content ranging from 10 wt. percent to 50 wt. percent, based upon diluted composition weight. For those samples that form a miscible mixture, the viscosity of the mixture is measured according to the same method. Generally, miscible mixtures have a clear appearance. An immiscible mixture is generally indicated by a cloudy mixture, or in extreme cases by separation of the phases. The viscosity of immiscible mixtures is not determined.
- compositions including conventional additive packages along with the block polymer and random polymer components.
- Typical additive packages include antioxidants and corrosion inhibitors such as a combination of (4-nonlyphenol)acetic acid, a proprietary acylsarkosinate and nonyl phenol (Irgacor ® L17), N-phenyl-ar-(1,1,3,3-tetramethylbutyl)-l-naphthaleneamine Irganox ® L06, a reaction product of N-phenylbenzenamine with 2,4,4-trimethylpentent diphenylamine (Irganox ® L57), tolyltriazole and monomethyl hydroquinone.
- antioxidants and corrosion inhibitors such as a combination of (4-nonlyphenol)acetic acid, a proprietary acylsarkosinate and nonyl phenol (Irgacor ® L17), N-phenyl-ar-(1,1,3,3-tetramethylbutyl)-l-naphthaleneamine Irganox
- Irganox ® is a trademark of the Ciba Geigy Corporation.
- Additives may be used in any convenient combination or amount but typically comprise from 0.5 wt. percent to 5 wt. percent, preferably from 1 wt. percent to 3 wt. percent, of the total composition.
- One preferred additive package comprises 0.9 wt. percent Irgacor ® L17, 0.25 wt. percent Irganox ® L06, 0.25 wt. percent Irganox ® L57, 0.1 wt. percent tolyltriazole and 0.5 wt. percent monomethyl hydroquinone, each wt. percent being based upon total composition weight.
- the composition includes 18.6 wt. percent of Polymer D, 80 wt. percent of Polymer J and 1.4 wt. percent of an additive package comprising 0.9 wt. percent Irgacor ® L17, 0.25 wt. percent Irgacor ® L06, and 0.25 wt. percent a reaction product of N-phenylbenzenamine with 2,4,4-trimethyl pentene and 2-methylpropene (VanlubeTM 961), each wt. percent being based upon total composition weight.
- Irgacor is a trademark of the Ciba Geigy Corporation.
- Vanlube is a trademark of the R.T. Vanderbilt Company, Inc.
- the viscosity of this formulated blend is determined in deionized water and in synthetic seawater (prepared according to ASTM D665).
- the composition performs well in deionized water up to a water content of 40 wt. percent, based upon combined weight of composition and deionized water.
- the viscosity in synthetic seawater increases when sea water is present and remains acceptable at water concentrations of 50 wt. percent, based upon combined weight of composition and synthetic seawater.
- compositions of random and block copolymers can be utilized to provide good rheology control when aqueous dilutions of the compositions are formed.
- Rheology control depends on several factors such as the molecular weight (M w ) and ethylene oxide content of the random copolymer and also the molecular weight (M w ) and propylene oxide content of the block copolymer.
- the weight ratios of random and block copolymers can be used to optimize and control rheology performance in aqueous solution.
- Block copolymers which contain at least 70 wt. percent propylene oxide content and M w 's of from 1500 to 4000 g/mol are preferred. Random copolymers containing 50 wt. percent ethylene oxide units and having M w 's of less than 2000 g/mol, particularly from 500 to 1200 g/mol, are also preferred.
- compositions which contain only random copolymers of ethylene oxide and propylene oxide for example Polymers E (Comparative Example 4) or I (Comparative Examples 3 and 13), show poor rheology control and significant viscosity decrease when 50 wt. percent water is present in the composition. Furthermore, compositions which contain only block copolymers, also show poor rheology control and a significant increase in viscosity on water addition such that gel formation occurs. This is exemplified with Polymer Q in Table 4 which forms a gel at 50 wt. percent aqueous dilution.
- compositions of random copolymers and block copolymers can provide the desired rheology control.
- Some compositions which contain 50 wt. percent random copolymer and 50 wt. percent block copolymer show excellent rheology control.
- a composition which contains 50 wt. percent Polymer Q and 50 wt. percent Polymer D in Table 4 shows less than 6 percent viscosity change with 50 wt. percent water addition.
- Example 2 in Table 1 which describes a composition containing block copolymer B at 50 wt. percent with random copolymers C and D at 10 wt. percent and 40 wt. percent, respectively, shows less than 13 percent viscosity change when combined with 50 wt. percent water.
- the ethylene oxide content of the random copolymer is important when considering the stability of compositions that contain block copolymers in the presence of water. When the level of ethylene oxide in the random component is too high, aqueous compositions are often hazy, cloudy or milky in appearance. When the ethylene oxide content of the random copolymer is from 50 wt. percent to 55 wt. percent, compositions that contain block copolymers can lead to clear stable aqueous solutions, as illustrated by Polymers Q and D (Ex 15) in Table 4.
- compositions described herein may, rather than comprise, consist of or consist essentially of the enumerated components. Other embodiments are substantially free of or essentially free of any component not expressly recited. Some compositions are substantially free of water while some compositions are substantially free of alcohol alkoxylates. Some compositions comprise less than 0.5 wt. percent of one or more alcohol alkoxylates. In some embodiments, the compositions may be substantially free of both water and alcohol alkoxylates. While the processes are described as comprising one or more steps, it should be understood that these steps may be practiced in any order or sequence unless otherwise indicated. These steps may be combined or separated.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sliding-Contact Bearings (AREA)
- Rolling Contact Bearings (AREA)
Claims (15)
- Polymerzusammensetzung, umfassend:a) von 15 Gewichtsprozent bis 60 Gewichtsprozent, basierend auf dem Gewicht der Zusammensetzung, von einem oder mehreren statistischen Ethylenoxid/Propylenoxid-Interpolymeren, wobei jedes davon ein gewichtsmittleres Molekulargewicht aufweist, das im Bereich von 250 g/mol bis 2000 g/mol liegt, und von 30 Gewichtsprozent bis 60 Gewichtsprozent Polymereinheiten, die von Ethylenoxid abgeleitet sind, basierend auf dem Gewicht des statistischen Interpolymers, umfasst; undb) von 40 Gewichtsprozent bis 85 Gewichtsprozent eines oder mehrerer Ethylenoxid/Propylenoxid-Block-Interpolymere, basierend auf dem Gewicht der Zusammensetzung, wobei jedes von diesen ein gewichtsmittleres Molekulargewicht aufweist, das im Bereich von 1500 g/mol bis 4000 g/mol liegt, und von 40 Gewichtsprozent bis 90 Gewichtsprozent Blöcke, die von Propylenoxid abgeleitet sind, basierend auf dem Gewicht des Block-Copolymers, umfasst;
wobei die Zusammensetzung eine erste Viskosität in Abwesenheit von Wasser und eine zweite Viskosität in Anwesenheit einer Menge an Wasser von 10 bis 50 Gewichtsprozent, basierend auf dem kombinierten Gewicht von Zusammensetzung und Wasser, aufweist, und
wobei die zweite Viskosität einen Wert aufweist, der mindestens 60 Prozent des Wertes der ersten Viskosität ist, wobei die ersten und zweiten Viskositäten nach ASTM D-445 bei 40°C bestimmt werden. - Polymerzusammensetzung nach Anspruch 1, wobei das/die eine oder mehreren statistischen Ethylenoxid/Propylenoxid-Interpolymer(e) von 40 Gewichtsprozent bis 60 Gewichtsprozent der Zusammensetzung umfasst/umfassen.
- Polymerzusammensetzung nach Anspruch 1, wobei das/die eine oder mehreren Ethylenoxid/Propylenoxid-Block-Interpolymer(e) von 50 Gewichtsprozent bis 75 Gewichtsprozent der Zusammensetzung umfasst/umfassen.
- Polymerzusammensetzung nach Anspruch 1, wobei das/die eine oder mehreren Ethylenoxid/Propylenoxid-Block-Interpolymer(e) von 40 Gewichtsprozent bis 60 Gewichtsprozent der Zusammensetzung umfasst/umfassen.
- Polymerzusammensetzung nach Anspruch 1, wobei jedes der einen oder mehreren Ethylenoxid/Propylenoxid-Block-Interpolymer(e) von 10 Gewichtsprozent bis weniger als 50 Gewichtsprozent Polymereinheiten, die von Ethylenoxid abgeleitet sind, basierend auf dem Gewicht des Block-Copolymers, umfasst/umfassen.
- Polymerzusammensetzung nach Anspruch 1, wobei jedes statistische Ethylenoxid/Propylenoxid-Interpolymer ein gewichtsmittleres Molekulargewicht aufweist, das im Bereich von 250 g/mol bis 1200 g/mol liegt, und Polymereinheiten umfasst, die von Ethylenoxid und Propylenoxid abgeleitet sind, wobei von 30 Gewichtsprozent bis 60 Gewichtsprozent der Polymereinheiten, basierend auf dem Gesamtgewicht der Polymereinheiten, von Ethylenoxid abgeleitet sind; und
wobei jedes Ethylenoxid/Propylenoxid-Block-Interpolymer ein gewichtsmittleres Molekulargewicht aufweist, das im Bereich von 1750 g/mol bis 2500 g/mol liegt, und Polymereinheiten umfasst, die von Ethylenoxid und Propylenoxid abgeleitet sind, wobei von 60 Gewichtsprozent bis 90 Gewichtsprozent der Polymereinheiten, basierend auf dem Gesamtgewicht der Polymereinheiten, von Propylenoxid abgeleitet sind. - Zusammensetzung nach einem der vorherigen Ansprüche, wobei die erste Viskosität im Bereich von 50 Centistokes (5 x 10-5 m2/sec) bis 120 Centistokes (12x10-5 m2/sec) liegt.
- Zusammensetzung nach Anspruch 1, wobei die zweite Viskosität bei 20 Gew.-% Wasser gemessen wird.
- Zusammensetzung nach Anspruch 1, wobei die zweite Viskosität bei 30 Gew.-% Wasser gemessen wird.
- Zusammensetzung nach Anspruch 1, wobei die zweite Viskosität bei 40 Gew.-% Wasser gemessen wird.
- Zusammensetzung nach Anspruch 10, wobei der Wert der zweiten Viskosität mindestens 80% des Wertes der ersten Viskosität ist, wenn die Zusammensetzung 40 Gew.-% Wasser umfasst.
- Zusammensetzung nach Anspruch 1, wobei die zweite Viskosität um bis zu 11 Prozent größer als die erste Viskosität ist, wenn die Menge an vorliegendem Wasser 5 Gewichtsprozent ist.
- Zusammensetzung nach Anspruch 1, wobei die Zusammensetzung weniger als 0,5 Gewichtsprozent von einem oder mehreren Alkoholalkoxylaten umfasst.
- Verfahren zum Gleitfähigmachen einer Oberfläche, wobei das Verfahren Bereitstellen der Polymerzusammensetzung nach einem der vorherigen Ansprüche zu der Oberfläche umfasst.
- Verfahren nach Anspruch 14, wobei die Oberfläche ausgewählt ist aus einem Stevenrohrlager eines Schiffes oder einem Flossenstabilisator-Lager eines Schiffes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88074307P | 2007-01-17 | 2007-01-17 | |
PCT/US2008/050988 WO2008089130A1 (en) | 2007-01-17 | 2008-01-14 | Lubricant compositions and methods of making same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2121805A1 EP2121805A1 (de) | 2009-11-25 |
EP2121805B1 true EP2121805B1 (de) | 2012-05-02 |
Family
ID=39370937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08727639A Active EP2121805B1 (de) | 2007-01-17 | 2008-01-14 | Schmiermittelzusammensetzungen und verfahren zu ihrer herstellung |
Country Status (7)
Country | Link |
---|---|
US (1) | US8247501B2 (de) |
EP (1) | EP2121805B1 (de) |
JP (1) | JP5270577B2 (de) |
CN (1) | CN101622294B (de) |
AT (1) | ATE556104T1 (de) |
BR (1) | BRPI0806223B1 (de) |
WO (1) | WO2008089130A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2691497A1 (de) * | 2011-03-29 | 2014-02-05 | Dow Global Technologies LLC | Schmiermittelzusammensetzung |
FR3002286B1 (fr) | 2013-02-21 | 2016-09-02 | Exoes | Systeme de conversion d'energie thermique des gaz d'echappement d'un moteur a combustion. |
US9458884B2 (en) * | 2014-08-18 | 2016-10-04 | Robert Alan Shortridge, SR. | Bearing surface coating |
DE102016011022A1 (de) * | 2015-09-17 | 2017-03-23 | Klüber Lubrication München Se & Co. Kg | Biologisch abbaubare Schmierstoffzusammensetzungen mit hoher Elastomerverträglichkeit zur Verwendung im Marinebereich, speziell im Bereich der Stevenrohrschmierung |
BR112018009401B1 (pt) * | 2015-11-13 | 2023-04-04 | Dow Global Technologies Llc | Processo para converter energia térmica em energia mecânica |
CN109477016B (zh) | 2016-06-02 | 2022-05-31 | 巴斯夫欧洲公司 | 润滑剂组合物 |
EP3516026A1 (de) * | 2016-09-23 | 2019-07-31 | Basf Se | Schmiermittelzusammensetzung |
CN112771142B (zh) | 2018-10-26 | 2023-02-21 | 陶氏环球技术有限责任公司 | 可用于海底应用的具有可生物降解的聚亚烷基二醇流变改性剂的液压流体 |
GB201901031D0 (en) | 2019-01-25 | 2019-03-13 | Croda Int Plc | Lubricant base stock |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2825693A (en) * | 1955-02-03 | 1958-03-04 | Shell Dev | Metal working lubricant |
US4481367A (en) | 1979-12-26 | 1984-11-06 | Union Carbide Corporation | High viscosity polyoxyalkylene glycol block copolymers and method of making the same |
JPS58122993A (ja) | 1982-01-19 | 1983-07-21 | Nippon Oil & Fats Co Ltd | 水系潤滑油組成物 |
CA1227185A (en) | 1982-09-29 | 1987-09-22 | Michael A. Mccabe | Water-tolerant lubricant composition |
US4606837A (en) | 1985-01-30 | 1986-08-19 | Texaco Inc. | Water-glycol fluids made from polyoxyalkylene thickeners |
CN85101997B (zh) * | 1985-04-01 | 1987-03-04 | 广东省测试分析研究所 | 纺织机械润滑油 |
US4781847A (en) | 1986-05-08 | 1988-11-01 | American Polywater Corporation | Aqueous lubricant |
US4855070A (en) | 1986-12-30 | 1989-08-08 | Union Carbide Corporation | Energy transmitting fluid |
GB8802959D0 (en) * | 1988-02-09 | 1988-03-09 | Bp Chem Int Ltd | Composition for removing asbestos |
JPH0284573A (ja) * | 1988-06-10 | 1990-03-26 | Kuraray Co Ltd | 高速摩擦仮撚に適した油剤 |
US4900463A (en) | 1989-05-23 | 1990-02-13 | Allied-Signal Inc. | Refrigeration lubricant blends |
US5286300A (en) | 1991-02-13 | 1994-02-15 | Man-Gill Chemical Company | Rinse aid and lubricant |
CA2063278A1 (en) | 1991-06-05 | 1992-12-06 | Jeffrey I. Melzer | Composition and process for enhanced drainage of residual aqueous rinse on the external surfaces of plastic parts |
JP3812856B2 (ja) * | 1996-12-24 | 2006-08-23 | 株式会社コスモ総合研究所 | 含水系作動液 |
JP2001081672A (ja) * | 1999-09-13 | 2001-03-27 | Toray Ind Inc | 仮撚り加工に適した油剤 |
JP2001146683A (ja) * | 1999-11-15 | 2001-05-29 | Teijin Ltd | 摩擦仮撚加工用ポリエステル繊維の製造方法 |
JP2003124159A (ja) * | 2001-10-16 | 2003-04-25 | Asahi Denka Kogyo Kk | 水系ラップ液及び水系ラップ剤 |
TWI367113B (en) * | 2003-02-12 | 2012-07-01 | Syncera Inc | Random and non-random alkylene oxide polymer alloy compositions |
JP2005179630A (ja) * | 2003-03-24 | 2005-07-07 | Sanyo Chem Ind Ltd | 水系金属加工油用潤滑剤 |
MXPA05011487A (es) | 2003-04-25 | 2005-12-15 | Dow Global Technologies Inc | Polioles a base de aceite vegetal, y poliuretanos preparados a partir de ellos. |
US7517837B2 (en) | 2003-05-22 | 2009-04-14 | Anderol, Inc. | Biodegradable lubricants |
WO2006019548A1 (en) | 2004-07-16 | 2006-02-23 | Dow Global Technologies Inc. | Food grade lubricant compositions |
JP2006265345A (ja) * | 2005-03-23 | 2006-10-05 | Sanyo Chem Ind Ltd | 船舶軸受け推進器用潤滑油 |
-
2008
- 2008-01-14 BR BRPI0806223A patent/BRPI0806223B1/pt not_active IP Right Cessation
- 2008-01-14 WO PCT/US2008/050988 patent/WO2008089130A1/en active Application Filing
- 2008-01-14 CN CN2008800067536A patent/CN101622294B/zh active Active
- 2008-01-14 EP EP08727639A patent/EP2121805B1/de active Active
- 2008-01-14 US US12/523,116 patent/US8247501B2/en active Active
- 2008-01-14 JP JP2009546468A patent/JP5270577B2/ja active Active
- 2008-01-14 AT AT08727639T patent/ATE556104T1/de active
Also Published As
Publication number | Publication date |
---|---|
JP2010516839A (ja) | 2010-05-20 |
EP2121805A1 (de) | 2009-11-25 |
BRPI0806223A8 (pt) | 2018-01-02 |
JP5270577B2 (ja) | 2013-08-21 |
US20100009877A1 (en) | 2010-01-14 |
ATE556104T1 (de) | 2012-05-15 |
WO2008089130A1 (en) | 2008-07-24 |
US8247501B2 (en) | 2012-08-21 |
CN101622294B (zh) | 2012-07-04 |
BRPI0806223A2 (pt) | 2011-09-06 |
CN101622294A (zh) | 2010-01-06 |
BRPI0806223B1 (pt) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2121805B1 (de) | Schmiermittelzusammensetzungen und verfahren zu ihrer herstellung | |
EP2611894B1 (de) | Korrosionshemmende schmiermittelzusammensetzungen auf polyalkylenglykolbasis | |
EP2456845B1 (de) | Polyalkylenglykole als schmiermittelzusätze für gruppe i-iv-kohlenwasserstofföle | |
EP3174962B1 (de) | Verschlossene öllösliche polyalkylenglykole mit geringer viskosität und hohem viskositätsindex | |
EP3066155B1 (de) | Demulgatoren für öllösliche polyalkylenglykol-schmiermittel | |
EP2739713B1 (de) | Zusammensetzungen aus kohlenwasserstoffölen und öllöslichen, durch dmc-katalyse hergestellte pags | |
US20090259004A1 (en) | Environmentally friendly demulsifiers for crude oil emulsions | |
EP2723835B1 (de) | Energieeffiziente polyalkylenglykole und schmierstoffzusammensetzungen diese enthaltend | |
CN106574205A (zh) | 用于工业润滑剂应用中的基础油的烷基封端油溶性聚合物粘度指数改进添加剂 | |
CN112771142B (zh) | 可用于海底应用的具有可生物降解的聚亚烷基二醇流变改性剂的液压流体 | |
US11549078B2 (en) | Lubricating oil composition and impregnated bearing | |
EP3337883B1 (de) | Schmiermittel mit schwefelhaltigem polyalkylenglykol | |
EP4165150B1 (de) | Wässrige zusammensetzung mit wasserlöslichen glycerinbasierten polyalkylenglykolen und verwendung davon | |
JPS5981397A (ja) | 水−許容性潤滑剤組成物 | |
EP3337884B1 (de) | Flüssigkeit mit polyalkylenglycol und ungesättigtem ester | |
EP3516023B1 (de) | Schmierstoffzusammensetzung enthaltend polyalkyleneoxide | |
EP3914678B1 (de) | Schmiermittelgrundstoff | |
EP4259760B1 (de) | Schmierölzusammensetzung | |
CN115505448A (zh) | 低漆膜倾向涡轮机油组合物、制备方法及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090817 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DOW GLOBAL TECHNOLOGIES LLC |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 556104 Country of ref document: AT Kind code of ref document: T Effective date: 20120515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008015364 Country of ref document: DE Effective date: 20120628 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120502 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120902 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120802 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 556104 Country of ref document: AT Kind code of ref document: T Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120803 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120903 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120813 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008015364 Country of ref document: DE Effective date: 20130205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080114 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231130 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231212 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231205 Year of fee payment: 17 |