EP2082072B1 - Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle - Google Patents

Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle Download PDF

Info

Publication number
EP2082072B1
EP2082072B1 EP07848318.7A EP07848318A EP2082072B1 EP 2082072 B1 EP2082072 B1 EP 2082072B1 EP 07848318 A EP07848318 A EP 07848318A EP 2082072 B1 EP2082072 B1 EP 2082072B1
Authority
EP
European Patent Office
Prior art keywords
powder
sintering
cutting
metal powder
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07848318.7A
Other languages
German (de)
English (en)
Other versions
EP2082072A2 (fr
Inventor
Mario Molteni
Sophie Marcon
Hervé SENILLOU
Bartolomeo Maretto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurotungstene Poudres SA
Original Assignee
Eurotungstene Poudres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurotungstene Poudres SA filed Critical Eurotungstene Poudres SA
Priority to PL07848318T priority Critical patent/PL2082072T3/pl
Publication of EP2082072A2 publication Critical patent/EP2082072A2/fr
Application granted granted Critical
Publication of EP2082072B1 publication Critical patent/EP2082072B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to the field of pre-alloyed metal powders, from which diamond cutting tools such as segments for saws and beads for the production of yarns for cutting hard materials such as granite are produced.
  • the metal powders used to make diamond beads are usually made from granules containing about 20% tungsten carbide and about 80% cobalt. These granules are mixed with diamonds and compressed in the form of rings, and the green parts are sintered according to two possibilities.
  • a natural sintering, also called “free sintering", (without mold) of the raw parts with their steel sheaths is carried out in a static or scrolling oven. But after this sintering, the cobalt and tungsten carbide beads are not sufficiently densified.
  • a second heat treatment is essential, which must be carried out in a furnace operating at a high pressure of between 1500 and 2000 bar, to achieve hot isostatic pressing of the beads. This oven is expensive to buy and maintain.
  • the object of the invention is first and foremost to provide pre-alloyed metal powders whose cost would be relatively moderate, and which would be compatible with processes for manufacturing diamond beads that are substantially less expensive than the existing processes, in particular because natural sintering , realized without mold, would nevertheless make it possible to obtain sufficiently powerful products, in particular for the cutting of the granite. Also, these powders should be compatible with the manufacture of other types of cutting tools for less demanding applications.
  • the Fisher diameter of its particles is 1 to 3 ⁇ m.
  • It is preferably constituted by a mixture of such a powder and of at least one sintering aid additive in a proportion of 80 to 90% by weight of powder and 10 to 20% by weight of additive.
  • the sintering aid additive is preferably a phosphide of iron, nickel, copper or cobalt, or a mixture of at least two of these phosphides, or a mixed phosphide of at least two of these metals.
  • the Fisher diameter of the particles of the first powder is 0.8 to 1.5 ⁇ m
  • the Fisher diameter of the particles of the second powder is 3.0 to 4.0 ⁇ m
  • the Fisher diameter of the powder. obtained after mixing is 1 to 3 ⁇ m.
  • the subject of the invention is also a process for manufacturing a diamond cutting tool, comprising a step of mixing a pre-alloyed metal powder and diamonds, a cold pressing step of the mixture and a sintering step to said compressed mixture. characterized in that said metal powder is of the preceding type.
  • Sintering is preferably natural sintering.
  • Said tool can be a cutting segment for diamond saw.
  • Said tool can be a diamond bead for cutting wire.
  • Said powder may be of the aforementioned type.
  • the invention also relates to a diamond saw of the type comprising cutting segments fixed on the periphery of a metal disk, characterized in that said segments were obtained by the above method.
  • the invention also relates to a cutting wire of the type comprising diamond beads threaded on a cable, characterized in that said beads were obtained by the above method.
  • the invention is based on the use of a prealloyed powder of precise composition, based on iron, cobalt and copper. It turns out that this powder, which does not involve very expensive elements in high proportions, makes it possible to produce diamond cutting tools (saws and beads) very powerful by simple natural sintering, so by an economical process and can be run with high productivity.
  • a process for obtaining the powder, making it possible to obtain sintered products of particularly high characteristics from said powder, is also proposed.
  • the prealloyed powder according to the invention must in particular meet the following requirements.
  • the relative density of the raw parts obtained with it must be at least 60% for a maximum cold pressure of 700 MPa.
  • the relative density of the part obtained must preferably be at least 97 %.
  • the powder must be able to be used to manufacture parts whose hardness after sintering would be at least 220 HB, so that they can be used for cutting granite.
  • the mean Fisher diameter of the particles is preferably from 1 to 3 ⁇ m.
  • Its typical theoretical density is preferably 8.4 g / cm 3 .
  • the ratio between the iron and cobalt contents is deliberately adjusted so as to avoid forming a hard and weak ⁇ 'phase, which is formed when the mass ratio Fe / (Fe + Co) is between 30 and 70%. According to the invention, this ratio is between 72 and 78%, and the ⁇ 'phase is avoided.
  • the amount of copper added is that which is sufficient to provide good sintering.
  • the oxygen content is maintained at 1.2% maximum to avoid the presence of oxides that would not be reduced in total by hydrogen during natural sintering.
  • Such unreduced oxides would reduce the sinterability of the green parts, cause heterogeneities in the structures of the sintered parts, increase the hardness, therefore the fragility of the parts and react with the diamonds by destroying them at least on the surface. This would reduce the cutting performance of the tools.
  • This powder can be obtained in particular in two different ways.
  • a powder having the desired composition and morphology characteristics is prepared directly by the conventional hydrometallurgical route.
  • x, y and z are in ratios corresponding to the atomic ratios which one wishes to find on the final powder between the respective contents in Cu, Fe, Co.
  • Solid-liquid separation is then carried out followed by washing the hydroxide cake with deionized water to remove NaCl.
  • the cake is then passed through a dryer to obtain a co-precipitated hydroxide powder with a residual water content of a few%.
  • the hydroxide powder is reduced, in order to be transformed into a pre-alloyed metal powder.
  • This reduction is preferably carried out in a scroll oven and under H 2 according to: Cu x Fe y Co z (OH) + H 2 ⁇ Cu x + Fe y + Co z + H 2 O.
  • the pre-alloyed powder is ground under an inert gas in a mill, then sieved at 90 ⁇ m.
  • the powder according to the invention is produced by mixing two powders of different compositions, also obtained separately by hydrometallurgy.
  • Table 1 shows the compositions of the two powders to be used: ⁇ u> Table 1 ⁇ / u>: characteristics of the powders I and II used.
  • a mixture of the powders I and II in relative proportions of 60 - 40% by weight approximately makes it possible to manufacture the powder according to the invention.
  • the powder according to the invention After obtaining the powder according to the invention, it can be used directly or granulated by a conventional method that will now be described. These granules can then be used to make specific diamond tools, such as diamond threads and thin diamond segments.
  • the prealloyed powder to be granulated is mixed with an organic binder powder at 2 to 3% by weight of the amount of powder to be granulated and an organic solvent in a high shear granulator. After the granulation step, the solvent is removed by evaporation.
  • the granules are sieved continuously on vibrating screens comprising two superposed canvases, openings of different mesh (450 microns for the first, 63 microns for the second for example). The fraction of diameter between 63 ⁇ m and 450 ⁇ m is thus selected. The finer and coarser granules are recycled during the next granulation operation.
  • additives known for this purpose such as tungsten carbide
  • tungsten carbide have proved to be ineffective in the context of the invention because they decreased the densification during sintering, and thus the hardness of the pieces, the opposite result of what was desired.
  • the tungsten carbide is insoluble in the powder according to the invention and therefore does not metallurgically bind to the metal matrix.
  • iron phosphide makes it possible to obtain remarkable results from this point of view; the phosphides of nickel, copper and cobalt are also interesting.
  • the powder obtained by mixing (“powder mixture”) was in a blender previously put under CO 2 , from 60% of powder I and 40% of powder II, these powders having been previously prepared separately by hydrometallurgy. The mixing operation lasted 50 minutes.
  • the "direct” and “mixing" powders were then compressed to 200 MPa in order to produce PS 21 pieces, whose raw density was calculated from their dimensions and their weight.
  • the direct powder had a density equal to 58.0% of the theoretical density, the powder mixes a density equal to 55.2% of its theoretical density.
  • the PS21 parts are parallelepipedal pieces obtained by cold compression at 200 MPa of 6 g of powder in a steel matrix of dimensions 24.48 x 7.97 mm.
  • the height of the green part obtained depends on the compressibility of the powder, and is generally of the order of 5 to 6 mm.
  • the mixed powder has the best sintering densification and the best hardness after sintering.
  • the hierarchy of performances between the direct powders and additive mix with FeP is the same as for pure powders (not additive).
  • the mixed powder has the best results after sintering.
  • the additivation makes it possible to obtain sintered pieces having a hardness substantially higher than that of the parts obtained under the same conditions from non-additive powders, as can be seen by comparing the results of Tables 2 and 3.
  • the additive NiP under the conditions that have been said also provides outstanding results in terms of density and hardness sintered parts.
  • the additivation can also be carried out using copper phosphide or cobalt. Also, a mixture of at least two of iron, nickel, copper and cobalt phosphides or a mixed phosphide of at least two of these metals can be used.
  • the segments made with the reference powder and with the powder of the invention were sintered by natural sintering in a rolling oven at 940 ° C. for the powder of the invention and 980 ° C. for the reference powder, and then brazed. on 500 mm diameter steel discs to form the saws. Granites of different categories were then cut with saws. For each type of powder, three types of diamond mixtures were tested, made from diamonds of the company ELEMENT SIX whose references will be indicated.
  • the saw of the invention had a service life of 4.8 m 2 / mm and a cutting speed of 620 cm 2 / min.
  • the reference saw was unable to cut the granite.
  • the saw of the invention had a life of 3 m 2 / mm and a cutting speed of 620 cm 2 / min.
  • the reference saw had a service life of 4.1 m 2 / mm and a cutting speed of 600 cm 2 / min.
  • the saw of the invention had a service life of 6.7 m 2 / mm and a cutting speed of 900 cm 2 / min.
  • the results of tests of the saws of the invention are excellent in absolute value, and systematically better in every respect than those of the reference saws.
  • the debinding, sintering and brazing operations were carried out in an oven under H 2 .
  • the beads obtained were threaded onto steel cables at the rate of 37 beads / linear meter, then the assembly was plasticized to stiffen it.
  • the powder according to the invention used pure, has good cold compressibility and densifies very well from 900 ° C. (97% of its theoretical density), in particular when it is obtained by mixing the powders I and II as previously defined.
  • the hardness obtained after sintering can be considered insufficient for granite cutting, but would be sufficient for cutting marble.
  • the addition of 15% iron phosphide or nickel increases the densification and hardness of the sintered parts in a way that makes them perfectly suitable for cutting granite.
  • a "mixture 1" mixture under CO 2 was prepared for 50 min from commercial Fe, Co and Cu powders as shown in Table 6: ⁇ u> Table 6 ⁇ / u>: characteristics of the mixture 1 Element Fisher average particle size ⁇ Fis ( ⁇ m) Percentages by weight Iron (%), 4 50 Cobalt (%) 1.5 15 Copper (%) 3 35 Oxygen (%) - 0.8 ⁇ Fis ( ⁇ m) of Mixture 1 - 3.46
  • the weight percentages of metals are expressed excluding oxygen content.
  • This composition is in the middle of the range of the pre-alloyed powder according to the invention.
  • the weight percentages of metals and phosphorus are expressed excluding oxygen content.
  • PS21-type parts were compressed at 200 MPa.
  • the powder according to the invention in particular in its additive version, is easily granular, which makes it possible to produce thin segments and diamond threads by inexpensive methods. It is easily sinterable in the presence of diamonds, whether in a static oven or in a scrolling oven, both in powder form and in the form of granules. It responds very well to the problems posed.
  • powder according to the invention could also be used with advantage for making cutting tools by methods other than those described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

  • L'invention concerne le domaine des poudres métalliques préalliées, à partir desquelles on réalise des outils de découpe diamantés tels que des segments pour scies et des perles pour la fabrication de fils pour la coupe de matériaux durs tels que le granite.
  • Les poudres métalliques utilisées pour fabriquer des perles diamantées sont habituellement réalisées à partir de granulés contenant 20% environ de carbure de tungstène et 80% environ de cobalt. Ces granulés sont mélangés avec des diamants et comprimés sous forme d'anneaux, et les pièces crues sont frittées selon deux possibilités.
  • Dans un premier cas, on remplit des moules en graphite avec les pièces crues munies chacune d'un fourreau d'acier, puis on réalise le frittage sous pression dans des presses à chaud classiques. Mais par suite de la forme particulière des perles diamantées :
    • les moules en graphite ont une géométrie complexe et sont coûteux à l'achat, d'autant plus qu'il faut les renouveler périodiquement ;
    • le remplissage des moules avec les pièces crues et les anneaux étant délicat, il doit être effectué manuellement, ce qui entraîne d'importants coûts de main d'oeuvre ;
    • pour obtenir des perles diamantées frittées de manière homogène, le nombre de perles frittées dans chaque moule est limité à quelques dizaines de pièces, ce qui implique une faible productivité.
  • Dans un deuxième cas, on réalise un frittage naturel, dit aussi « frittage libre », (sans moule) des pièces crues avec leurs fourreaux d'acier, dans un four statique où à défilement. Mais après ce frittage, les perles à base de cobalt et de carbure de tungstène ne sont pas suffisamment densifiées. Un deuxième traitement thermique est indispensable, qui doit être réalisé dans un four fonctionnant à une pression élevée, comprise entre 1500 et 2000 bars, pour réaliser une compression isostatique à chaud des perles. Ce four est coûteux à l'achat et à l'entretien.
  • Ces procédés sont donc de toute façon très coûteux, aussi bien en termes de matières premières que de procédé de production. L'article AMARAL P M ET AL: "Evaluation of metallic binder systems used in diamond tools for stone cutting" POWDER METALLURGY WORLD CONGRESS & EXHIBITION (PM2004) EUROPEAN POWDER METALLURGY ASSOC SHREWSBURY, UK, 2004, divulgue des poudres métalliques pour la fabrication d'outils de coupe comprenant un mélange d'une poudre préalliée de fer et de cobalt avec une poudre de cuivre. Le but de l'invention est avant tout de procurer des poudres métalliques préalliées dont le coût serait relativement modéré, et qui seraient compatibles avec des procédés de fabrication de perles diamantées sensiblement moins onéreux que les procédés existants, en particulier parce qu'un frittage naturel, réalisé sans moule, permettrait néanmoins d'obtenir des produits suffisamment performants, en particulier pour la coupe du granite. Egalement, ces poudres devraient être compatibles avec la fabrication d'autres types d'outils de coupe destinés à des applications moins exigeantes.
  • A cet effet l'invention a pour objet une poudre métallique préalliée, notamment pour la fabrication d'outils de coupe par frittage, caractérisée en ce que sa composition en pourcentages pondéraux est :
    • * Fe = 48 - 52 %
    • *Co = 14 - 19%
    • * Cu = 32 - 37 %
    • * O ≤ 1,2 %
    le reste étant des impuretés résultant de sa fabrication.
  • De préférence, le diamètre Fisher de ses particules est de 1 à 3 µm.
  • Elle est de préférence constituée par un mélange d'une telle poudre et d'au moins un additif d'aide au frittage à raison de 80 à 90 % en poids de poudre et 10 à 20 % en poids d'additif.
  • L'additif d'aide au frittage est de préférence un phosphure de fer, de nickel, de cuivre ou de cobalt, ou un mélange d'au moins deux de ces phosphures, ou un phosphure mixte d'au moins deux de ces métaux.
  • La poudre est de préférence obtenue par mélange d'une première poudre et d'une seconde poudre, et d'un additif de frittage éventuel, lesdites première et seconde poudres ayant les caractéristiques respectives :
    • pour la première poudre
      • * Fe = 27 -32 %
      • * Co = 24 - 28 %
      • * Cu =42-47 %
      • *O ≤ 1%
      le reste étant des impuretés résultant de sa fabrication
    • pour la seconde poudre
      • * Fe = 75 - 80 %
      • * Co ≤ 5 %
      • * Cu = 17 - 22 %
      • *O ≤ 1%
      le reste étant des impuretés résultant de sa fabrication.
  • De préférence, le diamètre Fisher des particules de la première poudre est de 0,8 à 1,5 µm, le diamètre Fisher des particules de la seconde poudre est de 3,0 à 4,0 µm, et le diamètre Fisher de la poudre obtenue après mélange est de 1 à 3 µm.
  • L'invention a également pour objet un procédé de fabrication d'un outil de coupe diamanté, comportant une étape de mélange d'une poudre métallique préalliée et de diamants, une étape de compression à froid du mélange et une étape de frittage audit mélange comprimé, caractérisé en ce que ladite poudre métallique est du type précédent.
  • Le frittage est de préférence un frittage naturel.
  • Ledit outil peut être un segment de coupe pour scie diamantée.
  • Ledit outil peut être une perle diamantée pour fil de coupe.
  • Ladite poudre peut être du type précité.
  • L'invention a également pour objet une scie diamantée du type comportant des segments de coupe fixés sur la périphérie d'un disque métallique, caractérisée en ce que lesdits segments ont été obtenus par le procédé précédent.
  • L'invention a également pour objet un fil de coupe du type comportant des perles diamantées enfilées sur un câble, caractérisé en ce que lesdites perles ont été obtenues par le procédé précédent.
  • Comme on l'aura compris, l'invention repose sur l'utilisation d'une poudre préalliée de composition précise, à base de fer, cobalt et cuivre. Il s'avère que cette poudre, qui ne met pas en oeuvre d'éléments très coûteux dans des proportions élevées, permet de réaliser des outils de coupe diamantés (scies et perles) très performants par simple frittage naturel, donc par un procédé économique et pouvant être exécuté avec une productivité élevée.
  • Un procédé d'obtention de la poudre, permettant d'obtenir à partir de ladite poudre des produits frittés de caractéristiques particulièrement élevées, est aussi proposé.
  • L'invention sera mieux comprise à la lecture de la description qui suit.
  • La poudre préalliée selon l'invention doit notamment répondre aux impératifs suivants.
  • La densité relative des pièces crues obtenues avec elle doit être d'au moins 60% pour une pression maximale à froid de 700MPa.
  • Elle doit de préférence être facilement granulable dans la fraction granulométrique comprise entre 63 et 450 µm qui est la mieux adaptée pour le remplissage des moules de compression à froid en acier, destinés à la fabrication de perles pour fils diamantés.
  • Après frittage libre à 850-1100°C dans un four à défilement (pour une production continue) ou dans un four statique (pour une production par lots), la densité relative de la pièce obtenue doit pouvoir être de préférence d'au moins 97%.
  • La poudre doit pouvoir être utilisée pour fabriquer des pièces dont la dureté après frittage serait d'au moins 220 HB, afin qu'elles soient utilisables pour la découpe du granite.
  • Il est apparu que ces objectifs, ainsi que ceux précédemment exprimés, sont atteints, selon l'invention, à l'aide d'une poudre préalliée possédant les caractéristiques suivantes.
  • Sa composition est (en pourcentages pondéraux) :
    • Fe = 48 - 52 %
    • Co = 14 - 19 %
    • Cu = 32 - 37 %
    • O ≤ 1,2 %
    le reste étant des impuretés résultant de sa fabrication.
  • Le diamètre Fisher moyen des particules (mesuré selon la norme 150 10070 par détermination de la surface spécifique d'enveloppe à partir de la mesure de la perméabilité à l'air d'un lit de poudre dans des conditions d'écoulement permanent) est de préférence de 1 à 3 µm.
  • Sa densité théorique typique est de préférence de 8,4 g/cm3.
  • Le rapport entre les teneurs en fer et cobalt est délibérément ajusté de manière à éviter de former une phase α' dure et fragilisante, qui se forme lorsque le rapport massique Fe/(Fe + Co) est compris entre 30 et 70 %. Selon l'invention, ce rapport est compris entre 72 et 78 %, et la phase α' est donc évitée.
  • La quantité de cuivre ajoutée est celle qui est suffisante pour procurer un bon frittage.
  • La teneur en oxygène est maintenue à 1,2 % au maximum pour éviter la présence d'oxydes qui ne seraient pas réduits en totalité par l'hydrogène lors du frittage naturel. De tels oxydes non réduits diminueraient la frittabilité des pièces crues, provoqueraient des hétérogénéités dans les structures des pièces frittées, augmenteraient la dureté, donc la fragilité des pièces et réagiraient avec les diamants en les détruisant au moins en surface. On diminuerait ainsi les performances de coupe des outils.
  • Cette poudre peut être obtenue notamment de deux manières différentes.
  • Selon un premier mode d'obtention, on prépare directement par la voie hydrométallurgique classique une poudre possédant les caractéristiques de composition et de morphologie visées.
  • Cette voie hydrométallurgique consiste à réaliser d'abord des hydroxydes métalliques par précipitation à la soude d'un mélange de chlorures de métaux selon la réaction :

            x CuCl2 + y FeCl3 + z CoCl2 + (2 + t) NaOH → Cux Fey Coz (OH)2 + 2 NaCl + t NaOH,

    avec x + y + z = 1, et t étant le taux de NaOH en excès par rapport à la stoechiométrie. x, y et z sont dans des rapports correspondant aux rapports atomiques que l'on désire retrouver sur la poudre finale entre les teneurs respectives en Cu, Fe, Co.
  • On réalise ensuite une séparation solide-liquide, suivie d'un lavage du gâteau d'hydroxyde à l'eau déminéralisée pour éliminer le NaCl. Puis on passe le gâteau dans un sécheur afin d'obtenir une poudre d'hydroxydes co-précipités, avec une teneur en eau résiduelle de quelques %.
  • Puis la poudre d'hydroxyde est réduite, afin d'être transformée en poudre métallique préalliée. Cette réduction est de préférence effectuée dans un four à défilement et sous H2 selon :

            Cux Fey Coz (OH) + H2 → Cux + Fey + Coz + H2O.

  • Après réduction, la poudre pré-alliée est broyée sous gaz inerte dans un broyeur, puis tamisée à 90 µm.
  • Selon un deuxième mode d'obtention, on réalise la poudre selon l'invention en mélangeant deux poudres de compositions différentes, obtenues séparément elles aussi par hydrométallurgie. Le tableau 1 présente les compositions des deux poudres à utiliser : Tableau 1 : caractéristiques des poudres I et II utilisées.
    Elément Poudre I Poudre II
    Fer (%) 27-32 75-80
    Cobalt (%) 24-28 ≤ 5
    Cuivre (%) 42 - 47 17-22
    Oxygène (%) ≤ 1 ≤ 1
    ∅Fis (µm) préféré 0,8 - 1,5 3,0 - 4,0
    ∅Fis (µm) préféré du mélange 1 - 3
  • De façon surprenante, comme on le verra, on obtient lors du frittage des résultats meilleurs à plusieurs points de vue lorsqu'on réalise la poudre selon l'invention en mélangeant ces deux poudres I et II, dans des proportions telles que l'on obtient globalement une poudre ayant les caractéristiques spécifiées, que quand on utilise une poudre obtenue directement par un procédé hydrométallurgique selon le premier mode d'obtention décrit.
  • De manière générale, un mélange des poudres I et II dans des proportions relatives de 60 - 40 % en poids environ permet de fabriquer la poudre selon l'invention.
  • Après l'obtention de la poudre selon l'invention, celle-ci peut être utilisée directement, ou mise sous forme de granulés par un procédé classique que l'on va à présent décrire. Ces granulés peuvent ensuite servir à fabriquer des outils diamantés spécifiques, tels que des fils diamantés et des segments diamantés de faible épaisseur.
  • La poudre préalliée à granuler est mélangée à une poudre de liant organique à raison de 2 à 3 % en poids de la quantité de poudre à granuler et à un solvant organique, dans un granulateur à fort cisaillement. Après l'étape de granulation, le solvant est retiré par évaporation.
  • Enfin les granulés sont tamisés en continu sur des tamis vibrants comportant deux toiles superposées, d'ouvertures de mailles différentes (450 µm pour la première, 63 µm pour la deuxième par exemple). On sélectionne ainsi la fraction de diamètre compris entre 63 µm et 450 µm. Les granulés plus fins et plus grossiers sont recyclés lors de l'opération de granulation suivante.
  • Il est également conseillé d'ajouter à la poudre un ou des additifs permettant d'augmenter la dureté des pièces frittées. Des additifs classiques connus à cet effet, tels que le carbure de tungstène, se sont avérés inopérants dans le cadre de l'invention, car ils diminuaient la densification lors du frittage, donc la dureté des pièces, résultat inverse de ce qui était recherché. Il s'avère que le carbure de tungstène est insoluble dans la poudre selon l'invention et ne se lie donc pas métallurgiquement à la matrice métallique. En revanche, il s'avère que le phosphure de fer permet d'obtenir des résultats remarquables de ce point de vue ; les phosphures de nickel, de cuivre et de cobalt sont également intéressants.
  • On a réalisé des essais de frittage naturel de poudres selon l'invention, qui ont démontré la supériorité des poudres obtenus par un mélange des poudres I et II décrites plus haut sur les poudres obtenues directement par un unique traitement hydrométallurgique.
  • La poudre obtenue directement (« poudre directe ») a été préparée par le procédé hydrométallurgique précédemment décrit, c'est-à-dire par addition de NaOH à un mélange de chlorures de Co et Fe, séchage de l'hydroxyde ainsi obtenu en sécheur microniseur, réduction à 660°C et broyage dans un broyeur à jet d'azote. Sa composition était Fe = 48,8 % ; Co = 16,0 %; Cu = 34,4 % ; O = 0,8 %. Son diamètre Fisher était de 1,3 µm.
  • La poudre obtenue par mélange (« poudre mélange ») l'a été dans un mélangeur mis préalablement sous CO2, à partir de 60 % de poudre I et 40 % de poudre II, ces poudres ayant été préalablement préparées séparément par hydrométallurgie. L'opération de mélange a duré 50 minutes. La poudre qui en a résulté avait la composition : Fe = 49,1 % ; Co = 16,0 % ; Cu = 34,4 % ; O = 0,6 %. Son diamètre Fisher était de 1,74 µm.
  • Les poudres « directe » et « mélange » ont ensuite été comprimées à 200MPa , afin de réaliser des pièces de type PS 21, dont on a calculé la densité à cru à partir de leur cotes et de leur poids. La poudre directe avait une densité égale à 58,0 % de la densité théorique, la poudre mélange une densité égale à 55,2 % de sa densité théorique.
  • On rappelle que, conventionnellement, les pièces PS21 sont des pièces parallélépipédiques obtenues par compression à froid sous 200 MPa de 6 g de poudre dans une matrice en acier de dimensions 24,48 x 7,97 mm. La hauteur de la pièce crue obtenue dépend de la compressibilité de la poudre, et est généralement de l'ordre de 5 à 6 mm.
  • Puis on a procédé au frittage dans un four de laboratoire statique sous H2 à des températures allant de 850 à 1000°C environ. Dans tous les cas, la vitesse de montée en température était de 150°C/h, le palier à la température de frittage était de 1h et le refroidissement a été naturel, durant environ une nuit. On a mesuré sur les pièces frittées leur densité en % de la valeur théorique (8,35g/cm3), leur dureté HB et leur dureté HRB. Les résultats sont regroupés dans le tableau 2. Tableau 2 : résultats du frittage de poudres directe et mélange.
    Température de frittage (°C) % densité théorique Dureté HB Dureté HRB
    Poudre directe Poudre mélange Poudre directe Poudre mélange Poudre directe Poudre mélange
    842 95,2 98,0 146 164 82,7 92,6
    907 96,9 98,2 152 187 79,7 88,8
    958 97,4 98,1 144 179 81,4 87,0
    1007 98,4 98,3 153 170 83,2 88,0
  • Les résultats d'essais montrent que la poudre directe présente une meilleure compressibilité à froid que la poudre mélange. Elle sera donc la plus facile des deux à mettre en forme avant le frittage.
  • En revanche, la poudre mélange présente la meilleure densification au frittage et la meilleure dureté après frittage.
  • On a réalisé des essais semblables sur des poudres directe et mélange auxquelles, avant le frittage, on a ajouté du phosphure de fer à 10% en masse de P fourni par la société BASF. Le mélange a eu lieu dans un mélangeur Gericke sous CO2 pendant 50 min, à raison de 85% de poudre et 15% de FeP (% en masse).
  • On a réalisé des essais de compression à froid dans les mêmes conditions que précédemment. On a trouvé que la poudre directe additivée au FeP avait une densité égale à 59,1 % de la densité théorique et la poudre mélange une densité égale à 53,1 % de sa densité théorique.
  • On a ensuite procédé au frittage de ces poudres, dans les mêmes conditions que précédemment, et mesuré les densités et duretés HB et HRB des pièces obtenues. Les résultats sont regroupés dans le tableau 3. Tableau 3 : résultats du frittage des poudres directe et mélange additivées au FeP.
    Température de frittage (°C) % densité théorique Dureté HB Dureté HRB
    Poudre directe + FeP Poudre mélange + FeP Poudre directe + FeP Poudre mélange + FeP Poudre directe + FeP Poudre mélange + FeP
    860 96,7 98,3 204 225 94,8 97,4
    907 97,1 98,4 213 224 97,5 98,9
    957 97,8 98,5 213 225 96,6 98,9
    1007 98,0 98,7 205 224 95,4 98,4
  • La hiérarchie des performances entre les poudres directe et mélange additivées au FeP est la même que pour les poudres pures (non additivées). La poudre mélange présente les meilleurs résultats après frittage.
  • L'additivation permet d'obtenir des pièces frittées ayant une dureté sensiblement plus élevée que celle des pièces obtenues dans les mêmes conditions à partir de poudres non additivées, comme on le voit en comparant les résultats des tableaux 2 et 3.
  • A titre indicatif, une poudre selon l'invention à laquelle on ajouterait du FeP à raison de 85 % de poudre et 15 % de FeP se retrouverait avec approximativement les caractéristiques suivantes :
    • densité théorique typique 8,21 g/cm3
    • Fe = 54 - 58 %
    • Co=12-16%
    • Cu = 27 - 31 %
    • P=1-2%
    • O ≤ 1,5 %
    • ∅ Fisher = 2-5 µm.
  • On a également réalisé des essais de frittage sur une poudre mélange additivée par un phosphure de Ni contenant 8,8 % en masse de P, à raison de 85 % de poudre mélange et 15 % de NiP. Les résultats sont regroupés dans le tableau 4. Tableau 4 : résultats du frittage de la poudre mélange additivée au NiP.
    Température de frittage (°C) % densité théorique Dureté HB Dureté HRB
    856 96,7 258 102,4
    907 97,8 280 104,9
    954 98,1 300 106
    1002 98,1 305 106,2
  • L'additivation au NiP dans les conditions qui ont été dites procure donc également des résultats remarquables en termes de densité et de dureté des pièces frittées.
  • A titre indicatif une poudre selon l'invention à laquelle on ajouterait du NiP à raison de 85 % de poudre et 15 % de NiP aurait approximativement les caractéristiques suivantes :
    • densité théorique typique 8,37 g/cm3
    • Fe = 40 - 44 %
    • Co= 11 -17%
    • Cu = 27 - 31 %
    • Ni = 13- 15 %
    • P=1-2%
    • O ≤ 1,5 %
    • ∅ Fisher 1 -4 µm
  • L'additivation peut aussi être effectuée à l'aide de phosphure de cuivre ou de cobalt. Egalement, on peut utiliser un mélange d'au moins deux parmi les phosphures de fer, nickel, cuivre et cobalt, ou un phosphure mixte d'au moins deux de ces métaux.
  • Des tests de coupe de granite effectués avec des pièces réalisées à l'aide de poudres selon l'invention et d'une poudre de référence ont donné les résultats suivants.
  • On a réalisé des essais de coupe de granite avec des scies diamantées de diamètre 500 mm dont les segments de coupe ont été réalisés par frittage naturel, en utilisant pour fabriquer les segments :
    • une poudre de référence connue dans l'art antérieur (Cobalite® CNF) de composition (pourcentages massiques) : Co = 0 % ; Cu = 26 % ; Fe = 68,4 % ; Ni = 0 %; Sn = 3 %; W = 2 %; Y2O3 = 0,6 %
    • la poudre selon l'invention additivée de FeP (85 % - 15 %) telle que précédemment décrite.
  • Les deux poudres ont servi à la fabrication de segments diamantés formant la denture des scies. Ces segments étaient du type « segments sandwich », c'est-à-dire qu'ils avaient une concentration en diamants plus importante à leur périphérie (1,1 carat/cm3 de segment) qu'à leur centre (0,8 carat/cm3 de segment). On a utilisé des diamants standard et des diamants revêtus de titane. Ce type de segments a été choisi car ils sont particulièrement complexes et coûteux à réaliser par le procédé classique de pressage à chaud dans des moules en graphite.
  • Les segments réalisés avec la poudre de référence et avec la poudre de l'invention ont été frittés par frittage naturel dans un four à défilement à 940°C pour la poudre de l'invention et 980°C pour la poudre de référence, puis brasés sur des disques d'acier de diamètre 500 mm pour constituer les scies. On a ensuite découpé des granites de différentes catégories avec des scies. Pour chaque type de poudre, trois types de mélanges de diamants ont été testés, réalisés à partir de diamants de la Société ELEMENT SIX dont on indiquera les références.
  • Après chaque essai de coupe on a calculé la vitesse de coupe (en cm2 de granite coupé par minute) et la durée de vie de la scie (en m2 de granite coupé par mm de hauteur de segment). Plus ces valeurs sont élevées, meilleure est la qualité de la scie.
  • En utilisant un mélange de diamants SDB VB 40 à 50 mesh (30 %) et SDB LBW 50 à 60 mesh (70 %), les résultats ont été les suivants :
    • La scie de référence avait une durée de vie de 4,4 m2/mm et une vitesse de coupe de 520 cm2/min).
  • La scie de l'invention avait une durée de vie de 4,8 m2/mm et une vitesse de coupe de 620 cm2/min.
  • En utilisant un mélange de diamants SDB VB 30 à 40 mesh (10 %), SDB VB 40 à 50 mesh (40%) et SDB LBW 50 à 60 mesh (50 %) les résultats ont été les suivants.
  • La scie de référence s'est avérée incapable de découper le granite.
  • La scie de l'invention avait une durée de vie de 3 m2/mm et une vitesse de coupe de 620 cm2/min.
  • En utilisant un mélange de diamants SDB VB 30 à 40 mesh (10 %), SDB TMF 40 à 50 mesh (40 %), et SDB TMF 50 à 60 mesh (50 %) les résultats ont été les suivants (les diamants de type TMF sont revêtus de titane).
  • La scie de référence avait une durée de vie de 4,1 m2/mm et une vitesse de coupe de 600 cm2/min.
  • La scie de l'invention avait une durée de vie de 6,7 m2/mm et une vitesse de coupe de 900cm2/min.
  • Les résultats d'essais des scies de l'invention sont donc excellents en valeur absolue, et systématiquement meilleurs à tout point de vue que ceux des scies de référence. Le procédé de fabrication des segments de scie de l'invention, couplant un frittage naturel des segments avec une composition précise de la poudre préalliée utilisée, donne donc des résultats satisfaisants pour un prix de revient très modéré par rapport aux procédés connus utilisant des moules.
  • On a également vérifié que la poudre selon l'invention se prêtait bien à la fabrication de perles diamantées utilisables pour la fabrication de fils de coupe pour la coupe du granite, qui sont l'application privilégié envisagée pour l'invention.
  • Ces perles avaient des diamètres extérieurs de 7,2 mm (perles destinées à des machines multi-fils) et 11 mm (perles destinées à des machines mono-fil) et ont été fabriquées par le procédé suivant :
    • fabrication de granulés par le procédé précédemment décrit, à partir d'une poudre selon l'invention additivée de FeP (85 % / 15 %) ;
    • mélange des granulés avec des diamants standard ou revêtus de titane selon les essais ;
    • compression à froid du mélange granulés/diamants, procurant une densité des pièces crues d'environ 65 % de la densité théorique ;
    • élimination du liant de granulation à 590°C ;
    • frittage à 900°C ;
    • brasage à 900°C à l'aide d'une brasure contenant 72 % d'Ag et 28 % de Cu pour assurer un accrochage suffisant sur le fourreau d'acier qui sert de support.
  • Les opérations de déliantage, frittage et brasage ont été réalisées dans un four à défilement sous H2.
  • Les perles obtenues ont été enfilées sur des câbles d'acier à raison de 37 perles/mètre linéaire, puis l'ensemble a été plastifié pour le rigidifier.
  • Les fils ont été testés sur différentes machines pour la coupe de granites variés. Les résultats des essais sont regroupés dans le tableau 5. Tableau 5 : résultats des essais réalisés sur des fils de coupe (perles réalisées à partir de poudre selon l'invention additivée de FeP).
    Diamants standards ou revêtus titane Diamants standards Diamants revêtus titane
    ∅ extérieur initial 7,2 mm 11 mm 11 mm
    ∅ extérieur final 5,3 mm 8,6 mm 8,4 mm
    ∅ extérieur support d'acier 5,0 mm 8 mm 8 mm
    Vitesse de coupe 0,9 à 1,1 m2/h 0,8 m2/h 0,8 m2/h
    Durée de vie 10,3 m2/m linéaire 14 m2/m linéaire 36 m2/m linéaire
  • Ces résultats sont tout à fait satisfaisants, et montrent que l'invention permet de réaliser des perles diamantées performantes, pour un prix de revient sensiblement plus bas que par les procédés classiques. A titre de comparaison, la durée de vie des fils habituels, utilisant des diamants revêtus de titane, est de l'ordre de 28 m2/m linéaire.
  • De manière générale, la poudre selon l'invention, utilisée pure, présente une bonne compressibilité à froid et se densifie très correctement dès 900°C (97 % de sa densité théorique), en particulier lorsqu'elle est obtenue par mélange des poudres I et II telles que précédemment définies. La dureté obtenue après frittage peut être considérée comme insuffisante pour la découpe du granite, mais serait suffisante pour la découpe de marbre. Mais l'addition de 15 % de phosphure de fer ou de nickel permet d'augmenter la densification et la dureté des pièces frittées d'une manière qui les rend parfaitement adaptées à la découpe du granite.
  • A titre de comparaison, afin de montrer que l'invention nécessite l'utilisation d'une poudre préalliée ou d'un mélange de telles poudres pour l'obtention des résultats recherchés, on a effectué les essais suivants.
  • On a préparé un mélange dit « mélange 1 » sous CO2 pendant 50min, à partir de poudres de Fe, Co et Cu commerciales, comme indiqué dans le tableau 6 : Tableau 6 : caractéristiques du mélange 1
    Elément Granulométrie Fisher moyenne ØFis (µm) Pourcentages pondéraux
    Fer (%), 4 50
    Cobalt (%) 1,5 15
    Cuivre (%) 3 35
    Oxygène (%) - 0,8
    ∅Fis (µm) du Mélange 1 - 3,46
  • Les pourcentages pondéraux des métaux sont exprimés hors oxygène contenu.
  • Cette composition est dans le milieu de la fourchette de la poudre pré-alliée selon l'invention.
  • A 85 % en masse de ce mélange, on a rajouté (selon le même protocole que précédemment) 15 % de phosphure de fer FeP 10% de BASF, de même qualité que celui des essais mentionnés précédemment. La composition de ce Mélange 2 est alors (tableau 7) : Tableau 7 : composition du mélange 2
    Elément Pourcentages pondéraux
    Fer (%) 56
    Cobalt (%) 12,75
    Cuivre (%) 29,75
    Phosphore 1,5
    Oxygène (%) 0,95
    ∅Fis (µm) du Mélange 2 2,99
  • Les pourcentages pondéraux des métaux et du phosphore sont exprimés hors oxygène contenu.
  • Pour les deux mélanges, on a comprimé sous 200 MPa, des pièces de type PS21.
  • La densité à cru moyenne des pièces, calculée à partir des cotes et du poids était (tableau 8): Tableau 8 : Pourcentages des densités théoriques des pièces crues
    Mélange 1 Mélange 2
    % densité théorique des pièces crues 64,4 % 62,1 %
  • Ces pièces crues sont ensuite frittées à 850, 900, 950 et 1000°C. Sur ces pièces, on a mesuré leur densité en % de la densité théorique, leur dureté HB et leur dureté HRB, selon le protocole décrit précédemment pour les pièces réalisées selon l'invention.
  • Après frittage on a obtenu les résultats suivants (tableaux 9 et 10) Tableau 9 : Résultats de frittage du mélange 1.
    Température de frittage (°C) % Densité théorique Dureté HB Dureté HRB
    850 91.5 99 53.6
    900 91.3 117 66.8
    950 89.1 96 51.8
    1000 88.6 94 51.5
    Tableau 10 : Résultats de frittage du mélange 2.
    Température de frittage (°C) % Densité théorique Dureté HB Dureté HRB
    850 92.6 136 75.3
    900 93.8 177 87.4
    950 97.2 202 93.1
    1000 98.4 213 95.8
  • L'ensemble des résultats montre que ces deux mélanges de poudres commerciales de métaux, en comparaison avec les poudres pré-alliées selon l'invention de compositions comparables, présentent :
    • une granulométrie très semblable
    • une meilleure compressibilité à froid
    • une densification après frittage nettement moins bonne et des duretés HB et HRB plus faibles
    • une structure des pièces frittées nettement plus grossière du fait de la forte granulométrie initiale des constituants.
  • Dans ces conditions :
    • les outils diamantés réalisés à partir de ces mélanges de poudres commerciales de métaux auront une plus faible rétention des diamants (c'est-à-dire un accrochage moindre des diamants dans la matrice métallique), du fait entre autres de leur forte porosité ;
    • cela entraînera des performances des outils (vitesse de coupe et durée de vie) nettement inférieures à celles de la poudre pré-alliée (pure ou additivée de phosphure de fer) selon l'invention, à composition et granulométrie comparables.
  • La poudre selon l'invention, en particulier dans sa version additivée, est facilement granulable, ce qui permet de réaliser des segments de faible épaisseur et des fils diamantés par des procédés peu onéreux. Elle est facilement frittable en présence de diamants, que ce soit en four statique ou en four à défilement, tant à l'état de poudre qu'à l'état de granulés. Elle répond donc très bien aux problèmes posés.
  • Bien entendu, la poudre selon l'invention serait également utilisable avec profit pour fabriquer des outils de coupe par des procédés différents de ceux décrits.

Claims (13)

  1. Poudre métallique préalliée, notamment pour la fabrication d'outils de coupe par frittage, caractérisée en ce que sa composition en pourcentages pondéraux est :
    * Fe = 48 - 52 %
    * Co = 14-19%
    * Cu = 32 - 37 %
    * O ≤ 1,2 %
    le reste étant des impuretés résultant de sa fabrication.
  2. Poudre métallique préalliée selon la revendication 1, caractérisée en ce que le diamètre Fisher de ses particules est de 1 à 3 µm.
  3. Poudre métallique préalliée, caractérisée en ce qu'elle est constituée par un mélange d'une poudre selon la revendication 1 ou 2 et d'au moins un additif d'aide au frittage à raison de 80 à 90 % en poids de poudre et 10 à 20 % en poids d'additif.
  4. Poudre métallique préalliée selon la revendication 3, caractérisée en ce que l'additif d'aide au frittage est un phosphure de fer, de nickel, de cuivre ou de cobalt, ou un mélange d'au moins deux de ces phosphures, ou un phosphure mixte d'au moins deux de ces métaux.
  5. Poudre métallique préalliée selon l'une des revendications 1 à 4 caractérisée en ce qu'elle est obtenue par mélange d'une première poudre et d'une seconde poudre, et d'un additif de frittage éventuel, lesdites première et seconde poudres ayant les caractéristiques respectives :
    - pour la première poudre
    * Fe = 27 - 32 %
    * Co = 24 - 28 %
    * Cu = 42 - 47 %
    * O ≤ 1 %
    le reste étant des impuretés résultant de sa fabrication
    - pour la seconde poudre
    * Fe = 75 - 80 %
    * Co ≤ 5 %
    * Cu = 17 - 22 %
    * O ≤ 1 %
    le reste étant des impuretés résultant de sa fabrication.
  6. Poudre métallique préalliée selon la revendication 5, caractérisée en ce que le diamètre Fisher des particules de la première poudre est de 0,8 à 1,5 µm, en ce que le diamètre Fisher des particules de la seconde poudre est de 3,0 à 4,0 µm, et en ce que le diamètre Fisher de la poudre obtenue après mélange est de 1 à 3 µm.
  7. Procédé de fabrication d'un outil de coupe diamanté, comportant une étape de mélange d'une poudre métallique préalliée et de diamants, une étape de compression à froid du mélange et une étape de frittage dudit mélange comprimé, caractérisé en ce que ladite poudre métallique est du type selon l'une des revendications 1 à 6.
  8. Procédé selon la revendication 7, caractérisé en ce que le frittage est un frittage naturel.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que ledit outil est un segment de coupe pour scie diamantée.
  10. Procédé selon la revendication 7 ou 8, caractérisé en ce que ledit outil est une perle diamantée pour fil de coupe.
  11. Procédé selon l'une des revendications 7 à 10, caractérisé en ce que ladite poudre est du type selon la revendication 5 ou 6.
  12. Scie diamantée du type comportant des segments de coupe fixés sur la périphérie d'un disque métallique, caractérisée en ce que lesdits segments ont été obtenus par le procédé selon la revendication 9.
  13. Fil de coupe du type comportant des perles diamantées enfilées sur un câble, caractérisé en ce que lesdites perles ont été obtenues par le procédé selon la revendication 10.
EP07848318.7A 2006-10-04 2007-10-04 Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle Active EP2082072B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07848318T PL2082072T3 (pl) 2006-10-04 2007-10-04 Proces uzyskiwania wstępnie stopionego metalu w postaci proszku i wytwarzane z niego narzędzia tnące

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608709A FR2906739B1 (fr) 2006-10-04 2006-10-04 Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle
PCT/FR2007/001622 WO2008040885A2 (fr) 2006-10-04 2007-10-04 Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle

Publications (2)

Publication Number Publication Date
EP2082072A2 EP2082072A2 (fr) 2009-07-29
EP2082072B1 true EP2082072B1 (fr) 2018-01-10

Family

ID=37944729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07848318.7A Active EP2082072B1 (fr) 2006-10-04 2007-10-04 Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle

Country Status (10)

Country Link
EP (1) EP2082072B1 (fr)
KR (1) KR20090060330A (fr)
CN (1) CN101541990B (fr)
DK (1) DK2082072T3 (fr)
ES (1) ES2663267T3 (fr)
FR (1) FR2906739B1 (fr)
HU (1) HUE036676T2 (fr)
PL (1) PL2082072T3 (fr)
PT (1) PT2082072T (fr)
WO (1) WO2008040885A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107419155A (zh) * 2017-05-12 2017-12-01 郑州航空工业管理学院 一种Fe‑Co为基单相固溶体Fe‑Co‑Cu三元合金及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961784B (zh) * 2010-09-21 2012-06-27 博深工具股份有限公司 粉末冶金材料及制造金刚石钻头的方法
CN102407336A (zh) * 2010-09-25 2012-04-11 李国平 一种短流程制备部分预合金铁粉的方法
CN102672824B (zh) * 2012-06-04 2015-01-21 安泰科技股份有限公司 钨铜基金刚石刀头、圆锯片及其制备方法
CN104128893A (zh) * 2014-07-31 2014-11-05 泉州众志金刚石工具有限公司 一种金刚石布拉磨块
CN104439255B (zh) * 2014-12-30 2016-06-22 中国有色桂林矿产地质研究院有限公司 一种金刚石串珠的制备方法
CN104907732A (zh) * 2015-06-18 2015-09-16 鄂州市金刚石技术研发中心 一种激光焊接金刚石锯片过渡层用预合金粉及制备方法
CN105695830A (zh) * 2016-01-29 2016-06-22 长沙百川超硬材料工具有限公司 金刚石串珠的无压烧结制备方法
EP3808864B1 (fr) 2019-10-15 2022-05-18 ECKA Granules Germany GmbH Poudres d'alliage de prémélange pour outils diamantés
CN111822716A (zh) * 2020-07-21 2020-10-27 泉州华大超硬工具科技有限公司 一种新型工艺串珠的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2174436T3 (es) * 1997-04-29 2002-11-01 Umicore S A Nv Polvo prealeado que contiene cobre, y su utilizacion en la fabricacion de herramientas de diamante.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107419155A (zh) * 2017-05-12 2017-12-01 郑州航空工业管理学院 一种Fe‑Co为基单相固溶体Fe‑Co‑Cu三元合金及其制备方法
CN107419155B (zh) * 2017-05-12 2018-10-23 郑州航空工业管理学院 一种Fe-Co为基单相固溶体Fe-Co-Cu三元合金及其制备方法

Also Published As

Publication number Publication date
WO2008040885A2 (fr) 2008-04-10
CN101541990A (zh) 2009-09-23
FR2906739A1 (fr) 2008-04-11
KR20090060330A (ko) 2009-06-11
ES2663267T3 (es) 2018-04-11
DK2082072T3 (en) 2018-04-16
EP2082072A2 (fr) 2009-07-29
WO2008040885A3 (fr) 2008-07-03
CN101541990B (zh) 2011-08-03
FR2906739B1 (fr) 2009-07-17
HUE036676T2 (hu) 2018-07-30
PT2082072T (pt) 2018-03-28
PL2082072T3 (pl) 2018-07-31

Similar Documents

Publication Publication Date Title
EP2082072B1 (fr) Poudre metallique prealliee, son procede d'obtention, et outils de coupe realises avec elle
JP5331003B2 (ja) 多結晶質ダイヤモンド研磨材成形体
TWI281506B (en) Pre-alloyed bond powders
JP2008138291A (ja) 焼結炭化物物品及び母合金組成物
EP1948838B1 (fr) Poudre polymetallique et piece frittee fabriquee a partir de cette poudre
CN107405756B (zh) 易碎的陶瓷结合的金刚石复合粒子以及其制造方法
FR2886182A1 (fr) Poudre de superalliage
FR2550526A1 (fr)
EP2697011B1 (fr) Procede de fabrication de composants en ceramique ou metal par pim, base sur l'utilisation de fibres ou nanofibres inorganiques
JP2015523954A (ja) 切削工具用の焼結超硬質コンパクトとその製造方法
JP5078061B2 (ja) 立方晶窒化硼素焼結体
EP2180072A1 (fr) Matériau et outil de carbure cémenté
EP0591305B1 (fr) Cermets a base de borures des metaux de transition, leur fabrication et leurs applications
JP6536239B2 (ja) Te−Ge系スパッタリングターゲット、及び、Te−Ge系スパッタリングターゲットの製造方法
JP2010500477A (ja) 固溶体粉末を含む混合粉末とそれを用いた焼結体、固溶体粉末を含む混合サ−メット粉末とそれを用いたサ−メット、及びそれらの製造方法
KR100996550B1 (ko) 예비합금 결합제 분말
JPH07238302A (ja) 焼結チタンフィルタ−及びその製造方法
JP2018187736A (ja) メタルブレード及びメタルブレード製造方法
EP0308353A1 (fr) Grains abrasifs thermostables non poreux destinés aux travauxde sciage et éléments de coupe comportant ces grains
EP0277450A1 (fr) Procédé de fabrication de matériaux composites céramique-métal par utilisation de métaux tensio-actifs aux interfaces céramique-métal
FR2580628A1 (fr) Procede de fabrication d'un composite diamante
JPH0611897B2 (ja) 高強度焼結合金
FR2568810A1 (fr) Element de coupe diamante et procede de fabrication d'un tel element
JPS6228111B2 (fr)
FR2676673A1 (fr) Utilisation, dans la preparation de carbures cementes a liant cobalt, de poudres de cobalt a grains spheriques non agglomeres.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170203

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/16 20060101ALI20170721BHEP

Ipc: C22C 33/02 20060101AFI20170721BHEP

Ipc: C22C 38/10 20060101ALI20170721BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARCON, SOPHIE

Inventor name: MOLTENI, MARIO

Inventor name: SENILLOU, HERVE

Inventor name: MARETTO, BARTOLOMEO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EUROTUNGSTENE POUDRES

INTG Intention to grant announced

Effective date: 20170828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962520

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007053686

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2082072

Country of ref document: PT

Date of ref document: 20180328

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20180321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2663267

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180411

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180409

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E036676

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 27020

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007053686

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200924

Year of fee payment: 14

Ref country code: NL

Payment date: 20200915

Year of fee payment: 14

Ref country code: GB

Payment date: 20200925

Year of fee payment: 14

Ref country code: LU

Payment date: 20200924

Year of fee payment: 14

Ref country code: SK

Payment date: 20200923

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20200916

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20201012

Year of fee payment: 14

Ref country code: IE

Payment date: 20201009

Year of fee payment: 14

Ref country code: CH

Payment date: 20201015

Year of fee payment: 14

Ref country code: FI

Payment date: 20201009

Year of fee payment: 14

Ref country code: RO

Payment date: 20201001

Year of fee payment: 14

Ref country code: HU

Payment date: 20200915

Year of fee payment: 14

Ref country code: DK

Payment date: 20201012

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 962520

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180110

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20211031

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 27020

Country of ref document: SK

Effective date: 20211004

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211005

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211005

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230626

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: UMICORE SPECIALTY POWDERS FRANCE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: UMICORE SPECIALTY POWDERS FRANCE

Effective date: 20230921

Ref country code: BE

Ref legal event code: HC

Owner name: UMICORE SPECIALTY POWDERS FRANCE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: EUROTUNGSTENE POUDRES

Effective date: 20230921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230913

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230919

Year of fee payment: 17

Ref country code: PL

Payment date: 20230911

Year of fee payment: 17

Ref country code: FR

Payment date: 20230911

Year of fee payment: 17

Ref country code: BE

Payment date: 20230918

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231003

Year of fee payment: 17

Ref country code: DE

Payment date: 20230830

Year of fee payment: 17

Ref country code: AT

Payment date: 20230925

Year of fee payment: 17