EP2094425A2 - Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder - Google Patents

Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder

Info

Publication number
EP2094425A2
EP2094425A2 EP07866451A EP07866451A EP2094425A2 EP 2094425 A2 EP2094425 A2 EP 2094425A2 EP 07866451 A EP07866451 A EP 07866451A EP 07866451 A EP07866451 A EP 07866451A EP 2094425 A2 EP2094425 A2 EP 2094425A2
Authority
EP
European Patent Office
Prior art keywords
welding
envelopes
envelope
zone
welding torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07866451A
Other languages
German (de)
English (en)
Inventor
Emmanuel Viard
André Thomas
Jean Mouget
Gabriel Merle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva NP SAS
Original Assignee
Areva NP SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP SAS filed Critical Areva NP SAS
Publication of EP2094425A2 publication Critical patent/EP2094425A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0061Underwater arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/013Method or apparatus with electric heating

Definitions

  • the present invention relates to a device and a method of automatic welding under water for the realization on a surface of a joint to be welded.
  • Underwater automatic welding is commonly used to carry out maintenance operations or welding work, for example in nuclear installations or in offshore oil or gas installations.
  • the confinement under water makes it possible to work and to carry out interventions on elements in the vicinity of radioactive or contaminated components without particular provisions for the coolant in the vicinity of these said components.
  • MIG welds In order to carry out welding operations in the air with a high quality of welding, it is well known to use automatic welding processes of the arc type with a fuse or non-fuse electrode, such as the so-called MIG welds respectively.
  • MIG welds Metal Inert Gas
  • GMAW Gas Metal Arc Welding
  • TIG Tungsten Inert Gas
  • GTAW Gas Tungsten Automatic Welding
  • an electric arc is created between an electrode made of refractory material such as tungsten and the part to be welded to carry this melting piece.
  • a filler metal in the form of a rod feeds the molten metal so as to fill the joint to be welded.
  • an inert gas is directed around the electric arc on the melt to prevent oxidation under the effect of the ambient during welding.
  • the gas is argon, helium or a mixture of rare gases.
  • an electric arc is created between a fuse electrode constituting the filler material and the part to be welded to carry this melting piece.
  • An inert gas is also directed around the electric arc on the melt to prevent oxidation by the environment during welding.
  • the use of such processes under water poses problems. Indeed, to obtain a good quality of welding and to avoid a too fast cooling of the melt, it is necessary, before the priming of the electric arc, to eliminate the water being on the zone of welding, then to separate the medium surrounding liquid from the electric arc before protecting it and maintaining the welding area, ie the melt, isolated.
  • the invention aims to provide a device and a method of welding under water to eliminate these disadvantages, while being reliable and simple to implement, and to obtain automatically and without human intervention under water, welds of good quality.
  • the subject of the invention is therefore an automatic underwater welding device for producing on a surface of a solder joint, of the type comprising a welding torch comprising a surrounded electrode.
  • a protective envelope delimiting with said electrode, an annular channel connected to means for supplying protection gas, characterized in that the welding torch is arranged axially in the center of a set of two concentric envelopes, at least one is axially movable and adjustable relative to said surface and defining between them an annular space for injecting a drying flow from the welding and holding zone of said welding zone out of water and in that it comprises displacement means along the joint to be welded.
  • the welding torch comprises a filler metal supply means
  • the set of two envelopes comprises an inner envelope disposed against the protective envelope of the welding torch and an outer envelope, the axially and adjustable displaceable envelope is the inner envelope,
  • the two envelopes of the set of two envelopes are axially displaceable and adjustable simultaneously or successively,
  • the axial displacement of the outer casing and / or the inner casing is between 0 and 30 mm, preferably between 2 and 20 mm, and
  • the flow injected into the annular space is formed by hot or cold air or by a plasma or by a flame produced from a gas mixture called HVOF (High Velocity Oxygen Fuel).
  • HVOF High Velocity Oxygen Fuel
  • the invention also relates to a method of automatic welding under water for the realization on a surface of a joint to be welded, in which method is placed in the vicinity of the surface on a welding zone of the joint to be welded, a torch of welding comprising an electrode surrounded by a protective envelope delimiting with said electrode, an annular channel for supplying protection gas, characterized in that: - is placed around the protective envelope of the welding torch, a set two concentric envelopes, at least one of which is axially displaceable and adjustable relative to said surface and delimiting between they have an annular space, said at least one envelope being movable between an extended position relative to the end of the protective envelope and a position retracted with respect to said end,
  • the welding torch and the set of two concentric envelopes are immersed under water, until the external envelope has almost touched with the surface,
  • the inner envelope of the set of two envelopes is displaced in the extended position in order to maintain the non-disturbing welding zone by said protective gas flow,
  • the welding torch is put into service, the welding torch and the set of two cylindrical envelopes are moved along the joint to be welded, keeping the welding zone out of water and out of disturbance by injecting said flux.
  • the outer envelope of the set of two envelopes is raised in the retracted position in order to direct the flow towards the outside of the welding zone and to maintain this area out of water.
  • FIG. 1 is a schematic view in axial section of a welding device according to the invention, in the drying position of a horizontal welding zone, and
  • FIG. 2 is a schematic view in axial section of the welding device, according to the invention, in the welding position of a horizontal wall.
  • FIG. 1 schematically shows two parts 1a and 1b which determine a surface 2 on which must be made a weld joint 3 by means of an automatic welding device designated by the general reference 10 disposed perpendicular to the surface 2 and above the welding zone A determined by the weld joint 3.
  • the welding device 10 comprises a welding torch 20 comprising an electrode 21 made of refractory material generally made of tungsten, connected to electrical supply means, not shown, and whose free end 21a is disposed above the joint to be welded. 3.
  • the welding torch 20 is of the TIG type.
  • the welding torch 20 also comprises filler metal supply means constituted by a wire 22, the free end 22a is disposed near the end 21a of the electrode 21, as shown in the figures.
  • the filler metal supply means are constituted by the electrode itself.
  • the welding torch 20 comprises a protective envelope 23 arranged concentrically with the electrode 21 and which determines with this electrode 21, an annular channel 24 connected to the protective gas supply means.
  • the free end 23a of the protective envelope 23 converges towards the end 21a of the electrode 21 so as to channel the shielding gas towards the welding zone A.
  • the welding device 10 comprises a set of two concentric envelopes 30, respectively an inner casing 31 and an outer casing 32.
  • the welding torch 20 is disposed axially in the center of the assembly 30 and the inner casing 31 is preferably placed against the protective cover 23.
  • the two envelopes 31 and 32 of the assembly 30 define between them an annular space 34 for injecting a drying flow from the welding zone A and maintaining this welding zone A out of water.
  • the annular space 34 is, for this purpose, connected to means, not shown, supplying the flow and the lower ends 31a and 32a, respectively of the inner casing 31 and the outer casing 32, are arranged close to the surface 2 by providing therewith a gap, respectively 36 and 37.
  • the flow injected into the annular space 34 is formed by hot or cold air or by a plasma or a flame called HVOF (High Velocity Oxygen Fuel).
  • HVOF High Velocity Oxygen Fuel
  • the envelopes 31 and 32 of the assembly 30 are preferably cylindrical and at least one of these envelopes is axially movable and adjustable so as to modify the height of at least one gap 36 and / or 37 to direct a greater amount of flow to the welding zone A or to the outside of the outer casing 32, as will be seen later.
  • said at least one envelope 31 and / or 32 is axially displaceable between an extended position with respect to the end of the protective envelope 23 and a position retracted with respect to said end.
  • only the inner casing 31 is longitudinally movable and adjustable to change the height of the gap 36.
  • the two shells 31 and 32 are axially displaceable and adjustable simultaneously or successively so as to modify separately or at the same time the height of the interstices 36 and 37.
  • the axial displacement of the inner casing 31 and / or the outer casing 32 of the assembly 30 is between 0 mm to 30 mm, preferably 2 mm to 20 mm with respect to the surface 2 of the parts 1 a and 1b.
  • This axial displacement and the height adjustment of one or both interstices 36 and 37 of the envelopes, respectively 31 and 32, is achieved by appropriate means of known type, such as for example rack-and-pinion mechanisms, a screw system. nut, pneumatic or hydraulic cylinder, electric motor or electromagnetic system or any other mechanism.
  • the gasket 3 of the parts 1a and 1b under water is made in the following manner. First, the working end 21a of the electrode 21, the end 22a of the wire, is prepared in the air above the surface of the water and substantially perpendicular to the surface 2. 22 and the end of the protective envelope 23, these different elements forming the welding torch 20 and is placed around the protective envelope 23 of the welding torch 20, the assembly 30 comprising the inner casing 31 and the outer casing 32.
  • the annular space 34 delimited by the two annular concentric envelopes 31 and 32 is injected with a flow of drying and holding out of water of the welding zone A and is injected into the surrounding annular channel 24.
  • the electrode 21 a protective gas flow of the welding zone A, the outer casing 32 being in the extended position.
  • the welding device 10 constituted by the welding torch 20 and the assembly 30 of two envelopes 31 and 32 underwater is then immersed until the outer casing 32 is substantially in contact with the surface 2 and, as shown in FIG. . 1, is moved axially along the welding torch 20, at least one envelope 31 or 32 of the assembly 30 of two envelopes so as to adjust the height of the interstices 36 and 37 formed between the ends, respectively 31a and 32a of these envelopes, and the surface 2 of the parts 1a and 1b.
  • the purpose is to dry the welding zone A in order to eliminate from this welding zone any water and any trace of moisture before starting the welding torch 20.
  • the inner casing 31 is held in the retracted position, spaced from the surface 2 and the outer casing 32 is held in the extended position, close to this surface 2 so that the height d1 of the gap 36 is greater at the height d2 of the gap 37.
  • the largest quantity of flux injected into the annular space 34 is directed towards the welding zone A, which makes it possible to rapidly dry this welding zone A and eliminate all traces of moisture.
  • Part of the flow injected into the annular space 34 passes through the gap 37 and keeps the welding zone A out of water.
  • the shells 31 and 32 of the assembly 30 are displaced axially along the welding torch 20 so as to modify the distribution of the flux introduced into the annular space 34.
  • the inner casing 31 is moved in the extended position, approaching the surface 2 and the outer casing 32 is in the withdrawn position, spaced from the surface 2 so that the height d3 of the gap 36 is less than the height d4 of the gap 37 in order to direct the largest quantity of flux injected into the annular space 34 towards the outside of the outer envelope 32 and to create a peaceful welding zone away from disturbances due to the fluxes drying.
  • the flux injected into the annular space 34 added to the flow of protective gas injected into the annular channel 24 keeps the welding zone A dry and also out of water.
  • the welding torch 20 is put into service and moved along with the assembly 30 of two shells, by appropriate means of known type, along the joint to be welded 3 in order to carry out the entire welding, while keeping the welding area out of water and out of disturbance.
  • the welding zone A can be dried efficiently and rapidly. and, during a second step, to prime the welding torch in good conditions, then to maintain this welding zone A dry and out of water and especially out of disturbance so that the welding is carried out under ideal conditions .
  • the adjustment of the position of the inner casing 31 or both casings 31 and 32 may be adjusted during the movement of the welding torch 20 along the joint to be welded.
  • any boron present in the welding zone is eliminated from this welding zone by the flux injected into the annular channel 34, which contributes to the quality of the joint to be welded by eliminating the risk of formation of microcracks in this area. welded joint due to the presence of boron.
  • the plasma and the flame HVOF are preferably used because of their very high temperature, which may be greater than 10OO 0 C for the plasma, whereas the hot air It is at most 150 ° C. This high temperature of the plasma flow makes it possible, in addition to the physical thrust of the flow, to vaporize the surrounding water, which hot air can not achieve.
  • the axial displacement of the inner casing 31 and / or the outer casing 32 with respect to the surface 2 varies between 0 mm and 30 mm depending on whether it is the step prior to priming. welding torch 20 or that is the realization of the welded joint itself.
  • the welding device according to the invention allows by means reliable and simple to implement to obtain automatically and without human intervention under water welds of good quality.
  • a miniature camera can be placed close to the welding zone, in particular in the annular channel 24, to participate in the successful completion of the welding by giving visual indications to the remote operator.
  • a pressure sensor may be placed in at least one annular channel for supplying the drying flow or for supplying the shielding gas of the welding bath in order to participate in remote adjustment of the flow rates and pressures of said flows or gases.
  • the welds can be made by the welding device according to the invention in any position on flat or optionally curved surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

L'invention concerne un dispositif de soudage automatique sous eau pour la réalisation sur une surface (2) d'un joint ô souder (3), du type comprenant une torche de soudage (20) comportant une électrode (21) entourée d'une enveloppe de protection (23) délimitant avec ladite électrode (21), un canal annulaire (24) relié ô des moyens d'alimentation en gaz de protection. La torche de soudage (20) est disposée axialement au centre d'un ensemble (30) de deux enveloppes (31, 32) concentriques dont au moins une est mobile axialement et réglable par rapport ô ladite surface (2) et délimitant entre elles un espace annulaire (34) d'injection d'un flux de séchage de la zone de soudage et de maintien de ladite zone hors d'eau.

Description

Dispositif et procédé de soudage automatique sous eau pour la réalisation sur une surface d'un joint à souder
La présente invention concerne un dispositif et un procédé de soudage automatique sous eau pour la réalisation sur une surface d'un joint à souder.
Le soudage automatique sous eau est couramment utilisé pour effectuer des opérations de maintenance ou des travaux de soudage, par exemple dans des installations nucléaires ou dans des installations d'exploitation pétrolière ou gazière en mer. En effet, dans le cas d'installation nucléaire, le confinement sous eau permet de travailler et de réaliser des interventions sur des éléments à proximité de composants radioactifs ou contaminés sans dispositions particulières quant au liquide de refroidissement à proximité de ces dits composants. Pour réaliser des opérations de soudage dans l'air avec une haute qualité de soudage, il est bien connu d'utiliser des procédés de soudage automatiques du type à l'arc avec une électrode fusible ou non fusible tels que, respectivement les soudages dits MIG (Métal Inert Gas) ou GMAW (Gas Métal Arc Welding) ou bien TIG (Tungsten Inert Gas) ou GTAW (Gas Tungsten Automatic Welding).
Dans le procédé dit TIG, un arc électrique est créé entre une électrode en matériau réfractaire comme du tungstène et la pièce à souder pour porter cette pièce à fusion. Le plus souvent, un métal d'apport sous la forme d'une baguette alimente le métal en fusion de façon à remplir le joint à souder. De plus, un gaz inerte est dirigé autour de l'arc électrique sur le bain de fusion pour éviter l'oxydation sous l'effet du milieu ambiant pendant le soudage. Généralement, le gaz est de l'argon, de l'hélium ou un mélange de gaz rares.
Dans le procédé MIG, un arc électrique est créé entre une électrode fusible constituant le matériau d'apport et la pièce à souder pour porter cette pièce à fusion. Un gaz inerte est également dirigé autour de l'arc électrique sur le bain de fusion pour éviter l'oxydation sous l'effet du milieu ambiant pendant le soudage. L'utilisation de tels procédés sous eau pose des problèmes. En effet, pour obtenir une bonne qualité de soudure et éviter un refroidissement trop rapide du bain de fusion, il faut, avant l'amorçage de l'arc électrique, éliminer l'eau se trouvant sur la zone de soudage, puis séparer le milieu liquide environnant de l'arc électrique avant de le protéger et de maintenir la zone de soudage, c'est à dire le bain de fusion, isolée. De plus, l'amorçage de l'arc se fait grâce au gaz circulant dans le canal annulaire, appelé aussi buse, qui entoure une grande partie de l'électrode et la surface de la pièce à souder doit être extrêmement propre et sèche. On connaît notamment dans les documents US-A-5 981 896 et
FR-A-2 837 117 des torches de soudage sous eau qui comportent autour de l'électrode de soudage, un premier canal annulaire assurant l'arrivée du gaz de protection et un second canal annulaire assurant l'arrivée d'un gaz d'évacuation et de maintien du milieu liquide environnant hors de la zone de soudage. Mais, ces dispositifs utilisés jusqu'à présent ne permettent pas, avant l'amorçage de l'arc électrique, de sécher suffisamment et correctement la zone de soudage si bien que l'amorçage de l'arc électrique se fait dans de mauvaises conditions du fait de la présence d'humidité dans la zone de soudage.
Or, les spécialistes du soudage savent que la moindre présence d'humidité nuit à la qualité de la soudure ce qui est particulièrement grave dans le domaine du nucléaire où l'aspect qualitatif est très important.
De plus, sur des équipements nucléaires, la présence d'un dépôt de bore qui est contenu dans l'eau du circuit primaire est possible sur la zone de soudage ce qui peut également nuire à la qualité du joint à souder en créant dans la soudure des amorces de microfissures. Le bore doit donc être éliminé.
L'invention a pour but de proposer un dispositif et un procédé de soudage sous eau permettant d'éliminer ces inconvénients, tout en étant fiables et simples à mettre en œuvre, et permettant d'obtenir automatiquement et sans intervention humaine sous eau, des soudures de bonne qualité. L'invention a donc pour objet un dispositif de soudage automatique sous eau pour la réalisation sur une surface d'un joint à souder, du type comprenant une torche de soudage comportant une électrode entourée d'une enveloppe de protection délimitant avec ladite électrode, un canal annulaire relié à des moyens d'alimentation en gaz de protection, caractérisé en ce que la torche de soudage est disposée axialement au centre d'un ensemble de deux enveloppes concentriques dont au moins une est mobile axialement et réglable par rapport à ladite surface et délimitant entre elles un espace annulaire d'injection d'un flux de séchage de la zone de soudage et de maintien de ladite zone de soudage hors d'eau et en ce qu'il comporte des moyens de déplacement le long du joint à souder.
Selon d'autres caractéristiques de l'invention : - la torche de soudage comporte un moyen d'alimentation en métal d'apport,
- l'ensemble de deux enveloppes comporte une enveloppe interne disposée contre l'enveloppe de protection de la torche de soudage et une enveloppe externe, - l'enveloppe déplaçable axialement et réglable est l'enveloppe interne,
- les deux enveloppes de l'ensemble de deux enveloppes sont déplaçables axialement et réglables simultanément ou successivement,
- le déplacement axial de l'enveloppe externe et/ou de l'enveloppe interne est compris entre 0 et 30 mm, de préférence de 2 à 20 mm, et
- le flux injecté dans l'espace annulaire est formé par de l'air chaud ou froid ou par un plasma ou par une flamme produite à partir d'un mélange gazeux dite HVOF (High Velocity Oxygen Fuel).
L'invention a également pour objet un procédé de soudage automatique sous eau pour la réalisation sur une surface d'un joint à souder, procédé dans lequel on place à proximité de la surface sur une zone de soudage du joint à souder, une torche de soudage comportant une électrode entourée d'une enveloppe de protection délimitant avec ladite électrode, un canal annulaire d'alimentation en gaz de protection, caractérisé en ce que : - on place autour de l'enveloppe de protection de la torche de soudage, un ensemble de deux enveloppes concentriques dont au moins une est déplaçable axialement et réglable par rapport à ladite surface et délimitant entre elles un espace annulaire, ladite au moins enveloppe étant déplaçable entre une position sortie en saillie par rapport à l'extrémité de l'enveloppe de protection et une position rentrée en retrait par rapport à ladite extrémité,
- on injecte dans ledit espace annulaire un flux de séchage de la zone de soudage et de maintien de ladite zone hors d'eau ainsi qu'un flux de gaz de protection dans le canal annulaire, l'enveloppe externe étant en position sortie,
- on plonge la torche de soudage et l'ensemble de deux enveloppes concentriques sous eau, jusqu'au quasi contact de l'enveloppe externe avec la surface,
- après séchage de la zone de soudage, on déplace en position sortie l'enveloppe interne de l'ensemble de deux enveloppes pour maintenir par ledit flux de gaz de protection la zone de soudage hors perturbation,
- on met en service la torche de soudage, - on déplace la torche de soudage et l'ensemble de deux enveloppes cylindriques le long du joint à souder en maintenant la zone de soudage hors d'eau et hors perturbation par injection dudit flux.
Selon une autre caractéristique de l'invention, après avoir mis en service la torche de soudage, on relève en position rentrée l'enveloppe externe de l'ensemble de deux enveloppes pour diriger le flux vers l'extérieur de la zone de soudage et maintenir cette zone hors d'eau.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre, faite en référence aux dessins annexés, sur lesquels : - la Fig. 1 est une vue schématique en coupe axiale d'un dispositif de soudage, conforme à l'invention, dans la position de séchage d'une zone de soudage horizontale, et
- la Fig. 2 est une vue schématique en coupe axiale du dispositif de soudage, conforme à l'invention, dans la position de soudage d'une paroi horizontale.
Sur les figures, on a représenté schématiquement deux pièces 1a et 1b qui déterminent une surface 2 sur laquelle doit être réalisé un joint à souder 3 au moyen d'un dispositif de soudage automatique désigné par la référence générale 10 disposé perpendiculairement à la surface 2 et au-dessus de la zone de soudage A déterminée par le joint à souder 3.
Le dispositif de soudage 10 comprend une torche de soudage 20 comportant une électrode 21 en matériau réfractaire généralement en tungstène, reliée à des moyens d'alimentation électrique, non représentés, et dont l'extrémité libre 21a est disposée au-dessus du joint à souder 3.
Dans l'exemple de réalisation représenté sur les figures, la torche de soudage 20 est du type TIG. La torche de soudage 20 comporte aussi des moyens d'alimentation en métal d'apport constitués par un fil 22 dont l'extrémité libre 22a est disposée à proximité de l'extrémité 21a de l'électrode 21 , ainsi que montré sur les figures.
Dans le cas d'une torche de soudage du type MIG, de manière classique, les moyens d'alimentation en métal d'apport sont constitués par l'électrode elle-même.
Enfin, la torche de soudage 20 comporte une enveloppe de protection 23 disposée concentriquement à l'électrode 21 et qui détermine avec cette électrode 21, un canal annulaire 24 relié à des moyens d'alimentation en gaz de protection. L'extrémité libre 23a de l'enveloppe de protection 23 converge vers l'extrémité 21a de l'électrode 21 de façon à canaliser le gaz de protection vers la zone de soudage A.
Le dispositif de soudage 10 comprend un ensemble de deux enveloppes 30 concentriques, respectivement une enveloppe interne 31 et une enveloppe externe 32. La torche de soudage 20 est disposée axialement au centre de l'ensemble 30 et l'enveloppe interne 31 est de préférence placée contre l'enveloppe de protection 23.
Les deux enveloppes 31 et 32 de l'ensemble 30 déterminent entre elles un espace annulaire 34 d'injection d'un flux de séchage de la zone de soudage A et de maintien de cette zone de soudage A hors d'eau.
L'espace annulaire 34 est, à cet effet, relié à des moyens, non représentés, d'alimentation du flux et les extrémités inférieures 31a et 32a, respectivement de l'enveloppe interne 31 et de l'enveloppe externe 32, sont disposées à proximité de la surface 2 en ménageant avec celle-ci un interstice, respectivement 36 et 37.
Le flux injecté dans l'espace annulaire 34 est formé par de l'air chaud ou froid ou par un plasma ou par une flamme dite HVOF (High Velocity Oxygen Fuel).
Les enveloppes 31 et 32 de l'ensemble 30 sont de préférence cylindriques et au moins une de ces enveloppes est mobile axialement et réglable de façon à modifier la hauteur d'au moins un interstice 36 et/ou 37 pour diriger une quantité plus importante de flux vers la zone de soudage A ou vers l'extérieur de l'enveloppe extérieure 32, comme on le verra ultérieurement.
D'une manière générale, ladite au moins enveloppe 31 et/ou 32 est déplaçable axialement entre une position sortie en saillie par rapport à l'extrémité de l'enveloppe de protection 23 et une position rentrée en retrait par rapport à ladite extrémité.
Selon un premier mode de réalisation, seule l'enveloppe interne 31 est mobile longitudinalement et réglable pour modifier la hauteur de l'interstice 36.
Selon un second mode de réalisation, les deux enveloppes 31 et 32 sont déplaçables axialement et réglables simultanément ou successivement de façon à modifier séparément ou en même temps la hauteur des interstices 36 et 37.
Le déplacement axial de l'enveloppe interne 31 et/ou de l'enveloppe externe 32 de l'ensemble 30 est compris entre 0 mm à 30 mm, de préférence de 2 mm à 20 mm par rapport à la surface 2 des pièces 1a et 1b.
Ce déplacement axial et le réglage en hauteur de l'un ou des deux interstices 36 et 37 des enveloppes, respectivement 31 et 32, est réalisé par des moyens appropriés de type connu, comme par exemple des mécanismes à pignon-crémaillère, système vis-écrou, vérin pneumatique ou hydraulique, moteur électrique ou système électromagnétique ou par tout autre mécanisme.
Le joint à souder 3 des pièces 1a et 1b sous eau est réalisé de la façon suivante. Tout d'abord, on prépare, dans l'air, au dessus de la surface de l'eau et de façon sensiblement perpendiculaire à la surface 2, l'extrémité de travail 21a de l'électrode 21 , l'extrémité 22a du fil d'apport 22 et l'extrémité de l'enveloppe de protection 23, ces différents éléments formant la torche de soudage 20 et on place autour de l'enveloppe de protection 23 de la torche de soudage 20, l'ensemble 30 comprenant l'enveloppe interne 31 et l'enveloppe externe 32.
Dans un premier temps, on injecte dans l'espace annulaire 34 délimité par les deux enveloppes concentriques annulaires 31 et 32, un flux de séchage et de maintien hors d'eau de la zone de soudage A et on injecte dans le canal annulaire 24 entourant l'électrode 21 un flux de gaz de protection de la zone de soudage A, l'enveloppe externe 32 étant en position sortie.
On plonge ensuite le dispositif de soudage 10 constitué par la torche de soudage 20 et l'ensemble 30 de deux enveloppes 31 et 32 sous eau jusqu'au quasi contact de l'enveloppe externe 32 avec la surface 2 et, comme représenté à la Fig. 1 , on déplace axialement le long de la torche de soudage 20, au moins une enveloppe 31 ou 32 de l'ensemble 30 de deux enveloppes de façon à régler la hauteur des interstices 36 et 37 ménagés entre les extrémités, respectivement 31a et 32a de ces enveloppes, et la surface 2 des pièces 1a et 1b. Au cours de cette première étape, le but est de sécher la zone de soudage A afin d'éliminer de cette zone de soudage A toute trace d'eau ainsi que toute trace d'humidité avant l'amorçage de la torche de soudage 20.
Pour cela, l'enveloppe interne 31 est maintenue en position rentrée, écartée de la surface 2 et l'enveloppe externe 32 est maintenue en position sortie, rapprochée de cette surface 2 de telle manière que la hauteur d1 de l'interstice 36 soit supérieure à la hauteur d2 de l'interstice 37. Dans cette position, la plus grande quantité de flux injecté dans l'espace annulaire 34 est dirigé vers la zone de soudage A ce qui permet de sécher rapidement cette zone de soudage A et d'éliminer toute trace d'humidité. Une partie du flux injecté dans l'espace annulaire 34 passe par l'interstice 37 et permet de maintenir la zone de soudage A hors d'eau. Au cours d'une seconde étape, on déplace axialement les enveloppes 31 et 32 de l'ensemble 30 le long de la torche de soudage 20 de façon à modifier la répartition du flux introduit dans l'espace annulaire 34.
Ainsi que montré à la Fig. 2, l'enveloppe interne 31 est déplacée en position sortie, approchée de la surface 2 et l'enveloppe externe 32 est en position retirée, écartée de la surface 2 de telle manière que la hauteur d3 de l'interstice 36 soit inférieure à la hauteur d4 de l'interstice 37 afin de diriger la plus grande quantité de flux injecté dans l'espace annulaire 34 vers l'extérieur de l'enveloppe externe 32 et de créer une zone de soudage paisible à l'abri des perturbations dues aux flux de séchage.
De ce fait, le flux injecté dans l'espace annulaire 34 ajouté au flux de gaz protecteur injecté dans le canal annulaire 24 permet de maintenir la zone de soudage A sèche et également hors d'eau.
Ensuite, on met en service la torche de soudage 20 et on la déplace ainsi que l'ensemble 30 de deux enveloppes, par des moyens appropriés de type connu, le long du joint à souder 3 afin de réaliser l'ensemble de la soudure, tout en maintenant la zone de soudage hors d'eau et hors perturbation.
La modification de la répartition du flux injecté par l'espace annulaire 34 en réglant la hauteur des interstices 36 et 37 par déplacement axial des enveloppes 31 et 32 permet, au cours d'une première étape de sécher efficacement et rapidement la zone de soudage A et, au cours d'une seconde étape, d'amorcer la torche de soudage dans de bonnes conditions, puis de maintenir cette zone de soudage A sèche et hors d'eau et surtout hors perturbation pour que la soudure soit réalisée dans des conditions idéales. Selon les conditions d'utilisation, le réglage de la position de l'enveloppe interne 31 ou des deux enveloppes 31 et 32 peut être ajusté au cours du déplacement de la torche de soudage 20 le long du joint à souder.
De plus, le bore éventuellement présent dans la zone de soudage est éliminé de cette zone de soudage par le flux injecté dans le canal annulaire 34 ce qui permet de contribuer à la qualité du joint à souder en éliminant les risques de formation de microfissures dans ce joint soudé du fait de la présence du bore. Parmi les différents flux qui peuvent être injectés dans le canal annulaire 34, le plasma ainsi que la flamme HVOF sont de préférence utilisés en raison de leur très haute température, pouvant être supérieure à 10OO0C pour le plasma, alors que l'air chaud est au maximum à 1500C. Cette température élevée du flux plasma permet, en plus de la poussée physique du flux, de vaporiser l'eau environnante, ce que l'air chaud ne peut réaliser.
Il est à noter que la température élevée du flux plasma permet de maintenir néanmoins l'intégrité physico-chimique du matériau à souder.
Par ailleurs, le déplacement axial de l'enveloppe interne 31 et/ou de l'enveloppe externe 32 par rapport à la surface 2 varie entre 0 mm et 30 mm selon qu'il s'agisse de l'étape préalable à l'amorçage de la torche de soudage 20 ou qu'il s'agisse de la réalisation du joint soudé proprement dit.
Pendant la réalisation du joint soudé, l'injection de flux dans le canal annulaire 34 et autour de la zone de soudage A, permet de maintenir cette zone de soudage A en surpression par rapport à la pression d'eau environnante.
Le dispositif de soudage selon l'invention permet par des moyens fiables et simples à mettre en œuvre d'obtenir automatiquement et sans intervention humaine sous eau des soudures de bonne qualité.
Une caméra miniature peut être placée à proximité de la zone de soudage, en particulier dans le canal annulaire 24, pour participer à la bonne réalisation du soudage en donnant des indications visuelles à l'opérateur situé à distance.
Un capteur de pression peut être placé dans au moins un canal annulaire d'apport du flux de séchage ou d'apport du gaz de protection du bain de soudage pour participer à un réglage à distance des débits et pressions desdits flux ou gaz.
Les soudures peuvent être réalisées par le dispositif de soudage selon l'invention dans toute position sur des surfaces planes ou éventuellement courbes.

Claims

REVENDICATIONS
1. Dispositif de soudage automatique sous eau pour la réalisation sur une surface (2) d'un joint soudé (3), du type comprenant une torche de soudage (20) comportant une électrode (21) entourée d'une enveloppe de protection (23) délimitant avec ladite électrode (21), un canal annulaire (24) relié à des moyens d'alimentation en gaz de protection, caractérisé en ce que la torche de soudage (20) est disposée axialement au centre d'un ensemble (30) de deux enveloppes (31 , 32) concentriques dont au moins une est mobile axialement et réglable par rapport à ladite surface (2) et délimitant entre elles un espace annulaire (34) d'injection d'un flux de séchage de la zone de soudage et de maintien de ladite zone de soudage hors d'eau et en ce qu'ils comporte des moyens de déplacement le long du joint à souder (3).
2. Dispositif selon la revendication 1, caractérisé en ce que la torche de soudage (20) comporte un moyen d'alimentation en métal d'apport (22).
3. Dispositif selon la revendication 1 , caractérisé en ce que l'ensemble (30) de deux enveloppes comporte une enveloppe interne (31) disposée contre l'enveloppe de protection (23) de la torche de soudage (20) et une enveloppe externe (32).
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'enveloppe déplaçable axialement et réglable est l'enveloppe interne (31).
5. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les deux enveloppes (31 , 32) de l'ensemble (30) de deux enveloppes sont déplaçables axialement et réglables simultanément ou successivement.
6. Dispositif selon l'une ' quelconque des revendications 1 à 5, caractérisé en ce que le déplacement axial de l'enveloppe interne (31) et/ou de l'enveloppe externe (32) est compris entre 0 et 30 mm, de préférence de 2 à 20 mm.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le flux injecté dans l'espace annulaire (34) est formé par de l'air chaud ou froid ou par un plasma ou par une flamme produite à partir d'un mélange gazeux dite HVOF (High Velocity Oxygen Fuel).
8. Procédé de soudage automatique sous eau pour la réalisation sur une surface (2) d'un joint à souder (3), procédé dans lequel on place à proximité de la surface (2) sur une zone de soudage du joint à souder (3), une torche de soudage (20) comportant une électrode (21) entourée d'une enveloppe de protection (23) délimitant avec ladite électrode (21) un canal annulaire (24) d'alimentation en gaz de protection, caractérisé en ce que :
- on place autour de l'enveloppe de protection (23) de la torche de soudage (20), un ensemble (30) de deux enveloppes (31 , 32) concentriques dont au moins une est déplaçable axialement et réglable par rapport à ladite surface (3) et délimitant entre elles un espace annulaire (34), ladite au moins enveloppe étant déplaçable entre une position sortie en saillie par rapport à l'extrémité de l'enveloppe de protection (23) et une position rentrée en retrait par rapport à ladite extrémité,
- on injecte dans ledit espace annulaire (34) un flux de séchage de la zone de soudage et de maintien de ladite zone hors d'eau, ainsi qu'un flux de gaz de protection dans le canal annulaire (24), l'enveloppe externe (32) étant en position sortie, - on plonge la torche de soudage (20) et l'ensemble (30) de deux enveloppes (31, 32) concentriques sous eau, jusqu'au quasi contact de l'enveloppe externe (32) avec la surface (2),
- après séchage de la zone de soudage, on déplace en position sortie l'enveloppe interne (31) de l'ensemble (30) de deux enveloppes pour maintenir par ledit flux de gaz de protection la zone de soudage hors perturbation,
- on met en service la zone de soudage (20), et
- on déplace la torche de soudage (20) et l'ensemble (30) de deux enveloppes cylindriques le long du joint à souder (3) en maintenant la zone de soudage hors d'eau et hors perturbation par injection dudit flux.
9. Procédé selon la revendication 8, caractérisé en ce qu'après avoir mis en service la torche de soudage (20), on relève l'enveloppe externe (32) de l'ensemble (30) de deux enveloppes pour diriger le flux vers l'extérieur de la zone de soudage et maintenir cette zone hors d'eau.
EP07866451A 2006-11-07 2007-10-26 Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder Withdrawn EP2094425A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0609726A FR2908061B1 (fr) 2006-11-07 2006-11-07 Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder.
PCT/FR2007/001778 WO2008056062A2 (fr) 2006-11-07 2007-10-26 Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder

Publications (1)

Publication Number Publication Date
EP2094425A2 true EP2094425A2 (fr) 2009-09-02

Family

ID=38069343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07866451A Withdrawn EP2094425A2 (fr) 2006-11-07 2007-10-26 Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder

Country Status (11)

Country Link
US (1) US20100108645A1 (fr)
EP (1) EP2094425A2 (fr)
JP (1) JP2010508155A (fr)
KR (1) KR20090086403A (fr)
CN (1) CN101553337B (fr)
AR (1) AR063575A1 (fr)
BR (1) BRPI0716704A2 (fr)
CA (1) CA2667597A1 (fr)
FR (1) FR2908061B1 (fr)
WO (1) WO2008056062A2 (fr)
ZA (1) ZA200902858B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844273A (zh) * 2010-05-31 2010-09-29 南通中远船务工程有限公司 海洋平台的水下脉冲激光焊接方法和装置
FR2970900B1 (fr) * 2011-01-31 2013-10-18 Aircelle Sa Procede de reparation d'un panneau d'attenuation acoustique
JP5767900B2 (ja) * 2011-08-24 2015-08-26 株式会社東芝 水中溶接装置及び方法
JP2013086136A (ja) * 2011-10-19 2013-05-13 Taiyo Nippon Sanso Corp フェライト系ステンレス鋼板のtig溶接方法
CN103203520B (zh) * 2012-10-16 2016-04-27 华东交通大学 水下湿法焊接稳弧装置
DE102013113967B3 (de) * 2013-12-12 2015-04-16 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zum Schweißen und Lichtbogenschweißeinrichtung
CN103769756B (zh) * 2014-02-26 2016-01-20 哈尔滨工业大学(威海) 超声辅助水下湿法焊接方法
CN104923883B (zh) * 2015-07-02 2017-01-11 哈尔滨工业大学(威海) 一种水下复合湿法焊接装置及方法
CN104923882B (zh) * 2015-07-02 2017-01-11 哈尔滨工业大学(威海) 一种水下湿法焊接装置及方法
CN107604309B (zh) * 2017-11-06 2023-09-15 京东方科技集团股份有限公司 掩膜板贴合装置以及其贴合方法
CN111238176B (zh) * 2019-08-30 2024-02-13 苏州热工研究院有限公司 一种离心脱水式水下局部干燥气室及干燥工艺
CN117139792B (zh) * 2023-10-27 2024-01-23 昆明展业电力线路器材制造有限公司 一种可调节焊枪高度的电力铁塔焊接装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1862248A1 (fr) * 2006-06-03 2007-12-05 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Dispositif pour éviter le dépôt de projections de soudage aux alentours du joint de soudage, avec une protection déplaçable par rapport à la torche de soudage

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052632A (en) * 1972-09-04 1977-10-04 Mitsubishi Jukogyo Kabushiki Kaisha Method of underwater welding
JPS5329647B2 (fr) * 1973-02-23 1978-08-22
DE3130443A1 (de) * 1981-07-23 1983-02-10 Messer Griesheim Gmbh, 6000 Frankfurt Verfahren und vorrichtung zum unterwasserschutzgasschweissen
CN86206543U (zh) * 1986-11-26 1987-11-07 陈式亮 水下局部干法焊炬
US5695662A (en) * 1988-06-07 1997-12-09 Hypertherm, Inc. Plasma arc cutting process and apparatus using an oxygen-rich gas shield
US5290995A (en) * 1991-12-20 1994-03-01 Esab Welding Products, Inc. Plasma arc cutting system having fluid metering and power control systems
JP3119090B2 (ja) * 1994-10-05 2000-12-18 株式会社日立製作所 水中レーザ加工装置及びその装置を用いた水中施工方法
US5780804A (en) * 1996-11-27 1998-07-14 General Electric Company Apparatus and method for making structural fillet welds
US5981896A (en) * 1998-08-26 1999-11-09 Electric Power Research Institute, Inc. Apparatus and method for creating dry underwater welds
US6255616B1 (en) * 2000-01-14 2001-07-03 General Electric Company Apparatus and methods for submerged processing of a work surface
JP2001219269A (ja) * 2000-02-07 2001-08-14 Hitachi Ltd 水中加工装置及びその加工方法
US6265689B1 (en) * 2000-04-24 2001-07-24 General Electric Company Method of underwater cladding using a powder-fan plasma torch
JP2002137057A (ja) * 2000-10-31 2002-05-14 Hitachi Ltd 水中溶接装置
CN2458117Y (zh) * 2000-12-19 2001-11-07 华南理工大学 水下焊接微型排水装置
US6506995B1 (en) * 2001-06-21 2003-01-14 General Electric Company Conforming welding torch shroud
CN1260504C (zh) * 2003-03-27 2006-06-21 本溪市自来水总公司 用于水下焊接管路的装置
CN100411797C (zh) * 2006-03-03 2008-08-20 华南理工大学 半自动局部干法水下焊接装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1862248A1 (fr) * 2006-06-03 2007-12-05 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Dispositif pour éviter le dépôt de projections de soudage aux alentours du joint de soudage, avec une protection déplaçable par rapport à la torche de soudage

Also Published As

Publication number Publication date
WO2008056062A2 (fr) 2008-05-15
FR2908061A1 (fr) 2008-05-09
KR20090086403A (ko) 2009-08-12
FR2908061B1 (fr) 2009-02-13
CN101553337B (zh) 2011-09-14
CA2667597A1 (fr) 2008-05-15
BRPI0716704A2 (pt) 2013-09-17
WO2008056062A3 (fr) 2008-07-03
JP2010508155A (ja) 2010-03-18
US20100108645A1 (en) 2010-05-06
ZA200902858B (en) 2010-01-27
AR063575A1 (es) 2009-02-04
CN101553337A (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
EP2094425A2 (fr) Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder
US5686002A (en) Method of welding
EP1736270B1 (fr) Soudo-brasage ou soudage TIG avec transfert de métal par pont liquide
EP2240291B1 (fr) Dispositif d'alimentation en gaz d'une machine de brasage ou etamage a la vague
US5780804A (en) Apparatus and method for making structural fillet welds
CA2039950A1 (fr) Dispositif de protection des soudures par diffusion gazeuse et procede de mise en oeuvre
FR2921856A1 (fr) Procede de retouche de pieces metalliques
EP1598139A1 (fr) Procédé de soudage TIG
EP2556913B1 (fr) Torche de soudage à l'arc à aspiration modulable des fumées
CN106514069A (zh) 一种抑制小直径铝合金导管焊接缺陷的装置
FR3020584A1 (fr) Procede et installation de coupage par plasma d'arc avec cycle de percage ameliore
WO2006111660A2 (fr) Procede de soudage de canalisations metalliques du type pipeline avec variation d ' une variable electrique relative a l ' arc au cours du mouvement oscillant transverse de la torche dans le joint etroit ; dispositif de mise en oeuvre d ' un tel procede
EP2612725B1 (fr) Procédé et installation de fabrication de fil fourré par soudage laser avec protection mécanique du flux
FR3067559A1 (fr) Procede de coupage plasma et torche pour la mise en oeuvre de ce procede
EP0545792A1 (fr) Procédé de soudage/rechargement à l'arc et dispositif de mise en oeuvre
FR2649850A1 (fr) Torche a plasma
EP1007247B1 (fr) Procede et dispositif pour la coulee continue en charge des metaux
FR2763668A1 (fr) Chalumeau d'oxycoupage
EP1575342A2 (fr) Torche de coupage plasma à circuits d'injection de gaz différenciés
CN114769803A (zh) 一种铁白铜管焊接工艺及一种焊接辅助工具
FR2986396A1 (fr) Torche a plasma d'arc avec amelioration du centrage axial de l'electrode
EP3065908A1 (fr) Procédé de rechargement à l'arc électrique avec protection gazeuse constitué d'un mélange gazeux argon/helium
FR2750286A1 (fr) Tete de torche a plasma
FR2589377A1 (fr) Installation de soudage a l'arc electrique sous gaz protecteur pour realiser des cordons de soudure circulaires
FR2532213A1 (fr) Procede et dispositif de protection envers d'une region a souder au moyen d'un gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090423

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THOMAS, ANDRE

Inventor name: VIARD, EMMANUEL

Inventor name: MOUGET, JEAN

Inventor name: MERLE, GABRIEL

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100903

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120215