EP2072755A1 - Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen - Google Patents

Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen Download PDF

Info

Publication number
EP2072755A1
EP2072755A1 EP07024982A EP07024982A EP2072755A1 EP 2072755 A1 EP2072755 A1 EP 2072755A1 EP 07024982 A EP07024982 A EP 07024982A EP 07024982 A EP07024982 A EP 07024982A EP 2072755 A1 EP2072755 A1 EP 2072755A1
Authority
EP
European Patent Office
Prior art keywords
magnets
blade
magnetic
turbomachine according
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07024982A
Other languages
English (en)
French (fr)
Inventor
Christoph Dr. Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07024982A priority Critical patent/EP2072755A1/de
Priority to US12/809,205 priority patent/US8568088B2/en
Priority to JP2010538535A priority patent/JP5143236B2/ja
Priority to CN200880121918.4A priority patent/CN101952554B/zh
Priority to EP08864578A priority patent/EP2229506B1/de
Priority to PCT/EP2008/066156 priority patent/WO2009080433A1/de
Priority to AT08864578T priority patent/ATE514837T1/de
Publication of EP2072755A1 publication Critical patent/EP2072755A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • F01D25/06Antivibration arrangements for preventing blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/507Magnetic properties

Definitions

  • the invention relates to a turbomachine, in particular a steam turbine, comprising a turbine blade rotatably arranged about an axis of rotation and directed along a blade axis, a housing arranged around the turbine blade, an induction plate arranged in the turbine blade tip and a magnet arranged in the housing.
  • turbomachinery Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term turbomachinery. All these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine or, conversely, to supply energy to a fluid in order to increase its pressure.
  • the energy conversion takes place indirectly and makes its way over the kinetic energy of the flow medium.
  • the flow medium flows through fixed vanes, increasing the velocity and thus the kinetic energy of the flow medium at the expense of its pressure.
  • the shape of the vanes creates a velocity component in the circumferential direction of the impeller.
  • the fluid releases its kinetic energy to the rotor by varying the amount of velocity and the direction as it flows through the channels formed by the blades.
  • the impeller is driven by the resulting forces.
  • the rotating blades in a turbomachine are designed without resonance for the largest possible operating conditions. If the operating conditions change, eg due to volume flow changes, For example, the blades may be excited to vibrate, which could result in failure of the blades when vibration resonances result in excessive mechanical stresses.
  • Various devices have been developed to dampen these vibrations. For example, it is known to couple vanes to each other to thereby dampen vibrations.
  • the EP 0 727 564 B1 discloses a turbomachine having turbine blades and a housing disposed about the turbine blade, wherein magnets in the housing made of rings are arranged on the circumference of the inner surface of the housing.
  • the turbine blades have a conductive material on the tips, which can reduce vibrations as these turbine blades move against the magnet.
  • the vibrations of the blades are undesirable because they can lead to material fatigue of the blade and the rotor claw. Any one thousand point of improved logarithmic attenuation decrement is desirable.
  • shroud blades have a total loss of 0.5% log dec. Doubling this size results in halving the resonant amplitudes, which may mean that one mode is less tunable. This also allows the permissible speed range to be widened.
  • the vibration damping methods which are caused by magnetic forces, such. B. in the EP 0 727 564 B1 . DE 199 37 146 A1 and the EP 1 596 037 A2 have the disadvantage that the forces generated by eddy currents do not distinguish between a movement of the turbine blade tip in the main movement and a disturbing oscillatory motion.
  • a movement of the blade in the direction of rotation, ie in the circumferential direction is influenced by the magnetic forces that lead to eddy currents, which is undesirable.
  • a not executed in the circumferential direction of vibrational motion for example in the axial direction to be damped by magnetic forces that lead to eddy currents.
  • the invention begins, whose task is to provide a turbomachine that allows effective damping of blade vibrations.
  • a turbomachine in particular a steam turbine, comprising a turbine blade rotatably arranged about a rotary ash and arranged along a blade axis, a housing arranged around the turbine blade, an induction plate arranged in the turbine blade tip and a magnet arranged in the housing, wherein the induction plate in a plane formed by the rotation axis and a radial direction is aligned.
  • induction plates are arranged in the blade tip.
  • Such induction plates are made of a suitable material. Whereby this material is electrically conductive and therefore suitable for causing eddy currents.
  • These induction plates are aligned along a plane formed by the axis of rotation and a radial direction. Of course, this plane is not stationary, i. this plane rotates around the axis of rotation.
  • the induction plate is optimal for attenuation, d. H. aligned parallel to the axis of rotation and parallel to the radial direction. Since the radial direction is changed over time in operation, i.
  • the induction plate is always aligned perpendicular to the opposite housing.
  • a magnet arranged in the housing is aligned in such a way that the magnetic field acts in the direction of the induction plates.
  • a movement of the induction plate by this magnetic field causes eddy currents in the induction plate, which leads to a development of a counter magnetic field, which is formed according to the Lenzsch'en rule opposite to the external magnetic field, resulting in a counterforce, which eventually leads to a damping.
  • the magnetic north pole and the magnetic south pole of the magnet lies on a circular path, wherein the circular path is rotationally symmetrical about the axis of rotation. Since turbomachines usually have a high degree of symmetry, it is necessary for the applied magnetic field to be based, so to speak, on the existing symmetry. A magnetic field not oriented along the circular path would lead to undesirable side effects. For example, a desired blade movement could be slowed down.
  • the magnetic field can be generated by a permanent magnet or electrically.
  • the electrically generated magnetic field may advantageously be achieved by an axisymmetric coil having a field orthogonal to the plates.
  • the circular path runs along an inner peripheral surface of the housing.
  • the magnetic field is further homogenized or formed symmetrically. This symmetrical magnetic field leads to a targeted damping of unwanted blade vibrations.
  • the magnet is in this case advantageously horseshoe-shaped or U-shaped.
  • the magnetic field of a magnet is strongly dependent on its geometric shape.
  • the magnetic field of a bar magnet is different than the magnetic field of a horseshoe-shaped magnet.
  • the magnetic field of a bar magnet is inhomogeneous compared to the horseshoe-shaped or U-shaped magnet.
  • a plurality of magnets are used, wherein the magnets are arranged in the circumferential direction to a first magnetic circuit row behind the other.
  • An eddy current only occurs when the movement of the induction plate is perpendicular to an external magnetic field.
  • a movement of the induction plate in parallel to an external magnetic field does not lead to eddy currents and thus not to a damping of the blade vibration.
  • a single magnet naturally has a more or less large stray field, which in addition to parallel also has vertical components to the direction of movement of the induction plate. This means that the induction plate moving through this single magnetic field of a single magnet temporarily transits a parallel portion of the magnetic field.
  • a number of n magnets in the circumferential direction is provided, wherein n represents a whole positive number, wherein the magnets at a regular distance from u n are arranged one behind the other, where u represents the circumference of the inner peripheral surface.
  • n represents a whole positive number
  • the magnets at a regular distance from u n are arranged one behind the other, where u represents the circumference of the inner peripheral surface.
  • a second magnetic circuit series comprising a plurality of circumferentially arranged Magnets provided, wherein the second magnetic circuit row is arranged in the axial direction in front of the first magnetic circuit row.
  • n magnets are provided in the second magnetic circuit row, wherein the magnets are spaced at a regular distance from u n arranged one behind the other.
  • the magnets of the second magnetic circuit row are arranged offset to one another with respect to the magnets of the first magnetic circuit row. This leads to a homogenization of the magnetic field along the circumferential direction in the housing of the turbomachine. Movement of the induction plate in the main direction is not affected thereby, whereas movements of the induction plate are damped transversely to the main direction.
  • the invention has, inter alia, the advantage that no rubbing parts are needed to dampen vibrations.
  • a connection is established between the individual blades, which inevitably leads to a friction in the connecting pieces, which lead to wear.
  • Another advantage of the invention is that it is applicable to titanium blades.
  • the device according to the invention is very effective, whereby high attenuation values can be achieved.
  • the FIG. 1 shows a blade 1.
  • This blade 1 may be a turbine blade or a compressor blade.
  • the blade 1 is arranged on a rotor, not shown.
  • the arrangement of rotor and blade 1 is a in FIG. 1 not shown rotation axis 23 rotatably mounted. In operation, a rotation about this axis of rotation 23 is carried out at a rotational frequency ⁇ .
  • the main movement of the blade 1 runs along the rotor circulation.
  • One of these major movements superimposed and unwanted movement is the vibration of the blade 1.
  • These disturbing vibrations can be damped by means of eddy currents.
  • the arrangement of the induction plates 3 and the magnetic field lead to the fact that no main braking force components arise because they brake the engine.
  • the blade 1 has a shroud 2, in which induction plates 3 are arranged.
  • the shroud 2 is arranged on an airfoil 4.
  • the rotor with the blades 1 is rotatably mounted in a turbomachine, which is not shown.
  • a housing is arranged around the rotor and the blades 1, a housing is arranged.
  • the housing has a magnet 5.
  • the induction plate 3 is hereby aligned in a plane which is formed by the rotation axis 23 and a radial direction. This radial direction is in the FIG. 1 represented by a blade axis 7. In operation, this blade axis 7 rotates at the rotational frequency ⁇ about the axis of rotation 23.
  • FIG. 2 shows a single induction plate 3 and its arrangement to the magnetic field B of the magnet 5. For clarity, only the magnetic north pole N and the magnetic south pole S of the magnet 5 in the FIG. 2 shown.
  • the induction plate 3 carries out a desired movement V red in the circumferential direction 17 and a disturbing movement V vib in the axial direction 6.
  • a Lorenz force acts in proportion to the speed, since the magnetic field B is perpendicular to the induction plate 3.
  • This Lorenz force leads to a Eddy current, which counteracts the movement of the induction plate 3, whereby the vibration of the induction plate 3 is braked.
  • the main movement does not lead to significant eddy currents, since the induction plate 3 is movable in the direction of movement and thus does not oppose the flow of current. As a result, there is no significant Lorenz force that could slow down the main movement.
  • FIG. 3 is a view of the shroud 2 with a single induction plate 3 shown.
  • the shroud 2 has recesses which are designed to couple neighboring shrouds 2, so to speak.
  • the induction plates 3 are in this case formed of an electrically conductive material and incorporated into the shroud 2.
  • the shroud 2 and an upper edge 8 of the induction plate 3 is planar with a surface 9 of the shroud, which in the FIG. 4 which has a side view towards A FIG. 3 represents, can be seen.
  • the induction plates 3 are advantageously electrically isolated from each other.
  • FIG. 4 a plurality of induction plates 3 are shown. An increase in the number of induction plates 3 leads to an increase in the effect of eddy current development.
  • FIG. 5 shows a plan view of the shroud 2 seen in the direction of the blade axis 7.
  • the blade axis 7 is thus perpendicular to the plane of the drawing.
  • the arrows 10, 11, 12 represent possible undesired vibration directions 10, 11, 12. All of these vibration directions 10, 11, 12 have a component which points in the axial direction 6. The vibrations occurring in this axial direction 6 are decelerated by eddy current effects.
  • the magnet 5 is, as in FIG. 8 represented horseshoe-shaped or U-shaped.
  • the magnet 5 has for this purpose a long edge 13 and two short edges 14 and 15.
  • the short edge 14 is bent by approximately an angle ⁇ of 120 ° with respect to the long edge 13.
  • the short edge 15 is bent by the angle ⁇ of approximately 120 ° with respect to the long edge 13.
  • the angle ⁇ may have a value range between 90 ° and 160 ° in alternative embodiments of the magnet 5.
  • the short edge 14 is designed as a magnetic north pole and the short edge 15 as a magnetic south pole. Between the magnetic north pole N and the south magnetic pole S, a magnetic field B is formed, which for physical reasons on the shortest distance between the magnetic north pole and the magnetic south pole S has a homogeneous distribution.
  • the magnetic field B becomes inhomogeneous.
  • the inhomogeneity of the magnetic field B in the radial direction and thus also in a circumferential direction 17 is eliminated by arranging a plurality of magnets 5 in the circumferential direction 17 on the housing.
  • the magnetic field B is thereby homogeneous in the circumferential direction 17.
  • FIG. 9 the magnetic field B of a magnet 5, not shown, is shown.
  • the FIG. 9 shows in the axial direction 6 seen the magnetic field B in the region of the shroud 2. It can be clearly seen that the field line from the magnetic north pole to the south magnetic pole assumes a circular orbit-like shape. The shrouds 2 move in the circumferential direction 17 through this magnetic field B.
  • the selected black and white representation of the magnetic field is symbolized by white a strong magnetic field and black or dark a weak magnetic field.
  • FIG. 10 the magnetic field B of a magnet 5 offset in the circumferential direction 17 is shown.
  • the magnetic field lines are formed like a circle.
  • a magnetic field B can be seen, which can be seen by a superimposition of several magnetic fields of the individual magnets 5. It can be clearly seen that especially at a certain height, which is marked at -1, for example, the magnetic field in the circumferential direction 17, which is represented by the X-axis, is unambiguously homogeneous. Accordingly, an induction plate moved in this X direction does not experience a disturbing magnetic deflection force in the form of the Lorenz force because the magnetic fields and the direction of movement are parallel to one another.
  • the Y-axis in the FIGS. 9, 10 and 11 give a spatial arrangement again.
  • the top edge of the FIGS. 9, 10 and 11 symbolize the housing.
  • the Y-axis points in the direction of the blade axis 7, which points in the radial direction 16.
  • the magnets 5 are designed as permanent magnets or as electrically controlled magnets.
  • the magnets 5 are arranged one behind the other in the circumferential direction 17, which leads to a first series of magnetic circuits 18.
  • a number of n magnets 5 in the circumferential direction 17 are provided, wherein an n represents a positive integer.
  • the magnets 5 are at a regular distance from u n arranged one behind the other, where u represents the circumference of the inner peripheral surface.
  • a second magnetic circuit row 19 comprising a plurality of magnets 5 is arranged.
  • the second magnetic circuit row 19 comprises a plurality of circumferentially arranged 17 magnets 5 in a row.
  • the second magnetic circuit row 19 has at a regular distance from u n consecutively arranged magnets 5.
  • another third magnetic circuit row 20 are arranged in the axial direction 6 behind the second magnetic circuit row 19.
  • This third series of magnetic circuits 20 also includes a plurality of magnets 5 arranged at a regular distance from each other u n arranged one behind the other.
  • the second magnetic circuit row 19 is arranged offset from the first magnetic circuit row 18.
  • the third magnetic circuit row 20 is in turn offset against the second magnetic circuit row 19.
  • the displacement of the third magnetic circuit row 20 relative to the second magnetic circuit row 19 and the displacement of the second magnetic circuit row 19 relative to the first magnetic circuit row 18 should be equidistant.
  • the offset 21 may be an entire long edge 13.
  • the offset 21 may be half a long edge 13.
  • the offset may be one quarter of the long edge 13.
  • the distance 22 results inevitably from the size of the magnet 5, in particular the long edge 13 and the number n of magnets and the circumference u, since the magnets 5 at equidistant intervals 22 to one another Magnetic circuit row 18, 19, 20 are arranged.
  • FIG. 6 is a view in the axial direction 6 on the blade 1 and the magnets 5 can be seen.
  • the axial direction 6 is perpendicular to the plane of the drawing.
  • the blades 1 rotate about the axis of rotation 23.
  • the arrangement of the magnets 5 corresponds to the arrangement according to FIG. 7 , The arrangement of the magnets in FIG. 6 is shown only symbolically.
  • the magnets 5 are arranged around the entire inner surface of the housing. Of course, the north magnetic poles N and the south magnetic poles S of the individual magnets 5 on a circular path 24, wherein the circular path 24 is rotationally symmetrical about the axis of rotation 23 is directed.
  • the circular path 24 extends along an inner peripheral surface of the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Anordnung zur Dämpfung von Schaufelschwingungen in einer Strömungsmaschine, wobei die Schaufelschwingungen durch eine Anordnung aus Magneten (5) und mehreren Induktionsplatten (3) besteht und die nicht erwünschte Schwingung der Schaufel (1) durch die Entstehung von Wirbelströmen gedämpft wird, wobei die Induktionsplatten (3) parallel zur Rotationsachse (23) gerichtet sind und das durch die Magnete (5) hervorgerufene Magnetfeld (B) in Umfangsrichtung homogen ausgebildet ist.

Description

  • Die Erfindung betrifft eine Strömungsmaschine, insbesondere eine Dampfturbine, umfassend eine um eine Rotationsachse drehbar angeordnete und entlang einer Schaufelachse gerichtete Turbinenschaufel, ein um die Turbinenschaufel angeordnetes Gehäuse, eine in der Turbinenschaufelspitze angeordnete Induktionsplatte und einen im Gehäuse angeordneten Magneten.
  • Unter der Sammelbezeichnung Strömungsmaschinen werden Wasserturbinen, Dampf- und Gasturbinen, Windräder, Kreiselpumpen und Kreiselverdichter sowie Propeller zusammengefasst. Allen diesen Maschinen ist gemeinsam, dass sie dem Zweck dienen, einem Fluid Energie zu entziehen, um damit eine andere Maschine anzutreiben oder umgekehrt einem Fluid Energie zuzuführen, um dessen Druck zu erhöhen.
  • In einer Strömungsmaschine erfolgt die Energieumsetzung indirekt und nimmt den Weg über die kinetische Energie des Strömungsmediums. In einer Turbine beispielsweise strömt das Strömungsmedium durch feststehende Leitschaufeln, wobei sich die Geschwindigkeit und damit die kinetische Energie des Strömungsmediums auf Kosten seines Drucks erhöht. Durch die Form der Leitschaufeln entsteht eine Geschwindigkeitskomponente in der Umfangsrichtung des Laufrades. Das Fluid bzw. Strömungsmedium gibt seine kinetische Energie an den Rotor ab, indem der Betrag der Geschwindigkeit und die Richtung beim Durchströmen der von den Laufschaufeln gebildeten Kanälen verändert wird. Das Laufrad wird durch die dabei entstehenden Kräfte angetrieben.
  • Die rotierenden Schaufeln in einer Strömungsmaschine sind für möglichst große Betriebsbedingungen resonanzfrei ausgelegt. Wenn sich die Betriebsbedingungen ändern, z.B. durch Volumenstromänderungen, können die Schaufeln zu Schwingungen angeregt werden, was zu einem Versagen der Schaufeln führen könnte, wenn Schwingungsresonanzen zu zu hohen mechanischen Beanspruchungen führen. Es sind verschiedene Einrichtungen entwickelt worden, um diese Schwingungen zu dämpfen. Beispielsweise ist es bekannt, Schaufeln einander zu koppeln, um dadurch Schwingungen zu dämpfen.
  • In der DE 199 37 146 A1 wird eine Strömungsmaschine vorgestellt, bei der Permanentmagnete in die Schaufelspitze eingearbeitet sind, um benachbarte Turbinenschaufeln durch magnetische Kräfte zu koppeln.
  • Die EP 0 727 564 B1 offenbart eine Strömungsmaschine mit Turbinenschaufeln und einem um die Turbinenschaufel angeordneten Gehäuse, wobei im Gehäuse aus Ringen bestehende Magnete auf den Umfang der Innenfläche des Gehäuses angeordnet sind. Die Turbinenschaufeln weisen auf den Spitzen ein leitfähiges Material auf, wodurch bei einer Bewegung dieser Turbinenschaufeln an den Magneten Schwingungen reduziert werden können.
  • In der EP 1 596 037 wird ebenfalls eine Turbinenschaufelanordnung offenbart, mit der Schwingungen reduziert werden sollen.
  • Die Schwingungen der Schaufeln sind unerwünscht, da sie zu Materialermüdung der Schaufel und der Rotorklaue führen können. Jeder Promillepunkt an verbessertem logarithmischem Dämpfungsdekrement ist erstrebenswert. Deckplattenschaufeln haben beispielsweise eine Gesamtdämpfung von 0,5% log dec. Eine Verdopplung dieser Größe führt rund zu einer Halbierung der Resonanzamplituden, was bedeuten kann, dass eine Mode weniger abzustimmen ist. Auch lässt sich dadurch der zulässige Drehzahlbereich aufweiten.
  • Die zur Verfügung stehenden Maßnahmen zur Dämpfung der Schwingungen haben den Nachteil, dass sie vergleichsweise viel Bauraum benötigen. Dieser Bauraum steht allerdings in der Regel nicht zur Verfügung. Ein weiterer einschränkender Faktor sind die hohen Fliehkräfte, die in Strömungsmaschinen vorkommen.
  • Die Schwingungsdämpfungsmethoden, die durch magnetische Kräfte hervorgerufen werden, wie z. B. in der EP 0 727 564 B1 , DE 199 37 146 A1 und der EP 1 596 037 A2 haben den Nachteil, dass die durch Wirbelströme erzeugten Kräfte nicht zwischen einer Bewegung der Turbinenschaufelspitze in der Hauptbewegung und einer störenden Schwingungsbewegung unterscheiden. Mit anderen Worten, eine Bewegung der Schaufel in Rotationsrichtung, d.h. in Umfangsrichtung wird durch die magnetischen Kräfte, die zu Wirbelströmen führen, beeinflusst, was unerwünscht ist. Eine nicht in der Umfangsrichtung ausgeführte Schwingungsbewegung, beispielsweise in axialer Richtung, soll durch magnetische Kräfte, die zu Wirbelströmen führen, gedämpft werden.
  • Wünschenswert wäre es eine Vorrichtung zu haben, die Schwingungen einer Schaufel dämpft, wobei die Vorrichtung keinen Einfluss auf die Bewegung der Schaufel in der Hauptrichtung, d.h. in der Umfangsrichtung hat.
  • An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Strömungsmaschine anzugeben, die eine wirksame Dämpfung von Schaufelschwingungen ermöglicht.
  • Diese Aufgabe wird gelöst durch eine Strömungsmaschine, insbesondere einer Dampfturbine, umfassend eine um eine Rotationsasche drehbar angeordnete und entlang einer Schaufelachse gerichtete Turbinenschaufel, ein um die Turbinenschaufel angeordnetes Gehäuse, eine in der Turbinenschaufelspitze angeordnete Induktionsplatte und einen im Gehäuse angeordneten Magneten, wobei die Induktionsplatte in einer Ebene ausgerichtet ist, die durch die Rotationsachse und einer radialen Richtung gebildet ist.
  • Ein wesentliches Merkmal der Erfindung ist es, dass sogenannte Induktionsplatten in der Schaufelspitze angeordnet sind. Solche Induktionsplatten sind aus einem geeigneten Material. Wobei dieses Material elektrisch leitfähig und daher geeignet ist, um Wirbelströme entstehen zu lassen. Diese Induktionsplatten werden entlang einer Ebene ausgerichtet, die durch die Rotationsachse und einer radialen Richtung gebildet ist. Diese Ebene ist selbstverständlich nicht stationär, d.h. diese Ebene rotiert um die Rotationsachse. Die Induktionsplatte ist dämpfungsoptimal, d. h. parallel zur Rotationsachse und parallel zur radialen Richtung ausgerichtet. Da die radiale Richtung im Betrieb zeitlich verändert wird, d.h. mit der Rotationsfrequenz um die Rotationsachse dreht, ist die Induktionsplatte immer senkrecht zum gegenüberliegenden Gehäuse ausgerichtet. Ein im Gehäuse angeordneter Magnet ist derart ausgerichtet, dass das Magnetfeld in Richtung der Induktionsplatten wirkt. Eine Bewegung der Induktionsplatte durch dieses Magnetfeld ruft Wirbelströme in der Induktionsplatte hervor, die zu einer Entwicklung von einem Gegenmagnetfeld führt, was gemäß der Lenzsch'en Regel entgegengesetzt dem äußeren Magnetfeld ausgebildet ist, was zu einer Gegenkraft führt, die schließlich zu einer Dämpfung führt.
  • Weitere vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • So ist es vorteilhaft, dass der magnetische Nordpol und der magnetische Südpol des Magneten auf einer Kreisbahn liegt, wobei die Kreisbahn rotationssymmetrisch um die Rotationsachse gerichtet ist. Da Strömungsmaschinen in der Regel einen hohen Grad an Symmetrie aufweisen, ist es erforderlich, dass das anliegende Magnetfeld sich quasi an der vorhandenen Symmetrie orientiert. Ein nicht entlang der Kreisbahn orientiertes Magnetfeld würde zu unerwünschten Nebeneffekten führen. Beispielsweise könnte eine erwünschte Schaufelbewegung abgebremst werden.
  • Das magnetische Feld kann durch einen Permanentmagneten oder elektrisch erzeugt werden. Das elektrisch erzeugte Magnetfeld kann vorteilhafterweise durch eine axialsymmetrische Spule mit einem Feld erreicht werden, das orthogonal zu den Platten angeordnet ist.
  • Vorteilhafterweise verläuft die Kreisbahn entlang einer innen liegenden Umfangsfläche des Gehäuses. Durch diese Maßnahme wird das Magnetfeld weiter homogenisiert bzw. symmetrisch ausgebildet. Dieses symmetrisch ausgebildete Magnetfeld führt zu einer gezielten Dämpfung von unerwünschten Schaufelschwingungen.
  • Der Magnet ist hierbei vorteilhafterweise hufeisenförmig bzw. U-förmig ausgebildet. Das magnetische Feld eines Magneten ist stark von seiner geometrischen Form abhängig. So ist das Magnetfeld eines Stabmagneten anders als das Magnetfeld eines hufeisenförmigen Magneten. Das Magnetfeld eines Stabmagneten ist im Vergleich zum hufeisenförmigen bzw. U-förmigen Magnet inhomogener. Eine Anordnung des hufeisenförmigen bzw. U-förmigen Magneten am Gehäuse, wobei die Schenkel der Gehäuse auf einer Kreisbahn angeordnet sind, führt zu einem relativ homogenen Feld, durch das die Induktionsplatte bewegt wird.
  • In einer weiteren vorteilhaften Weiterbildung werden mehrere Magnete verwendet, wobei die Magnete in Umfangsrichtung gesehen zu einer ersten Magnetenkreisreihe hintereinander angeordnet sind. Ein Wirbelstrom entsteht nur dann, wenn die Bewegung der Induktionsplatte senkrecht zu einem äußeren magnetischen Feld ist. Eine Bewegung der Induktionsplatte parallel zu einem äußeren Magnetfeld führt nicht zu Wirbelströmen und somit nicht zu einer Dämpfung der Schaufelschwingung. Ein einzelner Magnet hat naturgemäß ein mehr oder minder großes Streufeld, das neben parallelen auch senkrechte Komponenten zur Bewegungsrichtung der Induktionsplatte aufweist. Das bedeutet, dass die durch dieses einzelne Magnetfeld eines einzelnen Magneten bewegende Induktionsplatte einen parallelen Anteil des Magnetfeldes temporär durchfliegt. Werden wie in dieser vorteilhaften Weiterbildung vorgeschlagen, mehrere Magnete hintereinander in der Umfangsrichtung angeordnet, so werden die einzelnen, durch die einzelnen Magnete hervorgerufenen, Magnetfelder zu einem gemeinsamen in der Umfangsrichtung ausgebildeten Magnetfeld geordnet. Dieses gemeinsame Magnetfeld führt zu einem nahezu homogenen Feld in der Umfangsrichtung, wobei die Magnetfeldlinien nahezu kreisförmig am Umfang entlang ausgerichtet sind. Eine Bewegung der Induktionsplatte in Umfangsrichtung ist somit parallel zum Magnetfeld ausgerichtet, wodurch keine Wirbelströme erzeugt werden. Eine Bewegung der Induktionsplatte in dieser Richtung führt somit nicht zu störenden Kräften, die durch das Magnetfeld hervorgerufen werden. Es werden nunmehr lediglich diejenigen Bewegungen gebremst, die eine Komponente aufweisen, die quer zu den Magnetfeldlinien gerichtet sind. Solche Bewegungen sind beispielsweise Schwingungen in axialer Richtung. Da diese Schwingungsform eine Komponente aufweist, die senkrecht zu dem Magnetfeld ist, wird diese Schwingung durch das äußere Magnetfeld abgebremst.
  • In einer weiteren vorteilhaften Weiterbildung ist eine Anzahl von n Magneten in der Umfangsrichtung vorgesehen, wobei n eine ganze positive Zahl darstellt, wobei die Magnete in einem regelmäßigen Abstand von u n
    Figure imgb0001
    hintereinander angeordnet sind, wobei u den Umfang der innen liegenden Umfangsfläche darstellt. Dies führt dazu, dass die Anzahl der Magnete an den Umfang angepasst wird. Es ist von Vorteil, wenn die Magnete in äquidistanten Abständen zueinander auf dem Umfang angeordnet werden. Dadurch erhöht sich die Homogenität bzw. Symmetrie des Magnetfeldes. Eine nicht-äquidistante Anordnung der Magnete würde zu Inhomogenitäten im Magnetfeld führen, was zu störenden Wirbelströmen in den Induktionsplatten führt, die bei der Bewegung der Induktionsplatten in der Hauptrichtung auftreten.
  • In einer weiteren vorteilhaften Weiterbildung ist eine zweite Magnetenkreisreihe umfassend mehrere in Umfangsrichtung angeordnete Magnete vorgesehen, wobei die zweite Magnetenkreisreihe in axialer Richtung vor der ersten Magnetenkreisreihe angeordnet ist. Vorteilhafterweise sind in der zweiten Magnetenkreisreihe n Magnete vorgesehen, wobei die Magnete in einem regelmäßigen Abstand von u n
    Figure imgb0002
    hintereinander angeordnet sind. Dies ist eine weitere Maßnahme, um das Magnetfeld im Innengehäuse quasi entlang der Schaufelspitze zu homogenisieren. Dadurch werden Bewegungen in der Hauptrichtung nicht beeinflusst, wohingegen Bewegungen, die durch störende Schwingungen hervorgerufen werden, gedämpft werden.
  • In einer weiteren vorteilhaften Weiterbildung sind die Magnete der zweiten Magnetenkreisreihe zu den Magneten der ersten Magnetenkreisreihe zueinander versetzt angeordnet. Dies führt zu einer Homogenisierung des Magnetfeldes entlang der Umfangsrichtung im Gehäuse der Strömungsmaschine. Eine Bewegung der Induktionsplatte in der Hauptrichtung wird dadurch nicht beeinflusst, wohingegen Bewegungen der Induktionsplatte quer zur Hauptrichtung gedämpft werden.
  • Die Erfindung weist unter anderem den Vorteil auf, dass keine reibenden Teile benötigt werden, um Schwingungen zu dämpfen. Bei den bekannten Methoden wird meistens eine Verbindung aufgebaut zwischen den einzelnen Schaufeln, was zwangsläufig zu einer Reibung bei den Verbindungsstücken führt, die zu einem Verschleiß führen.
  • Ein weiterer Vorteil der Erfindung ist, dass sie bei Titanschaufeln anwendbar ist. Darüber hinaus ist die erfindungsgemäße Einrichtung sehr effektiv, wobei hohe Dämpfungswerte erreicht werden können.
  • Die Erfindung wird anhand eines Ausführungsbeispiels näher erläutert. Dabei haben Komponenten mit gleichen Bezugszeichen die gleiche Wirkung.
  • Es zeigen:
  • Figur 1
    eine perspektivische Ansicht einer Schaufelspitze mit Anordnung eines Magneten,
    Figur 2
    eine vergrößerte Darstellung einer Induktionsplatte mit Magnetfeld,
    Figur 3
    eine perspektivische Ansicht eines Deckbandes mit einer Induktionsplatte,
    Figur 4
    eine Seitenansicht der Deckplatte aus Figur 3 mit mehreren Induktionsplatten,
    Figur 5
    eine Draufsicht von oben auf die Deckplatte mit Induktionsplatten,
    Figur 6
    eine Seitenansicht von mehreren Schaufeln,
    Figur 7
    eine schematische Ansicht der Anordnung der Mag- nete,
    Figur 8
    eine schematische Darstellung eines Magneten,
    Figur 9
    Darstellung des Magnetfeldes eines Magneten,
    Figur 10
    Darstellung eines versetzt angeordneten Magnetfel- des durch einen Magneten,
    Figur 11
    Darstellung des Magnetfeldes durch mehrere erzeugte und zueinander versetzt angeordnete und in Umfangs- richtung verteilte Magnete.
  • Die Figur 1 zeigt eine Schaufel 1. Diese Schaufel 1 kann eine Turbinenschaufel oder eine Verdichterschaufel sein. Die Schaufel 1 wird auf einem nicht dargestellten Rotor angeordnet. Die Anordnung aus Rotor und Schaufel 1 ist um eine in Figur 1 nicht dargestellte Rotationsachse 23 drehbar gelagert. Im Betrieb wird eine Drehung um diese Rotationsachse 23 mit einer Drehfrequenz ω ausgeführt. Die Hauptbewegung der Schaufel 1 verläuft entlang des Rotorumlaufes. Eine diese die Hauptbewegungen überlagerte und ungewollte Bewegung ist die Schwingung der Schaufel 1. Diese störenden Schwingungen können mit Hilfe von Wirbelströmen gedämpft werden. Die Anordnung der Induktionsplatten 3 und des Magnetfeldes führen dazu, dass keine die Hauptbewegung bremsenden Kraftkomponenten entstehen, da diese den Motor bremsen.
  • Die Schaufel 1 weist ein Deckband 2 auf, in dem Induktionsplatten 3 angeordnet sind. Das Deckband 2 ist an einem Schaufelblatt 4 angeordnet. Der Rotor mit den Schaufeln 1 wird in einer Strömungsmaschine, die nicht dargestellt ist, drehbar gelagert. Um den Rotor und den Schaufeln 1 ist ein Gehäuse angeordnet. Das Gehäuse weist einen Magneten 5 auf. In der Figur 1 ist der Übersichtlichkeit wegen lediglich der magnetische Nordpol N und der magnetische Südpol S bildlich dargestellt. Die Schaufel 1 führt eine störende Schwingung in axialer Richtung 6 aus. Die Induktionsplatte 3 ist hierbei in einer Ebene ausgerichtet, die durch die Rotationsachse 23 und einer radialen Richtung gebildet ist. Diese radiale Richtung ist in der Figur 1 durch eine Schaufelachse 7 darstellbar. Im Betrieb rotiert diese Schaufelachse 7 mit der Drehfrequenz ω um die Rotationsachse 23.
  • Die Figur 2 zeigt eine einzelne Induktionsplatte 3 und deren Anordnung zum Magnetfeld B des Magneten 5. Der Übersichtlichkeit wegen ist lediglich der magnetische Nordpol N und der magnetische Südpol S des Magneten 5 in der Figur 2 dargestellt.
  • Die Induktionsplatte 3 führt eine gewollte Bewegung Vrot in Umfangsrichtung 17 und eine störende Bewegung Vvib in axialer Richtung 6 aus. Durch die Bewegung der Induktionsplatte 3 in axialer Richtung 6 wirkt eine Lorenz-Kraft proportional mit der Geschwindigkeit, da das Magnetfeld B senkrecht zu der Induktionsplatte 3 steht. Diese Lorenz-Kraft führt zu einem Wirbelstrom, der der Bewegung der Induktionsplatte 3 entgegen wirkt, wodurch die Schwingung der Induktionsplatte 3 gebremst wird.
  • Die Hauptbewegung führt jedoch nicht auf wesentliche Wirbelströme, da die Induktionsplatte 3 in der Bewegungsrichtung bewegbar ist und damit dem Stromfluss keinen Widerstand entgegensetzt. Dadurch stellt sich keine wesentliche Lorenzkraft ein, die die Hauptbewegung bremsen könnte.
  • In der Figur 3 ist eine Ansicht des Deckbandes 2 mit einer einzelnen Induktionsplatte 3 dargestellt. Das Deckband 2 weist Ausnehmungen auf, die dazu ausgebildet sind, um benachbarte Deckbänder 2 sozusagen zu koppeln. Die Induktionsplatten 3 sind hierbei aus einem elektrisch leitfähigen Material ausgebildet und in das Deckband 2 eingearbeitet. Das Deckband 2 und eine obere Kante 8 der Induktionsplatte 3 ist mit einer Oberfläche 9 des Deckbandes planar, was in der Figur 4, die eine Seitenansicht in Richtung A aus Figur 3 darstellt, zu sehen ist.
  • Die Induktionsplatten 3 sind vorteilhafterweise voneinander elektrisch isoliert.
  • In der Figur 4 sind mehrere Induktionsplatten 3 dargestellt. Eine Erhöhung der Anzahl der Induktionsplatten 3 führt zu einer Vergrößerung des Effekts der Wirbelstromentstehung.
  • Die Figur 5 zeigt eine Draufsicht auf das Deckband 2 in Richtung der Schaufelachse 7 gesehen. Die Schaufelachse 7 steht somit senkrecht zur Zeichenebene. Die Pfeile 10, 11, 12 stellen mögliche unerwünschte Schwingungsrichtungen 10, 11, 12 dar. All diese Schwingungsrichtungen 10, 11, 12 weisen eine Komponente auf, die in axialer Richtung 6 zeigt. Die in dieser axialen Richtung 6 auftretenden Schwingungen werden durch Wirbelstromeffekte gebremst.
  • Es lassen sich Optimierungen bezüglich der Orientierung der Induktionsplatten 3 vornehmen, dergestalt, dass bestimmte Moden vorrangig gedämpft werden. Auch sind Kombinationen von Anordnungen auf eine oder verschiedene Schaufeln 1 im Verbund denkbar.
  • Der Magnet 5 ist, wie in Figur 8 dargestellt, hufeisenförmig bzw. U-förmig ausgebildet. Der Magnet 5 weist dazu eine lange Kante 13 und zwei kurze Kanten 14 und 15 auf. Die kurze Kante 14 ist um ca. einen Winkel α von 120° gegenüber der langen Kante 13 gebogen. Ebenso ist die kurze Kante 15 um den Winkel α von ungefähr 120° gegenüber der langen Kante 13 gebogen. Der Winkel α kann in alternativen Ausführungsformen des Magneten 5 einen Wertebereich zwischen 90° und 160° aufweisen. Die kurze Kante 14 ist als magnetischer Nordpol und die kurze Kante 15 als magnetischer Südpol ausgebildet. Zwischen dem magnetischen Nordpol N und dem magnetischen Südpol S ist ein magnetisches Feld B ausgebildet, das aus physikalischen Gründen auf der kürzesten Strecke zwischen dem magnetischen Nordpol und dem magnetischen Südpol S eine homogene Verteilung hat. In einer radialen Richtung 16 wird das Magnetfeld B inhomogener. Die Inhomogenität des Magnetfeldes B in radialer Richtung und somit auch in einer Umfangsrichtung 17 wird dadurch behoben, dass mehrere Magnete 5 in der Umfangsrichtung 17 am Gehäuse angeordnet werden. Das Magnetfeld B wird dadurch in Umfangsrichtung 17 homogener.
  • In der Figur 9 ist das Magnetfeld B eines nicht dargestellten Magneten 5 dargestellt. Die Figur 9 zeigt in axialer Richtung 6 gesehen das Magnetfeld B im Bereich des Deckbandes 2. Es ist deutlich zu sehen, dass die Feldlinie vom magnetischen Nordpol zum magnetischen Südpol eine kreisbahnähnliche Form annimmt. Die Deckbänder 2 bewegen sich in Umfangsrichtung 17 durch dieses Magnetfeld B. In der in Figur 9 gewählten Schwarzweißdarstellung des Magnetfeldes wird mit Weiß ein starkes Magnetfeld und mit Schwarz bzw. Dunkel ein schwaches Magnetfeld symbolisiert.
  • In der Figur 10 ist das Magnetfeld B eines in der Umfangsrichtung 17 versetzten Magneten 5 dargestellt. Zu der Darstellung des Magnetfeldes B in der Figur 10 gilt das Gleiche wie zur Figur 9. Auch hier sind die Magnetfeldlinien kreisähnlich ausgebildet.
  • In der Figur 11 ist schließlich ein Magnetfeld B zu sehen, das durch eine Überlagerung mehrerer Magnetfelder der einzelnen Magnete 5 zu sehen ist. Es ist deutlich zu erkennen, dass insbesondere in einer bestimmten Höhe, die bei -1 beispielsweise gekennzeichnet ist, das Magnetfeld in der Umfangsrichtung 17, die durch die X-Achse dargestellt ist, zweifelsfrei homogen ist. Eine in dieser X-Richtung bewegte Induktionsplatte erfährt demnach keine störende magnetische Ablenkkraft in Form der Lorenz-Kraft, weil die Magnetfelder und die Bewegungsrichtung parallel zueinander sind.
  • Die Y-Achse in den Figuren 9, 10 und 11 geben eine räumliche Anordnung wieder. Beispielsweise könnte die obere Kante der Figur 9, 10 und 11 das Gehäuse symbolisieren. Die Y-Achse weist in Richtung der Schaufelachse 7, die in die radiale Richtung 16 zeigt.
  • Die Magnete 5 sind als Permanentmagnete oder als elektrisch gesteuerte Magnete ausgebildet.
  • Die Magnete 5 werden in Umfangsrichtung 17 gesehen hintereinander angeordnet, was zu einer ersten Magnetenkreisreihe 18 führt. Es wird hierbei eine Anzahl von n Magneten 5 in der Umfangsrichtung 17 vorgesehen, wobei eine n eine positive ganze Zahl darstellt. Die Magnete 5 werden in einem regelmäßigen Abstand von u n
    Figure imgb0003
    hintereinander angeordnet, wobei u den Umfang der innen liegenden Umfangsfläche darstellt. In der axialen Richtung 6 gesehen hinter der ersten Magnetenkreisreihe 18 wird eine zweite aus mehreren Magneten 5 umfassende zweite Magnetenkreisreihe 19 angeordnet. Die zweite Magnetenkreisreihe 19 umfasst mehrere in Umfangsrichtung 17 angeordnete Magnete 5 hintereinander. Die zweite Magnetenkreisreihe 19 weist in einem regelmäßigen Abstand von u n
    Figure imgb0004
    hintereinander angeordnete Magnete 5 auf. Des Weiteren kann eine weitere dritte Magnetenkreisreihe 20 in axialer Richtung 6 hinter der zweiten Magnetenkreisreihe 19 angeordnet werden. Auch diese dritte Magnetenkreisreihe 20 umfasst mehrere Magnete 5, die in einem regelmäßigen Abstand von u n
    Figure imgb0005
    hintereinander angeordnet sind.
  • Damit das Magnetfeld möglichst homogen ausgebildet wird, wird die zweite Magnetenkreisreihe 19 gegen die erste Magnetenkreisreihe 18 versetzt angeordnet. Die dritte Magnetenkreisreihe 20 wird wiederum gegen die zweite Magnetenkreisreihe 19 versetzt. Die Versetzung der dritten Magnetenkreisreihe 20 gegenüber der zweiten Magnetenkreisreihe 19 und die Versetzung der zweiten Magnetenkreisreihe 19 gegenüber der ersten Magnetenkreisreihe 18 sollte äquidistant sein. Die Versetzung 21 kann eine gesamte lange Kante 13 sein. Die Versetzung 21 kann eine halbe lange Kante 13 sein. Ebenso kann in einer alternativen Ausführungsform die Versetzung ein Viertel der langen Kante 13 sein. Zwischen den einzelnen Magneten 5 ist ein Abstand 22. Der Abstand 22 ergibt sich zwangsläufig aus der Größe des Magneten 5, insbesondere der langen Kante 13 und der Anzahl n an Magneten und dem Umfang u, da die Magnete 5 in äquidistanten Abständen 22 zueinander zu einer Magnetenkreisreihe 18, 19, 20 angeordnet werden.
  • In der Figur 6 ist eine Sicht in axialer Richtung 6 auf die Schaufel 1 und die Magneten 5 zu sehen. Die axiale Richtung 6 ist senkrecht zur Zeichenebene. Die Schaufeln 1 rotieren um die Rotationsachse 23. Die Anordnung der Magnete 5 entspricht der Anordnung gemäß Figur 7. Die Anordnung der Magnete in Figur 6 ist lediglich symbolhaft dargestellt. Die Magnete 5 sind um die gesamte Innenfläche des Gehäuses angeordnet. Selbstverständlich sind die magnetischen Nordpole N und die magnetischen Südpole S der einzelnen Magnete 5 auf einer Kreisbahn 24, wobei die Kreisbahn 24 rotationssymmetrisch um die Rotationsachse 23 gerichtet ist. Die Kreisbahn 24 verläuft entlang einer innen liegenden Umfangsfläche des Gehäuses.

Claims (11)

  1. Strömungsmaschine,
    insbesondere Dampfturbine,
    umfassend eine um eine Rotationsachse (23) drehbar angeordnete und entlang einer Schaufelachse (7) gerichtete Schaufel (1),
    ein um die Schaufel (1) angeordnetes Gehäuse,
    eine in der Schaufelspitze angeordnete Induktionsplatte (3) und einen im Gehäuse angeordneten Magneten (5),
    dadurch gekennzeichnet, dass
    die Induktionsplatte (3) in einer Ebene ausgerichtet ist,
    die durch die Rotationsachse (23) und einer radialen Richtung (16) gebildet ist.
  2. Strömungsmaschine nach Anspruch 1,
    wobei der magnetische Nordpol (N) und der magnetische Südpol (S) des Magneten (5) auf einer Kreisbahn (24) liegen,
    wobei die Kreisbahn (24) rotationssymmetrisch um die Rotationsachse (23) gerichtet ist.
  3. Strömungsmaschine nach Anspruch 2,
    wobei die Kreisbahn (24) entlang einer innen liegenden Umfangsfläche des Gehäuses verläuft.
  4. Strömungsmaschine nach Anspruch 1, 2 oder 3,
    wobei die Induktionsplatte (3) aus einem elektrisch leitfähigen Material ausgebildet ist.
  5. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei der Magnet (5) hufeisenförmig ausgebildet ist.
  6. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei der Magnet (5) U-förmig ausgebildet ist.
  7. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei mehrere, in Umfangsrichtung (17) gesehen, Magnete (5) hintereinander zu einer ersten Magnetenkreisreihe (18) angeordnet sind.
  8. Strömungsmaschine nach Anspruch 7,
    wobei eine Anzahl von n Magneten (5) in der Umfangsrichtung (17) vorgesehen sind,
    wobei n eine positive ganze Zahl darstellt, und die Magnete (5) in einem regelmäßigen Abstand von u n
    Figure imgb0006
    hintereinander angeordnet sind,
    wobei u den Umfang der innen liegenden Umfangsfläche darstellt.
  9. Strömungsmaschine nach Anspruch 7 oder 8,
    wobei eine zweite Magnetenkreisreihe (19), umfassend mehrere in Umfangsrichtung (17) angeordnete Magnete (5) angeordnet sind,
    wobei die zweite Magnetenkreisreihe (19) in axialer Richtung von der ersten Magnetenkreisreihe (18) angeordnet ist.
  10. Strömungsmaschine nach Anspruch 9,
    wobei n Magnete in der zweiten Magnetenkreisreihe (19) vorgesehen sind und
    die Magneten (5) in einem regelmäßigen Abstand von u n
    Figure imgb0007
    hintereinander angeordnet sind.
  11. Strömungsmaschine nach Anspruch 10,
    wobei die Magnete (5) der zweiten Magnetenkreisreihe (19) versetzt zu den Magneten (5) der ersten Magnetenkreisreihe (18) angeordnet sind.
EP07024982A 2007-12-21 2007-12-21 Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen Withdrawn EP2072755A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP07024982A EP2072755A1 (de) 2007-12-21 2007-12-21 Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen
US12/809,205 US8568088B2 (en) 2007-12-21 2008-11-25 Magnetic device for damping blade vibrations in turbomachines
JP2010538535A JP5143236B2 (ja) 2007-12-21 2008-11-25 流体機械における翼振動減衰用磁気装置
CN200880121918.4A CN101952554B (zh) 2007-12-21 2008-11-25 用于在流体机械中缓冲叶片振动的磁性装置
EP08864578A EP2229506B1 (de) 2007-12-21 2008-11-25 Magnetische vorrichtung zur dämpfung von schaufelschwingungen bei strömungsmaschinen
PCT/EP2008/066156 WO2009080433A1 (de) 2007-12-21 2008-11-25 Magnetische vorrichtung zur dämpfung von schaufelschwingungen bei strömungsmaschinen
AT08864578T ATE514837T1 (de) 2007-12-21 2008-11-25 Magnetische vorrichtung zur dämpfung von schaufelschwingungen bei strömungsmaschinen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07024982A EP2072755A1 (de) 2007-12-21 2007-12-21 Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen

Publications (1)

Publication Number Publication Date
EP2072755A1 true EP2072755A1 (de) 2009-06-24

Family

ID=39884199

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07024982A Withdrawn EP2072755A1 (de) 2007-12-21 2007-12-21 Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen
EP08864578A Not-in-force EP2229506B1 (de) 2007-12-21 2008-11-25 Magnetische vorrichtung zur dämpfung von schaufelschwingungen bei strömungsmaschinen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08864578A Not-in-force EP2229506B1 (de) 2007-12-21 2008-11-25 Magnetische vorrichtung zur dämpfung von schaufelschwingungen bei strömungsmaschinen

Country Status (6)

Country Link
US (1) US8568088B2 (de)
EP (2) EP2072755A1 (de)
JP (1) JP5143236B2 (de)
CN (1) CN101952554B (de)
AT (1) ATE514837T1 (de)
WO (1) WO2009080433A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677589A (zh) * 2020-06-10 2020-09-18 中国船舶重工集团公司第七0三研究所 复合弹性悬臂式燃气轮机涡轮支撑环减振抗冲组件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088143A1 (en) * 2010-12-20 2012-06-28 Nrg Systems Inc. System and method for damping a wind vane
DE102012201048B4 (de) * 2012-01-25 2014-03-27 MTU Aero Engines AG Verfahren und Dämpfungseinrichtung zur Schwingungsdämpfung einer Schaufel einer Strömungsmaschine, sowie Strömungsmaschine
JP6380845B2 (ja) * 2014-12-22 2018-08-29 三菱日立パワーシステムズ株式会社 回転機械
US10371050B2 (en) * 2014-12-23 2019-08-06 Rolls-Royce Corporation Gas turbine engine with rotor blade tip clearance flow control
US11148784B2 (en) * 2017-03-31 2021-10-19 Alluvionic, Inc. Propeller system with directional thrust control
JP7272935B2 (ja) * 2019-11-18 2023-05-12 三菱重工業株式会社 回転機械用の振動抑制装置及び回転機械
US20230192282A1 (en) * 2020-02-03 2023-06-22 Kymatics, Llc Rotor active stability control
US11536144B2 (en) 2020-09-30 2022-12-27 General Electric Company Rotor blade damping structures
US11739645B2 (en) 2020-09-30 2023-08-29 General Electric Company Vibrational dampening elements
JP2023063900A (ja) 2021-10-25 2023-05-10 三菱重工業株式会社 翼、及びブリスク翼
US11560801B1 (en) 2021-12-23 2023-01-24 Rolls-Royce North American Technologies Inc. Fan blade with internal magnetorheological fluid damping
US11746659B2 (en) 2021-12-23 2023-09-05 Rolls-Royce North American Technologies Inc. Fan blade with internal shear-thickening fluid damping

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE426057C (de) * 1924-10-17 1926-03-01 Kopp & Kausch Vorrichtung zur Verhinderung von Eisbildung an Pressluftturbinen
US5365663A (en) * 1992-04-28 1994-11-22 Westinghouse Electric Corporation Method of attaching a monitor target to a shrouded blade
US5490759A (en) * 1994-04-28 1996-02-13 Hoffman; Jay Magnetic damping system to limit blade tip vibrations in turbomachines
EP0727564B1 (de) 1995-02-17 1998-11-04 Abb Research Ltd. Schwingungsdämpfung für Turbinenschaufeln
EP0928738A2 (de) * 1998-01-08 1999-07-14 Electric Boat Corporation Verstellpropelleranordnung
DE19937146A1 (de) 1999-08-06 2001-02-08 Abb Research Ltd Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Turbomaschinen
GB2409936A (en) * 2001-02-09 2005-07-13 Rolls Royce Plc Integral electrical machine in gas turbine
EP1596037A2 (de) 2004-05-13 2005-11-16 ROLLS-ROYCE plc Schaufelanordnung
GB2438185A (en) * 2006-05-17 2007-11-21 Rolls Royce Plc An apparatus for preventing ice accretion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214393B1 (de) * 1985-08-31 1989-12-13 BBC Brown Boveri AG Einrichtung zur Dämpfung von Schaufelschwingungen bei Turbomaschinen
US6895751B1 (en) * 2004-03-08 2005-05-24 Christopher Greentree Vane control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE426057C (de) * 1924-10-17 1926-03-01 Kopp & Kausch Vorrichtung zur Verhinderung von Eisbildung an Pressluftturbinen
US5365663A (en) * 1992-04-28 1994-11-22 Westinghouse Electric Corporation Method of attaching a monitor target to a shrouded blade
US5490759A (en) * 1994-04-28 1996-02-13 Hoffman; Jay Magnetic damping system to limit blade tip vibrations in turbomachines
EP0727564B1 (de) 1995-02-17 1998-11-04 Abb Research Ltd. Schwingungsdämpfung für Turbinenschaufeln
EP0928738A2 (de) * 1998-01-08 1999-07-14 Electric Boat Corporation Verstellpropelleranordnung
DE19937146A1 (de) 1999-08-06 2001-02-08 Abb Research Ltd Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Turbomaschinen
GB2409936A (en) * 2001-02-09 2005-07-13 Rolls Royce Plc Integral electrical machine in gas turbine
EP1596037A2 (de) 2004-05-13 2005-11-16 ROLLS-ROYCE plc Schaufelanordnung
GB2438185A (en) * 2006-05-17 2007-11-21 Rolls Royce Plc An apparatus for preventing ice accretion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677589A (zh) * 2020-06-10 2020-09-18 中国船舶重工集团公司第七0三研究所 复合弹性悬臂式燃气轮机涡轮支撑环减振抗冲组件

Also Published As

Publication number Publication date
US20100278636A1 (en) 2010-11-04
EP2229506B1 (de) 2011-06-29
CN101952554B (zh) 2014-06-18
JP2011506840A (ja) 2011-03-03
ATE514837T1 (de) 2011-07-15
WO2009080433A1 (de) 2009-07-02
CN101952554A (zh) 2011-01-19
EP2229506A1 (de) 2010-09-22
US8568088B2 (en) 2013-10-29
JP5143236B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
EP2229506B1 (de) Magnetische vorrichtung zur dämpfung von schaufelschwingungen bei strömungsmaschinen
DE102011054589B4 (de) Rotationsmaschine mit Abstandhaltern zur Steuerung der Fluiddynamik
DE102009036466A1 (de) Elektromotor
DE102011054551A1 (de) Rotationsmaschine mit ungleichmäßigem Laufschaufel- und Leitschaufelabstand
DE102013109203A1 (de) Wirbelunterbrechende Dichtungszähne für eine Dichtungsanordnung
EP2881591B1 (de) Pumpe und Verfahren zum Wuchten eines Rotors
EP2434098A1 (de) Schaufelanordnung und zugehörige Gasturbine
EP3199758A1 (de) Rotor in blisk- oder bling-bauweise eines flugtriebwerks
DE10032440A1 (de) Rotorspinnvorrichtung mit einer berührungslosen passiven radialen Lagerung des Spinnrotors
EP2848816B1 (de) Anordnung mit einer Turbomolekularpumpe sowie Verfahren zur Kompensation eines Magnetfeldes wenigstens eines in einer Turbomolekularpumpe angeordneten, ein magnetisches Störfeld erzeugenden Bauteiles
DE102010019197A1 (de) Schaufeln mit Schwingungsdämpfungssystem
EP1650441B1 (de) Vibrationsarme Vakuumpumpe
EP3074607B1 (de) Verdichter
DE102012201048B4 (de) Verfahren und Dämpfungseinrichtung zur Schwingungsdämpfung einer Schaufel einer Strömungsmaschine, sowie Strömungsmaschine
DE202020106225U1 (de) Vibrationsunterdrückungsvorrichtung für Rotationsmaschine und Rotationsmaschine
DE102011000208A1 (de) Laufrad für ein Gebläse
DE102009028745A1 (de) Entkopplung eines Antriebsmotors
DE3248085A1 (de) Verfahren und vorrichtung zum auswuchten rotierender systeme waehrend des betriebes
WO2008116738A1 (de) Gasturbine mit innengekühltem zuganker
DE10361229B4 (de) Spindelmotor mit Lagersystem
DE102017114153B4 (de) Elektromagnetischer Schwingungsanreger zur Schwingungsanregung der Schaufeln eines Schaufelkranzes
DE112011105315B4 (de) Gebläsevorrichtung und Gaslaser-Oszillationsvorrichtung
EP3596341B1 (de) Lüfter
WO2021047952A1 (de) Rotor für eine elektrische maschine
DE102007005384A1 (de) Strömungsarbeitsmaschine sowie Rotorschaufel einer Strömungsarbeitsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091229

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566