EP2106548A1 - Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux - Google Patents

Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux

Info

Publication number
EP2106548A1
EP2106548A1 EP07858159A EP07858159A EP2106548A1 EP 2106548 A1 EP2106548 A1 EP 2106548A1 EP 07858159 A EP07858159 A EP 07858159A EP 07858159 A EP07858159 A EP 07858159A EP 2106548 A1 EP2106548 A1 EP 2106548A1
Authority
EP
European Patent Office
Prior art keywords
gas
tars
measuring device
measurement
coking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07858159A
Other languages
German (de)
English (en)
Inventor
Meryl Brothier
Pierre Estubier
Johann Soyez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2106548A1 publication Critical patent/EP2106548A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to the field of techniques for analyzing and measuring pollutants in a gas flow. More particularly, it relates to a device and method for continuously measuring tars of a gas, these tars can be in the form of traces and at high temperature (T> 800 ° C).
  • One of the major problems encountered in vapo-gasification processes is to be able to continuously evaluate the quality of the gas generated to ensure that it meets the requirements required for its application (generation of electricity, energy mechanical, heat, fuel synthesis or formation of hydrogen).
  • the evaluation of the specifications of the synthesis gas requires knowing the composition of the gas and therefore, among other things, the concentration of the different polluting species; they are sulfur, nitrogen, chlorine compounds, alkali metals, dust and tars.
  • the presence of tars in the gases resulting from gasification poses numerous problems in the various applications concerned, such as the deterioration of the blades of the turbines or the loss of activity of the catalysts by deactivation, in particular in the metal and zeolitic catalysts.
  • Tars can pose other problems, especially in pyrolysis or gasification reactors where, under the action of heat, they give rise to a deposit of heavy hydrocarbon compounds, called coke, on the walls of the reactor, this phenomenon carrying the coking name. Following this deposition, the heat transfers to the reactor are reduced.
  • the formation of coke also tends to increase the pressure losses in the ducts and in the absence of corrective action eventually clogs the pipes. Coke comes from a complex mechanism that breaks down into a catalytic sequence and a thermal
  • a first difficulty is related to the meaning of the generic term "tar”, which differs according to the field of application considered.
  • tars In the context of air pollution, metallurgy, waste incineration, co-generation and the production of synthetic fuels, the term “tars” is generally used to refer to all organic compounds having a molecular weight greater than that of benzene - 78 g / mol - but there is no official definition for this term, and the literature reports about thirty definitions for the word "tar”
  • the tars cover a broad spectrum of species (more than 2000) whose physicochemical characteristics (polarity, volatility, molar mass, chemical affinity) vary over a wide range of values, which makes it particularly difficult to obtain measurement showing the total amount of tars.
  • Physicochemical characteristics polarity, volatility, molar mass, chemical affinity
  • Several classifications of these different compounds have been proposed so far, such as the classification of Milne & Evans (1998) which lists the different tars in three classes:
  • Class 1 primary species
  • Class 2 secondary species
  • Class 3 tertiary species
  • the main components are polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and phenols.
  • PAHs polycyclic aromatic hydrocarbons
  • VOCs volatile organic compounds
  • phenols phenols
  • the device must be able to provide a measurement every minute, or at least the measurement occurrence must be compatible with a monitoring that can be considered as continuous (of the order of a minute) including trace concentrations;
  • the temperature of the gas to be measured can be in the high temperature range (T> 800 ° C) which constitutes a strong measurement constraint;
  • the methods proposed to date for the determination of the tar concentration of a gas can be divided into four main families: - a first family that groups the analysis methods based on liquid chromatography or gas phase coupled with a detector.
  • the most common detectors for tar measurement are the flame ionization detector (Flame Ionization Detector) and the mass spectrometer. The latter is commonly used for the analysis of the combustion gases of steelworks.
  • the acquisition of such a device which remains above all a laboratory device, remains expensive and is not always able to perform quantitative measurements because of the difficulty of interpretation of the spectra and the low repeatability of the measurements. .
  • the chromatography does not make it possible to measure continuously for low detection thresholds (of the order of 1 mg / Nm 3 ).
  • the Commonly used methods for the pre-concentration of traces are solid phase extraction (SPE) and, in recent years, solid phase microextraction (SPME). These techniques consist in the absorption or adsorption of chemical species on a support covered with an absorbing or adsorbent species. This is for example a fused silica fiber coated with a polymer, which may be for example a liquid polymer such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • UV absorption which is very close to that of infrared absorption, is that water vapor does not interfere with UV.
  • the latter is used for example for the detection of polycyclic aromatic hydrocarbons in soils contaminated as mentioned in patent EP0446975 entitled "Installation of the rapid analysis of tar components and method for such an analysis”.
  • Patent WO9833058 relates to a method for on-line analysis of polycyclic aromatic hydrocarbons by collecting the aerosols by means of a filter and subjecting it to excitation via UV radiation. It is then a question of comparing the spectral image obtained with the different spectra listed in a database.
  • Another technique commonly used in the continuous control of combustion gases is FTIR (Fourier Transform InfraRed) infrared spectrometry.
  • FTIR Fastier Transform InfraRed
  • Various documents evoke this technique such as for example the documents WO2006015660, WO03060480 and US5984998.
  • the literature does not mention a possibility of measuring tars, the products commonly followed being CO, CO2, O 2 , H 2 and H 2 O.
  • Patent WO030227650 relates to the use of the Laser-Induced Breakdown Spectroscopy (LIBS) technique for the detection of polycyclic aromatic hydrocarbons (PAHs) and monoaromatics. This fast method is suitable for monitoring PAHs.
  • LIBS Laser-Induced Breakdown Spectroscopy
  • PAHs polycyclic aromatic hydrocarbons
  • PAHs polycyclic aromatic hydrocarbons
  • the LIBS technique consists in vaporizing and ionizing in the form of plasma the species sampled by means of a laser. However, it requires the use of a support on which the species to be analyzed are present. It therefore requires a sampling step and does not allow for an online measurement of the gas;
  • the two detectors are placed at different points of the same sampling line of the gas to be measured and are separated by a filter which aims to trap the tars by impaction and condensation.
  • One of the limitations of the flame ionization technique is the disturbance of the measurement by combustible gases such as CH 4 , H 2 and CO, which is a real limitation since the synthesis gas is a mixture of CO and H 2 and that it also contains methane.
  • the response depends on the oxygen content of the gas to be measured.
  • knowledge of the composition of the tars as well as the response factors of the various compounds is essential in order to obtain a quantitative measurement of the total tars.
  • There are other electronic methods that allow continuous tracking of tars these are cell detectors electrochemical and semiconductor sensors.
  • An electrochemical cell consists of a membrane permeating the compounds to be analyzed; on the other side of the membrane is a liquid electrolyte which in the presence of the species to be detected generates a redox reaction at the origin of a measurable electric current.
  • This device is not suitable for measuring temperature, further the selectivity of the membrane is not suitable for sampling a large number of components whose physico ⁇ chemical properties vary over a wide range of values.
  • Semiconductor sensors have similar limitations in terms of temperature resistance, but they can measure a larger number of pollutants. An important limitation of this device also lies in the rapid contamination of the sensitive layer of the semiconductor placed above the substrate.
  • the measurement is made by isokinetic sampling for a range of temperatures ranging from 0 to 900 ° C. and a pressure ranging from 0.6 to 60 bar and for a tars concentration ranging from 1 to 300 mg / Nm 3 .
  • This protocol is thus unsuitable for measuring tar tracks ( ⁇ 1 mg / Nm).
  • the gravimetric methods are adapted to the measurement of so-called "heavy" tars (more than 3 aromatic cycles with regard to the polycyclic aromatic hydrocarbons PAHs) but little to that of the volatile organic compounds.
  • None of the devices presented is able to perform a continuous measurement with a measuring occurrence of the order of one minute. Moreover, the devices presented do not measure all the tars, whether they are in the solid phase or in the gaseous state.
  • the objective is to carry out a quantitative and continuous measurement of all the tars in a gas stream at high temperature.
  • the measurement must be representative of the total concentration of tars prevailing in a main wherein a synthesis gas flows under given temperature and pressure conditions.
  • the invention relates to a continuous measurement device for concentration of tars of a gas, characterized in that it comprises a pipe for sampling a partial flow of the gas, and a scale to which leads the sampling line and to which is suspended a body serving as a catalyst and support for coking tars, the body being movable in a gas pipeline enclosure.
  • a harmful phenomenon is thus used which is the deactivation of the catalysts by coke deposition in order to carry out a measurement in the particular field of continuous monitoring of traces of tars in a gas flow.
  • a device for adjusting the temperature of the gas sampled is added at the place of the thermobalance or just upstream, in particular in order to set a determined and often higher temperature at the place catalytic body, where coking needs to be promoted.
  • the rest of the device, and in the first place the sampling line will, on the other hand, often be provided with means dedicated to maintaining the temperature of the gas at the value of that which prevails in the main flow, in order to avoid condensation and reactions of tars.
  • the elements of the devices other than the catalytic body will preferably be chosen from a material having little affinity for the formation of coke so as not to foul and especially not to reduce the concentration of the tars before the gas arrives. to the right of the catalytic body.
  • the catalytic body is advantageously a plate compound or, more generally, a solid with a specific surface area to density ratio in order to offer the largest surface area for catalysis for a given volume and while minimizing the weight of the catalytic body, for reasons of sensitivity of the measurement.
  • the addition of a flux homogenizer upstream of the pipeline enclosure favorably introduces a uniform flow of gas around the catalytic body and improves the regularity of the measurement.
  • a flux concentrator in the pipeline enclosure around the catalytic body directs substantially all the bypass flow over the catalytic body and improves the efficiency of the catalyst.
  • a driving gas injector in the pipe enclosure protects the part electronic sub-assembly of measurement by microscope.
  • At least one buffer capacity is favorably located on the pipe upstream of the enclosure to regulate the derived flow, and here again to improve the accuracy of the measurement.
  • a diaphragm can be located on the pipe downstream of the buffer capacity to help set the value of the flow through the pipe section and the catalytic body.
  • the balance comprises a symmetrical flailing oscillating at one end of which the catalytic body is suspended and at an opposite end of which a non-catalytic body of the tar coking is suspended, the catalytic body and the non-catalytic body having identical weights.
  • This form of balance making a differential measurement, only one of the bodies weighing down during the measurement, is particularly precise thanks to its symmetry. It is further advantageous that the non-catalytic body is mounted movably in a second chamber identical to that of the catalytic body, to contribute to a regularity of measurement by symmetry of the flow. A pressure equalizer between the two speakers adds to this regularization.
  • the enclosure encompassing the catalytic body is vertical and comprises an opening for recovering the catalytic body to a bottom, the replacement of the catalyst body from one measurement to another is a lot ease.
  • a change element of the catalytic body movable between the bottom opening of the pipe section and a change station of the catalytic body.
  • an auxiliary sensor for measuring the concentration of a gas produced during coking downstream of the catalytic body and located on a gas evacuation pipe, or preferably, an auxiliary colorimetric sensor of the catalytic body.
  • This use of colorimetry is possible since the catalytic body gradually changes color as the coke deposit develops.
  • the coupling of the gravimetric measurement with a measurement by colorimetry makes it possible, after having calibrated the measurement by colorimetry by means of the gravimetric measurement, to use if necessary the measurement by colorimetry alone, since its detection threshold is very low, lower than that of the scale allows relaying it for very low concentrations of tars or for a preliminary stage of a measurement.
  • the colorimetric sensor is designed to make differential measurements on the catalytic body and the non-catalytic body when the latter exists.
  • the measurement can be improved by a flowmeter located on the bypass line.
  • An important aspect to consider is the simultaneous, frequent presence of tars in phase gaseous and solid phase.
  • the above method favors the detection of tars in the gas phase, these being predominant or even exclusive in many applications, especially at relatively high temperature of the gases.
  • an auxiliary of the device makes it possible to measure the concentration of tars in the solid phase.
  • the auxiliary device for measuring tars in the solid phase may comprise a solid particle trap that can be weighed.
  • a solid particle sorting cyclone can be added to send to the solid particle trap only particles that can be considered as tars.
  • the invention also relates to a continuous measurement method for concentration of tars of a gas, characterized in that it consists in taking a partial flow of the gas and in directing this flow towards a body serving as catalyst and support for coking. tars. We have the ability to adjust the temperature of this flow to promote coking.
  • the weighing is either continuous in the strict sense, or at least carried out at close intervals, of the order of a minute or less, which do not allow previous devices and processes for the most part.
  • coking is the catalytic aspect of coking which is preferably used in the invention, whereas the coking is mainly likened to thermal cracking.
  • the catalytic phenomenon occurs especially during the formation of the first deposition layer, which is generally carried out by adsorption of the heavy hydrocarbon components of the coke, while the thermal coking phenomenon generally becomes predominant.
  • the invention will therefore be particularly useful for measuring low concentrations of tars.
  • the coking catalyst material will be chosen by its nature, its shape and its manufacture so that the catalytic effect will be greater than the thermal effect in the target temperature range, generally from 200 to 1200 ° C.
  • the basic process can be enriched with an additional measure of concentration of tars in the solid phase of trapping these solid tars on a support.
  • the main measure of micro-weighing can be supplemented by auxiliary measurements based on variations in the catalytic body color or on concentrations of gas from coking, and in particular dihydrogen gas, since the formation of coke is generally accompanied by dehydrogenation of the tarry compounds.
  • a final aspect that characterizes the invention is the choice of the catalytic body (nature, composition, shaping, geometry ). It depends on four fundamental parameters that are: - the catalytic properties of the material;
  • Volume mass large enough to have a measurement that is as accurate and representative as possible; - a material for which methane does not coke or very little; a color and shape that is compatible with colorimetric measurement.
  • FIG. 1 schematically represents a device and a method according to the invention, the objective of which is the continuous measurement of tars in the gaseous and solid state contained in a gaseous flow in temperature;
  • FIG. 2 is an exemplary embodiment of the thermogravimetry subassembly for continuous tracking of tars by microscope
  • FIG. 3 is another embodiment of the thermogravimetry subassembly. This is a magnetic suspension thermobalance that has been adapted to the case of our application;
  • FIG. 4 shows different forms for the catalytic body, support coking
  • FIG. 5 represents a microperforated nacelle that can be suspended from the rod of the thermobalance and that can contain the coking material 30;
  • FIG. 6 represents a cogging monitoring curve by micro-weighing for a gas having a constant concentration of tars, toluene having been used as a tracer.
  • FIG. 1 there is shown schematically a device dedicated to the measurement of tars by micro-weighing and / or colorimetry.
  • the gaseous mixture to be analyzed flows inside a main pipe 80 made of stainless steel, for example AISI 310 or AISI 316.
  • a main pipe 80 made of stainless steel, for example AISI 310 or AISI 316.
  • alloys based on nickel and chromium for example Inconel are commonly used as material constituting conduits that can withstand temperatures of 1200 ° C. and above and have the advantage of having a very weak catalyst effect for the coking phenomenon, which makes it possible to limit the deposit of coke or soot on the internal surfaces of the pipes.
  • Said pipe 80 comprises means 81 and 82 for continuously measuring the pressure Pp and the temperature T P prevailing therein.
  • the nature and the composition of the gas mixture vary according to the intended application.
  • the predominantly present species are CO and H 2 , these two compounds constitute the gaseous matrix.
  • gases such as CO 2 , CH 4 , H 2 O and tars are found.
  • the gas flow upstream of the Fischer-Tropsch process is at a temperature of about 300 ° C. and at a pressure of up to 30 bar.
  • part of the main flow ⁇ p is diverted to two sampling devices and gives rise to secondary flows ⁇ d i and ⁇ d2 .
  • the overall measuring device comprises two devices, the first is assigned to the discontinuous measurement of tars in the solid phase and the second to the continuous measurement of tars in the gaseous state. It is this second device for continuous measurement of tars in the gaseous state which is the subject of the invention and which will be mainly described; the first device is optional and is a simple auxiliary to complete the measurement.
  • the flow taken satisfies the following relationship: ** - ⁇ !%
  • the first device serves only to verify the absence of solid tars.
  • the first device assigned to the measurement of tars in the solid phase, comprises an isokinetic sampling device 83 conforming to ISO 9096 and / or ISO 2066 standards.
  • the isokinetic sampling 83 is connected by stainless steel metal conduits 84 to a control organ. sorting of particles such as for example a cyclone 1 or a set of cyclones that separates particles larger than a few ⁇ m, in particular coal particles or "char", by-products of the pyrolysis of biomass, and particles of a more modest size, such as soot resulting from the polycondensation of tars. Said soot are then collected by impaction on a filter medium 2 so as to be in a second time weighed.
  • the second device intended for the continuous measurement of gaseous tars, consists of three major subassemblies which are:
  • a system for sampling, processing and conveying gases (3, 4, 5, 6, 7, 8 and 9);
  • thermobalance (10) adapted to the case of our application which is the continuous measurement of the concentration of tars in a gaseous flow temperature by monitoring the phenomenon of coking tars (conversion of tars into carbon load) by micro-weighing;
  • An analysis system coupled to the micro-weighing system, according to the desired application, using an optical colorimetric measurement system, an H 2 analyzer or a CO 2 analyzer.
  • the first two subsets are essential to the good performance of the invention, the third improves the results by allowing to corroborate or supplement the second subset in the case of extremely low concentrations of tars.
  • the second device is located downstream of the first on the main pipe 80 so as not to disturb it.
  • the gas sampling, treatment and routing system is heat-insulated and maintained at the temperature T p in order to avoid creating "cold zones" which would favor the condensation of the tars. It is also about conveying the gas to be analyzed up to the thermobalance 10 under conditions of temperature and pressure as close as possible to those prevailing in the main pipe 80 in order to avoid condensations and tar reactions. It is therefore necessary to have a measurement of the concentration of gaseous tars that is as representative as possible of the concentration of gaseous tars in the main pipe 80.
  • the temperature maintenance of the pipes and various other elements can be done by means of an electric heating device or by circulation of hot nitrogen around said conduits and other processing and transporting organs of the gas to be analyzed.
  • the gas sampling, treatment and routing system comprises means 85 and 86 making it possible to measure the temperature and the pressure at various points.
  • the sampling system comprises a sinter 3 which can be metallic.
  • the material constituting the frit 3 must be carefully selected in order to limit the catalytic effect leading to the formation of coke and thus the destruction of tars; it may be for example a formed material based on silicon carbide SiC.
  • the frit 3 can just as well and this in a nonlimiting manner be quartz, ceramic or glass fiber. Said frit 3 is maintained in temperature by means of a heating device in order to avoid the condensation of tarry compounds favored in particular by the loss of charge that it induces.
  • the frit 3 serves as a particle filter but allows a portion of the gas flow to flow into a sampling line 87 leading from the main pipe 80 to the thermobalance 10 and carrier of various equipment that will now be described to measure.
  • the sampling line 87 is insulated and maintained at the temperature T p of the flow prevailing in the main pipe 80.
  • a shutoff valve 89, a purge duct 112 and a pressure reducer 90 are placed between the frit 3 and a first buffer volume 4.
  • the first buffer volume 4 is a capacity equipped with means for measuring the pressure and the temperature in it. It comprises a nitrogen filling and emptying system 88 which, combined with a pressure regulating device, makes it possible to smooth the flow rate and the pressure of the gas to be analyzed.
  • a safety valve 5 is placed at the top of the buffer volume 4 in order to avoid any overpressures and to guarantee the safety of the device.
  • a second dynamic buffer volume 6 slower than that of the first buffer volume 4 operates a finer smoothing of the flow and pressure; it follows the first buffer volume 4 and also comprises a nitrogen filling and emptying system 111 and a safety valve 7.
  • a heat exchanger 8 is placed downstream of the second buffer volume 6 in order to adapt the temperature of the gas to be analyzed before introducing it into two thermostated chambers of the thermobalance 10.
  • the exchanger 8 will constitute a preheating zone of the gas to be analyzed in order to obtain a better efficiency of the thermogravimetry device; the temperature in the thermostatted enclosures of the thermobalance 10 is determined for an optimum of the coking rate of tars by catalytic effect.
  • a diaphragm 9 is positioned before the junction of the sampling line 87 to the thermobalance 10 to limit the flow.
  • FIG. 2 schematically represents a first embodiment of the thermobalance 10.
  • the various embodiments presented below have been all the specificity of presenting two furnaces with thermostatic enclosures, it is called balances called "symmetrical configuration".
  • a thermobalance having a single thermostatic chamber, without being excluded from the invention, would require to perform after each measurement a blank in order to overcome various sources of measurement error such as hydrostatic thrust and fluctuations debit for example.
  • Thermobalance 10 comprises:
  • An enclosure composed of several parts, including an upper chamber 90 housing a beam 20 and a pair of lower and vertically elongated thermostatically regulated enclosures 91 and 92 extending at the top up to the upper enclosure 90 and down to an accessibility cap 33;
  • a protective gas supply system 26 for example He or N 2 , to protect an electronic weighing device by insufflation of an inert gas in the upper chamber 90;
  • a purge gas supply system 22, comprising a heating system 23 for limiting the temperature drop in the thermostatted enclosures 91 and 92 during purging of the system.
  • the purge gas may be an inert gas for example, or air; - A tubular heating system of Joule effect 36 at least partially enclosing each of the thermostatted enclosures 91 and 92; A device for homogenizing the temperature and the flow of the gas to be analyzed disposed at the inlet of each of the thermostatically controlled chambers 91 and 92;
  • a flux concentrator device 29 which acts by restricting the flow section offered to the gas;
  • a cooling device 31 involving a cooling liquid, for example water, for cooling the two thermally regulated enclosures 91 and 92 at the periphery and seals at the lower and upper portions of the thermostatted enclosures 91 and 92;
  • a pressure equalization system 27 between the two thermostatted enclosures 91 and 92;
  • An accessibility plug 33 at the bottom of each thermostated chamber 91 and 92 in order to limit the temperature drop in the thermostatted enclosures 91 and 92 while allowing access thereto for operations of replacing a catalytic body 30 and a non-catalytic body 35 to be described;
  • a micro-weighing device having a resolution of less than one microgram, comprising an electronic and mechanical device.
  • the mechanical device comprises a symmetrical flail 20 housed in the upper enclosure 90 and two rods 28 suspended from the beam 20 and housed respectively in the thermostatically controlled enclosures 91 and 92.
  • the electronic device is not shown, being known per se, and measures the rotation of the axis of the beam 20;
  • a catalytic body 30 both a support and a catalyst for the coking reaction with its attachment system to one of the rods 28, which can be, as the case may be, a perforated nacelle (105 in FIG. 5), a support ring or any other form for securing the rod 28 to the catalytic body 30.
  • the catalytic body 30 is suspended at the level of the flux concentrator 29 of the thermostated enclosure 91;
  • a non-catalytic body 35 of the same weight as the catalytic body 30 is suspended from the other rod 28 to balance the beam 20, also at the height of the flux concentrator 29;
  • a heating assembly comprising tubular furnaces 36 surrounding the thermostatted enclosures 91 and 92 at the bodies 30 and 35, a heat-insulating coating 93 surrounding the thermostatted enclosures 91 and 92 and the tubular furnaces 36 and heat exchangers 94 placed in the coating lagging connected to a thermostated bath of the cooling system 31 to maintain the assembly at a constant temperature;
  • the catalytic body 30 may be, for example, activated alumina, zeolite or activated carbon. Light-colored materials are preferred in order to be able to couple the measurement by micro-weighing to a measurement by colorimetry.
  • the shape of the catalytic body 30, illustrated by examples in FIG. 4, is fundamental because it conditions the representativeness and accuracy of the measurement. For this purpose it may be envisaged to use different shapes and masses depending on the tar content in the gas to be analyzed and / or the need or not for coupling to a colorimetric measurement.
  • the target measurement range between 0.1 mg / Nm 3 and 100 mg / Nm 3 of tar content in the gas, can be divided into ranges as mentioned below: - Measuring range 1: from 0.1 to 1 mg / Nm 3 ;
  • - Measuring range 2 from 1 to 10 mg / Nm 3 ;
  • m nacelle + alu mm e or iHnaceiie + aiumine represents the sum of the mass of the nacelle and that of the coking material (in this case alumina for example).
  • the mass of coke formed is given by the following expression:
  • ⁇ ⁇ represents the duration of the measurement expressed in minutes
  • V cokage [At] represents the average coking rate on ⁇ t expressed in mg / min. It should be noted that ⁇ t is of the order of magnitude of the minute.
  • the form of the catalytic body may be, and not limited to, a plate, a hollow cone, a ball, etc. or a combination of such shapes, including combinations of any shape plates.
  • the coking rate ⁇ CO kage, dimensionless quantity, is given by the following expression: m ⁇ c ⁇ oke coking m tars Oeke where m represents the mass of coke formed during .DELTA.t, goudmm m represents the mass of tars in the flow for a duration ⁇ t.
  • the coking rate ⁇ CO kage at a given moment depends mainly on:
  • m goudmm represents the mass of tars contained in the stream for a duration ⁇ t expressed in mg
  • Q 1n represents the volume flow rate of gas expressed in Nm 3 / min
  • [tars] m represents the mass concentration in tars expressed in mg / Nm 3 ;
  • the coking rate ⁇ CO kage is a quantity that connects
  • coking rate is an indicator of the performance and representativeness of the measure.
  • SECOND SUBASSEMBLY SECOND MODE Figure 3 schematically shows a second embodiment of thermobalance. It is a magnetic suspension thermobalance 95 which has the advantage of making a physical decoupling between the electronic part and the mechanical and magnetic part of the apparatus. This makes it possible to work under pressure and to have no dilution phenomenon via the mixing which takes place between the gas to be analyzed and the shielding gas of the electronic part; a dilution that can be limiting in the case of the detection of low concentrations of tars.
  • An upper chamber 96 containing the electronic part (not shown) and a beam 41 with at both ends a magnet 43 and its support 42 is traversed continuously by a stream of nitrogen injected in the middle by a pressure supply system 46.
  • Stoppers 40 limit the movements of the beam 41, especially when the suspension rods (here 67) are uncoupled as will be described later.
  • the inerting gas is continuously extracted from the enclosure upper 96, then recycled into it, by means of a pump 44.
  • Said upper chamber 96 is physically separated from the thermostatically controlled enclosures 97 and 98, locations of the flow of the gas to be analyzed and the measurement, by ceramic walls 45 which also separate these from the outside.
  • On both sides of these walls 45 are the magnets 43 already mentioned and other magnets 60 and their supports 61 which allow to suspend by magnetism rods 67 of the thermobalance 95, which are suspended at their other end respectively a catalytic body 58 for coking and a non-catalytic body 69.
  • a radial magnetic suspension system makes it possible to raise and lower the rods 67 that have been shown in low configuration in the lower chamber 97 which is thermostatically controlled on the left and in the up position.
  • the radial suspension comprises magnets 62 fixed to the rods 67, magnetic cores 63 fixed in the enclosures 97 and 98 and coils 64 outside the enclosures 97 and 98, able to excite the magnetic cores 63 to form linear motors with the magnets 62 and lower the rods 67 to the bottom of the device or raise them up to to restore the attraction at a distance between the pairs of magnets 43 and 60.
  • the rods 67 and the elements which are connected to them exert a force corresponding to their weight on the beam 41 despite the absence of contact.
  • the inlet 24 of the gas to be analyzed in each enclosure lower 97 or 98 is placed under all these magnets and components 60 and 64.
  • the flow of the gas is directed on the catalytic body 58 and the non-catalytic body 69 by flow concentrator devices 53 before escaping from the thermostatically controlled enclosures 97 and 98 through outlets 70.
  • FIGS. 1, 2 and 3 The analysis device coupled to the micro-weighing will now be described with reference to FIGS. 1, 2 and 3, which involves, according to the desired application, an optical colorimetric measurement system 56, an H 2 18 analyzer, a CO analyzer. 2 52.
  • Said optical colorimetric measurement system comprises an optical device 99 and an image acquisition and processing module 34. This device makes it possible to perform a continuous measurement in the sense that the occurrence (of the order of one minute) of measurement is sufficient for online monitoring of the concentration of tars. Said optical colorimetric measurement system 56 makes it possible to take measurements for tar concentrations for which it is not possible to carry out a microscale measurement. It is a question of observing the color change of the catalytic support and catalyst body of the coking reaction which takes place at the time of adsorption of the first layer of coke. Beyond this first layer, the layer growth of the deposited coke continues, but this latter is then under the effect of a thermal reaction and no longer both catalytic and thermal. In the embodiment of FIG.
  • the colorimetric device compares the colors of the bodies 30 and 35, the optical devices 99 being placed at the bottom of the accessibility plugs 33 and directed vertically, in the axis of the pipe sections; in the embodiment of Figure 3, where carousels 59 occupy the bottom of the pipe sections, an optical device 99 is directed horizontally, through the heat-insulated wall 93, at the height of the catalytic body 58 when it is in the measuring position just below the flux concentrator 53.
  • FIG. 3 a variant has been illustrated according to which the measurement is not differential and no optical device 99 is directed towards the body. non-catalytic 69. However, this is not specific to respective embodiments and reverse arrangements could be chosen for each of them.
  • the colorimetric device is first calibrated during a series of preliminary measurements where the results it gives on the progressive darkening of the catalytic body 30 or 58 are correlated with the increase in that of here, measured by thermobalance 10 or 95; then the colorimetric device is able to make autonomous measurements, particularly appreciated when the gravimetric measurement does not provide sufficient precision when the weight of the coke deposited on the catalytic body 30 or 58 is still too small, or that the tar content is very weak ; it can also give measurements used to corroborate those obtained by gravimetry.
  • An analyzer H 2 18 is placed downstream of the thermogravimetry device 10 monitoring coking. It may be for example a paramagnetic type analyzer. This is to obtain additional information on the decomposition of tars because at the time of the formation of coke, the tar compounds are dehydrogenated. Such an analyzer can be used in the case of an application where the gas matrix contains no or little hydrogen. Between the gas outlet of the thermobalance 10 and the analyzer H 2 18 are arranged in the order indicated, the following items on the exhaust pipe 113:
  • thermobalance 10 An exchanger 11 for lowering the temperature of the gases at the outlet of the thermobalance 10;
  • Measuring means such as a flow meter 12 and a volumetric counter 13;
  • a micrometric valve 14 allowing fine adjustment of the flow passing through the thermostatically controlled enclosures; and, after the confluence of the two branches of the exhaust pipe 113: A condenser 15 for condensing the different condensable species such as tars that have not been coke or water vapor;
  • a CO 2 analyzer 52 analyzes the gases present in a temperature-controlled oven 54 in which the coke formed on the surface of the catalytic body 30 is burned by adding oxygen arriving from a duct equipped with a heat exchanger 52 once the used catalytic body has been removed by the device of the carousel 59. It is to evaluate the amount of coke formed. For this, it must be ensured that the temperature-controlled oven 54 is free of any trace of CO 2 before the coke deposited is burned by combustion. The amount of CO2 emitted during coke combustion is measured and correlated with the amount of coke.
  • a automated mechanical device such as for example an automated articulated arm 55 performs the loading and unloading of the samples between the carousel 59 and the thermostat oven. After combustion of the coke by addition of oxygen, it is possible to reuse a limited number of times the catalytic body 30.
  • the added oxygen is supplied by a supply system comprising a heating means 51.
  • the temperature of the main line T p greater than 300 0 C, limits condensation of gaseous tar in the filter medium 2.
  • Downstream of the isokinetic sampling device 83 a portion of the main flux ⁇ p is taken from a drawn flow ⁇ d 2 secondary. The particles are trapped by the frit 3 maintained at the temperature T p .
  • the intermittent operation of a feed under nitrogen pressure at the frit 3 avoids clogging of the latter.
  • the shutoff valve 89 passes the flow ⁇ d 2, the pressure of the sample gas is modified by a pressure reducer 90 disposed upstream of the first buffer volume 4.
  • the pressure variations recorded in the first buffer volume 4 are regulated by the expansion volumetric of the lower part of the first buffer volume 4, separated from the gas to be analyzed by a membrane.
  • the negative or positive expansion of the lower part is controlled respectively by increasing or decreasing the nitrogen pressure.
  • the safety valve 5 opens and allows a part of the flow to pass to a control circuit. discharge.
  • the stream is routed to the second buffer volume 6, the operation of which is identical to that of the first buffer volume 4; only differs the operating dynamics, which in the case of the second buffer volume 6 is lower than that of the first buffer volume 4.
  • the heat exchanger 8 makes it possible to adapt the temperature of the gas flow before it is admitted into the thermobalance thermostatted enclosures 10.
  • thermobalance 10 The temperature prevailing in the thermostatted enclosures is an optimum between the coking rate of tars and phenomena such as thermal cracking and steam reforming of the coke due to a high temperature and the presence of water vapor in the gas matrix.
  • the diaphragm 9 makes it possible to attenuate the flow and pressure fluctuations present in the sampling, routing and gas treatment system. The operation of the thermobalance 10 will now be described with reference to FIG.
  • the gas to be analyzed is admitted through the inlet orifice 24 and passes through the homogenization zone of the gases 25.
  • the gas to be analyzed is mixed with the protective gas 26.
  • the convergence device 29 of the flow The gas to be analyzed directs the flow on the catalytic body 30, where the catalytic effect of the latter is at the origin of the coking of most of the gaseous tars which will be adsorbed on the surface of the latter.
  • the surface of the catalytic body 30 is not completely covered with a deposit layer of hydrocarbon compounds called coke, the contribution of the catalytic effect to the formation of coke is much greater than that of the thermal effect.
  • the recovery rate can be evaluated by colorimetric measurement or by micro-weighing.
  • thermobalance 10 is open at its bottom and the assembly 20, 24, 25, 28 and 30 down to a carousel type automatic sample changer device that replaces the catalytic body 30 with a new sample.
  • the old sample is then conveyed to an enclosure in which it will be placed in contact with an oxygen-rich atmosphere in order to operate the combustion of the coke and to evaluate the quantity of coke deposited via the measurement by a CO2 analyzer.
  • the coke deposition causes an increase in the weight which is measured continuously by the thermobalance 10.
  • the evaluation of the slope of the curve representing the increase of the mass of the sample as a function of time corresponds to the coking rate measured on the curve 100, plus specifically at a portion 101 of steep slope between a preliminary portion 102 of inactivity and a final portion 103 corresponding to thermal coking.
  • the knowledge of the coking rate makes it possible after calibration of the thermobalance 10 to calculate the concentration of gaseous tars in the main stream ⁇ p . Before making the measurement it is necessary to adjust the micrometer valves 14 in order to equalize the gas flows to be analyzed in the two thermostatted chambers of the thermobalance.
  • An H 2 18 analyzer makes it possible to measure the dihydrogen concentration at the gases leaving the thermobalance 10, this measurement combined with the measurement by micro-weighing gives elements of response on the composition of the tars. It makes it possible to make the link between the coking rate and the H 2 emission rate resulting in particular from the dehydrogenation of tar that occurs during coking.
  • the various components of the tare measuring device are dimensioned as a function of the volume flow rate of gas flowing in the main pipe and the pressure and temperature conditions, respectively P p and T, prevailing in the latter.
  • Diameter of connecting ducts 1/8 inch or 3 mm
  • Diaphragm size 9 1/16 inch or 1.5 mm
  • thermobalance 10 Height of the thermobalance 10: 850 mm - Width of the thermobalance 10: 500 mm
  • thermobalance 10 Length of thermobalance 10: 450 mm
  • Coolant temperature 60 0 C - Inert gas temperature: 200 to 1200 ° C
  • Inert gas pressure 2.5 bar - Inert gas volume flow rate: 6 Nm 3 / h
  • thermobalance thermostatic chamber 0 to 4 bar - Diameter of thermostatic chamber: 15 to 20 mm
  • Coking material activated alumina
  • Condenser temperature 15 -15 to + 20 ° C.
  • Sensitivity of the micro-weighing device ⁇ l ⁇ g.

Abstract

La mesure est faite au moyen d'une balance (10) de thermogravimétrie portant à une extrémité du fléau (20) un corps (30) catalyseur d'une réaction de cokage des goudrons présents à l'état gazeux. Des précautions sont prises pour assurer l'homogénéité et la régularité du débit du gaz prélevé et garantir une catalyse prépondérante sur le corps catalytique (30) dont l'alourdissement donne le poids du coke déposé, et, indirectement, la teneur en goudrons présents à l'état gazeux dans le gaz à mesurer. Un dispositif de colorimétrie (34) ou d'analyse des gaz issus du cokage des goudrons fournit une mesure complémentaire et/ou supplémentaire. Les goudrons solides sont filtrés auparavant, mais leur teneur peut être mesurée par un dispositif auxiliaire. Application possible à l'analyse des gaz issus de la biomasse.

Description

DISPOSITIF ET PROCEDE DE MESURE CONTINUE DE LA CONCENTRATION EN GOUDRONS DANS UN FLUX GAZEUX
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine des techniques d'analyse et de mesure de polluants dans un flux gazeux. Plus particulièrement, elle concerne un dispositif et procédé de mesure continue de goudrons d'un gaz, ces goudrons pouvant être à l'état de traces et à haute température (T>800°C) .
ETAT DE L'ART ANTERIEUR
Une des problématiques majeures rencontrées dans les procédés de vapo-gazéification est de pouvoir évaluer de manière continue la qualité du gaz généré afin de s'assurer que celui-ci est conforme aux exigences que requiert son application (génération d'électricité, d'énergie mécanique, de chaleur, synthèse de carburants ou encore formation d' hydrogène) .
L'évaluation des spécifications du gaz de synthèse nécessite de connaître la composition du gaz et donc entre autres la concentration des différentes espèces polluantes ; il s'agit des composés soufrés, azotés, chlorés, des métaux alcalins, des poussières et des goudrons. La présence de goudrons dans les gaz issus de la gazéification pose de nombreux problèmes dans les différentes applications visées, comme par exemple la détérioration des pales des turbines ou encore la perte d'activité des catalyseurs par désactivation, notamment dans les catalyseurs métalliques et zéolithiques . Les goudrons peuvent poser d' autres problèmes notamment dans les réacteurs de pyrolyse ou de gazéification où sous l'action de la chaleur, ils donnent naissance à un dépôt de composés hydrocarbonés lourds, nommé coke, sur les parois du réacteur, ce phénomène portant le nom de cokage. Suite à ce dépôt, les transferts de chaleur au réacteur s'en trouvent diminués. La formation de coke tend aussi à augmenter les pertes de charge dans les conduits et en l'absence d'action corrective finit par obstruer les canalisations. Le coke est issu d'un mécanisme complexe qui se décompose pour parts en une séquence catalytique et en une séquence thermique.
Il existe donc un réel besoin industriel de disposer d'un dispositif et procédé de mesure des traces de goudrons qui soit à la fois quantitatif, continu et en ligne. Par ailleurs, les goudrons, en tant que sous- produits de la dégradation thermique de la matière organique, constituent de bons indicateurs en termes de suivi des procédés de vapo-gazéification . Ainsi la mesure en continu de la concentration en goudrons ou au minimum le suivi de la concentration de traceurs, molécules représentatives de catégories de goudrons, peut constituer un outil de pilotage des procédés de gazéification en vue de l'optimisation en temps réel des paramètres de ces derniers. Or la mesure de la teneur en goudrons, présents sous forme de traces dans le flux gazeux, fait l'objet de nombreuses difficultés.
Une première difficulté est liée à la signification du terme générique « goudron », qui diffère selon le domaine d'application considéré. Dans le cadre de la pollution atmosphérique, de la métallurgie, de l'incinération de déchets, de la co- génération et de la production de carburants de synthèse, on désigne de manière générale par « goudrons » l'ensemble des composés organiques ayant une masse moléculaire supérieure à celle du benzène - soit 78 g/mol - mais il n'existe pas de définition officielle pour ce terme, et la littérature fait état d'une trentaine de définitions pour le mot « goudron »
(« tar » en anglais) dont la signification fait à ce jour encore l'objet de débats. A titre indicatif nous pouvons citer quelques-unes de ces définitions :
"mélange de composés chimiques se condensant sur les surfaces métalliques à température ambiante" ou encore "1 'ensemble des composants ayant une température d'ébullition supérieure à 150°C".
Les goudrons couvrent un large spectre d'espèces (plus de 2000) dont les caractéristiques physico-chimiques (polarité, volatilité, masse molaire, affinité chimique) varient sur une importante plage de valeurs, ce qui rend particulièrement difficile l'obtention d'une mesure faisant état de la quantité totale de goudrons. Plusieurs classifications de ces différents composés ont été proposées à ce jour comme par exemple la classification de Milne & Evans (1998) qui répertorie les différents goudrons en trois classes :
Classe 1 : espèces primaires, Classe 2 : espèces secondaires, - Classe 3 : espèces tertiaires.
Les principaux composants sont les hydrocarbures aromatiques polycycliques (HAP) , les composés organiques volatils (COV) et les phénols.
Il existe différentes techniques de mesure des goudrons mais celles-ci répondent que partiellement aux besoins de mesure.
A cette fin, il est souhaitable d'avoir un dispositif et une méthode qui remplissent de manière simultanée les fonctions suivantes : - effectuer une mesure de goudrons présents à l'état de traces (à des concentrations de l'ordre du mg/Nm3 voir inférieures) dans une matrice gazeuse ;
- effectuer une mesure quantitative de l'ensemble des goudrons, quels que soient leurs états physiques. En effet, pour estimer la qualité du gaz il est indispensable que la mesure soit représentative de la concentration totale en goudrons ;
- effectuer une mesure en temps réel, c'est- à-dire que le dispositif doit être à même de fournir une mesure toutes les minutes, ou du moins il faut que l'occurrence de mesure soit compatible avec un suivi pouvant être considéré comme continu (de l'ordre de la minute) y compris aux concentrations de traces ;
- effectuer une mesure en ligne de la concentration en goudrons dans des conditions de température et de pression les plus proches possibles de celles régnant au point de mesure afin de limiter les erreurs de mesure liées à une opération supplémentaire de prélèvement ou d'échantillonnage. Il s'agit aussi d'éviter une modification de la concentration en goudrons par un changement de valeur des paramètres de température et de pression. La température du gaz à mesurer peut se situer dans le domaine des hautes températures (T>800°C) ce qui constitue une contrainte forte en matière de mesure ;
- ne pas perturber aussi bien en amont qu'en aval le procédé industriel de production de gaz.
Les méthodes proposées à ce jour pour la détermination de la concentration en goudrons d'un gaz se répartissent en quatre grandes familles : - une première famille qui regroupe les méthodes d' analyse basées sur la chromatographie en phase liquide ou en phase gazeuse couplée à un détecteur. Les détecteurs les plus fréquents dans le cas de la mesure des goudrons sont le détecteur à ionisation de flamme (Flame Ionization Detector) et le spectromètre de masse. Ce dernier est couramment utilisé pour l'analyse des gaz de combustion des aciéries. Cependant l'acquisition d'un tel appareil, qui demeure avant tout un appareil de laboratoire, reste onéreuse et ne se révèle pas toujours apte à effectuer des mesures quantitatives à cause de la difficulté d' interprétation des spectres et de la faible répétabilité des mesures. En l'absence d'étape préalable de concentration, la chromatographie ne permet pas de faire des mesures en continu pour des seuils de détection faibles (de l'ordre du mg/Nm3) . Les méthodes couramment employées pour la pré-concentration de traces sont l'extraction sur phase solide (SPE) et, depuis quelques années, la micro-extraction en phase solide (SPME) . Ces techniques consistent en l'absorption ou l'adsorption d'espèces chimiques sur un support recouvert d'une espèce absorbante ou adsorbante. Il s'agit par exemple d'une fibre de silice fondue recouverte d'un polymère, qui peut être par exemple un polymère liquide tel que le polydiméthylsiloxane (PDMS) . Cette étape d'échantillonnage pose différents problèmes comme la représentativité de l'échantillon liée au caractère sélectif de l'adsorbant ou de l'absorbant. Par ailleurs, l'utilisation de la chromatographie en phase liquide ou phase gazeuse est peu adaptée à la mesure d'espèces dont la masse molaire est relativement importante (M > 400g/mol) . La chromatographie ne permet pas ainsi d'avoir une mesure en continu de la concentration totale en goudrons d'un gaz ;
- une deuxième famille qui regroupe les méthodes dites « spectrométriques », lesquelles consistent en la détection et l'analyse d'un spectre. Il s'agit par exemple de la spectrométrie infrarouge, ultraviolette (UV) ou de luminescence, de la technique LIBS (Laser-Induced Breakdown Spectroscopy) . L'avantage de l'application de l'absorption dans l'UV qui est très proche de celle de l'absorption dans l'infrarouge est que la vapeur d'eau n'interfère pas dans l'UV. Cette dernière est utilisée par exemple pour la détection d'hydrocarbures aromatiques polycycliques dans les sols contaminés comme mentionné dans le brevet EP0446975 intitulé « Installation of the rapid analysis of tar components and method for such an analysis ». Le brevet WO9833058 se rapporte quant à lui à une méthode pour l'analyse en ligne des hydrocarbures aromatiques polycycliques en collectant les aérosols au moyen d'un filtre et en soumettant celui-ci à une excitation via un rayonnement UV. Il s'agit ensuite de comparer l'image spectrale obtenue avec les différents spectres répertoriés dans une base de données. Une autre technique utilisée de manière courante dans le contrôle en continu des gaz de combustion est la spectrométrie infrarouge FTIR (Fourier Transform InfraRed) . Divers documents évoquent cette technique, comme par exemple les documents WO2006015660, WO03060480 et US5984998. La littérature ne fait pas mention d'une éventualité de mesurer des goudrons, les produits couramment suivis étant CO, CO2, O2, H2 et H2O. Dans notre cas, la présence de vapeur d'eau dans le gaz de synthèse est source de perturbation en absorption infrarouge. La méthode FTIR est qualitative dans le sens où elle renseigne sur la nature et la proportion de groupements atomiques et que seules les molécules asymétriques peuvent être mesurées. Une autre limitation consiste en la détermination de modèles mathématiques nécessaires à la quantification de la mesure. Le brevet WO030227650 est relatif à l'utilisation de la technique LIBS (Laser-Induced Breakdown Spectroscopy) en vue de la détection des hydrocarbures aromatiques polycycliques (HAP) et des monoaromatiques. Cette méthode, rapide, est adaptée au suivi des HAPs. La technique LIBS consiste à vaporiser et ioniser sous forme de plasma les espèces échantillonnées au moyen d'un laser. Elle nécessite cependant l'utilisation d'un support sur lequel sont présentes les espèces à analyser. Elle nécessite donc une étape d'échantillonnage et ne permet pas d'avoir une mesure en ligne du gaz ;
- une troisième famille qui regroupe les méthodes dites « électroniques ». Nous pouvons citer comme exemple la mesure de composés organiques par photo-ionisation ou par ionisation de flamme. Le document référencé : O. Moersch, H. Spliethoff, K. R. G Hein, « Tar quantification with a new online analyzing method », Biomass and Bioenergy, Volume 18, 2000, pages 79-86, fait mention d'une méthode quasi continue de détermination des goudrons au moyen de deux détecteurs à ionisation de flamme. Un premier détecteur permet de déterminer la quantité totale en hydrocarbures et le deuxième mesure la quantité en hydrocarbures non condensables . Les deux détecteurs sont placés en des points différents de la même conduite de prélèvement du gaz à mesurer et sont séparés par un filtre qui a pour but de piéger les goudrons par impaction et condensation. Une des limites de la technique à ionisation de flamme est la perturbation de la mesure par des gaz combustibles tels que CH4, H2 et CO, ce qui constitue une réelle limitation dans la mesure où le gaz de synthèse est un mélange de CO et H2 et qu' il contient aussi du méthane. De plus, la réponse dépend de la teneur en oxygène du gaz à mesurer. Enfin, la connaissance de la composition des goudrons ainsi que des facteurs de réponse des différents composés est indispensable afin d'obtenir une mesure quantitative des goudrons totaux. Il existe d'autres méthodes électroniques qui permettent un suivi en continu des goudrons, il s'agit des détecteurs à cellules électrochimiques et des capteurs à semi-conducteurs. Une cellule électrochimique est constituée d'une membrane laissant passer par perméation les composés à analyser ; de l'autre côté de la membrane se situe un électrolyte liquide qui en présence des espèces à détecter génère une réaction d' oxydoréduction à l'origine d'un courant électrique mesurable. Ce dispositif n'est pas adapté à une mesure en température, de plus la sélectivité de la membrane n'est pas compatible avec l'échantillonnage d'un grand nombre de composants dont les propriétés physico¬ chimiques varient sur une large plage de valeurs. Les capteurs à semi-conducteurs présentent des limitations similaires en terme de tenue en température, par contre ils permettent de mesurer un plus grand nombre de polluants. Une limitation importante de ce dispositif réside aussi dans la contamination rapide de la couche sensible du semi-conducteur placée au-dessus du substrat. Ces méthodes dites « électroniques » permettent de faire un suivi en continu de la concentration en goudrons mais ne permettent pas d'avoir une mesure quantitative de la totalité des goudrons présents dans un flux gazeux à haute température ; - une quatrième famille qui regroupe les méthodes dites « gravimétriques » dont une division peut être faite selon l'utilisation ou non de solvants. La grande majorité des méthodes rencontrées dans la littérature fait intervenir au moins un solvant. Elles emploient de manière combinée les mêmes principes physiques que sont : la filtration (impaction) , la condensation, l'absorption par solvant et l'extraction (évaporation) . Il s'agit ensuite d'évaluer par pesée la différence de masse des différents éléments (filtres, pièges cryogéniques, ...) entre le début et la fin de la mesure. Ces méthodes, au protocole expérimental souvent complexe et long, sont adaptées uniquement à une utilisation en laboratoire. Elles nécessitent un temps d'échantillonnage important (>30 min) pour pouvoir détecter de faibles concentrations (de l'ordre de 1 mg/Nm3) et ne permettent pas un suivi en continu et en ligne de la teneur en goudrons d'un gaz chaud. Le travail issu du projet européen « tar protocol » (ENK5 CT 2002-80648) fait référence dans le domaine de l'analyse et de la mesure de la teneur en goudrons des gaz issus des procédés de gazéification. La dernière version (version 3.3) en date est intitulée « Guideline for Sampling and Analysis of Tar and Particles in Biomass Producer Gases ». Cette procédure permet de faire par prélèvement une mesure à la fois quantitative et qualitative des goudrons présents à l'état gazeux et à l'état solide. La mesure se fait par prélèvement isocinétique pour une gamme de températures allant de 0 à 9000C et une pression allant de 0,6 à 60 bars et ce pour une concentration en goudrons allant de 1 à 300 mg/Nm3. Ce protocole se révèle ainsi inadapté à la mesure de trace de goudrons (<1 mg/Nm ) . Il existe un grand nombre de procédures dérivées de ce protocole visant à simplifier ce dernier. De manière générale, les méthodes gravimétriques se révèlent adaptées à la mesure des goudrons dits « lourds » (plus de 3 cycles aromatiques en ce qui concerne les hydrocarbures aromatiques polycycliques HAP) mais peu à celle des composés organiques volatils. Comme mentionné ci- dessus, il existe aussi des méthodes gravimétriques n'utilisant pas de solvant comme celle mise au point par l'université de l'état du Iowa. Dans le document référencé : Ming Xu, Robert C. Brown, Glenn Norton, and Jerod Smeenk, « Comparison of a Solvent-Free Tar Quantification Method to the International Energy Agency's Tar Measurement Protocol », Center for Sustainable Environmental Technologies, Iowa State University, Energy & Fuels 2005, 19, 2509-2513, les auteurs proposent une mesure dont le principe consiste à faire condenser les composants organiques dans un tube de Santoprène maintenu à une température supérieure à la température d'ébullition de l'eau (cad. 1050C) . Le Santoprène est un matériau qui a été choisi pour sa résistance vis-à-vis du phénomène de dévolatilisation. L'avantage de cette méthode réside dans sa simplicité mais requiert un temps d'échantillonnage de 60 minutes pour un débit de gaz de 2 1/min afin d'atteindre une limite de détection de l'ordre du mg/Nm3. Les performances obtenues sont très proches de celles du « tar protocol » mais cette méthode permet uniquement de mesurer les goudrons dits « lourds ». Il s'agit donc d'une mesure relativement longue, partielle et non continue.
Ainsi, la plupart des méthodes de mesure des goudrons sont avant tout qualitatives et discontinues, ce qui ne permet pas de répondre à un besoin industriel qui est le suivi en ligne et en continu de la concentration totale en goudrons.
Par ailleurs, bien souvent une étape supplémentaire de filtration et d'élimination de la vapeur d'eau est nécessaire afin de limiter d'une part les perturbations des résultats de mesure et d'autre part les dégradations éventuelles du matériel de mesure. Il en est de même pour la présence d'oxygène.
Arrivé à ce point de la description, on peut encore mentionner le document P. Broutin , F. Ropital , M-F Reyniers, ,,Anticoking Coatings for High Température
Petrochemical Reactors", Rev IFP, Vol. 54 (1999), No 3, pp 375-385 : il s'agit de tests de cokage pratiqués sur différents revêtements utilisés dans la constitution des réacteurs. On évalue par micro-pesée la vitesse asymptotique de cokage, qui correspond à la contribution de l'effet thermique sur le cokage. Ce procédé mesure par pesée l'affinité de divers revêtements à former du coke en mesurant leur vitesse de cokage, au lieu de la mesure de concentration de traces de goudrons dans un gaz. La présente invention est relative à une autre mesure et exploite plutôt l'effet catalytique du cokage sur un catalyseur.
Aucune des solutions présentées n'est donc à même de répondre aux exigences d'une mesure continue, quantitative, totale et en ligne de traces de goudrons (seuil de détection inférieur au mg/Nm ) .
Aucun des dispositifs présentés n'est à même d'effectuer une mesure en continu avec une occurrence de mesure de l'ordre de la minute. Par ailleurs, les dispositifs présentés ne mesurent pas l'ensemble des goudrons, qu'ils soient en phase solide ou à l'état gazeux.
L'objectif poursuivi est d'effectuer une mesure quantitative et en continu de l'ensemble des goudrons dans un flux gazeux à haute température. De plus, la mesure doit être représentative de la concentration totale en goudrons régnant dans une conduite principale dans laquelle s'écoule un gaz de synthèse dans des conditions de température et de pression données.
DESCRIPTION GENERALE DE L'INVENTION Les buts précédemment énoncés sont atteints par la présente invention développée par les inventeurs. Il s'agit d'un dispositif et d'un procédé de mesure continue de la concentration en goudrons d'un gaz, pouvant être à haute température. Elle comprend un sous-ensemble de thermogravimétrie, qui peut être selon le cas combiné à une mesure par colorimétrie, entre autres .
Sous une forme générale, l'invention concerne un dispositif de mesure en continu de concentration en goudrons d'un gaz, caractérisé en ce qu'il comprend une conduite de prélèvement d'un débit partiel du gaz, et une balance à laquelle mène la conduite de prélèvement et à laquelle est suspendu un corps servant de catalyseur et de support au cokage des goudrons, le corps étant mobile dans une enceinte de canalisation du gaz .
On utilise ainsi un phénomène néfaste qui est la désactivation des catalyseurs par dépôt de coke pour accomplir une mesure dans le domaine particulier du suivi en continu de traces de goudrons dans un flux gazeux .
Divers perfectionnements de 1 ' invention sont proposés. D'après un premier d'entre eux, un dispositif de réglage de la température du gaz prélevé est ajouté à l'endroit de la thermobalance ou juste en amont, afin notamment d'instaurer une température déterminée et souvent plus élevée à l'endroit du corps catalytique, où le cokage doit être favorisé. Le reste du dispositif, et en premier lieu la conduite de prélèvement, sera par contre souvent pourvue de moyens dédiés au maintien de la température du gaz à la valeur de celle qui règne dans l'écoulement principal, afin d'éviter une condensation et des réactions des goudrons. Les éléments des dispositifs autres que le corps catalytique seront de préférence choisis en une matière ayant peu d'affinité pour la formation de coke afin de ne pas s'encrasser et surtout de ne pas diminuer la concentration des goudrons avant que le gaz n'arrive au droit du corps catalytique.
Le corps catalytique est avantageusement un composé de plaques ou, plus généralement, un solide au rapport surface spécifique sur masse volumique important afin d'offrir la plus grande surface à la catalyse pour un volume déterminé et ce tout en minimisant le poids du corps catalytique, pour des raisons de sensibilité de la mesure. L'addition d'un homogénéisateur de flux en amont de l'enceinte de canalisation instaure favorablement un écoulement uniforme du gaz autour du corps catalytique et améliore la régularité de la mesure. De même, l'addition d'un concentrateur de flux dans l'enceinte de canalisation autour du corps catalytique dirige à peu près tout l'écoulement de dérivation sur le corps catalytique et améliore l'efficacité de la catalyse.
Un injecteur de gaz d'entraînement dans l'enceinte de canalisation permet de protéger la partie électronique du sous-ensemble de mesure par micropesée .
Au moins une capacité tampon est favorablement située sur la conduite en amont de l'enceinte afin de régulariser le débit dérivé, et ici encore d'améliorer la précision de la mesure. Un diaphragme peut être situé sur la conduite en aval de la capacité tampon pour aider à fixer la valeur du débit traversant la section de canalisation et le corps catalytique.
Avantageusement encore, la balance comprend un fléau symétrique oscillant à un bout duquel le corps catalytique est suspendu et à un bout opposé duquel un corps non catalytique du cokage des goudrons est suspendu, le corps catalytique et le corps non catalytique ayant des poids identiques.
Cette forme de balance effectuant une mesure différentielle, un seul des corps s ' alourdissant pendant la mesure, est particulièrement précise grâce à sa symétrie. Il est encore avantageux que le corps non catalytique soit monté mobile dans une seconde enceinte identique à celle du corps catalytique, pour contribuer à une régularité de mesure par symétrie de l'écoulement. Un égaliseur de pression entre les deux enceintes ajoute encore à cette régularisation.
Si la canne est suspendue au fléau de la balance par un accouplement magnétique, l'enceinte englobant le corps catalytique est verticale et comprend une ouverture de récupération du corps catalytique à un fond, le remplacement du corps catalyseur d'une mesure à l'autre est de beaucoup facilité. Pour renforcer cet effet, on peut ajouter au dispositif un élément de changement du corps catalytique mobile entre l'ouverture du fond de la section de canalisation et un poste de changement du corps catalytique.
Selon un élément optionnel mais particulièrement utile de l'invention, il est adjoint soit un capteur auxiliaire de mesure de concentration d'un gaz produit au cours du cokage en aval du corps catalytique et situé sur une conduite d'évacuation du gaz, ou encore, de façon préférée, un capteur auxiliaire de colorimétrie du corps catalytique. Cette utilisation de la colorimétrie est possible puisque le corps catalytique change progressivement de couleur à mesure que le dépôt de coke se développe. Le couplage de la mesure gravimétrique avec une mesure par colorimétrie permet, après avoir calibré la mesure par colorimétrie au moyen de la mesure gravimétrique, d'utiliser si nécessaire la mesure par colorimétrie seule, puisque son seuil de détection très faible, inférieur à celui de la balance, permet de relayer celle-ci pour de très faibles concentrations en goudrons ou pour une étape préliminaire d'une mesure.
Avantageusement, le capteur de colorimétrie est conçu pour faire des mesures différentielles sur le corps catalytique et le corps non catalytique quand ce dernier existe.
La mesure peut être améliorée par un débitmètre situé sur la conduite de dérivation. Un aspect important à considérer est la présence simultanée, fréquente, de goudrons en phase gazeuse et en phase solide. La méthode précédente, telle qu'elle a été décrite jusqu'ici, privilégie la détection des goudrons en phase gazeuse, ceux-ci étant prépondérants ou même exclusifs dans de nombreuses applications, surtout à température relativement élevée des gaz. Un auxiliaire du dispositif permet cependant de mesurer la concentration des goudrons en phase solide .
Il est indiqué, surtout dans cette situation, de disposer en amont de la conduite de prélèvement un filtre retenant les particules solides afin de mesurer seulement les goudrons en phase gazeuse dans le dispositif principal.
Le dispositif auxiliaire de mesure des goudrons en phase solide peut comprendre un piège à particules solides susceptible d'être pesé.
Un cyclone de tri de particules solides peut être ajouté pour envoyer vers le piège à particules solides seulement les particules qu'on peut considérer comme des goudrons.
L'invention concerne encore un procédé de mesure en continu de concentration en goudrons d'un gaz, caractérisé en ce qu'il consiste à prélever un débit partiel du gaz et à diriger ce débit vers un corps servant de catalyseur et de support au cokage des goudrons. On a la faculté d'ajuster la température de ce débit pour favoriser le cokage.
On rappelle que la pesée est soit continue au sens strict, soit du moins effectuée à intervalles rapprochés, de l'ordre d'une minute ou moins, ce que ne permettent pas les dispositifs et procédés antérieurs pour la plupart.
Il faut souligner que c'est l'aspect catalytique du cokage qui est exploité de préférence dans l'invention, alors que le cokage est surtout assimilé à un craquage de nature thermique. Le phénomène catalytique s'opère surtout lors de la formation de la première couche de dépôt qui s'effectue généralement par adsorption des composés hydrocarbonés lourds composant le coke, alors que le phénomène de cokage thermique devient généralement prépondérant ensuite. L'invention sera donc plus particulièrement utile à la mesure de faibles concentrations de goudrons. Le matériau catalyseur du cokage sera choisi par sa nature, sa forme et sa fabrication de telle manière que l'effet catalytique sera supérieur à l'effet thermique dans la gamme de température visée, généralement de 200 à 12000C.
Ainsi qu'on l'a mentionné, le procédé de base peut être enrichi d'une mesure additionnelle de concentration des goudrons en phase solide consistant à piéger ces goudrons solides sur un support.
La mesure principale de micro-pesée peut être complétée par les mesures auxiliaires fondées sur des variations de la couleur de corps catalytique ou sur des concentration de gaz provenant du cokage et notamment du gaz dihydrogène, puisque la formation du coke s'accompagne généralement d'une déshydrogénation des composés goudronneux. Un dernier aspect qui caractérise l'invention est le choix du corps catalytique (nature, composition, mise en forme, géométrie...) . Il dépend de quatre paramètres fondamentaux que sont : - les propriétés catalytiques du matériau ;
Surface spécifique . η . le rapport =-£- — — - — qui doit être
Masse _ volumique suffisamment grand afin d'avoir une mesure qui soit la plus précise et la plus représentative possible ; - un matériau pour lequel le méthane ne coke pas ou très peu ; une couleur et une forme qui soient compatibles avec une mesure par colorimétrie .
L'ensemble de ces paramètres ne peut pas toujours être optimisé simultanément, ce qui nécessite un compromis afin d'optimiser globalement la mesure en fonction : de la gamme de mesure visée ; de la nature des goudrons mis en jeu ; des conditions opératoires, etc. Des exemples de réalisation seront proposés plus loin.
BRÈVE DESCRIPTION DES DESSINS
L' invention sera mieux comprise à la lecture de la description détaillée qui va suivre des modes de réalisation de l'invention, fournis à titre illustratif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
La figure 1 représente de manière schématique un dispositif et un procédé selon l'invention, dont l'objectif est la mesure en continu des goudrons à l'état gazeux et solide contenus dans un flux gazeux en température ;
La figure 2 est un exemple de réalisation du sous-ensemble de thermogravimétrie permettant le suivi en continu des goudrons par micropesée ;
La figure 3 est un autre exemple de réalisation du sous-ensemble de thermogravimétrie. Il s'agit d'une thermobalance à suspension magnétique qui a été adaptée au cas de notre application ;
La figure 4 représente différentes formes pour le corps catalytique, support du cokage ;
La figure 5 représente une nacelle micro-perforée pouvant être suspendue à la canne de la thermobalance et pouvant contenir le matériau de cokage 30 ;
La figure 6 représente une courbe de suivi du cokage par micro-pesée pour un gaz ayant une concentration constante en goudrons, le toluène ayant été utilisé comme traceur. EXPOSÉ DÉTAILLÉ DES MODES DE RÉALISATION PARTICULIERS
En se référant tout d'abord à la figure 1, il est représenté de façon schématique un dispositif dédié à la mesure des goudrons par micro-pesée et/ou colorimétrie .
Le mélange gazeux à analyser s'écoule à l'intérieur d'une conduite 80 principale en acier inoxydable, par exemple en AISI 310 ou en AISI 316. De même les alliages à base de nickel et de chrome (par exemple l'Inconel) sont couramment utilisés en tant que matériau constitutif de conduites pouvant résister à des températures de 12000C et au-delà et présentent l'avantage d'avoir un effet catalyseur très faible pour le phénomène de cokage, ce qui permet de limiter le dépôt de coke ou de suies sur les surfaces internes des canalisations. Ladite conduite 80 comprend des moyens 81 et 82 permettant de mesurer en continu la pression Pp et la température TP régnant en elle. La nature et la composition du mélange gazeux varient selon l'application envisagée. Par exemple, dans le cas d'un gaz de synthèse obtenu par gazéification de la biomasse ou de déchets, les espèces majoritairement présentes sont CO et H2, ces deux composés constituent la matrice gazeuse. Dans une moindre mesure on trouve des gaz tels que CO2, CH4, H2O et des goudrons. Dans le cas où ce gaz de synthèse serait destiné à la production de carburant de synthèse, le flux gazeux en amont du procédé Fischer-Tropsch est à une température d'environ 3000C et à une pression pouvant aller jusqu'à 30 bars. Comme illustré sur la figure 1, une partie du flux principal Φp est détournée vers deux dispositifs de prélèvement et donne naissance aux flux secondaires Φdi et Φd2. En effet le dispositif global de mesure comprend deux dispositifs, dont le premier est affecté à la mesure discontinue des goudrons en phase solide et le deuxième à la mesure continue des goudrons à l'état gazeux. C'est ce deuxième dispositif de mesure continue des goudrons à l'état gazeux qui est le sujet de 1 ' invention et qui sera principalement décrit ; le premier dispositif est facultatif et constitue un simple auxiliaire destiné à compléter la mesure. Afin de limiter la perturbation du flux principal Φp et aussi dans un souci d'économie du gaz de synthèse, le flux prélevé satisfait à la relation suivante : **-<!%
Dans le cas où l'ensemble des goudrons présents dans le flux principal Φp est en phase gazeuse
(par exemple pour des températures supérieures à
3500C), le premier dispositif sert seulement à vérifier l'absence de goudrons solides.
Le premier dispositif, affecté à la mesure des goudrons en phase solide, comprend un dispositif de prélèvement isocinétique 83 conforme aux normes ISO 9096 et/ou ISO 2066. Le prélèvement isocinétique 83 est raccordé par des conduits 84 métalliques en acier inoxydable à un organe de tri de particules comme par exemple un cyclone 1 ou un ensemble de cyclones qui opère la séparation entre les particules de taille supérieure à quelques μm, notamment les particules de charbon ou "char", sous-produits de la pyrolyse de la biomasse, et les particules de taille plus modeste comme les suies qui sont issues de la polycondensation des goudrons. Lesdites suies sont ensuite collectées par impaction sur un milieu filtrant 2 afin d'être dans un second temps pesées. L'ensemble des conduits de ce dispositif est calorifuge et maintenu à la température Tp de la conduite principale afin d'éviter la condensation des goudrons présents à l'état gazeux dans le flux principal . Le deuxième dispositif, destiné à la mesure continue des goudrons gazeux, se compose de trois grands sous-ensembles qui sont :
Un système de prélèvement, de traitement et d'acheminement des gaz (3, 4, 5, 6, 7, 8 et 9) ;
Une thermobalance (10) adaptée au cas de notre application qui est la mesure en continu de la concentration en goudrons dans un flux gazeux en température via le suivi du phénomène de cokage des goudrons (conversion des goudrons en charge carbonée) par micro-pesée ;
Un système d' analyse couplé à la micro-pesée faisant intervenir selon l'application souhaitée un système de mesure optique par colorimétrie, un analyseur H2 ou un analyseur CO2.
Les deux premiers sous-ensembles sont indispensables à la bonne exécution de l'invention, le troisième améliore les résultats en permettant de les corroborer ou de suppléer au deuxième sous-ensemble dans le cas de concentrations extrêmement faibles des goudrons .
Le deuxième dispositif est situé en aval du premier sur la conduite 80 principale afin de ne pas le perturber.
PREMIER SOUS-ENSEMBLE
Le système de prélèvement, de traitement et d'acheminement des gaz est calorifuge et maintenu à la température Tp afin d'éviter de créer des « zones froides » qui favoriseraient la condensation des goudrons. Il s'agit aussi d'acheminer le gaz à analyser jusqu'à la thermobalance 10 dans des conditions de température et de pression les plus proches possibles de celles régnant dans la conduite principale 80 afin d'éviter des condensations et des réactions des goudrons. Il s'agit donc d'avoir une mesure de la concentration en goudrons gazeux qui soit la plus représentative possible de la concentration en goudrons gazeux dans la conduite principale 80. Le maintien en température des conduites et divers autres éléments (par exemple des volumes tampons 4 et 6 décrits plus loin) peut se faire au moyen d'un dispositif de chauffage électrique ou par circulation d' azote chaud autour desdits conduits et autres organes de traitement et d'acheminement du gaz à analyser. Le système de prélèvement, de traitement et d'acheminement des gaz comprend des moyens 85 et 86 permettant de mesurer la température et la pression en divers points.
Le système de prélèvement comprend un fritte 3 pouvant être métallique. Le matériau constitutif du fritte 3 doit être judicieusement choisi afin de limiter l'effet catalytique conduisant à la formation de coke et donc à la destruction de goudrons ; il peut s'agir par exemple d'un matériau formé à base de carbure de silicium SiC. Le fritte 3 peut tout aussi bien et ce de manière non limitative être en quartz, céramique ou fibre de verre. Ledit fritte 3 est maintenu en température au moyen d'un dispositif de chauffage afin d'éviter la condensation de composés goudronneux favorisée notamment par la perte de charge qu'il induit. Le fritte 3 sert de filtre aux particules solides mais permet à une portion de l'écoulement gazeux de s'écouler dans une conduite de prélèvement 87 menant de la conduite 80 principale à la thermobalance 10 et porteuse de divers équipements qu'on va maintenant décrire à mesure. La conduite de prélèvement 87 est calorifugée et maintenue à la température Tp de l'écoulement régnant dans la conduite principale 80.
Une vanne de sectionnement 89, un conduit de purge 112 et un détendeur 90 sont placés entre le fritte 3 et un premier volume tampon 4.
Le premier volume tampon 4 est une capacité équipée de moyens permettant de mesurer la pression et la température en elle. Il comprend un système de remplissage et de vidange en azote 88 qui, associé à un dispositif de régulation en pression, permet d'opérer un lissage du débit et de la pression du gaz à analyser. Une soupape de sécurité 5 est placée en haut du volume tampon 4 afin d'éviter les surpressions éventuelles et de garantir la sûreté du dispositif. Un deuxième volume tampon 6 de dynamique plus lente que celle du premier volume tampon 4 opère un lissage plus fin du flux et de la pression ; il fait suite au premier volume tampon 4 et comprend aussi un système de remplissage et de vidage en azote 111 et une soupape de sécurité 7.
Un échangeur de chaleur 8 est placé en aval du deuxième volume tampon 6 afin d' adapter la température du gaz à analyser avant introduction de celui-ci dans deux enceintes thermostatées de la thermobalance 10. Dans le cas où la température au sein de la thermobalance 10 devra être bien plus grande que la température Tp au sein de la conduite principale, l'échangeur 8 constituera une zone de préchauffage du gaz à analyser afin d'obtenir une meilleure efficacité du dispositif de thermogravimétrie ; la température dans les enceintes thermostatée de la thermobalance 10 est déterminée pour un optimum du taux de cokage des goudrons par effet catalytique.
Un diaphragme 9 est positionné avant la jonction de la conduite de prélèvement 87 à la thermobalance 10 en vue de limiter le débit.
DEUXIEME SOUS-ENSEMBLE : PREMIER MODE
On va maintenant décrire le sous-système de thermogravimétrie équipé de la thermobalance 10 en référence aux figures 2 et 3. La figure 2 représente de manière schématique un premier mode de réalisation de la thermobalance 10. Les différents modes de réalisation présentés ci-après ont tous la spécificité de présenter deux fours à enceintes thermostatées, il s'agit de balances dites à « configuration symétrique ». Une thermobalance présentant une seule enceinte thermostatée, sans qu'elle soit exclue de l'invention, nécessiterait d'effectuer après chaque mesure un blanc afin de s'affranchir de différentes sources d'erreur de la mesure telles que la poussée hydrostatique et les fluctuations de débit par exemple.
La thermobalance 10 comprend :
- Une enceinte composée de plusieurs parties, dont une enceinte supérieure 90 logeant un fléau 20 et une paire d'enceintes thermostatées 91 et 92 inférieures et allongées verticalement s 'étendant en haut jusqu'à l'enceinte supérieure 90 et en bas jusqu'à un bouchon d'accessibilité 33 ; Un système d'alimentation 26 en gaz de protection, par exemple He ou N2, afin de protéger un dispositif électronique de pesée par insufflation d'un gaz inerte dans l'enceinte supérieure 90 ; Un raccordement des enceintes thermostatées 91 et 92 par des orifices d'entrée 24 à la conduite de prélèvement 87 (ayant bifurqué) qui permet d'acheminer le gaz à analyser à la thermobalance 10 en lui faisant parcourir les enceintes thermostatées 91 et 92 de haut en bas, de façon qu' il y soit canalisé ; Un système d'alimentation 22 en gaz de purge, comportant un système de chauffage 23 permettant de limiter la baisse de température dans les enceintes thermostatées 91 et 92 lors de la purge du système. Le gaz de purge peut être un gaz inerte par exemple, ou de l'air ; - Un système de chauffage 36 par effet Joule de forme tubulaire englobant au moins partiellement chacune des enceintes thermostatées 91 et 92 ; Un dispositif d'homogénéisation 25 de la température et de l'écoulement du gaz à analyser disposé à l'entrée de chacune des enceintes thermostatées 91 et 92 ;
Un dispositif concentrateur de flux 29 qui agit en restreignant la section de l'écoulement offerte au gaz ; - Un dispositif de refroidissement 31 mettant en jeu un liquide de refroidissement, par exemple de l'eau, permettant de refroidir les deux enceintes thermostatées 91 et 92 en périphérie et des joints d'étanchéité aux parties inférieures et supérieures des enceintes thermostatées 91 et 92 ; Un système d'uniformisation des pressions 27 entre les deux enceintes thermostatées 91 et 92 ; Un bouchon d'accessibilité 33 en bas de chaque enceinte thermostatée 91 et 92 afin de limiter la chute de température dans les enceintes thermostatées 91 et 92 tout en permettant d'accéder en elles pour des opérations de remplacement d'un corps catalytique 30 et d'un corps non catalytique 35 à décrire ; Un dispositif de mesure par micro-pesée de résolution inférieure au microgramme, comprenant un dispositif électronique et mécanique. Le dispositif mécanique comprend un fléau 20 symétrique logé dans l'enceinte supérieure 90 et deux cannes 28 suspendues au fléau 20 et logées respectivement dans les enceintes thermostatées 91 et 92. Le dispositif électronique n'est pas représenté, étant connu en soi, et mesure la rotation de l'axe du fléau 20 ; Un corps catalytique 30 à la fois support et catalyseur de la réaction de cokage avec son système d'accrochage à une des cannes 28, pouvant être selon le cas une nacelle perforée (105 à la figure 5) , un anneau de support ou toute autre forme permettant de solidariser la canne 28 au corps catalytique 30. Le corps catalytique 30 est suspendu à hauteur du concentrateur de flux 29 de l'enceinte thermostatée 91 ;
Un corps non catalytique 35 de même poids que le corps catalytique 30 est suspendu à l'autre canne 28 pour équilibrer le fléau 20, lui aussi à hauteur du concentrateur de flux 29 ; Un ensemble de chauffage comprenant des fours tubulaires 36 entourant les enceintes thermostatées 91 et 92 au niveau des corps 30 et 35, un revêtement calorifuge 93 entourant les enceintes thermostatées 91 et 92 et les fours tubulaires 36 et des échangeurs de chaleur 94 placés dans le revêtement calorifuge reliés à un bain thermostaté du système de refroidissement 31 pour maintenir l'ensemble à température constante ;
Enfin, des orifices d'échappement 32 au bas des enceintes thermostatées 91 et 92, par lesquels le gaz à analyser s'échappe de celles-ci pour s'écouler dans une conduite d'évacuation 113 (bifurquant en deux branches près de la thermobalance pour desservir chacune des enceintes thermostatées 91 et 92) .
Le corps catalytique 30 peut être par exemple de l'alumine activée, de la zéolithe ou encore du charbon actif. Des matériaux de couleur claire sont à privilégier afin de pouvoir coupler la mesure par micro-pesée à une mesure par colorimétrie . La forme du corps catalytique 30, illustrée par des exemples sur la figure 4, est fondamentale car elle conditionne la représentativité et la précision de la mesure. A cet effet il peut être envisagé d'utiliser des formes et des masses différentes selon la teneur en goudrons dans le gaz à analyser et/ou selon le besoin ou non de couplage à une mesure colorimétrique . La gamme de mesure visée, entre 0,1 mg/Nm3 et 100 mg/Nm3 de teneur des goudrons dans le gaz, peut être divisée en plages comme mentionnées ci-dessous : - Plage 1 de mesure : de 0,1 à 1 mg/Nm3 ;
- Plage 2 de mesure : de 1 à 10 mg/Nm3 ;
- Plage 3 de mesure : de 10 à 100 mg/Nm3. Pour des questions de précision de mesure, la masse de coke formé mcoke doit satisfaire à la condition suivante : m nacelle+alu mm e ou iHnaceiie+aiumine représente la somme de la masse de la nacelle et de celle du matériau de cokage (ici de l'alumine par exemple) .
La masse de coke formé est donnée par l'expression suivante :
coke = Vcokage[At]x At
Δ^ représente la durée de la mesure exprimée en minutes,
Vcokage[At] représente la vites se moyenne de cokage sur Δt exprimée en mg/min . II est à noter que Δt est de l'ordre de grandeur de la minute.
La forme du corps catalytique peut être, et ce de manière non limitative, une plaque, un cône creux, une bille, etc. ou une combinaison de telles formes, et notamment des combinaisons de plaques de forme quelconque. On trouve un tube à section carrée 106, en tube rond 107, une coupelle 108, un nid d'abeille 109 et un croisillon 110 aux exemples de la figure 4. Il est important que la forme utilisée maximise le taux de cokage. Le taux de cokage τCOkage, grandeur adimensionnelle, est donné par l'expression ci-dessous : m ιc ^oke cokage m goudrons où mœke représente la masse de coke formée pendant Δt, mgoudmm représente la masse de goudrons contenus dans le flux pour une durée Δt . Le taux de cokage τCOkage à un instant donné dépend principalement:
- Des conditions opératoires telles que la température et la pression ;
Du matériau servant de support et de catalyseur à la formation et au dépôt de coke
(nature, mise en forme, taux de recouvrement en espèces hydrocarbonées...) ;
- De la concentration en goudrons du gaz à analyser ; - Des propriétés d'écoulement, telles que la vitesse, le débit de gaz, le type de régime
(un régime turbulent favorise le phénomène de cokage) , de l'efficacité du dispositif de convergence du flux gazeux 29.
La masse de goudrons tngoudrom contenus dans le gaz traversant le dispositif de mesure pendant Δt est donnée par l'expression suivante : mgoudrons = [goudrons]m xQmxAt
où mgoudmm représente la masse de goudrons contenus dans le flux pour une durée Δt exprimée en mg ; - Q1n représente le débit volumique de gaz exprimé en Nm3/min ;
[goudrons]m représente la concentration massique en goudrons exprimée en mg/Nm3 ;
- Δt représente la durée de mesure exprimée en min.
Le taux de cokage τCOkage est une grandeur qui relie
la grandeur mesurée Vcok à 1 ' inconnue [goudrons]π
m coke V cokage
" cokage m goudrons [goudrons]m x Qn Par conséquent le taux de cokage est un indicateur de la performance et de la représentativité de la mesure .
Pour un corps catalytique 30 donné et une masse de ce dernier donnée, il faut maximiser sa surface disponible de par sa forme et son procédé de fabrication. On préconise un rapport surface spécifique sur masse volumique supérieur à 50 m5/kg2.
DEUXIEME SOUS-ENSEMBLE : DEUXIEME MODE La figure 3 représente de manière schématique un deuxième mode de réalisation de thermobalance. Il s'agit d'une thermobalance 95 à suspension magnétique qui a l'avantage d'opérer un découplage physique entre la partie électronique et la partie mécanique et magnétique de l'appareil. Cela permet de travailler en pression et de ne pas avoir de phénomène de dilution via le mélange qui s'opère entre le gaz à analyser et le gaz de protection de la partie électronique ; une dilution pouvant être limitante dans le cas de la détection de faibles concentrations en goudrons. Une enceinte supérieure 96 contenant la partie électronique (non représentée) et un fléau 41 avec à ses deux extrémités un aimant 43 et son support 42 est parcourue en continu par un flux d'azote injecté en son milieu par un système d'alimentation en pression 46. Des butées 40 limitent les mouvements du fléau 41, notamment quand les cannes de suspension (ici 67) sont désaccouplées comme on le décrira plus loin. Le gaz d' inertage est extrait continuellement de l'enceinte supérieure 96, puis recyclé en elle, au moyen d'une pompe 44. Ladite enceinte supérieure 96 est séparée physiquement des enceintes thermostatées 97 et 98, lieux de l'écoulement du gaz à analyser et de la mesure, par des parois 45 en céramique qui séparent aussi ces dernières de l'extérieur. De part et d'autre de ces parois 45 on trouve les aimants 43 déjà mentionnés et d'autres aimants 60 et leurs supports 61 qui permettent de suspendre par magnétisme des cannes 67 de la thermobalance 95, auxquelles sont suspendus à leur autre extrémité respectivement un corps catalytique 58 de cokage et un corps non catalytique 69. Un système de suspension magnétique radiale permet d'assurer la montée et la descente des cannes 67 qu'on a représentées en configuration basse dans l'enceinte inférieure 97 thermostatée gauche et en position haute dite « de mesure » dans l'enceinte inférieure 98 thermostatée droite sur la figure 3. La suspension radiale comprend des aimants 62 fixés aux cannes 67, des noyaux magnétiques 63 fixés dans les enceintes 97 et 98 et des bobines 64 hors des enceintes 97 et 98, aptes à exciter les noyaux magnétiques 63 pour former des moteurs linéaires avec les aimants 62 et abaisser les cannes 67 vers le fond du dispositif ou les relever jusqu'à rétablir l'attraction à distance entre les couples d'aimants 43 et 60. Quand l'attraction est établie, les cannes 67 et les éléments qui leur sont liés exercent une force correspondant à leur poids sur le fléau 41 malgré l'absence de contact. L'orifice d'entrée 24 du gaz à analyser dans chaque enceinte inférieure 97 ou 98 est placé sous tous ces aimants et composants 60 et 64.
Le flux du gaz est dirigé sur le corps catalytique 58 et le corps non catalytique 69 par des dispositifs concentrateurs de flux 53 avant de s'échapper des enceintes thermostatées 97 et 98 par des orifices d'évacuation 70.
Des dispositifs mécaniques automatisés de carrousels 59 tournant sur des moteurs 57, par exemple proches de celui mentionné dans le document
US6468475B1, permettent de charger et décharger le corps catalytique 58 et le corps non catalytique 69 de manière automatisée de l'une ou l'autre des deux enceintes inférieures 97 et 98 de la thermobalance 95 à configuration symétrique.
Pour le reste, les éléments sont similaires à ceux du mode de réalisation présenté précédemment et illustré en figure 2.
TROISIEME SOUS-ENSEMBLE
On va maintenant décrire le dispositif d' analyse couplée à la micro-pesée en référence aux figures 1, 2 et 3 qui fait intervenir selon l'application souhaitée un système de mesure optique par colorimétrie 56, un analyseur H2 18, un analyseur CO252.
Ledit système de mesure optique par colorimétrie comprend un dispositif optique 99 et un module d'acquisition et de traitement d'image 34. Ce dispositif permet d'effectuer une mesure continue dans le sens où l'occurrence (de l'ordre de la minute) de mesure est suffisante pour un suivi en ligne de la concentration en goudrons. Ledit système de mesure optique par colorimétrie 56 permet de faire des mesures pour des concentrations en goudrons pour lesquelles il n'est pas possible d'effectuer une mesure par micropesée. Il s'agit d'observer le changement de couleur du corps catalytique 30 support et catalyseur de la réaction de cokage qui se fait au moment de l'adsorption de la première couche de coke. Au-delà de cette première couche la croissance en couche du coke déposé continue mais cette dernière se fait alors sous l'effet d'une réaction thermique et non plus à la fois catalytique et thermique. Dans le mode de réalisation de la figure 2, le dispositif de colorimétrie compare les teintes des corps 30 et 35, les dispositifs optiques 99 étant placés au fond des bouchons d'accessibilité 33 et dirigés verticalement, dans l'axe des sections de canalisation ; dans la réalisation de la figure 3, où des carrousels 59 occupent le fond des sections de canalisation, un dispositif optique 99 est dirigé horizontalement, en traversant la paroi calorifugée 93, à hauteur du corps catalytique 58 quand il se trouve dans la position de mesure, juste au-dessous du concentrateur de flux 53. Dans la réalisation de la figure 3, on a d'ailleurs illustré une variante d'après laquelle la mesure n'est pas différentielle et aucun dispositif optique 99 n'est dirigé vers le corps non catalytique 69. Cela n'est cependant pas spécifique aux modes de réalisation respectifs et des dispositions inverses pourraient être choisies pour chacun d'eux.
Ainsi qu'on l'a mentionné, le dispositif de colorimétrie est d' abord étalonné pendant une série de mesures préliminaires où les résultats qu' il donne sur l'obscurcissement progressif du corps catalytique 30 ou 58 sont corrélés à l'alourdissement de celui-ci, mesuré par la thermobalance 10 ou 95 ; puis le dispositif de colorimétrie est capable de faire des mesures autonomes, particulièrement appréciées quand la mesure gravimétrique n'offre pas une précision suffisante quand le poids du coke déposé sur le corps catalytique 30 ou 58 est encore trop petit, ou que la teneur en goudrons est très faible ; il peut aussi donner des mesures utilisées pour corroborer celles obtenues par gravimétrie.
Tout cela s'applique aux dispositifs suivants d'analyse de gaz issus du cokage ou d'une combustion ultérieure du coke formé. On revient à la figure 1. Un analyseur H2 18 est placé en aval du dispositif de thermogravimétrie 10 de suivi de cokage. Il peut s'agir par exemple d'un analyseur de type paramagnétique . Il s'agit d'obtenir une information supplémentaire sur la décomposition des goudrons car au moment de la formation du coke, les composés goudronneux sont déshydrogénés . Un tel analyseur peut être employé dans le cas d'une application où la matrice gazeuse ne contient pas ou peu d'hydrogène. Entre la sortie des gaz de la thermobalance 10 et l'analyseur H2 18 sont disposés dans l'ordre indiqué les éléments suivants sur la conduite d'évacuation 113 :
Un échangeur 11 permettant d'abaisser la température des gaz en sortie de la thermobalance 10 ;
Des moyens de mesure tels qu'un débitmètre 12 et un compteur volumétrique 13 ;
Une vanne micrométrique 14 permettant un réglage fin du flux passant au travers des enceintes thermostatées ; et, après la confluence des deux branches de la conduite d'évacuation 113 : Un condenseur 15 permettant de faire condenser les différentes espèces condensables comme les goudrons qui n'ont pas été cokes ou la vapeur d'eau ;
Un absorbant 16, par exemple en silicagel permettant de piéger les condensables ; Une pompe 17 permettant de régler le flux du gaz à analyser . Dans la réalisation de la figure 3, un analyseur de CO2 52 analyse les gaz présents au sein d'un four thermostaté 54 dans lequel le coke formé à la surface du corps catalytique 30 est brûlé par ajout d'oxygène arrivant d'un conduit équipé d'un échangeur de chaleur 52 une fois que le corps catalytique usagé a été retiré par le dispositif du carrousel 59. Il s'agit d'évaluer la quantité de coke formé. Pour cela, il faut s'assurer que le four thermostaté 54 est exempt de toute trace de CO2 avant que l'on brûle par combustion le coke déposé. La quantité de CO2 émise pendant la combustion du coke est mesurée et corrélée à la quantité de celui-ci. Un dispositif mécanique automatisé tel que par exemple un bras articulé automatisé 55 effectue le chargement et le déchargement des échantillons entre le carrousel 59 et le four thermostaté. Après combustion du coke par ajout d'oxygène, il est possible de réutiliser un nombre limité de fois le corps catalytique 30. L'oxygène ajouté est fourni par un système d'alimentation comprenant un moyen de chauffage 51.
FONCTIONNEMENT
On va maintenant décrire le fonctionnement du système de prélèvement, de traitement et d'acheminement des gaz (1, 2, 3, 4, 5, 6, 7, 8 et 9) en référence à la figure 1. En fonctionnement normal, une partie du flux principal Φp est prélevée au dispositif de prélèvement isocinétique 83. La vanne de sectionnement est ouverte et laisse passer un flux prélevé Φdi primaire qui traverse le cyclone 1 où s'effectue une séparation entre les particules de charbon (ou "char"), sous- produits de la pyrolyse de la biomasse riche en carbone, et les goudrons condensés. Les goudrons sont ensuite acheminés dans les conduites maintenues à la température Tp vers un milieu filtrant 2, où par impaction les goudrons déjà condensés sont piégés. La température de la conduite principale Tp, supérieure à 3000C, limite la condensation des goudrons gazeux au niveau du média filtrant 2. En aval du dispositif de prélèvement isocinétique 83, une partie du flux principal Φp est prélevée en un flux prélevé Φd2 secondaire. Les particules sont piégées par le fritte 3 maintenu à la température Tp. Le fonctionnement intermittent d'une alimentation sous pression en azote au niveau du fritte 3 évite l'encrassement de ce dernier. La vanne de sectionnement 89 laisse passer le flux Φd2, la pression du gaz prélevé est modifiée par un détendeur 90 disposé en amont du premier volume tampon 4. Les variations de pression enregistrées dans le premier volume tampon 4 sont régulées par l'expansion volumétrique de la partie basse du premier volume tampon 4, séparée du gaz à analyser par une membrane. L'expansion négative ou positive de la partie basse est commandée respectivement par augmentation ou diminution de la pression en azote. Dans le cas d'une surpression dans le premier volume tampon 4 (pression supérieure à la pression de tarage de la soupape de sécurité 5) , la soupape de sécurité 5 s'ouvre et laisse passer une partie du flux vers un circuit de mise en décharge. En sortie du premier volume tampon 4, le flux est acheminé vers le second volume tampon 6 dont le fonctionnement est identique à celui du premier volume tampon 4 ; seule diffère la dynamique de fonctionnement, qui dans le cas du deuxième volume tampon 6 est plus faible que celle du premier volume tampon 4. En sortie du deuxième volume tampon 6, l'échangeur de chaleur 8 permet d' adapter la température du flux gazeux avant son admission au sein des enceintes thermostatées de la thermobalance 10. La température régnant dans les enceintes thermostatées est un optimum entre le taux de cokage des goudrons et des phénomènes tels que le craquage thermique et le vaporeformage du coke dus à une température élevée et à la présence de vapeur d'eau dans la matrice gazeuse. Le diaphragme 9 permet d'atténuer les fluctuations de débit et de pression présentes dans le système de prélèvement, d'acheminement et de traitement des gaz. On va maintenant décrire le fonctionnement de la thermobalance 10 en référence à la figure 2.
En fonctionnement normal, le gaz à analyser est admis par l'orifice d'entrée 24 et traverse la zone d'homogénéisation des gaz 25. Le gaz à analyser s'y mélange avec le gaz protecteur 26. Le dispositif de convergence 29 du flux gazeux à analyser dirige le flux sur le corps catalytique 30 où l'effet catalytique de ce dernier est à l'origine du cokage de la majeure partie des goudrons gazeux qui seront adsorbés à la surface de ce dernier. Tant que la surface du corps catalytique 30 n'est pas intégralement recouverte d'une couche de dépôt de composés hydrocarbonés appelés coke, la contribution de l'effet catalytique à la formation de coke est largement supérieure à celle de l'effet thermique. Le taux de recouvrement peut être évalué par mesure colorimétrique ou par micro-pesée. Dans le cas où le corps catalytique 30 est intégralement recouvert, la thermobalance 10 est ouverte par son bas et l'ensemble 20, 24, 25, 28 et 30 descend jusqu'à un dispositif de changement automatique d'échantillon de type carrousel qui remplace le corps catalytique 30 par un nouvel échantillon. L'ancien échantillon est alors acheminé vers une enceinte dans laquelle il sera placé en contact avec une atmosphère riche en oxygène afin d'opérer la combustion du coke et d'évaluer la quantité de coke déposé via la mesure par un analyseur CO2. Dans le cas où le corps catalytique 30 n'est pas saturé sur sa première couche (ce qui nécessite quelques heures pour des concentrations en goudrons de l'ordre du mg/Nm3) , le dépôt de coke entraîne une augmentation du poids qui est mesurée en continu par la thermobalance 10. L'évaluation de la pente de la courbe représentant l'augmentation de la masse de l'échantillon en fonction du temps (cf. figure 6) correspond à la vitesse de cokage mesurée sur la courbe 100, plus précisément à une portion 101 de forte pente entre une portion préliminaire 102 d'inactivité et une portion finale 103 correspondant au cokage thermique. La pente de la portion 101 (ici Δm /Δt=0,274 mg /min) donne la vitesse de cokage catalytique. La connaissance de la vitesse de cokage permet après calibrage de la thermobalance 10 de calculer la concentration en goudrons gazeux dans le flux principal Φp. Avant d'effectuer la mesure il est nécessaire de régler les vannes micrométriques 14 afin d'égaliser les flux de gaz à analyser dans les deux enceintes thermostatées de la thermobalance.
On va maintenant décrire le fonctionnement du système d'analyse couplée 18 en référence à la figure 1.
Un analyseur H2 18 permet de mesurer la concentration en dihydrogène au niveau des gaz sortant de la thermobalance 10, cette mesure combinée à la mesure par micro-pesée donne des éléments de réponse sur la composition des goudrons. Elle permet de faire le lien entre le taux de cokage et le taux d'émission de H2 résultant notamment de la déshydrogénation des goudrons qui survient lors du cokage. EXEMPLE DE REALISATION
Les différents composants du dispositif de mesure des goudrons sont dimensionnés en fonction du débit volumique de gaz Φ s' écoulant dans la conduite principale et des conditions de pression et de température, respectivement Pp et T , régnant dans cette dernière .
Un exemple de dimensionnement est fourni ci- dessous, en considérant un débit volumique de 100 Nm3/h pour un diamètre de la conduite principale de 1 ^ pouces. La pression et la température régnant au sein de cette dernière sont respectivement de 10 bars et 4000C. - Dimensions extérieures du fritte 3 : 5 mm x 5 mm Perte de charge du fritte 3 à vide : < 0,1 bar Porosité du fritte 3 : 0,1 à 2 μm - Efficacité du fritte 3 : 99, 9 % pour un diamètre de particules supérieur à 2 μm - Température de maintien du fritte 3 : 4000C
Température de maintien des canalisations et des autres éléments en amont de la thermobalance : 400°C
Diamètre des conduits de raccordement : 1/8 pouce ou 3 mm
Débit de gaz prélevé : 0,7 Nm /h Volume du premier volume tampon 4 : 5 1 Volume du deuxième volume tampon 6 : 10 1 Pression de déclenchement des soupapes de sécurité 5 et 7 : Pp + 5 bars Température au niveau de l'échangeur 8 : 20 à
10000C
Taille du diaphragme 9 : 1/16 pouce ou 1,5 mm
Hauteur de la thermobalance 10 : 850 mm - Largeur de la thermobalance 10 : 500 mm
Longueur de la thermobalance 10 : 450 mm
Température du liquide de refroidissement : 600C - Température du gaz d' inertage : 200 à 1200°C
Pression du gaz d' inertage : 2,5 bar - Débit volumique du gaz d' inertage : 6 Nm3/h
Température au sein de l'enceinte thermostatée de la thermobalance : 200 à 1200 0C
Pression au sein de l'enceinte thermostatée de la thermobalance : 0 à 4 bars - Diamètre de l'enceinte thermostatée : 15 à 20 mm
Matériau de cokage : alumine activée
Masse volumique de l'alumine activée : 2,8 kg/L
Rapport surface spécifique sur masse volumique du corps catalytique 30 ou 58 : 107 m5/kg2 - Température au niveau de l'échangeur 11 : 500C
Température du condenseur 15 : -15 à + 200C
Pression de purge : 4 bars
Sensibilité du dispositif de micro-pesée : < lμg.

Claims

REVENDICATIONS
1) Dispositif de mesure en continu de concentration en goudrons d'un gaz, caractérisé en ce qu'il comprend une conduite de prélèvement (87) d'un débit partiel du gaz, et une balance (10, 95) à laquelle mène la conduite, et à laquelle est suspendu un corps (30, 58) servant de catalyseur et de support au cokage des goudrons, le corps étant mobile dans une enceinte (91, 97) de canalisation du gaz.
2) Dispositif de mesure selon la revendication 1, caractérisé en ce qu'il comprend un four thermostaté (36, 31) autour du corps catalytique (30, 58) .
3) Dispositif de mesure selon la revendication 1 ou 2, caractérisé en ce qu'il comprend un dispositif de réglage de température (8) du gaz dans la conduite de prélèvement (87) en amont de la balance.
4) Dispositif de mesure selon la revendication 3, caractérisé en ce que la conduite de prélèvement (87) est calorifugée et maintenue en température .
5) Dispositif de mesure selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le corps (30, 58) comporte un rapport surface spécifique sur masse volumique supérieur à 50 m5/kg2. 6) Dispositif de mesure selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend un concentrateur de flux (29, 53) situé autour du corps catalytique et un homogénéisateur de flux (25) en amont du concentrateur de flux.
7) Dispositif de mesure selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend au moins une capacité tampon (4,6) située sur la conduite de prélèvement (87) .
8) Dispositif de mesure selon l'une quelconque des revendication 1 à 7, caractérisé en ce que la balance comprend un fléau symétrique (20, 41) oscillant, à un bout duquel le corps catalytique (30, 58) est suspendu et à un bout opposé duquel un corps non catalytique du cokage des goudrons est suspendu, le corps catalytique (35, 69) et le corps non catalytique ayant des poids identiques.
9) Dispositif de mesure selon l'une quelconque des revendications 1 à 8, caractérisé en que le corps catalytique est suspendu par une canne
(67) à un fléau de la balance par un accouplement magnétique (43, 60), et une ouverture de récupération s'étend dans l'enceinte thermostatée sous le corps catalytique . 10) Dispositif de mesure selon la revendication 9, caractérisé en ce qu'il comprend un dispositif mobile (59) de changement du corps catalytique (58), comprenant des alvéoles de contenance du corps catalyseur mobiles entre l'ouverture et un poste de changement de corps catalytiques .
11) Dispositif de mesure selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend un capteur auxiliaire (18) de mesure de concentration d'un gaz produit au cours du cokage en aval du corps et situé sur une conduite d'évacuation (113) du débit partiel du gaz.
12) Dispositif de mesure selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend un système de mesure optique par colorimétrie (56) du corps.
13) Dispositif de mesure selon les revendications 8 et 12, caractérisé en ce que le système de mesure optique par colorimétrie (56) est conçu pour faire des mesures différentielles sur le corps catalytique et le corps non catalytique.
14) Dispositif de mesure selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend un four (54) recevant le corps catalytique (58), conçu pour effectuer une combustion du coke et pourvu d'un capteur de CO2 (52) . 15) Dispositif de mesure selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend un filtre de particules solides (3) à une portion en amont de la conduite de prélèvement (87) .
16) Dispositif de mesure selon la revendication 15, caractérisé en ce qu'il comprend un dispositif affecté à une mesure de concentration de goudrons en phase solide et situé en avant du filtre de particules solides (3) .
17) Dispositif de mesure selon la revendication 16, caractérisé en ce que le dispositif affecté à la mesure de concentrations de goudrons en phase solide comprend un piège à particules solides (2), susceptible d'être pesé.
18) Dispositif de mesure selon la revendication 16 ou 17, caractérisé en ce que le dispositif auxiliaire comprend un cyclone (1) de tri de particules.
19) Procédé de mesure en continu de concentration en goudrons d'un gaz, caractérisé en ce qu'il consiste à prélever un débit partiel du gaz et à diriger le débit partiel du gaz vers un corps servant de catalyseur et de support au cokage des goudrons, et à peser en continu le corps. 20) Procédé de mesure selon la revendication 19, caractérisé en ce qu'il consiste aussi à ajuster la température de la portion de débit de gaz pour favoriser un cokage.
21) Procédé de mesure selon la revendication 19 ou 20, caractérisé en ce qu'il comprend une mesure additionnelle de concentration de goudrons en phase solide consistant à piéger lesdits goudrons en phase solide sur un support (2), et à peser en continu ou en discontinu ledit support.
22) Procédé de mesure selon la revendication 19, 20 ou 21, caractérisé en ce qu'il comprend une mesure auxiliaire fondée sur des variations de couleur du corps .
23) Procédé de mesure selon la revendication 19, 20 ou 21, caractérisé en ce qu'il comprend une mesure auxiliaire fondée sur des mesures de concentrations de gaz (18) produit au cours du cokage et entraîné par le débit partiel du gaz.
EP07858159A 2006-12-28 2007-12-27 Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux Withdrawn EP2106548A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0656007A FR2910967B1 (fr) 2006-12-28 2006-12-28 Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux
PCT/EP2007/064562 WO2008080931A1 (fr) 2006-12-28 2007-12-27 Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux

Publications (1)

Publication Number Publication Date
EP2106548A1 true EP2106548A1 (fr) 2009-10-07

Family

ID=38446021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858159A Withdrawn EP2106548A1 (fr) 2006-12-28 2007-12-27 Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux

Country Status (9)

Country Link
US (1) US7968055B2 (fr)
EP (1) EP2106548A1 (fr)
JP (1) JP2010515038A (fr)
CN (1) CN101568832A (fr)
BR (1) BRPI0720559A2 (fr)
CA (1) CA2672020A1 (fr)
FR (1) FR2910967B1 (fr)
WO (1) WO2008080931A1 (fr)
ZA (1) ZA200903794B (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932888B1 (fr) * 2008-06-18 2010-08-20 Commissariat Energie Atomique Dispositif et procede de mesure continue en ligne de la concentration totale en goudrons dans un flux gazeux pouvant etre a haute temperature
DE102009004278A1 (de) * 2009-01-05 2010-07-15 Synthesechemie Dr. Penth Gmbh Messgerät für geringe Kohlenwasserstoffkonzentrationen
US20120186366A1 (en) * 2011-01-26 2012-07-26 Energy & Environmental Research Center Measurement of multimetals and total halogens in a gas stream
US8997558B2 (en) 2011-03-29 2015-04-07 General Electric Company Combustor probe for gas turbine
US20130151167A1 (en) * 2011-12-08 2013-06-13 Marathon Petroleum Company Lp Method To Determine The DRA In A Hydrocarbon Fuel
WO2014148981A1 (fr) * 2013-03-19 2014-09-25 Verdant Chemical Technologies Procédé et système de craquage ou de reformage de goudron régulé à l'aide d'un détecteur à photo-ionisation
JP6336072B2 (ja) * 2013-08-14 2018-06-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 粒子センサ、及び、粒子センサの製造方法
FR3015685B1 (fr) * 2013-12-20 2016-02-05 Commissariat Energie Atomique Dispositif et procede de mesure en continu de la concentration totale en goudrons d'un gaz chaud
CN104865147B (zh) * 2014-02-26 2017-08-25 江南大学 一种采用压降检测反应器内催化剂结焦量的方法
CH711107A1 (de) * 2015-05-20 2016-11-30 Glas Trösch Holding AG Kopplungsvorrichtung für die thermogravimetrische Analyse.
US10196988B2 (en) * 2015-06-05 2019-02-05 Rolls-Royce Corporation Fuel system coking sensor
ES2615504B1 (es) * 2015-10-21 2018-04-12 Universidad De Sevilla Dispositivo para determinar la concentración de partículas condensables y filtrables por muestreo isocinético en fuentes estacionarias
CN106932296B (zh) * 2015-12-31 2023-09-22 上海烟草集团有限责任公司 电子烟吸烟机
CN105842386B (zh) * 2016-05-31 2018-03-27 扬州大学 消除燃煤污染物排放的两段分离式试验系统
DE102016123473A1 (de) * 2016-12-05 2018-06-07 Endress+Hauser Messtechnik GmbH+Co.KG Probenvorbereitungseinrichtung
FR3061302B1 (fr) * 2016-12-28 2019-05-31 Engie Procede d'estimation d'une caracteristique de combustion d'un gaz pouvant contenir du dihydrogene
CN107271580B (zh) * 2017-05-09 2020-03-10 西北大学 一种测定煤焦油四组分的方法
US10504236B2 (en) * 2018-01-08 2019-12-10 The Boeing Company Testing a battery
DE102018126467A1 (de) * 2018-10-24 2020-04-30 Hochschule Karlsruhe-Technik Und Wirtschaft Verfahren und Messsystem zur Erfassung eines Teergehalts in Gasen
US10989654B2 (en) 2019-04-08 2021-04-27 Caterpillar Inc. Optical sensor for aftertreatment catalyst condition
CN110003923B (zh) * 2019-05-16 2024-04-09 华泰永创(北京)科技股份有限公司 一种用于测量干熄炉内焦炭烧损的装置及测量方法
CN111678740B (zh) * 2020-06-10 2022-01-28 河海大学 一种可自动收集不同时段大气沉降样本的装置
CN114518305A (zh) * 2020-11-19 2022-05-20 中国石油天然气股份有限公司 原油沉降模拟装置和方法
CN113049631B (zh) * 2021-03-24 2022-10-04 海南红塔卷烟有限责任公司 一种用于热重逸出物质定量分析的滴注微萃取方法
CN114062189A (zh) * 2021-11-17 2022-02-18 广东电网有限责任公司广州供电局 硅橡胶中胶含量的测量方法
CN117074241B (zh) * 2023-10-13 2024-01-19 太原理工大学 基于同位素示踪的水分参与煤自燃反应产物含量测量方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD160249A3 (de) 1978-09-15 1983-05-18 Martin Hipp Vorrichtung zur thermostabilitaetsbestimmung von teeren und aehnlichen produkten
JPS5846143U (ja) * 1981-09-25 1983-03-28 三菱重工業株式会社 固気混相流サンプリング装置
JPS6275447U (fr) * 1985-10-31 1987-05-14
JPH0279443U (fr) * 1988-12-07 1990-06-19
CA2094392C (fr) * 1990-10-22 2000-09-19 Candace D. Bartman Systeme utilisant un spectometre de masse pour la surveillance continue des gaz d'echappement de dechets dangereux
NO175834C (no) 1992-09-02 1994-12-14 Norsk Hydro As Utstyr for prövetakning og opparbeiding til analyse av PAH og andre organiske forbindelser, samt hydrogenfluorid og svoveloksider
JP3146429B2 (ja) * 1993-09-09 2001-03-19 日本鋼管株式会社 排ガス中のダスト濃度の自動測定装置
JPH07134091A (ja) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd 粒度測定装置
JPH08261904A (ja) * 1995-03-22 1996-10-11 Mita Ind Co Ltd 微粒子濃度測定装置
US5703360A (en) * 1996-08-30 1997-12-30 Hewlett-Packard Company Automated calibrant system for use in a liquid separation/mass spectrometry apparatus
DE19832411C2 (de) 1997-09-15 2001-10-18 Oliver Moersch Anordnung zur Messung des Gehalts an kondensierbaren Kohlenwasserstoffen in kohlenwasserstoffhaltigen Gasen
US5984998A (en) * 1997-11-14 1999-11-16 American Iron And Steel Institute Method and apparatus for off-gas composition sensing
JP3876554B2 (ja) * 1998-11-25 2007-01-31 株式会社日立製作所 化学物質のモニタ方法及びモニタ装置並びにそれを用いた燃焼炉
EP1151270A2 (fr) * 1999-02-02 2001-11-07 RUPPRECHT &amp; PATASHNICK CO., INC. Dispositif de controle differentiel de masse particulaire avec systeme de correction intrinseque pour les pertes par volatilisation
JP4105348B2 (ja) 1999-11-19 2008-06-25 株式会社日立製作所 試料分析用モニタ装置及びそれを用いた燃焼制御システム
DE10011531A1 (de) * 2000-03-13 2001-09-27 Montan Tech Gmbh Vorrichtung zur Probenahme für Gasanalysen von Koksofenrohgasen und anderen verunreinigten Gasen sowie Verfahren zur Gasanalyse dieser Gase
FR2834052B1 (fr) * 2001-12-20 2004-03-19 Snecma Moteurs Procede pour le suivi du deroulement d'un processus utilisant un gaz reactif contenant un ou plusieurs hydrocarbures gazeux
JP2003313560A (ja) * 2002-04-23 2003-11-06 Jfe Steel Kk 乾留ガスおよび/または液状物の予測方法並びに製造方法
JP4028838B2 (ja) * 2003-03-04 2007-12-26 大阪瓦斯株式会社 ガス吸着処理システムの破過検知方法及びその装置
JP4082299B2 (ja) * 2003-07-31 2008-04-30 三菱化学株式会社 ガスの品質管理方法並びにガス成分の測定方法
JP4563038B2 (ja) * 2004-01-27 2010-10-13 忠明 清水 硬質活性炭吸着剤及びその製造方法
JP2005274502A (ja) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd 捕捉材における捕捉量の評価方法
EP1781464A1 (fr) 2004-07-02 2007-05-09 Dennis Coleman Systeme de preparation d'hydrocarbures
JP3896129B2 (ja) * 2004-08-20 2007-03-22 大阪瓦斯株式会社 吸着量検知装置、それを用いたガス吸着システムの破過検知方法及び破過検知装置
JP4229895B2 (ja) * 2004-10-08 2009-02-25 独立行政法人産業技術総合研究所 磁気浮上密度計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008080931A1 *

Also Published As

Publication number Publication date
CN101568832A (zh) 2009-10-28
US7968055B2 (en) 2011-06-28
FR2910967A1 (fr) 2008-07-04
FR2910967B1 (fr) 2009-04-03
JP2010515038A (ja) 2010-05-06
US20100043528A1 (en) 2010-02-25
BRPI0720559A2 (pt) 2014-01-14
ZA200903794B (en) 2010-03-31
CA2672020A1 (fr) 2008-07-10
WO2008080931A1 (fr) 2008-07-10

Similar Documents

Publication Publication Date Title
EP2106548A1 (fr) Dispositif et procede de mesure continue de la concentration en goudrons dans un flux gazeux
EP2106549A1 (fr) Dispositif et procede de mesures couplees permettant un suivi global et en continu de traces de goudrons presentes dans un flux gazeux
Flores et al. Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol
Tian et al. A biomass combustion chamber: Design, evaluation, and a case study of wheat straw combustion emission tests
WO2009153264A1 (fr) Dispositif et procede de mesure continue en ligne de la concentration totale en goudrons dans un flux gazeux pouvant être a haute temperature
EP2342557B1 (fr) Méthode et dispositif pour la caractérisation et la quantification rapides du soufre dans des roches sédimentaires et dans des produits pétroliers
EP0269511B1 (fr) Procédé et dispositif de détermination des teneurs d&#39;au moins deux éléments choisis parmi le carbone, l&#39;hydrogène, le soufre et l&#39;azote d&#39;au moins deux fractions d&#39;un échantillon de matière organique
FR3078165A1 (fr) Procede d&#39;analyse d&#39;hydrocarbures
CA2514070C (fr) Dispositif et procede de test, par thermogravimetre, du comportement d&#39;un materiau solide
WO2009153263A1 (fr) Dispositif et procede pour l&#39;estimation precise bornee pseudo-continue et en ligne de la concentration totale en goudrons dans un flux gazeux pouvant etre a haute temperature
Van de Kamp et al. Tar measurement in biomass gasification, standardisation and supporting R&D
WO2015090945A1 (fr) Dispositif et procédé de mesure en continu de la concentration totale en goudrons d&#39;un gaz chaud
JP5227858B2 (ja) 土壌中に含まれる炭化水素成分の含有量を測定するための気化装置
JP2009014644A (ja) ガス化炉生成ガス中のタール分析方法およびその装置
Ivanova et al. A measuring setup with a differential generator photoionization detector for determining biomarkers in exhaled gas
Flores et al. Evolution of the complex refractive index in the near UV spectral region in ageing secondary organic aerosol
EP2419719A1 (fr) Dispositif et procede pour la mesure de la temperature du point de rosee d&#39;un element gazeux
EP2530450A1 (fr) Installation et procédé de caractérisation du risque de relargage de nano-objets
Heikkinen Outi Meinander, Enna Heikkinen, and Minna Aurela

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120224