EP2096193A1 - Processus de préparation de zinc résistant à la corrosion et linéair platiné en zinc-nickel ou pièces formées complexes - Google Patents

Processus de préparation de zinc résistant à la corrosion et linéair platiné en zinc-nickel ou pièces formées complexes Download PDF

Info

Publication number
EP2096193A1
EP2096193A1 EP08075132A EP08075132A EP2096193A1 EP 2096193 A1 EP2096193 A1 EP 2096193A1 EP 08075132 A EP08075132 A EP 08075132A EP 08075132 A EP08075132 A EP 08075132A EP 2096193 A1 EP2096193 A1 EP 2096193A1
Authority
EP
European Patent Office
Prior art keywords
zinc
nickel
layer
foregoing
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08075132A
Other languages
German (de)
English (en)
Other versions
EP2096193B1 (fr
Inventor
Jörg UNGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to EP08075132A priority Critical patent/EP2096193B1/fr
Priority to PCT/EP2009/001367 priority patent/WO2009103567A1/fr
Publication of EP2096193A1 publication Critical patent/EP2096193A1/fr
Application granted granted Critical
Publication of EP2096193B1 publication Critical patent/EP2096193B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Definitions

  • the present invention relates to a process for the preparation of corrosion resistant zinc and zinc nickel deposits on linear or complex shaped parts, usually made of steel.
  • the deposition according to the present invention consists of a two step deposition, wherein a layer of zinc from an alkaline zinc bath and a layer of zinc nickel alloy deposited from an acid bath is deposited.
  • Such coated substrates possess a similar corrosion protection and similar thickness distribution as zinc nickel coated parts deposited from an alkaline zinc nickel electrolyte with the advantage of not using high concentrations of amines or ammonia as strong complexing agents and not forming cyanide while at the same time providing reasonable post-forming capability.
  • Substrates to be plated either have a linear shape (like window frames) or complex shapes (like lock housings). These kind of parts are preferably plated from an alkaline electrolyte as the current efficiency in the high current density area (on the end of linear parts or at the edges of complex shaped parts) is reduced by using special polymeric inhibitors. Due to this fact the deposited coating exhibits a very homogeneous thickness distribution over the entire component surface and also provides excellent corrosion protection.
  • Such bath usually contain zinc ions, nickel ions and poly(alkyleneimines) obtained from ethyleneimine, 1,2-propyleneimine, 1,2-butyleneimine and 1,1-dimethylethyleneimine.
  • the poly(alkyleneimines) may have molecular weights of from about 100 to about 100,000.
  • US 6,652,728 discloses a zinc and zinc alloy bath which contains zinc ions, hydroxide ions, optionally nickel ions and a polymer having the following formula: Wherein m has a value of 2 or 3, n has a value of at least 2; R 1 , R 2 , R 3 , which may be the same or different, each independently denote methyl, ethyl or hydroxyethyl; p has a value in the range from 3 to 12; and X - denotes chloride, bromide and/or iodide.
  • Such bath is suitable for depositing alkaline zinc deposits.
  • the zinc-nickel coating contains a gamma-phase zinc-nickel alloy. This is realized with a nickel content of an average of 15 %. However, this coating is significantly less ductile than pure zinc coatings.
  • a process is provided wherein the homogeneous coating thickness and ductility is provided by a pure zinc layer also providing corrosion protection and the very high corrosion protection particularly regarding red rust is provided by a subsequent zinc-nickel, which is deposited from an acid electrolyte and which does not contain high concentrations of amines or ammonia.
  • the pure zinc layer is deposited on the metal substrate and the zinc nickel layer is deposited on the zinc layer:
  • Such process for the preparation of corrosion resistant substrate comprises the steps of
  • the zinc nickel layer is deposited on the metal substrate and the zinc deposited on the zinc nickel layer.
  • Such process for the preparation of corrosion resistant substrate comprises the steps of
  • the thickness of the zinc layer typically is between 1 - 12 ⁇ m, preferably between 2 - 8 ⁇ m, and more preferably 4-6 ⁇ m.
  • the thickness of the zinc nickel layer typically is between 1 - 12 ⁇ m, preferably between 2 - 8 ⁇ m, and more preferably 4-6 ⁇ m.
  • the alkaline zinc electrolyte preferably has the following composition:
  • Brightening additives are used depending on the demand of the optical aspect. Such brightening agents are well known in the art and for example described in US 6,652,728 .
  • Acid zinc nickel electrolytes are known in the art and for example described in US 4,699,696 .
  • Such acid zinc-nickel electrolytes solutions contain zinc ions and nickel ions, and an additive agent of a class selected from the group consisting of (a) aromatic sulfonic acids, (b) aromatic sulfonamides, sulfonimides and mixed carboxamides/sulfonamides, (c) acetylene alcohols.
  • Solutions for passivating zinc and zinc alloy surfaces are known and for example described in EP 1 484 432 .
  • Such solutions typically contain a water soluble Cr(III)-salt in a concentration of 0.5-80 g/l, preferably 1-40 g/l, more preferably 1-10 g/l.
  • the pH of such solution is 0.8 - 4.0 and the temperature 10-80°C.
  • the passivate solution can contain additional metals such as cobalt, nickel, zinc, iron, zircon, titanium, aluminium, silver, copper, pigments.
  • Optional additional components contain silicates, nitrates, phosphates, fluorides and polymer resins.
  • the zinc and zinc nickel plated surface is immersed in the passivation solution, rinsed and thereafter optionally treated at elevated temperatures of 100 to 250°C for 10 to 300 minutes.
  • coatings are obtained by electroplating in zinc and an acid zinc-nickel electrolytes. Thickness distribution was tested according to the following test procedure:
  • Comparative Example 1 Deposition of a pure zinc layer from an alkaline zinc plating bath
  • an alkaline zinc electrolyte which contains zinc ions in an amount of 10 g/l, 120 g/l NaOH, 0.5 g/l polymeric inhibitor according to Example 2.1 of US 6,652,728 and a brightening additive, the composition of which is described in US 6,652,728 , is filled into a Hull cell.
  • Zinc is used as anode material.
  • the cathode steel panel will be deposited for 15 minutes at 1 A. The temperature is 28°C. The panel is rinsed and dried.
  • the thickness distribution is measured at 2 positions on the panel: 3 cm of the lower edge and 2.5 cm of the right and left edge of the panel at high (app. 2.8 A/dm 2 ) and low current density (app 0.5 A/dm 2 ).
  • the thickness of the coating is measured four times at the two positions to avoid measuring mistakes.
  • Comparative Example 2 Deposition of a zinc nickel layer from a commercially available alkaline zinc nickel plating bath
  • composition of the bath acidic zinc nickel plating bath was as follows: ZnCl 2 0.3 M/l NiCl 2 0.5 M/l KCI 2.7 M/l H 3 BO 3 0.3 M/l aromatic sulfonamide 1.1 g/l acetylenic alcohol 0.02 g/l sodium acetate 0.7 M/l alkylene oxide polymer 1.1 g/l sulfosuccinate-alkyl diester 1.1 g/l
  • Plating is with 1 A for 15 minutes plating at a temperature of 35°C in the Hull cell.
  • Table 1 Thickness distribution for different plated layers hcd lcd hcd : lcd Comp.
  • Example 1 4.1 micron 2.8 micron 1.5 Comp.
  • Example 2 5.5 micron 1.8 micron 3
  • Example 3 8.1 micron 2.2 micron 3.7
  • Example 4 (invention) 6.1 micron 2.6 micron 2.4
  • the plated thickness for the same plating time and current clearly shows that higher thicknesses and better thickness distributions - represented by the high current density (hcd) to low current density (lcd) thickness ration - can be achieved with the two layer sequence of the present invention according to Example 4 compared to the alkaline zinc nickel process Reflectalloy ZNA (Comparative Example 2). 20% higher thickness is obtained in the low current density regime.
  • Comparative Example 2 600 Vicker's Hardness at 50 mN
  • Example 4 525 Vicker's Hardness at 50 mN
  • the grain size in the zinc nickel layer also influences the ductility of the coating. With increasing grain size the ductility of the coating is increasing. A good compromise between grain size and current density is observed at a value of 2 A/dm 2 .
  • Corrosion protection of the coatings obtained according to Example 4 was evaluated in DIN 50021 neutral salt spray exposure and found >240 h to first appearance of white corrosion and >1000 h to substrate corrosion.
  • gamma-phase ZnNi from the acid zinc nickel obtained by Example 4 was confirmed by XRD. Such phase exhibits very good corrosion resistance.
  • the deposit shows a homogeneous alloy composition over a wide range of current density.
  • the gamma phase zinc-nickel layer is consistently obtained even on complex shaped parts, as confirmed by X-ray diffraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
EP08075132A 2008-02-21 2008-02-21 Procédé de préparation de pièces linéaires ou complexes, résistantes à la corrosion plaquées en zinc et en zinc-nickel Not-in-force EP2096193B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08075132A EP2096193B1 (fr) 2008-02-21 2008-02-21 Procédé de préparation de pièces linéaires ou complexes, résistantes à la corrosion plaquées en zinc et en zinc-nickel
PCT/EP2009/001367 WO2009103567A1 (fr) 2008-02-21 2009-02-23 Procédé de préparation d'un zinc résistant à la corrosion et de pièces façonnées linéaires ou complexes plaquées de zinc-nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08075132A EP2096193B1 (fr) 2008-02-21 2008-02-21 Procédé de préparation de pièces linéaires ou complexes, résistantes à la corrosion plaquées en zinc et en zinc-nickel

Publications (2)

Publication Number Publication Date
EP2096193A1 true EP2096193A1 (fr) 2009-09-02
EP2096193B1 EP2096193B1 (fr) 2013-04-03

Family

ID=39539546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08075132A Not-in-force EP2096193B1 (fr) 2008-02-21 2008-02-21 Procédé de préparation de pièces linéaires ou complexes, résistantes à la corrosion plaquées en zinc et en zinc-nickel

Country Status (2)

Country Link
EP (1) EP2096193B1 (fr)
WO (1) WO2009103567A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005063A (zh) * 2014-06-11 2014-08-27 沈阳飞机工业(集团)有限公司 一种钢制件电镀锌镍合金的方法
CN106637315A (zh) * 2015-11-02 2017-05-10 株洲时代新材料科技股份有限公司 一种不含铬离子的锌镍合金自动电镀工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1405319B1 (it) 2010-12-27 2014-01-03 Fontana R D S R L Procedimento di rivestimento di pezzi metallici filettati
DE102016225681A1 (de) * 2016-12-20 2018-06-21 Thyssenkrupp Ag Vergraute Oberfläche zum Zwecke einer verkürzten Aufheizung
CN113463141B (zh) * 2021-06-28 2022-10-25 成都飞机工业(集团)有限责任公司 一种提高镀锌层耐酸性盐雾腐蚀性能的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090599A (en) * 1964-01-13 1967-11-08 Bekaert Pvba Leon Electrolytic coating of stainless steel
DE3129129A1 (de) * 1981-07-20 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Verfahren zur galvanischen abscheidung hochglaenzender, haftfester zinkueberzuege unter verwendung alkalischer cyanidfreier baeder
JPS60165387A (ja) * 1984-02-06 1985-08-28 Maruyasu Kogyo Kk 薄膜耐食性重合めつき鋼管
JPS61210198A (ja) * 1985-03-13 1986-09-18 Nippon Steel Corp 複層めつき鋼材
US4699696A (en) 1986-04-15 1987-10-13 Omi International Corporation Zinc-nickel alloy electrolyte and process
US4746408A (en) * 1987-11-05 1988-05-24 Whyco Chromium Company, Inc. Multi layer corrosion resistant coating
US5417840A (en) 1993-10-21 1995-05-23 Mcgean-Rohco, Inc. Alkaline zinc-nickel alloy plating baths
GB2294949A (en) * 1994-11-14 1996-05-15 Usui Kokusai Sangyo Kk Metal-plated steel produced by plating successive layers of nickel,zinc -nickel alloy from acid bath and zinc-nickel alloy from alkaline bath
WO2000006807A2 (fr) 1998-07-30 2000-02-10 Walter Hillebrand Gmbh & Co. Galvanotechnik Bain alcalin de zinc-nickel
DE19837431A1 (de) * 1998-08-18 2000-02-24 Schloetter Fa Dr Ing Max Beschichtung von Bauteilen aus gehärtetem Stahl oder Eisenguß und Verfahren zur Aufbringung derselben
EP1114206A1 (fr) 1998-09-02 2001-07-11 ATOTECH Deutschland GmbH Bain alcalin aqueux exempt de cyanure s'utilisant pour le depot par galvanisation de revetements en zinc ou en alliage de zinc
WO2001096631A1 (fr) 2000-06-15 2001-12-20 Taskem Inc. Electrodeposition zinc-nickel
EP1369505A2 (fr) 2002-06-06 2003-12-10 Goema Ag Procédé et dispositif de recirculation de l'eau de rincage et de nettoyage d'un bain
US20040197594A1 (en) * 2001-09-05 2004-10-07 Kazuo Suzuki Corrosion-resistant coating structure containing no-6valent chromium which has resin layers and metal layer excellent in adhesion to resin layers
EP1484432A1 (fr) 2002-03-14 2004-12-08 Dipsol Chemicals Co., Ltd. Solution de traitement pour la formation d'un revetement chimique exempt de chrome hexavalent noir sur un substrat recouvert de zinc ou d'alliage de zinc, et procede de formation de revetement chimique exempt de chrome hexavalent noir sur un substrat recouvert de zinc ou d'alliage de zinc

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227755A1 (de) * 1982-07-24 1984-04-12 Hoesch Werke Ag, 4600 Dortmund Verfahren zur herstellung von elektrolytisch legierverzinktem stahlblech
US4717458A (en) * 1986-10-20 1988-01-05 Omi International Corporation Zinc and zinc alloy electrolyte and process
EP0509108A1 (fr) * 1991-04-15 1992-10-21 Nkk Corporation Acier galvanisé sur deux couches ayant une excellente qualité antifriction, résistance à la corrosion et finition par la peinture
US20060283715A1 (en) * 2005-06-20 2006-12-21 Pavco, Inc. Zinc-nickel alloy electroplating system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090599A (en) * 1964-01-13 1967-11-08 Bekaert Pvba Leon Electrolytic coating of stainless steel
DE3129129A1 (de) * 1981-07-20 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Verfahren zur galvanischen abscheidung hochglaenzender, haftfester zinkueberzuege unter verwendung alkalischer cyanidfreier baeder
JPS60165387A (ja) * 1984-02-06 1985-08-28 Maruyasu Kogyo Kk 薄膜耐食性重合めつき鋼管
JPS61210198A (ja) * 1985-03-13 1986-09-18 Nippon Steel Corp 複層めつき鋼材
US4699696A (en) 1986-04-15 1987-10-13 Omi International Corporation Zinc-nickel alloy electrolyte and process
US4746408A (en) * 1987-11-05 1988-05-24 Whyco Chromium Company, Inc. Multi layer corrosion resistant coating
US5417840A (en) 1993-10-21 1995-05-23 Mcgean-Rohco, Inc. Alkaline zinc-nickel alloy plating baths
GB2294949A (en) * 1994-11-14 1996-05-15 Usui Kokusai Sangyo Kk Metal-plated steel produced by plating successive layers of nickel,zinc -nickel alloy from acid bath and zinc-nickel alloy from alkaline bath
WO2000006807A2 (fr) 1998-07-30 2000-02-10 Walter Hillebrand Gmbh & Co. Galvanotechnik Bain alcalin de zinc-nickel
DE19837431A1 (de) * 1998-08-18 2000-02-24 Schloetter Fa Dr Ing Max Beschichtung von Bauteilen aus gehärtetem Stahl oder Eisenguß und Verfahren zur Aufbringung derselben
EP1114206A1 (fr) 1998-09-02 2001-07-11 ATOTECH Deutschland GmbH Bain alcalin aqueux exempt de cyanure s'utilisant pour le depot par galvanisation de revetements en zinc ou en alliage de zinc
US6652728B1 (en) 1998-09-02 2003-11-25 Atotech Deutschland Gmbh Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
WO2001096631A1 (fr) 2000-06-15 2001-12-20 Taskem Inc. Electrodeposition zinc-nickel
US20040197594A1 (en) * 2001-09-05 2004-10-07 Kazuo Suzuki Corrosion-resistant coating structure containing no-6valent chromium which has resin layers and metal layer excellent in adhesion to resin layers
EP1484432A1 (fr) 2002-03-14 2004-12-08 Dipsol Chemicals Co., Ltd. Solution de traitement pour la formation d'un revetement chimique exempt de chrome hexavalent noir sur un substrat recouvert de zinc ou d'alliage de zinc, et procede de formation de revetement chimique exempt de chrome hexavalent noir sur un substrat recouvert de zinc ou d'alliage de zinc
EP1369505A2 (fr) 2002-06-06 2003-12-10 Goema Ag Procédé et dispositif de recirculation de l'eau de rincage et de nettoyage d'un bain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005063A (zh) * 2014-06-11 2014-08-27 沈阳飞机工业(集团)有限公司 一种钢制件电镀锌镍合金的方法
CN106637315A (zh) * 2015-11-02 2017-05-10 株洲时代新材料科技股份有限公司 一种不含铬离子的锌镍合金自动电镀工艺

Also Published As

Publication number Publication date
WO2009103567A1 (fr) 2009-08-27
EP2096193B1 (fr) 2013-04-03

Similar Documents

Publication Publication Date Title
EP2705176B1 (fr) Bain et procédé d'électroplacage pour la production de couches de chrome noir
US10900140B2 (en) Method for electrolytically passivating an outermost chromium or outermost chromium alloy layer to increase corrosion resistance thereof
EP2980279B1 (fr) Solution de placage d'alliage zinc-nickel et procédé de placage
EP2096193B1 (fr) Procédé de préparation de pièces linéaires ou complexes, résistantes à la corrosion plaquées en zinc et en zinc-nickel
US20170029971A1 (en) Process to deposit zinc-iron alloy layer material
US20030085130A1 (en) Zinc-nickel electrolyte and method for depositing a zinc-nickel alloy therefrom
EP2357268A1 (fr) Bain de zingage à base de zincate
US4439283A (en) Zinc cobalt alloy plating
EP2784189A1 (fr) Bain d'électrodéposition d'alliages zinc-fer, procédé de dépôt d'alliage zinc-fer sur un dispositif et ledit dispositif
KR20100121399A (ko) 니켈플래쉬 도금용액, 전기아연도금강판 및 이의 제조방법
CA2908478C (fr) Couche de chrome fonctionnelle ayant une resistance a la corrosion amelioree
US9435047B2 (en) Process for corrosion protection of iron containing materials
JP4862484B2 (ja) 電気亜鉛めっき鋼板の製造方法
KR20180021804A (ko) 알칼리성 아연 도금용 첨가제
US20240271305A1 (en) Method for electrodepositing a dark chromium layer, substrate comprising same, and electroplating bath thereof
JPS58104194A (ja) 高耐食性電気亜鉛めつき鋼板およびその製造方法
GB2160223A (en) Zinc cobalt alloy plating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100302

17Q First examination report despatched

Effective date: 20100325

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOTECH DEUTSCHLAND GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 3/22 20060101ALN20121115BHEP

Ipc: C25D 3/56 20060101ALN20121115BHEP

Ipc: C23C 28/02 20060101ALI20121115BHEP

Ipc: C25D 5/48 20060101ALN20121115BHEP

Ipc: C23C 22/10 20060101ALN20121115BHEP

Ipc: C25D 5/12 20060101AFI20121115BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 3/56 20060101ALN20121116BHEP

Ipc: C23C 22/10 20060101ALN20121116BHEP

Ipc: C23C 28/02 20060101ALI20121116BHEP

Ipc: C25D 5/48 20060101ALN20121116BHEP

Ipc: C25D 5/12 20060101AFI20121116BHEP

Ipc: C25D 3/22 20060101ALN20121116BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 604807

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008023504

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 604807

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130805

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130704

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130714

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

26N No opposition filed

Effective date: 20140106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008023504

Country of ref document: DE

Effective date: 20140106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140221

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080221

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200219

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008023504

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901