EP2106457A1 - Procédé de production d'une couche orientée par pulvérisation cathodique et dispositif de réalisation du procédé - Google Patents

Procédé de production d'une couche orientée par pulvérisation cathodique et dispositif de réalisation du procédé

Info

Publication number
EP2106457A1
EP2106457A1 EP07845644A EP07845644A EP2106457A1 EP 2106457 A1 EP2106457 A1 EP 2106457A1 EP 07845644 A EP07845644 A EP 07845644A EP 07845644 A EP07845644 A EP 07845644A EP 2106457 A1 EP2106457 A1 EP 2106457A1
Authority
EP
European Patent Office
Prior art keywords
substrate surface
target
collimator
plates
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07845644A
Other languages
German (de)
English (en)
Inventor
Hartmut Rohrmann
Hanspeter Friedli
Jürgen WEICHART
Stanislav Kadlec
Martin Dubs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OC Oerlikon Balzers AG
Original Assignee
OC Oerlikon Balzers AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OC Oerlikon Balzers AG filed Critical OC Oerlikon Balzers AG
Priority to EP12001531.8A priority Critical patent/EP2463401B1/fr
Publication of EP2106457A1 publication Critical patent/EP2106457A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Definitions

  • the invention relates to a method for producing a directional layer on a substrate surface with a respective direction lying in the tangential plane of the same direction by means of cathode sputtering.
  • Such layers are often magnetic layers or carrier layers for magnetic layers having a preferred direction of magnetization. They are mainly used in storage devices for data processing equipment, e.g. in read / write heads for hard disks and MRAMs.
  • the invention also relates to a device for carrying out the method.
  • a generic method is known from US 6,790,482 B2.
  • a directional magnetic layer is produced on a planar substrate surface which is easier to magnetize in a specific, substantially constant, direction (so-called easy axis) than in other directions, in particular normal to the excellent direction.
  • electromagnets are arranged below the substrate, which generate a magnetic field, on whose field lines the particles impinging on the substrate surface align magnetically, such that the excellent direction is parallel to the field lines.
  • This solution is not satisfactory in every application, since the actual orientation deviates zone-wise rather far from the most desirable constant direction.
  • the expansion and shape of the substrate are limited if acceptable results are to be achieved.
  • the invention is based on the object to provide a generic method, with which in a simple and universally applicable manner on a substrate surface, a directional layer can be created. This object is solved by the features in the characterizing part of claim 1.
  • the invention provides a method with which a directional layer can be produced which complies with a largely flexibly definable excellent direction with great accuracy.
  • the excellent direction may be constant or radial with respect to a center.
  • many different designs are possible. So substrate and target can be firmly mounted or movable against each other. The relative position or movement can each be set or controlled in such a way that the features according to the invention occur, but this can also be achieved by the use of mechanical shielding means. Additional use of magnetic fields to align the directional layer is not excluded.
  • the devices for carrying out the method can vary greatly. In general, however, they can be constructed relatively simply. Often, a retrofitting of existing systems is such that methods according to the invention can be carried out on them. Brief description of the drawings
  • FIG. 1 is a schematic plan view of an inventive device according to a first embodiment
  • FIGS. 1, 2 are front views of a target of the device according to FIGS. 1, 2,
  • FIG. 4 shows a schematic elevation of a device according to the invention according to a second embodiment
  • FIG. 5 is a schematic plan view of a shielding device of the device according to FIG. 4, FIG.
  • FIG. 6 shows an element of a shielding device according to a particular embodiment
  • Fig. 7b is a section through the lobe normal to the excellent direction
  • the device according to FIGS. 1-3 is arranged in a vacuum chamber (not shown). It has a cylindrical basket 1 which is rotatable about an axis 2 and carries on its outer side brackets on which
  • Substrates 3 are fastened with outwardly facing flat substrate surfaces 4.
  • the substrates 3 may be, for example, disks of about 200 mm in diameter, which after their completion e.g. be sawn for the production of components for read / write heads.
  • the basket 1 is at some distance from
  • Targets 5 surrounded, which are formed as elongated vertical plates, the axis 2, a target surface 6 turn.
  • the targets 5 are formed in a known manner as magnetron targets, i. behind the target surface 6 magnets are arranged, which in the region of the target surface 6 about a closed curve 7 (Fig. 3). generate concentrated magnetic field, so that the target 5 is removed above all in this area and form corresponding erosion ditches in the target surface 6.
  • each of the targets 5 and the basket 1 is trained.
  • the distance between the target surface 6 and the substrate surface 4 may be, for example 75mm, the distance between the collimator 8 and substrate surface 4 30mm, the length of the plates 9 10mm and their distance 50mm.
  • the substrates 3 are coated with target material in a manner known per se during a coating time by cathode sputtering, while the basket 1 is rotated slowly and uniformly, for example at 0, lU / s.
  • the final desired result may be, for example, a soft magnetic layer on the substrate surface which has a preferred direction of magnetization, ie a direction in which the layer is already magnetizable by a relatively small magnetic field (so-called easy axis) while in the direction normal to it much higher magnetic field is required (so-called hard axis).
  • targets 5 which consist essentially of the soft-magnetic material such as nickel-iron, eg NiFe21 or cobalt-iron and thus a layer of the soft-magnetic material is sputtered directly onto a base layer forming the substrate surface 4 which has a preferred direction of magnetization.
  • a directional layer was made in which the excellent direction deviated by 0.5 ° from the target value.
  • Another way to apply a magnetic layer with a preferred direction of magnetization on the substrate surface 4 is first vaporized a Dirichete carrier layer, for example of chromium, vanadium or tungsten and then on this carrier layer to create a layer of magnetic material, the preferred direction of magnetization then is determined by the excellent direction of the carrier layer, usually by being parallel or normal to it depending on the materials used.
  • no special measures for producing an excellent direction are required, although they can be additionally taken. In any case, about the
  • Formation of the preferred direction of magnetization can be assisted in a manner known per se by applying to the vapor deposition of the magnetic layer a magnetic field which is effective in the area of the substrate surface 4, e.g. its projection onto the substrate surface in each
  • Target point of the same coincides with the preferred direction of magnetization.
  • FIG. 1 Another device according to the invention is shown in FIG.
  • the substrate 3 is stationarily arranged at the bottom of a vacuum chamber 10 in such a way that the planar substrate surface 4 faces upwards.
  • a target 5 is attached with a pointing down against the substrate 3 target surface 6.
  • the substrate 3 and the target 5 are disk-shaped.
  • the turn behind the target surface 6 arranged magnets are rotatable.
  • a shielding device is again arranged, which in turn is designed as a collimator 8.
  • the collimator 8 is again designed as a Kainm collimator, which (FIG. 5) consists of parallel, flat plates 9, which may again be made of aluminum and are directed normal to the substrate surface 4, that is vertical in the present case.
  • the plates 9 can have different lengths or average lengths and / or thicknesses or average thicknesses, preferably such that the length and / or the thickness decreases in a generally decreasing manner from a center to both outer edges in the x-direction in general. In the case of over the surface, in particular in the y-direction, ie parallel to the target surface 4 changing thickness of the single plate 9, this also preferably decreases from the center to both outer edges, as shown in Fig. 6.
  • the collimator 8 is rotatable relative to the substrate 3 about a central axis 11, whereby it is usually easier to rotatably support the substrate 3 while the collimator 8 is fixedly mounted.
  • the plates 9 are arranged so that each of the plates 9, with the exception of one edge plate, is brought to a position approximately mid-way through a rotation through 180 °, by which the collimator 8 is changed from a first to a second position
  • cathode sputtering is again used in a manner known per se, target material in this case being removed on the target surface 6 along a heart-shaped curve.
  • curved substrate surfaces can be coated and the excellent direction can be a - preferably continuous - function of the place, ie depend on the target point. In any case, it is crucial that the incidence of particles on the
  • Substrate surface is controlled so that the temporal average in sum dominate those directions of incidence whose projection on the tangential surface of the substrate surface - which in the case of a flat substrate surface coincides with this - at the respective target point coincides with the excellent direction.
  • the excellent direction is defined unsigned, so it comes It does not matter whether the invasion is by one side or the other.
  • the total incidence density integrated over the coating time T is a function of the direction
  • r ( ⁇ , ⁇ ) JVp ( ⁇ , ⁇ , t) dt, 0 ⁇ ⁇ / 2, 0 ⁇ ⁇ 2 ⁇
  • FIGS. 7a, b This function is illustrated in FIGS. 7a, b in two sections normal to the tangential plane of the substrate surface 4, the y-direction being the excellent direction and the x-direction being normal.
  • a cumulative incidence density i. a weighted sum over the steepness of the incident reflecting angle ⁇ , ie
  • w ( ⁇ ) is a weighting function, which may be proportional to sin ⁇ , ie the relative length of the normal projection onto the tangential plane.
  • Substrate surface 4 two approaches are preferred, namely the use of mechanical shielding means such as the collimator 8 or adjustment or control of the relative position of the substrate and the target.
  • the substrate may move relative to the target or
  • Execute targets such that certain directions of incidence, the projection of which lie on the tangential surface near the excellent direction, preferably occur.
  • the movement can also be uneven and / or intermittent and it can also be the
  • Performance of the device i. the density of the outgoing from the target particle flow with the position of the substrate to the target are selectively changed, such that it is particularly high in predominantly flat particle incidence parallel to the excellent direction.
  • Procedures can, as shown in the first embodiment shown in FIGS. 1-3, also be used in combination, such as there by the rotation of the basket 1 is slowed down or stopped when the substrates 3 are approximately in the middle between two adjacent targets 5. In addition, then the power can be increased.
  • the shielding means should then be designed and arranged such that the paths of the particles which follow substantially straight lines connecting a point of the target surface to the target point on the substrate surface collide with the shielding means, ie the particles Otherwise, if they arrive at the target point from a direction whose projection is on the tangential plane outside the preferred angle range, they will be intercepted. At a minimum, this should be predominantly the case over coating time and weighted average of the steepness of the incidence, ie the angle ⁇ . In this case, it may also be necessary to take into account that the target surface has different active regions, that is to say that the particles originate predominantly from a relatively small part thereof, for example in the first exemplary embodiment from the surroundings of the curve 7.
  • a magnetic field may also be applied in the region of the substrate, but in most cases this is not necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

L'invention concerne, pour la production d'une couche orientée avec, par exemple, une orientation balisée constante d'une couche magnétique souple présentant une direction de magnétisation préférée ou une couche de support pour de celle-ci par pulvérisation cathodique sur une surface de substrat (4), un revêtement qui est réalisé de telle sorte que des particules provenant d'une surface cible (6) sont disposées principalement dans des directions dans lesquelles la projection sur la surface de substrat (4) se situe dans un champ angulaire préféré entourant la direction balisée. Ceci est réalisé par exemple par disposition d'un collimateur (8) avec des plaques (9) normales par rapport à la surface du substrat, parallèles à la direction balisée mais au lieu de cela ou de façon supplémentaire, la position ou le mouvement de la surface du substrat (4) par rapport à la surface cible (6) peut être ajusté(e) ou commandé(e) de façon correspondante.
EP07845644A 2007-01-02 2007-12-24 Procédé de production d'une couche orientée par pulvérisation cathodique et dispositif de réalisation du procédé Withdrawn EP2106457A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12001531.8A EP2463401B1 (fr) 2007-01-02 2007-12-24 Appareil de fabrication d'une couche orientée par pulvérisation cathodique et son utilisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88308607P 2007-01-02 2007-01-02
PCT/CH2007/000647 WO2008080244A1 (fr) 2007-01-02 2007-12-24 Procédé de production d'une couche orientée par pulvérisation cathodique et dispositif de réalisation du procédé

Publications (1)

Publication Number Publication Date
EP2106457A1 true EP2106457A1 (fr) 2009-10-07

Family

ID=39144429

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07845644A Withdrawn EP2106457A1 (fr) 2007-01-02 2007-12-24 Procédé de production d'une couche orientée par pulvérisation cathodique et dispositif de réalisation du procédé
EP12001531.8A Active EP2463401B1 (fr) 2007-01-02 2007-12-24 Appareil de fabrication d'une couche orientée par pulvérisation cathodique et son utilisation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12001531.8A Active EP2463401B1 (fr) 2007-01-02 2007-12-24 Appareil de fabrication d'une couche orientée par pulvérisation cathodique et son utilisation

Country Status (7)

Country Link
US (1) US9587306B2 (fr)
EP (2) EP2106457A1 (fr)
JP (1) JP5185285B2 (fr)
KR (1) KR101761401B1 (fr)
CN (2) CN101627146A (fr)
TW (1) TWI457453B (fr)
WO (1) WO2008080244A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103109344B (zh) * 2010-07-09 2016-02-10 欧瑞康先进科技股份公司 磁控管溅射设备
CN103147055A (zh) * 2013-03-04 2013-06-12 电子科技大学 一种直列多靶磁控溅射镀膜装置
DE102014108348A1 (de) 2014-06-13 2015-12-17 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Beschichtung sowie optoelektronisches Halbleiterbauteil mit einer Beschichtung
US9887073B2 (en) * 2015-02-13 2018-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Physical vapor deposition system and physical vapor depositing method using the same
US10541663B2 (en) * 2015-10-14 2020-01-21 Qorvo Us, Inc. Multi-stage deposition system for growth of inclined c-axis piezoelectric material structures
US10866216B2 (en) 2015-12-15 2020-12-15 Qorvo Biotechnologies, Llc Temperature compensation and operational configuration for bulk acoustic wave resonator devices
EP3616222B1 (fr) * 2017-04-27 2024-03-13 Evatec AG Dispositif de dépôt de multicouche magnétique douce et méthode de préparation
JP7471236B2 (ja) 2018-02-13 2024-04-19 エヴァテック・アーゲー マグネトロンスパッタリングのための方法および装置
US11381212B2 (en) 2018-03-21 2022-07-05 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US11824511B2 (en) 2018-03-21 2023-11-21 Qorvo Us, Inc. Method for manufacturing piezoelectric bulk layers with tilted c-axis orientation
US10998209B2 (en) 2019-05-31 2021-05-04 Applied Materials, Inc. Substrate processing platforms including multiple processing chambers
US11401601B2 (en) 2019-09-13 2022-08-02 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US11749542B2 (en) 2020-07-27 2023-09-05 Applied Materials, Inc. Apparatus, system, and method for non-contact temperature monitoring of substrate supports
US11817331B2 (en) 2020-07-27 2023-11-14 Applied Materials, Inc. Substrate holder replacement with protective disk during pasting process
US11600507B2 (en) 2020-09-09 2023-03-07 Applied Materials, Inc. Pedestal assembly for a substrate processing chamber
US11610799B2 (en) 2020-09-18 2023-03-21 Applied Materials, Inc. Electrostatic chuck having a heating and chucking capabilities
US11674227B2 (en) 2021-02-03 2023-06-13 Applied Materials, Inc. Symmetric pump down mini-volume with laminar flow cavity gas injection for high and low pressure
US12002668B2 (en) 2021-06-25 2024-06-04 Applied Materials, Inc. Thermal management hardware for uniform temperature control for enhanced bake-out for cluster tool

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415753A (en) * 1993-07-22 1995-05-16 Materials Research Corporation Stationary aperture plate for reactive sputter deposition
KR970003828B1 (ko) * 1993-12-15 1997-03-22 현대전자산업 주식회사 콜리메이터
US5958193A (en) * 1994-02-01 1999-09-28 Vlsi Technology, Inc. Sputter deposition with mobile collimator
JPH07335553A (ja) * 1994-06-08 1995-12-22 Tel Varian Ltd 処理装置および処理方法
JP3545050B2 (ja) * 1994-06-28 2004-07-21 株式会社アルバック スパッタリング装置、及びスパッタリング薄膜生産方法
US5616218A (en) * 1994-09-12 1997-04-01 Matereials Research Corporation Modification and selection of the magnetic properties of magnetic recording media through selective control of the crystal texture of the recording layer
US5885425A (en) * 1995-06-06 1999-03-23 International Business Machines Corporation Method for selective material deposition on one side of raised or recessed features
US5650052A (en) 1995-10-04 1997-07-22 Edelstein; Sergio Variable cell size collimator
JPH11200029A (ja) * 1998-01-13 1999-07-27 Victor Co Of Japan Ltd スパッタリング装置
US6482301B1 (en) 1998-06-04 2002-11-19 Seagate Technology, Inc. Target shields for improved magnetic properties of a recording medium
US7294242B1 (en) * 1998-08-24 2007-11-13 Applied Materials, Inc. Collimated and long throw magnetron sputtering of nickel/iron films for magnetic recording head applications
EP1297542B1 (fr) 2000-07-06 2013-02-20 OC Oerlikon Balzers AG Dispositif destine a orienter le sens de magnetisation de couches magnetiques
SG126681A1 (en) * 2001-07-25 2006-11-29 Inst Data Storage Oblique deposition apparatus
JP2003073825A (ja) 2001-08-30 2003-03-12 Anelva Corp 薄膜作成装置
US6743340B2 (en) 2002-02-05 2004-06-01 Applied Materials, Inc. Sputtering of aligned magnetic materials and magnetic dipole ring used therefor
JP2007273490A (ja) * 2004-03-30 2007-10-18 Renesas Technology Corp 半導体集積回路装置の製造方法
DE102006003847B4 (de) 2006-01-26 2011-08-18 Siemens AG, 80333 Verfahren und Vorrichtung zum Herstellen eines polykristallinen Keramikfilms auf einem Substrat
JP4673779B2 (ja) * 2006-03-24 2011-04-20 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気記録媒体の製造方法及び成膜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008080244A1 *

Also Published As

Publication number Publication date
TWI457453B (zh) 2014-10-21
KR101761401B1 (ko) 2017-07-25
US20090134011A1 (en) 2009-05-28
KR20090096617A (ko) 2009-09-11
CN101627146A (zh) 2010-01-13
EP2463401B1 (fr) 2013-07-24
WO2008080244A1 (fr) 2008-07-10
CN102747330B (zh) 2015-01-28
TW200848533A (en) 2008-12-16
EP2463401A1 (fr) 2012-06-13
CN102747330A (zh) 2012-10-24
JP2010514940A (ja) 2010-05-06
JP5185285B2 (ja) 2013-04-17
US9587306B2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
EP2463401B1 (fr) Appareil de fabrication d'une couche orientée par pulvérisation cathodique et son utilisation
DE3506227A1 (de) Anordnung zur beschichtung von substraten mittels kathodenzerstaeubung
DE69403548T2 (de) Mit einer drehenden Magneten-Einheit und stehenden Elektromagneten ausgerüstetes Zerstäubungsgerät
EP1722005B1 (fr) Méthode pour l'utilisation d'une cathode de pulvérisation ayant une cible
DE60201044T2 (de) Vorrichtung und Verfahren zur Vakuumbeschichtung mittels Lichtbogen
DE112006000209T5 (de) Bedampfungsvorrichtung und Filmausbildungsverfahren
DE60212551T2 (de) Vorrichtung und Verfahren zur Vakuumbeschichtung mittels Lichtbogen
DE69401210T2 (de) Kollimator mit integrierter Reaktivgasverteilung für Kathodenzerstäubungsanlage
CH683777A5 (de) Ortsfeste Magnetron-Zerstäubungskathode für Vakuumbeschichtungsanlagen.
DE102010046780A1 (de) Beschichten von Substraten mit einer Legierung mittels Kathodenzerstäubung
DE112009000123T5 (de) Substratauflage, mit dieser versehene Zerstäubungsvorrichtung, und Dünnschichtbildungsverfahren
EP1350863B1 (fr) Procédé et appareillage pour le dépot sur un substrat d'un flux de matière préférentiellement orienté
DE10196150T5 (de) Magnetron-Sputtern
WO2004057642A2 (fr) Source d'arc sous vide comprenant un dispositif de production de champ magnetique
DE4436285A1 (de) Verfahren und Vorrichtung zum Aufbringen von Orientierungsschichten auf ein Substrat zum Ausrichten von Flüssigkristallmolekülen
DE10232179B4 (de) PVD-Verfahren
EP1524329A1 (fr) Dispositif modulaire de revêtement de surfaces
DE102013208771B4 (de) Verfahren zur Beeinflussung der Schichtdickenverteilung auf Substraten und Verwendung einer Vorrichtung zur Durchführung des Verfahrens
DE69305725T2 (de) Magnetron-Zerstäubungsvorrichtung und Dünnfilm-Beschichtungsverfahren
DE102013104086B3 (de) Elektronenstrahl-Verdampfungsanordnung und Verfahren zum Elektronenstrahl-Verdampfen
DE102012205615A1 (de) Beschichtungsverfahren, Beschichtungsanlage und optisches Element mit Beschichtung
DD237526A1 (de) Elektronenstrahl - linienverdampfer
EP1614138A2 (fr) Source de faisceau plasma haute frequence et procede d'exposition d'une surface a un rayonnement
EP0955667A1 (fr) Cible pour un dispositif de pulverisation cathodique pour la production de couches minces
DE102015221211A1 (de) Beschichtungsvorrichtung und beschichtungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100917

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: APPARATUS FOR THE PRODUCTION OF A DIRECTIONAL LAYER BY MEANS OF CATHODE SPUTTERING AND USE OF SAME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120320