EP2067293A1 - Verfahren zur datenübertragung in einem kommunikationsnetz - Google Patents

Verfahren zur datenübertragung in einem kommunikationsnetz

Info

Publication number
EP2067293A1
EP2067293A1 EP07820384A EP07820384A EP2067293A1 EP 2067293 A1 EP2067293 A1 EP 2067293A1 EP 07820384 A EP07820384 A EP 07820384A EP 07820384 A EP07820384 A EP 07820384A EP 2067293 A1 EP2067293 A1 EP 2067293A1
Authority
EP
European Patent Office
Prior art keywords
data
data transmission
traffic
communication network
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07820384A
Other languages
English (en)
French (fr)
Inventor
Alejandro Ramirez
Michael Finkenzeller
Christian SCHWINGENSCHLÖGL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2067293A1 publication Critical patent/EP2067293A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate

Definitions

  • the invention is in the technical field of communica tion ⁇ networks and relates to a method for transmitting data in a communication network.
  • the quality of service is expressed, for example, in jitter (deviation of the latency from its mean value), latency (delay of the end-to-end transmission), loss rate (probability that individual data packets are lost) and throughput (amount of data transmitted per unit of time) , While promised quality of service is not always required, it is essential for a particular type of traffic, such as the transmission of real-time data.
  • wireless communication networks Due to the susceptibility to errors, the quality of service in wireless communication networks is particularly important.
  • the popularity of wireless communication networks has increased significantly in recent years, for example, by wirelessly connecting portable computers to the Internet, with IEEE 802.11 wireless LANs (WLANs) being among the most widely used wireless technologies.
  • WLANs IEEE 802.11 wireless LANs
  • OFDM Orthogonal Frequency Division Multiplexing
  • bit error rate is the bit error rate (BER), ie the number of errors per unit of time.
  • BER bit error rate
  • each chip manufacturer generally uses its own maximum bit error rate, which is to be undershot .
  • SNR signal-to-noise ratio
  • BER Bitfeh ⁇ lerrate
  • HC Hyb ⁇ rid Coordinator
  • HCF Hybrid Coordinator Function
  • EDCF Enhanced Distributed Coordination Function
  • HCCA controlled channel access
  • AC Access Category
  • TS Traffic Stream
  • Input apt framework will see ⁇ with a Traffic Priority (TID) ver. This can take values between 0 and 15.
  • TXOP Transmission Opportunity
  • EDCF-TXOP a time interval in which a station is allowed to send.
  • the transmission facility is referred to as EDCF-TXOP if it was obtained in an EDCF competitive phase, or as polled TXOP if it was obtained through a QoS poll frame of a QoS-enhanced AP (QAP).
  • QAP QoS-enhanced AP
  • the maximum duration of a TXOP will be true ⁇ through the set by the QAP value TXOP limit.
  • the extended standard IEEE 802. He removes the restriction that stations in infrastructure mode can not communicate directly with each other. With IEEE 802. he stations no longer have to communicate via the access point (AP), but can directly (only) exchange traffic-specific data via the Direct Link Protocol (DLP). The access point can reject the communications ⁇ request. This measure greatly increases the available bandwidth.
  • DLP Direct Link Protocol
  • the sending station first sends a direct link request message via the AP to the receiving station, in which the supported data rates and other information are transmitted. Once the receiver has confirmed these parameters, the direct link between the two stations is established. Subsequently, data can be exchanged directly between sender and receiver. If no more data is transmitted, the Direct Link is disconnected by a timeout after a certain time. Thereafter, data is again transmitted via the AP.
  • block ACKs block acknowledgments
  • IEEE 802.11 WLANs use a simple stop-and-wait ACK. Through this procedural reindeer but a large overhead due to the i ⁇ gen confirmation is created by acknowledgment (ACK).
  • ACK acknowledgment
  • the IEEE 802.11b enhanced standard is designed to prevent low-priority traffic from interfering with higher-priority traffic.
  • a change in the transmission speed in the physical layer (PHY) is not provided here.
  • the present invention has the object to provide a method for data transmission in a communication network, with which an adjustment of the quality of service in the transmission channel to changed transmission conditions in the transmission channel or to the type of ver ⁇ traffic can take place.
  • a method for data transmission in a communication network is shown with a data transmission channel which connects data via a network node and is controlled by a network management (control device).
  • the network management Network Manage ment ⁇ device or control device
  • the network management may be a centralized or decentralized, in particular distributed in the network node network Manage ment ⁇ .
  • a minimum data transfer rate is determined by the Netzma ⁇ management for the purpose of data transmission in a data transmission channel, which is a resultant from a time assignment of the data transmission channel with traffic minimum required data transfer rate.
  • the data transmission rates available for data transmission in a transmission channel may in particular be data transmission rates fixed by a standard such as 802. He or proprietary data transmission rates used by a chip manufacturer.
  • the target data transmission rate resulting from the temporal assignment of the transmission channel ensures that the data transmission rate meets the requirements of the user.
  • the minimum target data transmission rate is thus a data Transmission rate which allows a transmission of the intended data traffic within a Zeitrah ⁇ mens provided for this purpose with an optimal bit error rate.
  • a supported by the network Manage ment ⁇ data transmission rate is selected for data transmission, which leads to a minimum bit error rate in data transmission. This is particularly important if only real-time data is to be transmitted via the data transmission channel.
  • a supported by the network management data transfer rate from ⁇ dependence of the type of data to be transmitted traffic is for data transmission ge ⁇ selected. If, for example, only real-time data is to be transmitted via the transmission channel, it is advantageous if a data transmission rate is selected for the data transmission, which results in a minimum bit error rate in the data transmission. To be transmitted simultaneously with the real-time data of other, less QoS-sensitive traffic over a transmission channel, it may be appropriate to allow a greater bit error rate than the minimum bit error rate, so as to provide sufficient time for the transfer ⁇ transmission of other traffic available ,
  • the method according to the invention can be applied particularly advantageously to the data transmission of a wireless communication network.
  • Such wireless Kirunikationsnet ⁇ zes may in particular be based on the IEEE 802. He.
  • a UEtra ⁇ transmission rate is selected as a function of parameters of the traffic Specifi- cation (TSPEC) element, if in the TSEC- element data are included.
  • TSPEC traffic Specifi- cation
  • a UEtra ⁇ transmission rate as a function of measurable parameters of the data traffic can be selected.
  • the pre ⁇ lie is higher layers of the communi ⁇ nikationsnetzes the type of traffic detected by time-sensitive real-time data. Alternatively, this can be done via a so-called fingerprint detection, such as the recognition of frame size and / or time period of Pa ⁇ keterzeugung, or the detection of the port on which an IP connection exists.
  • the invention further extends to a suitable for data processing, electronic, central or decentralized ⁇ network management (network management device or control device) for controlling the data transmission of a communication network, which is provided with a program code containing control commands, the network management for by ⁇ cause a procedure as described above.
  • network management device or control device network management device or control device
  • the invention extends to a network node of a communication network, which is part of a decentralized network management for controlling the data transmission of a communication network, which is provided with a program code containing control commands, which cause the network management to carry out a method as described above.
  • the invention extends to a machine-readable program code (computer program) of a suitable data processing network management for controlling the data transmission of a communication network, which control commands includes, for causing the network management to perform ei ⁇ nes method as described above.
  • the invention extends to a storage medium (computer program product) having a machine-readable program code stored thereon as described above.
  • a storage medium computer program product
  • the invention will now be explained nä ⁇ forth in the form of an embodiment, reference being genome ⁇ men to the accompanying figure. 2
  • Fig. 1 a via the signal-to-noise ratio (SNR) shows an example of applied bit error rate (BER) in depen ⁇ dependence of the data transfer rate (Mbps) of a wireless communication network;
  • Fig. 2 shows the structure of a Traffic Specification format Ele ⁇ management of the WLAN standard IEEE 802. He.
  • data transmission takes place in a wireless communication network based on the extended standard IEEE 802. He.
  • a selection of the data transfer rate is performed such that a data transmission takes place with a ⁇ resulting from a temporal assignment of the data transmission channel minimum Sollarianübertra ⁇ transmission rate.
  • a choice of the data transmission rate depends on the type of data traffic.
  • TSPEC Traffic Specification Element Format
  • Fig. 2 shows the structure of the TSPEC format. Accordingly, the information fields are "Element ID” 1, “Length” 2, “TS Info” 3, "Nominal MSDU Size” 4, “Maximum MSDU Size” 5, “Minimum Service Interval” 6, “Maximum Service Interval” 7 , Inactivity Interval 8, Suspension Interval 9, Service Start Time 10, Minimum Data Rate 11, Mean Data Rate 12, Peak Data Rate 13, Burst Size 14, Delay Bound “15,” minimum PHY Rate “16,” Surplus Bandwidth Allowance “17 and” Medium Time “provided 18th
  • the information field may in particular” are minimum PHY rate "16 to select the data transfer rate ge ⁇ uses in which a minimum data transfer rate in the physical layer (PHY) is specified.
  • the algorithm can for determining the data transmission rate on the transmission channel on measurable Pa ⁇ rametern of data traffic, such as bit rate, data packets / second, bit error rate, the distance between nodes, and / or the Informa ⁇ tion fields of the TSPEC element, if in the information ⁇ fields TSPEC element data are based.
  • measurable Pa ⁇ rametern of data traffic such as bit rate, data packets / second, bit error rate, the distance between nodes, and / or the Informa ⁇ tion fields of the TSPEC element, if in the information ⁇ fields TSPEC element data are based.
  • the specified in the information field "minimum PHY rate" 16 of the TSPEC element data transmission rate as REMtra ⁇ supply rate for transmission be selected supply channel data via the data transmission, assuming that there exists data in the information field ⁇ sem.
  • the hybrid controller transmission rate a higher data determined at the physical layer, so that there is sufficient time for the transfer of the other traffic ⁇ stream in the data transmission channel is available.
  • the Hybrid Controller is the centralized bandwidth manager that constantly monitors and identifies the best configuration of the communication network for optimal performance. Usually it is located in the access point and is responsible for controlling the access to the transmission medium and informing the clients about the communication parameters used.
  • a determination of the type of traffic can be carried over the height ⁇ ren layers of the communication network (OSI layers 3-7 in the model).
  • the lower layers detect the presence of zeitkriti ⁇ schem real-time traffic, such as through the use of filters or a so-called "fingerprint" - detection as the detection of frame size and / or Zeitpe- Riode a packet generation a connection.
  • the detection of the port on which there is an IP connection can be used for this purpose.
  • Non-time sensitive applications may also benefit from the method of the present invention because a low bit error rate means less packet loss, which under certain circumstances may result in higher throughput compared to a higher data rate.
  • a table is required to keep track of the data transfer rate chosen for each link on the physical layer.
  • Such a table can be updated permanently or periodically.
  • One possibility is to convert the variable with respect to the current data transfer rate of the physical layer "current PHY rate", which is already present in all WLAN cards, into a field that uses the Traffic ID field (TID) as an index can use each traffic flow for each of the 'cur ⁇ rent PHY rates "accordingly.
  • TID Traffic ID field
  • Another possibility is to implement a separate table in the firmware containing this information.
  • Another possibility is to use the already existing table, the TSPECs being kept for storing this information. Since the "current PHY rate "for each traffic flow is dynamically adapted to the current conditions of the wireless transmission channel, the possibility of updating this value, if neces ⁇ sary be given.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Datenübertragung in einem Kommunikationsnetz mit einer durch ein Netzmanagement gesteuerten Übertragung von Daten über einen Netzknoten verbindenden Datenübertragungskanal, bei welchem eine Datenübertragung mit einer sich aus einer zeitlichen Belegung des Datenübertragungskanals ergebenden minimalen Solldatenübertragungsrate erfolgt.

Description

Beschreibung
Verfahren zur Datenübertragung in einem Kommunikationsnetz
Die Erfindung liegt auf dem technischen Gebiet der Kommunika¬ tionsnetze und betrifft ein Verfahren zur Datenübertragung in einem Kommunikationsnetz.
Die Dienstgüte (QoS = Quality of Service) , das heißt, die Ge- samtheit aller Qualitätsmerkmale eines Kommunikationsnetzes aus Sicht eines Nutzers, ist eine wichtige Anforderung an al¬ le modernen Datenübertragungssysteme. So sind die Betreiber von Kommunikationsnetzen verpflichtet, dass Zusagen über die Dienstgüte eines Kommunikationsnetzes eingehalten werden. Die Dienstgüte drückt sich beispielsweise in Jitter (Abweichung der Latenzzeit von ihrem Mittelwert), Latenz (Verzögerung der End-zu-End-Übertragung) , Verlustrate (Wahrscheinlichkeit, dass einzelne Datenpakete verloren gehen) und Durchsatz (pro Zeiteinheit im Mittel übertragene Datenmenge) aus. Obgleich eine zugesagte Dienstgüte nicht immer erforderlich ist, ist sie essenziell für eine bestimmte Sorte Datenverkehr, wie beispielsweise die Übertragung von Echtzeit-Daten.
Aufgrund der Fehleranfälligkeit ist die Dienstgüte in draht- losen Kommunikationsnetzen besonders wichtig. Jedoch hat gerade die Popularität drahtloser Kommunikationsnetze in den letzten Jahren erheblich zugenommen, beispielsweise durch die drahtlose Anbindung tragbarer Computer an das Internet, wobei WLANs (WLAN = Wireless Local Area Network) nach dem Standard IEEE 802.11 zu den am häufigsten eingesetzten drahtlosen Technologien gehören.
Ein wesentlicher Punkt der Dienstgüte ist die Datenübertra¬ gungsrate. Beispielsweise sind im originalen Standard IEEE 802.11 und den nachfolgenden Ergänzungen zu diesem Standard verschiedene Datenübertragungsraten festgelegt, welche durch verschiedene Modulations- und Kanalkodierungsschemata ermög¬ licht sind. So spezifiziert der Standard IEEE 802.11 die Ver- wendung einer physikalischen Datenübertragungsrate von 1 Mbps (Megabit pro Sekunde) und 2 Mbps, die Erweiterung 802.11a un¬ terstützt auf Basis der OFDM-Technologie (OFDM = Orthogonal Frequency Division Multiplexing) Datenraten von bis zu 54 Mbps im 5 GHz-Band und die Erweiterung 802.11b unterstützt auf Basis der DSSS-Technologie (DSSS = Direct Sequence Spread Spectrum) Datenübertragungsraten von bis zu 11 Mbps im 2,4 GHz-Band. Im Jahre 2003 wurde der erweiterte Standard 802.11g offiziell gemacht, der Datenraten von bis zu 54 Mbps im 2,4- GHz-Band unterstützt.
Um gewissen Dienstgüteanforderungen gerecht zu werden, erscheint es sinnvoll, die Datenübertragungsrate in einer ge¬ wünschten Weise geänderten Bedingungen im Übertragungskanal anzupassen. Im Standard 802.11 und dessen Ergänzungen ist eine solche Änderung der Datenübertragungsrate jedoch nicht festgelegt, vielmehr sogar explizit als über den Umfang des Standards hinausgehend ausgenommen.
Aus diesem Grund sind einige Chiphersteller dazu übergegangen, Datenraten-Anpassungsschemata zu entwickeln, welche eine Anpassung der Datenübertragungsrate an geänderte Bedingungen im drahtlosen Übertragungskanal ermöglichen.
Beispielsweise ist in A. Kamerman et al . "WaveLAN-II: A high- performance wireless LAN for the unlicensed band" Bell Lab Technical Journal, Seiten 118-133, Sommer 1997, ein Algorithmus zur Anpassung der Datenübertragungsrate beschrieben, bei dem jeder Sender versucht, nach einer festen Anzahl von er- folgreichen Übertragungen mit einer gegebenen Datenübertragungsrate eine höhere Datenübertragungsrate zu nutzen, wobei nach ein oder zwei aufeinander folgenden Fehlern auf eine niedrigere Datenübertragungsrate geschaltet wird. Wenn zehn Datenpakete erfolgreich empfangen wurden oder alternativ ein Timer abgelaufen ist, wird die Datenübertragungsrate wieder erhöht. Eine Implementierung dieses Algorithmus ist jedoch besonders schwierig, da dies eine Änderung der Firmware einer Standardausrüstung verlangt, was jedoch in den USA und Europa durch Kommunikationskommissionen ausdrücklich untersagt ist.
In dem obigen Beispiel, wie auch mit anderen in der Praxis typischerweise angewandten Algorithmen zur Anpassung der Datenübertragungsrate wird stets versucht, eine möglichst hohe Datenübertragungsrate zu realisieren. Insbesondere wird hier¬ bei eine maximale Bitfehlerrate berücksichtigt, das heißt, die Datenübertragungsrate wird so gewählt, dass eine maximale Bitfehlerrate nicht überschritten wird, um so die dem Nutzer zugesagte Dienstgüte einzuhalten. Unter Bitfehlerrate ist die Bitfehlerhäufigkeit (BER = bit error rate), das heißt, die Anzahl der Fehler pro Zeiteinheit zu verstehen. Beispielswei¬ se bedeutet eine Bitfehlerrate von 3•106 dass von 1 Million übertragener Bits durchschnittlich 3 Bits falsch/verloren sein können. Jeder Chiphersteller verwendet hierbei im Allgemeinen seine eigene maximale Bitfehlerrate, die es zu unter¬ schreiten gilt.
Die wesentliche Einflussgröße der Bitfehlerrate ist der Ab¬ stand zwischen der sendenden Station und der empfangenden Station, da das vom Abstand abhängige Signal-Rausch- Verhältnis, das heißt, das Verhältnis von Nutzsignal zu Stör¬ signal, wesentlichen Einfluss auf die Bitfehlerrate hat.
Fig. 1 zeigt beispielhaft eine gegen das Signal-Rausch- Verhältnis (SNR = signal-to-noise ratio) aufgetragene Bitfeh¬ lerrate (BER) bei verschiedenen Datenübertragungsraten. Ersichtlich nimmt die Bitfehlerrate mit einem steigenden Sig- nal-Rausch-Verhältnis ab, wobei gleichzeitig die Datenüber¬ tragungsrate erhöht werden kann.
Bislang versuchen die Chiphersteller die Datenübertragungsraten so zu wählen, dass eine bestimmte maximale Paketfehlerra- te nicht überschritten wird. Jedoch ist eine solche Konfigu¬ ration lediglich für bestimmten Datenverkehr gut geeignet, während sie für anderen Datenverkehr schlechter geeignet ist. Beispielsweise erfordern Echtzeit-Daten, wie Internettelefo- nie (VoIP = Voice over IP) und Videokonferenzen, im Gegensatz zu Nicht-Echtzeit-Daten eine besonders niedrige Bitfehlerra¬ te, da die im IEEE 802.11 spezifizierten Algorithmen zum Wiedergewinnen verlorener Datenpakete zu langsam für Echtzeit- Anwendungen sind, so dass ein Verlust von Datenpaketen (Frames) möglichst zu vermeiden ist.
Aus diesem Grund wurden in den letzten Jahren Bemühungen unternommen, den Standard IEEE 802.11 in Hinblick auf die Dienstgüte zu verbessern, was in der Erweiterung IEEE 802. He erfolgt ist. Das wesentliche Element zur Unterstützung der Dienstgüte ist eine zentral koordinierende Instanz, der Hyb¬ rid Coordinator (HC) , mit einer korrespondierenden Hybrid Coordinator Function (HCF) auf dem Übertragungsmedium. HC be- nutzt zwei Zugriffsmethoden auf das Übertragungsmedium: entweder via Enhanced Distributed Coordination Function (EDCF) oder über den kontrollierten Kanalzugriff (HCCA) . HC führt dazu vier Access Category (AC) und acht Traffic Stream (TS) Queues auf der MAC (Medium Access Control) -Schicht ein. Ein- treffende Rahmen werden mit einer Traffic Priority (TID) ver¬ sehen. Diese kann Werte zwischen 0 und 15 annehmen. Die Frames mit den TID von 0 bis 7 werden auf vier ACs abgebildet und danach per EDCF versandt. Im Bereich zwischen 8 und 15 wird der Frame auf die Traffic Streams abgebildet und dann mittels kontrollierten Kanalzugriffs mit HCCA verschickt. Auf diese Weise werden eine strikt parametrisierte Dienstgüte bei den TS- und eine priorisierte Dienstgüte bei den AC- Warteschlangen unterstützt. Ein anderes eingeführtes Merkmal ist das Konzept der Transmission Opportunity (TXOP) . Hiermit wird ein Zeitintervall bezeichnet, in dem eine Station senden darf. Die Sendemöglichkeit wird als EDCF-TXOP bezeichnet, wenn sie in einer EDCF-Wettbewerbsphase erlangt wurde, oder als Polled-TXOP, wenn sie durch einen QoS Poll-Frame eines QoS-enhanced AP (QAP) erlangt wurde. Die maximale Dauer einer TXOP wird durch den vom QAP festgelegten Wert TXOP-Limit be¬ stimmt . Weiterhin ist in dem erweiterten Standard IEEE 802. He die Beschränkung aufgehoben, dass Stationen im Infrastruktur- Modus nicht direkt miteinander kommunizieren können. Mit IEEE 802. He müssen die Stationen nicht mehr über den Access Point (AP) kommunizieren, sondern können über das Direct Link Pro- tocol (DLP) direkt miteinander (lediglich) verkehrspezifische Daten austauschen. Der Access Point kann die Kommunikations¬ anfrage ablehnen. Durch diese Maßnahme wird die zur Verfügung stehende Bandbreite stark gesteigert. Mittels DLP sendet die sendende Station zunächst eine Direct Link Request-Nachricht über den AP an die empfangende Station, in der die unterstützten Datenraten und andere Informationen übermittelt werden. Sobald der Empfänger diese Parameter bestätigt hat, ist der Direct Link zwischen den beiden Stationen hergestellt. Anschließend können Daten direkt zwischen Sender und Empfänger ausgetauscht werden. Werden keine Daten mehr übertragen, so wird der Direct Link durch einen Timeout nach einer gewissen Zeit getrennt. Danach werden Daten wieder über den AP übertragen .
Schließlich seien zur Verbesserung der Dienstgütemerkmale im erweiterten Standard IEEE 802. He noch die Block Acknowledge- ments (Block-ACKs) erwähnt. Bis jetzt nutzen WLANs nach IEEE 802.11 ein einfaches Stop-and-Wait-ACK. Durch dieses Verfah- ren entsteht jedoch ein großer Overhead aufgrund der soforti¬ gen Bestätigung mittels Acknowledgement (ACK) . Bei Block-ACKs kann eine Gruppe von Datenpaketen gemeinsam übertragen werden. Der Empfänger überträgt anschließend nur ein Block-ACK an den Sender. Darin wird angegeben, wie viele der Pakete korrekt empfangen wurden, wodurch die Kanaleffizienz gesteigert wird.
Im Grunde soll durch den erweiterten Standard IEEE 802. He verhindert werden, dass Datenverkehr mit niedriger Priorität Datenverkehr mit höherer Priorität stört. Eine Änderung der Übertragungsgeschwindigkeit in der physikalischen Schicht (PHY) ist hierbei jedoch nicht vorgesehen. Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Datenübertragung in einem Kommunikationsnetz anzugeben, mit dem eine Anpassung der Dienstgüte im Übertragungskanal auf geänderte Übertragungsbedingungen im Übertragungskanal beziehungsweise an die Art des Datenver¬ kehrs erfolgen kann.
Diese Aufgabe wird nach dem Vorschlag der Erfindung durch ein Verfahren zur Datenübertragung in einem Kommunikationsnetz mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausges¬ taltungen der Erfindung sind durch die Merkmale der Unteransprüche angegeben.
Erfindungsgemäß ist ein Verfahren zur Datenübertragung in ei- nem Kommunikationsnetz (Kommunikationssystem) mit einer durch ein Netzmanagement (Steuereinrichtung) gesteuerten Übertragung von Daten über einen Netzknoten verbindenden Datenübertragungskanal gezeigt. Bei dem Netzmanagement (Netzmanage¬ ment-Einrichtung oder Steuereinrichtung) zur Steuerung der Datenübertragung kann es sich um ein zentrales oder dezentrales, insbesondere auf die Netzknoten verteiltes Netzmanage¬ ment handeln. Wesentlich hierbei ist, dass durch das Netzma¬ nagement zum Zwecke der Datenübertragung in einem Datenübertragungskanal eine minimale Datenübertragungsrate bestimmt wird, welche eine sich aus einer zeitlichen Belegung des Datenübertragungskanals mit Datenverkehr ergebenden minimale Solldatenübertragungsrate ist.
Bei den für die Datenübertragung in einem Übertragungskanal zur Verfügung stehenden Datenübertragungsraten kann es sich insbesondere um durch einen Standard wie 802. He festgelegte Datenübertragungsraten oder von einem Chiphersteller verwendete proprietäre Datenübertragungsraten handeln.
Die sich aus der zeitlichen Belegung des Übertragungskanals ergebende Solldatenübertragungsrate stellt sicher, dass die Datenübertragungsrate die Anforderungen des Nutzers erfüllt. Die minimale Solldatenübertragungsrate ist somit eine Daten- Übertragungsrate, welche eine Übertragung des beabsichtigten Datenverkehrs innerhalb eines hierfür vorgesehenen Zeitrah¬ mens mit einer optimalen Bitfehlerrate ermöglicht.
Bei einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird zur Datenübertragung eine von dem Netzmanage¬ ment unterstützte Datenübertragungsrate gewählt, welche zu einer minimalen Bitfehlerrate bei der Datenübertragung führt. Dies ist insbesondere dann wichtig, wenn ausschließlich Echt- zeit-Daten über den Datenübertragungskanal übertragen werden sollen .
Bei einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird zur Datenübertragung eine von dem Netzmanagement unterstützte Datenübertragungsrate in Ab¬ hängigkeit der Art des zu übertragenden Datenverkehrs ge¬ wählt. Sollen beispielsweise ausschließlich Echtzeit-Daten über den Übertragungskanal übertragen werden, so ist es vorteilhaft, wenn zur Datenübertragung eine Datenübertragungsra- te gewählt wird, welche in einer minimalen Bitfehlerrate bei der Datenübertragung resultiert. Soll gleichzeitig mit den Echtzeit-Daten anderer, weniger QoS-empfindlicher Datenverkehr über einen Übertragungskanal übertragen werden, kann es geeignet sein, eine größere Bitfehlerrate als die minimale Bitfehlerrate zuzulassen, um so genügend Zeit für die Über¬ tragung des anderen Datenverkehrs zur Verfügung zu stellen.
Das erfindungsgemäße Verfahren kann besonders vorteilhaft auf die Datenübertragung eines drahtlosen Kommunikationsnetzes angewendet werden. Ein solches drahtloses Kommunikationsnet¬ zes kann insbesondere auf dem Standard IEEE 802. He basieren. In diesem Fall ist es vorteilhaft, wenn eine Datenübertra¬ gungsrate in Abhängigkeit von Parametern des Traffic Specifi- cation (TSPEC) Elements gewählt wird, falls in dem TSEC- Element Daten enthalten sind. Zudem kann eine Datenübertra¬ gungsrate in Abhängigkeit von messbaren Parametern des Datenverkehrs gewählt werden. Bei einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird über höhere Schichten des Kommu¬ nikationsnetzes der Datenverkehrstyp, insbesondere das Vor¬ liegen von zeitsensitiven Echtzeit-Daten, erfasst. Alternativ kann dies über eine so genannte Fingerprint-Detektion, wie das Erkennen von Rahmengröße und/oder Zeitperiode einer Pa¬ keterzeugung, oder das Erfassen des Ports an dem eine IP- Verbindung vorliegt, erfolgen.
Die Erfindung erstreckt sich ferner auf ein zur Datenverarbeitung geeignetes, elektronisches, zentrales oder dezentra¬ les Netzmanagement (Netzmanagement-Einrichtung oder Steuereinrichtung) zur Steuerung der Datenübertragung eines Kommunikationsnetzes, welches mit einem Programmcode versehen ist, der Steuerbefehle enthält, die das Netzmanagement zur Durch¬ führung eines wie oben beschriebenen Verfahrens veranlassen.
Weiterhin erstreckt sich die Erfindung auf einen Netzknoten eines Kommunikationsnetzes, welcher Teil eines dezentralen Netzmanagements zur Steuerung der Datenübertragung eines Kommunikationsnetzes ist, der mit einem Programmcode versehen ist, welcher Steuerbefehle enthält, die das Netzmanagement zur Durchführung eines wie oben beschriebenen Verfahrens veranlassen .
Des Weiteren erstreckt sich die Erfindung auf einen maschinenlesbaren Programmcode (Computerprogramm) für ein zur Datenverarbeitung geeignetes Netzmanagement zur Steuerung der Datenübertragung eines Kommunikationsnetzes, welcher Steuer- befehle enthält, die das Netzmanagement zur Durchführung ei¬ nes wie oben beschriebenen Verfahrens veranlassen.
Ferner erstreckt sich die Erfindung auf ein Speichermedium (Computerprogrammprodukt) mit einem darauf gespeicherten, wie oben beschriebenen maschinenlesbaren Programmcode. Die Erfindung wird nun in Form eines Ausführungsbeispiels nä¬ her erläutert, wobei Bezug auf die beigefügte Figur 2 genom¬ men wird.
Fig. 1 zeigt beispielhaft eine über das Signal-Rausch- Verhältnis (SNR) aufgetragene Bitfehlerrate (BER) in Abhän¬ gigkeit der Datenübertragungsrate (Mbps) eines drahtlosen Kommunikationsnetzes;
Fig. 2 zeigt die Struktur eines Traffic Specification Ele¬ ment-Formats des WLAN-Standards IEEE 802. He.
Die Fig. 1 wurde bereits in der Beschreibungseinleitung erläutert, so dass sich hier eine weitere Beschreibung erüb- rigt .
In dem Ausführungsbeispiel erfolgt eine Datenübertragung in einem auf dem erweiterten Standard IEEE 802. He basierenden drahtlosen Kommunikationsnetz. Hierbei erfolgt eine Auswahl der Datenübertragungsrate in der Weise, dass eine Datenüber¬ tragung mit einer sich aus einer zeitlichen Belegung des Datenübertragungskanals ergebenden minimalen Solldatenübertra¬ gungsrate erfolgt. Insbesondere erfolgt hierbei eine von der Art des Datenverkehrs abhängige Wahl der Datenübertragungsra- te.
Um eine verkehrsabhängige Datenübertragungsrate zu wählen, kann ein in einem Informationsfeld des Traffic Specification Element Formats (TSPEC) des erweiterten Standards IE- EE 802. He angegebener Parameter verwendet werden.
Fig. 2 zeigt den Aufbau des TSPEC-Formats . Demnach sind die Informationsfelder "Element ID" 1, "Length" 2, "TS Info" 3, "Nominal MSDU Size" 4, "Maximum MSDU Size" 5, "Minimum Ser- vice Interval" 6, "Maximum Service Interval" 7, "Inactivity Interval" 8, "Suspension Interval" 9, "Service Start Time" 10, "Minimum Data Rate" 11, "Mean Data Rate" 12, "Peak Data Rate" 13, "Burst Size" 14, "Delay Bound" 15, "Minimum PHY Rate" 16, "Surplus Bandwith Allowance" 17 und "Medium Time" 18 vorgesehen. Hierbei kann insbesondere das Informationsfeld "Minimum PHY Rate" 16 zur Wahl der Datenübertragungsrate ge¬ nutzt werden, in welchem eine minimale Datenübertragungsrate in der physikalischen Schicht (PHY) angegeben ist.
Grundsätzlich kann der Algorithmus zur Bestimmung der Datenübertragungsrate auf dem Übertragungskanal auf messbaren Pa¬ rametern des Datenverkehrs, wie Bitrate, Datenpakete/Sekunde, Bitfehlerrate, Abstand zwischen Knoten, und/oder den Informa¬ tionsfeldern des TSPEC-Elements, falls in den Informations¬ feldern des TSPEC-Elements Daten enthalten sind, basieren.
Für den Fall, dass ausschließlich ein einzelner Echtzeit- Datenverkehrstrom, wie VoIP-Daten oder Videokonferenz-Daten, über einen Datenübertragungskanal übertragen werden sollen, kann die im Informationsfeld "Minimum PHY Rate" 16 des TSPEC- Elements angegebene Datenübertragungsrate als Datenübertra¬ gungsrate zur Übertragung von Daten über den Datenübertra- gungskanal gewählt werden, vorausgesetzt, dass Daten in die¬ sem Informationsfeld vorhanden sind. Für den Fall, dass zu¬ sätzlich zu dem Echtzeit-Datenverkehrstrom andere Datenver- kehrströme übertragen werden sollen, kann es besser geeignet sein, dass der Hybrid Controller eine höhere Datenübertra- gungsrate auf der physikalischen Schicht ermittelt, so dass genügend Zeit für die Übertragung des anderen Datenverkehrs¬ stroms im Datenübertragungskanal zur Verfügung steht. Der Hybrid Controller ist der zentralisierte Bandbreitenmanager, der permanent die beste Konfiguration des Kommunikationsnet- zes überwacht und ermittelt, um so eine optimale Leistung zu erzielen. Gewöhnlich befindet er sich im Access Point und ist dafür verantwortlich, den Zugriff auf das Übertragungsmedium zu kontrollieren und die Clients über die verwendeten Kommunikationsparameter zu informieren.
Eine Bestimmung der Art des Datenverkehrs kann über die höhe¬ ren Schichten des Kommunikationsnetzes (Schichten 3-7 im OSI- Modell) erfolgen. Alternativ können die unteren Schichten (Schichten 2-4 im OSI-Modell) das Vorliegen von zeitkriti¬ schem Echtzeit-Datenverkehr erfassen, beispielsweise durch den Einsatz von Filter oder eine so genannte "Fingerprint "- Detektion, wie das Erkennen von Rahmengröße und/oder Zeitpe- riode einer Paketerzeugung einer Verbindung. Weiterhin kann das Erkennen des Ports, an dem eine IP-Verbindung vorliegt, zu diesem Zweck eingesetzt werden.
Obgleich die Verwendung einer höchstmöglichen Datenübertra- gungsrate in einer physikalischen Schicht eine schnellere
Übertragung von Frames ermöglicht und den Kanal längere Zeit frei lässt, können aufgrund der damit einhergehenden höheren Bitfehlerrate Datenpakete verloren gehen, wobei die Zeitdauer zum Erfassen eines verlorenen Datenpakets sehr lang ist (bis zu einer Sekunde) . Bei der Übertragung von Echtzeit-Daten kann somit nicht einmal eine schnellste Paketwiederübermitt¬ lung Probleme mit der Übertragungsqualität vermeiden. Jedoch können auch nicht-zeitempfindliche Anwendungen von dem erfindungsgemäßen Verfahren profitieren, da eine niedrige Bitfeh- lerrate weniger Paketverlust bedeutet, was unter bestimmten Umständen zu einem höheren Durchsatz im Vergleich zu einer höheren Datenübertragungsrate führen kann.
Innerhalb eines jeden Netzknotens ist eine Tabelle erforder- lieh, um die für jeden Link auf der physikalischen Schicht gewählte Datenübertragungsrate zu verfolgen. Eine solche Ta¬ belle kann permanent oder periodisch auf den aktuellen Stand gebracht werden. Eine Möglichkeit liegt darin, die Variable bezüglich der aktuellen Datenübertragungsrate der physikali- sehen Schicht "current PHY rate", die bereits in allen WLAN- Karten vorhanden ist, in ein Feld zu konvertieren, welches das Traffic ID-FeId (TID) als einen Index für jede der "cur¬ rent PHY rates" entsprechend jedem Verkehrsfluss nutzen kann. Eine weitere Möglichkeit liegt darin, eine separate Tabelle in der Firmware zu implementieren, welche diese Information enthält. Eine weitere Möglichkeit liegt darin, die bereits vorliegende Tabelle zu nutzen, wobei die TSPECs zum Speichern dieser Information vorgehalten werden. Da die "current PHY rate" für jeden Verkehrsfluss dynamisch an die aktuellen Bedingungen des drahtlosen Übertragungskanal angepasst wird, muss die Möglichkeit zum Updaten dieses Werts, falls erfor¬ derlich, gegeben sein.

Claims

Patentansprüche
1. Verfahren zur Datenübertragung in einem Kommunikationsnetz mit einer durch ein Netzmanagement gesteuerten Übertra- gung von Daten über einen Netzknoten verbindenden Datenübertragungskanal, bei welchem eine Datenübertragung mit einer sich aus einer zeitlichen Belegung des Datenübertragungskanals ergebenden minimalen Solldatenübertragungsrate erfolgt.
2. Verfahren nach Anspruch 1, bei welchem zur Datenübertragung eine Datenübertragungsrate gewählt wird, welche einer minimalen Bitfehlerrate entspricht.
3. Verfahren nach einem der Ansprüche 1 bis 2, bei welchem zur Datenübertragung eine Datenübertragungsrate gewählt wird, welche einer minimalen von dem Netzmanagement unterstützten Datenübertragungsrate entspricht .
4. Verfahren nach einem der Ansprüche 1 bis 3, bei welchem zur Datenübertragung eine Datenübertragungsrate in Abhängigkeit der Art des Datenverkehrs gewählt wird.
5. Verfahren nach Anspruch 4, bei welchem der Datenverkehr Echtzeit-Daten, insbesondere Voice-over-IP-Daten, enthält.
6. Verfahren nach Anspruch 4, bei welchem der Datenverkehr ausschließlich Echtzeit-Daten, insbesondere Voice-over-IP- Daten, enthält.
7. Verfahren nach einem der vorhergehenden Ansprüche 1 bis
6, bei welchem das Kommunikationsnetz ein drahtloses Kommunikationsnetz ist.
8. Verfahren nach Anspruch 7, bei welchem das drahtlose Kom- munikationsnetz auf dem Standard IEEE 802. He basiert.
9. Verfahren nach Anspruch 8, bei welchem eine Datenübertragungsrate in Abhängigkeit von Parametern des Traffic Specifi- cation (TSPEC) -Elements gewählt wird.
10. Verfahren nach Anspruch 8 oder 9, bei welchem eine Datenübertragungsrate in Abhängigkeit von messbaren Parametern des Datenverkehrs gewählt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 10, bei welchem über höhere Schichten des Kommunikationsnet¬ zes der Datenverkehrstyp erfasst wird.
12. Verfahren nach einem der vorhergehenden Ansprüche 1 bis
10, bei welchem über eine Fingerprint-Detektion der Datenver- kehrstyp erfasst wird.
13. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 10, bei welchem über eine Erfassung des Ports an dem eine IP- Verbindung vorliegt der Datenverkehrstyp erfasst wird.
14. Netzmanagement zur Steuerung der Datenübertragung eines Kommunikationsnetzes, das mit einem Programmcode versehen ist, welcher Steuerbefehle enthält, die das Netzmanagement zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 13 veranlassen.
15. Netzknoten eines Kommunikationsnetzes, welcher Teil eines dezentralen Netzmanagements zur Steuerung der Datenübertra¬ gung eines Kommunikationsnetzes ist, das mit einem Programm- code versehen ist, welcher Steuerbefehle enthält, die das
Netzmanagement zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 13 veranlassen.
16. Maschinenlesbarer Programmcode für ein Netzmanagement zur Steuerung der Datenübertragung eines Kommunikationsnetzes, welcher Steuerbefehle enthält, die das Netzmanagement zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 13 veranlassen.
17. Speichermedium mit einem darauf gespeicherten maschinen¬ lesbaren Programmcode gemäß Anspruch 16.
EP07820384A 2006-09-26 2007-09-20 Verfahren zur datenübertragung in einem kommunikationsnetz Withdrawn EP2067293A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006045298A DE102006045298A1 (de) 2006-09-26 2006-09-26 Verfahren zur Datenübertragung in einem Kommunikationsnetz
PCT/EP2007/059941 WO2008037646A1 (de) 2006-09-26 2007-09-20 Verfahren zur datenübertragung in einem kommunikationsnetz

Publications (1)

Publication Number Publication Date
EP2067293A1 true EP2067293A1 (de) 2009-06-10

Family

ID=38943797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820384A Withdrawn EP2067293A1 (de) 2006-09-26 2007-09-20 Verfahren zur datenübertragung in einem kommunikationsnetz

Country Status (4)

Country Link
US (1) US20100030912A1 (de)
EP (1) EP2067293A1 (de)
DE (1) DE102006045298A1 (de)
WO (1) WO2008037646A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756059B1 (en) 2008-05-19 2010-07-13 Meru Networks Differential signal-to-noise ratio based rate adaptation
US8516121B1 (en) * 2008-06-30 2013-08-20 Symantec Corporation Method and apparatus for optimizing computer network usage to prevent congestion
JP2010130311A (ja) 2008-11-27 2010-06-10 Sony Corp 通信装置、通信方法、プログラム、および通信システム
US8726005B2 (en) * 2009-12-10 2014-05-13 George Mason Intellectual Properties, Inc. Website matching based on network traffic
US9438384B2 (en) * 2011-03-08 2016-09-06 Qualcomm Incorporated Providing multiple retransmission policies for a single data stream by mapping differentiated services code point (DSCP) bit fields to media access control protocol data unit (MPDU) bit fields
US20130182705A1 (en) * 2012-01-18 2013-07-18 Uri AVNI Method and system for transmitting encoded video signals
US11562030B2 (en) * 2018-11-15 2023-01-24 Cloudflare, Inc. Applying filter expressions to requests at an edge server
WO2022039664A1 (en) 2020-08-18 2022-02-24 Razer (Asia-Pacific) Pte. Ltd. Apparatus and method for controlling a pointer on a screen of an electronic device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612948A (en) * 1994-11-18 1997-03-18 Motorola, Inc. High bandwidth communication network and method
US20020118671A1 (en) * 1995-11-15 2002-08-29 Data Race, Inc. Extending office telephony and network data services to a remote client through the internet
US6765904B1 (en) * 1999-08-10 2004-07-20 Texas Instruments Incorporated Packet networks
US6904110B2 (en) * 1997-07-31 2005-06-07 Francois Trans Channel equalization system and method
US6597705B1 (en) * 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
US6445916B1 (en) * 1999-01-07 2002-09-03 Lucent Technologies Inc. Wireless system and method for evaluating quality of service
US7606543B1 (en) * 1999-12-03 2009-10-20 Nokia Mobile Phones Signal quality indicator apparatus and method particularly useful for mobile telephones
US7327761B2 (en) * 2000-02-03 2008-02-05 Bandwiz Inc. Data streaming
US6999432B2 (en) * 2000-07-13 2006-02-14 Microsoft Corporation Channel and quality of service adaptation for multimedia over wireless networks
EP1178635B1 (de) * 2000-08-04 2010-10-13 Alcatel Lucent Verfahren für Echtzeit Daten-Kommunikation
US7068683B1 (en) * 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) * 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
JP3699910B2 (ja) * 2000-10-31 2005-09-28 株式会社東芝 データ伝送装置、データ伝送方法及びプログラム
US8996698B1 (en) * 2000-11-03 2015-03-31 Truphone Limited Cooperative network for mobile internet access
WO2003026189A1 (en) * 2001-09-20 2003-03-27 Itt Manufacturing Enterprises, Inc. Methods and apparatus for satellite link throughput adaptation
EP1443784A4 (de) * 2001-11-08 2009-03-25 Mitsubishi Electric Corp Drahtloses kommunikationsverfahren und dafür verwendetes mobiles endgerät
US20030093526A1 (en) * 2001-11-13 2003-05-15 Koninklijke Philips Electronics N. V. Apparatus and method for providing quality of service signaling for wireless mac layer
WO2004017529A2 (en) * 2002-08-19 2004-02-26 Arkados, Inc. Method and system for maximizing data throughput rate in a power line communications system by modifying payload symbol length
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7346071B2 (en) * 2003-01-13 2008-03-18 Bareis Bernard F Broadband multi-drop local network, interface and method for multimedia access
EP1654662B1 (de) * 2003-08-06 2018-12-12 Nokia Technologies Oy Dienstqualitäts-support an einer schnittstelle zwischen mobil- und ip-netzwerk
US7181657B2 (en) * 2003-09-25 2007-02-20 Oki Electric Industry Co., Ltd. Data transmission apparatus adaptive to data quality on radio-transmission and a method of data transmission therefor
EP1580914A1 (de) * 2004-03-26 2005-09-28 STMicroelectronics S.r.l. Verfahren und System zum Kontrollieren des Betriebs eines Netzwerkes
JP4184373B2 (ja) * 2004-10-29 2008-11-19 シャープ株式会社 通信装置、通信方法、通信プログラム、通信プログラムを記録した記録媒体、および通信システム
US7702006B2 (en) * 2005-07-05 2010-04-20 Microsoft Corporation Adjustment of transmission data rate based on data errors and/or latency
US20070153745A1 (en) * 2006-01-04 2007-07-05 Yishen Sun System and method for link adaptation for WLAN voice transmission
US7796545B2 (en) * 2006-01-10 2010-09-14 Qualcomm Incorporated Method and apparatus for scheduling in a wireless communication network
US7873385B2 (en) * 2006-04-05 2011-01-18 Palm, Inc. Antenna sharing techniques
US7969878B2 (en) * 2006-04-28 2011-06-28 Siemens Enterprise Communications Gmbh & Co. Kg Quality guarantee for real-time applications over shared networks
JP4367493B2 (ja) * 2007-02-02 2009-11-18 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008037646A1 *

Also Published As

Publication number Publication date
WO2008037646A1 (de) 2008-04-03
US20100030912A1 (en) 2010-02-04
DE102006045298A1 (de) 2008-03-27

Similar Documents

Publication Publication Date Title
DE602004005792T2 (de) System und Verfahren zum optimalen Lastausgleich in einem hybriden drahtgebundenen/drahtlosen Netzwerk
DE60205014T2 (de) Verfahren zum Steuern der Datenrate in einem drahtlosen Paketdatenkommunikationssystem, Sender und Empfänger zu seiner Verwendung
DE112016004558B4 (de) System und verfahren zum abstimmen von ptt über lte
WO2008037646A1 (de) Verfahren zur datenübertragung in einem kommunikationsnetz
EP1668934B1 (de) Verfahren, system und computerprogrammprodukt zur übertragung von daten
DE60108765T2 (de) Basis-qos-mechanismen zur drahtlosen übertragung von ip-verkehr
Grilo et al. A scheduling algorithm for QoS support in IEEE802. 11 networks
DE60101291T2 (de) Kommunikationssystem
DE602004005994T2 (de) Verteiltes Dienstgüte-Verwaltungssystem
EP1325590B1 (de) Verfahren zur übertragung von datenpaketen über eine luftschnittstelle eines mobilfunksystems
DE112008002021B4 (de) Komprimierte Nachrichtenkopf-Struktur bei der Medienzugriffssteuerung (MAC-Medium Access Control) für die Reduktion des MAC-Gemeinaufwandes bei mobilen Systemen mit Worldwide Interoperability for Microwaves Access (WiMAX)
DE60115030T2 (de) Kommunikationen unter verwendung von adaptiven mehrraten kodierern/dekodierern
CN101483909B (zh) 基于多载波的反向功率控制方法
EP2241075B1 (de) Verwendung des wlan-standards für eine c2c-kommunikation durch hinzufügen von neuen pakettypen
DE112005002078T5 (de) Leistungsoptimierung eines drahtlosen Netzwerks auf unterschiedlichen Protokollschichten durch gleichzeitiges Anpassen von Kommunikationsparametern
DE202004017120U1 (de) Komponenten im drahtlosen lokalen Netzwerk (WLAN), die Verkehrsprognosen nutzen
US20110122786A1 (en) AUDIO CODEC BIT-RATE CONTROL METHOD FOR ASSURING QoS OF VOICE IN WLAN
DE102005041273A1 (de) Verfahren zum rechnergestützten Bilden von Systeminformations-Medium-Zugriffs-Steuerungs-Protokollnachrichten, Verfahren zum rechnergestützten Ermitteln von Systeminformation aus Systeminformations-Medium-Zugriffs-Steuerungs-Protokollnachrichten, Medium-Zugriffs-Steuerungseinheiten, Mobilfunk-Kommunikationseinrichtungen und Computerprogrammelemente
EP1401137B1 (de) Verfahren zum Betreiben eines Mobilfunknetzes indem die Kontroll- und Nutzdaten mit unterschiedlichem Fehlerschutz übertragen werden
JP2007159105A (ja) 無線ネットワークにおいてトランスポートストリームのための帯域幅を動的に管理する方法
DE60132080T2 (de) Verfahren und vorrichtung zum effizienten weiterreichen in datenpaketkommunikationssystemen
DE102021109548A1 (de) Systeme und verfahren zur priorisierung von bidirektionalen verkehrsflüssen
DE60220267T2 (de) Konvergenzschichten für Netzwerkgeräte und Verfahren zur Datenverkehrübertragung
Yeh The advance access mechanism for differentiated service, power control, and radio efficiency in ad hoc MAC protocols
DE112009004257T5 (de) Funkkommunikationsvorrichtung und Funkkommunikationssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090727

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170401