EP2040021B1 - Dispositif de nettoyage doté d'un conduit de tuyère pour tuyaux de refroidissement - Google Patents

Dispositif de nettoyage doté d'un conduit de tuyère pour tuyaux de refroidissement Download PDF

Info

Publication number
EP2040021B1
EP2040021B1 EP08003923A EP08003923A EP2040021B1 EP 2040021 B1 EP2040021 B1 EP 2040021B1 EP 08003923 A EP08003923 A EP 08003923A EP 08003923 A EP08003923 A EP 08003923A EP 2040021 B1 EP2040021 B1 EP 2040021B1
Authority
EP
European Patent Office
Prior art keywords
cooling
nozzles
cleaning
pipes
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08003923A
Other languages
German (de)
English (en)
Other versions
EP2040021A3 (fr
EP2040021A2 (fr
Inventor
Dirk Jaresch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNW CleaningSolutions GmbH
Original Assignee
JNW CleaningSolutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNW CleaningSolutions GmbH filed Critical JNW CleaningSolutions GmbH
Publication of EP2040021A2 publication Critical patent/EP2040021A2/fr
Publication of EP2040021A3 publication Critical patent/EP2040021A3/fr
Application granted granted Critical
Publication of EP2040021B1 publication Critical patent/EP2040021B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/16Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris
    • F28G1/166Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris from external surfaces of heat exchange conduits

Definitions

  • the invention relates to a cleaning method with nozzle for cooling tubes in heat exchangers, in particular air conditioning systems, and an associated cleaning device.
  • Air condensation plants are used as a closed system for condensing the exhaust steam or the excess steam of turbine plants.
  • the total cooling surface is designed for the amount of steam produced. It is assumed that a certain heat transfer from the cooling surface into the ambient air. The heat transfer, however, does not remain constant. On the cooling surfaces it comes to the outside for pollution. Pollution is caused, inter alia, by pollen, leaves, industrial emissions, flue dust and leads to deposits on the cooling surfaces. As a result, the heat transfer deteriorates. Partly the cooling registers are closing. In places, the heat transfer is not only drastically reduced. There may also be overheating with various adverse consequences.
  • An older proposal provides stationary cleaning facilities, with which a reliable cleaning of the cooling surfaces is achieved.
  • cleaning devices are usually nozzle sticks with multiple rows of nozzles use.
  • the nozzles of one row usually have a slope relative to the vertical to the cooling tubes, so that the cleaning jets impinge obliquely on one side of the cooling tubes.
  • the nozzles of the second row are inclined in the opposite direction, so that the nozzles are directed against the other side of the cooling tubes.
  • the cleaning nozzles, their position and the cleaning pressure can be adapted to the cooling surfaces. This will allow actual cleaning without the risk of damage.
  • Another prior proposal provides that a cleaning device for multiple cooling surfaces (cooling registers) of a system is used. This is achieved by means of a driving system.
  • the driving system resembles a crane track, with which the device is converted from one cooling surface to the other.
  • the stationary cleaning devices and the implementable cleaning device have in common that initially a considerable investment must be made. This naturally precludes the use of such devices.
  • two or more edge profiles can be arranged side by side.
  • the use of a single Kantprofile includes a special step to an optimally lightweight and at the same time functionally reliable device.
  • the weight advantage of a single Kantprofiles is not readily apparent because several juxtaposed edge profiles have the same cost of material computationally greater bending resistance than a single edge profile. Nevertheless, it is not only on the larger moment of resistance. It is also important that the guide rollers do not cause deformation of the rolling surfaces. This leads to a minimum thickness of the rolling surfaces and edge profiles. Two minimum-thickness edge profiles can result in a greater cost of materials than a single, stable edge profile.
  • the edge profile is formed as a hollow profile and length-adjustable by connectors.
  • the extensibility facilitates working with a single device on different lugs or the like. Regardless of the edge profile of the extensibility and the connector are therefore also of particular importance.
  • the edge profile and the plug connection are favorable for a change in length.
  • the edge profile can be composed of several parts.
  • the device may also have a head and a foot and between the head and foot a changeable for length change edge profile.
  • the plug-in connection is brought about by means of separate spikes / pins, which engage in two pipe ends to be connected to each other. But it can also spikes / pins are attached to the pipe ends, so that engages a pipe with a mandrel / pin in the other tube.
  • the mandrels / pins hollow or in turn be designed as tubes.
  • the connector may be designed self-clamping and / or designed a mechanical fuse.
  • the holders for wheels / wheels / discs can be arranged adjustable or fixed.
  • the arms and / or head and / or foot may be releasably assembled from parts so that replacement in adaptation to particular needs is possible.
  • Cheap can be a plug connection as in the edge profile. This is beneficial if the arms, head and foot are made up of the same profiles.
  • the drive includes a power transmission means such as a belt, chain, rope or belt, in particular a toothed belt, and a geared motor with a drive pinion.
  • a power transmission means such as a belt, chain, rope or belt, in particular a toothed belt
  • the power transmission means is preferably passed over the head and foot and generates the necessary tension.
  • the associated roller / wheel / disc is adjustable transversely to the longitudinal direction of the power transmission means.
  • the power transmission means engages the carriage and is moved by means of the geared motor. In this case, the power transmission means can be guided around the drive pinion or pressed by means of another roller / wheel / disc against the drive pinion.
  • the use of aluminum for the profiles and a limited width of the nozzles or the nozzle assembly in the carriage contribute.
  • the restriction is given with the number of nozzles arranged on a pipe in the nozzle.
  • the nozzles or the nozzle block can clean all the cooling tubes below by processes along the entire width / length of the trolley.
  • the heavy weight reduction also protects the cooling coils. This is especially important for cooling coils with sensitive cooling fins.
  • the sensitive cooling tubes / ribs include e.g. those with a rectangular cross-section, between which the cooling fins are moved back and forth as meandemdes metal strip.
  • the low weight brings no risk of excessive load on the cooling coil with it.
  • the water supply to the cleaning device can take place via a hose line entrained.
  • the water through an intermediate pump on the desired pressure brought.
  • the pump can be attached to the device or placed separately in front of the device.
  • a cleaning device for a flat cooler WO92 / 04589
  • this document shows a cleaning device for a flat cooler, which is spanned by the horizontally extending cleaning device in its entire width and the design is chosen so that the movable nozzle detects the entire surface to be cleaned.
  • this construction has compared to a construction, as from the DE 19800018 A1 is known, significant static disadvantages.
  • the intended for the flat cooler cleaning device is not on cleaning devices of DE 19800018 A1 applicable.
  • the known cleaning device is not suitable for cleaningdeem with different dimensions.
  • An essential feature of the older proposal form portal-shaped bracket, under which the nozzle floor carriage is movable.
  • a conductor is attached to the temples of the cleaning device. This can be represented by the fact that the stirrups consist at least partially of a conductor profile.
  • a height adjustment is provided on the ladder.
  • the ladder has foldable steps or rungs and / or a foldable railing.
  • the cooling fins are molded or mounted on the cooling tubes depending on the design.
  • the cooling ribs usually run transversely to the longitudinal direction of the cooling tubes.
  • the cooling fins come with different shape. Frequently, there are cooling tubes of circular cross-section, including circular-shaped fins. Such cooling tubes often interlock with your ribs.
  • the ribs can also have the function of spacers. Occasionally, the combination of different cooling tubes and / or different cooling fins occurs.
  • the flat steel nozzles are usually arranged in one or more rows.
  • the arrangement in rows results from the fact that the nozzles are arranged directly on a common line of the nozzle.
  • two rows of nozzles on the nozzle so that each register surface is taken in a nozzle movement through both rows of nozzles.
  • the first effective row of nozzles causes a partial cleaning and a pre-softening of the adhering dirt and the subsequent effective row of nozzles further purification. This process can be repeated several times by moving the nozzle assembly back and forth until sufficient cleaning is ensured.
  • the known flat jet nozzles have a widening jet.
  • the impact area of the nozzle jet on the cooling register (plane in which the cooling tubes lie with their upper edge) includes an enlarged image of the nozzle opening.
  • the nozzles are arranged so that the incident surfaces with its longitudinal axis to the nozzle row offset / run.
  • the cleaning surfaces associated with the nozzles overlap. In the overlapping area, cleaning is intensified. As a result, the energy drop at the edge of the flat jets is compensated in whole or in part.
  • the overlap is preferably at least 5%, preferably at least 10%, based on the impact area of the jets on the cooling register.
  • the offset of the nozzles is carried out either in a known manner in that the nozzles are mounted on a nozzle tube, which runs exactly transverse to the cooling tube longitudinal direction. Or the nozzles are mounted on a nozzle tube, which runs obliquely to the cooling tube longitudinal direction. In exactly transverse to the cooling tube longitudinal direction extending nozzle tube the nozzles are placed with their nozzle slot so that the exiting flat jet cuts obliquely in the plan view of the nozzle tube of this tube. At the same time the different flat jets are parallel to each other. The distance between the parallels is chosen so large that at most the above-described overlap or contact between the flat rays occurs.
  • the nozzles can be made with their nozzle slot so that the exiting flat jet in the plan view of the nozzle rod tube is perpendicular to the cooling tube longitudinal axis. This also results in parallel flat rays. Their distance is chosen exactly as in the previously explained parallel flat beams.
  • the cooling pipe alley describes the free passage between the cooling pipes.
  • the cooling fins remain out of consideration, as long as the cooling fins run in a conventional form transverse to the longitudinal direction of the cooling tubes.
  • the uniform cooling tubes preferably have a symmetrical cross-section, such as cooling tubes with a circular or oval tube cross-section, as well as a rectangular tube cross-section.
  • the cooling fins on the cooling tubes serve to improve the heat transfer. They follow the cross-sectional shape of the cooling tubes, with circular tube cross-section with a circular shape, with oval or elliptical tube cross-section with appropriate shape. In relation to this, the ribs on cooling tubes with a rectangular cross-section are clearly different.
  • the tubes have with one narrow side of the cross section upwards and with the other narrow side down. Between the tubes ribs are provided which extend in the plan view transversely to the tube longitudinal direction. In a cross-section of the register, the ribs fill the gap between two adjacent tubes in the register.
  • the free passage between the cooling tubes depends on whether and how the further layers are arranged in relation to the first layer. With the same arrangement, it remains within the meaning of the invention in the verticalderohrgasse.
  • the cooling tubes of the second layer but offset from the first position, so that there is a cooling tube of the second layer under the gap between two cooling tubes of the first layer.
  • the third layer is then usually arranged again as the first layer, the fourth layer as the second layer, etc.
  • the first layer denotes the cooling tube layer next to the cleaning device, with the second layer, the second cooling tube layer arranged below the first layer with respect to the cleaning device. This designation does not take into account the flow direction of the cooling air.
  • the flow of cooling air meanders substantially between the cooling tubes of the various cooling tube layers.
  • the invention provides in the cleaning less on the course of the cooling air than from that the cleaning water penetrates with sufficient cleaning energy to the farthest cooling pipe layer.
  • cooling pipe alleys are to be used, in which part of the flat jet can penetrate unbroken to the farthest cooling pipe layer. Even if influences from the turbulence of the penetrating into the cooling pipe alley flat beam part and it is unavoidable that a part of the flat jet is deflected by cooling pipes arranged on both sides of the cooling pipe, this is Cleaning result still better than cleaning without using the cooling pipe lanes.
  • the nozzle should point according to the invention in the nozzle alley. This leads to an angular position of the nozzles, which is equal to the angle under which the nozzle lanes run. However, there are two nozzle lanes in the staggered cooling tube layers described above.
  • the nozzles of the two rows of nozzles described above a) the nozzles of one row in the one nozzle lane and b) the nozzles of the other nozzle row directed into the other nozzle lane.
  • the angles at which the two nozzle lanes run are identical to the angles at which the cooling pipes belonging to each pipe lane are aligned
  • the center of the flat jet does not have to be exactly aligned with the cooling pipe, but if the center of the flat jet have a slight deviation thereof.
  • the cooling pipe passages consist of cooling tubes with a circular cross-section and with offset cooling pipe layers normally under 45 degrees to the cooling pipe layers.
  • the distance between the cooling tube layers is equal to the distance between the cooling tubes of a layer and so large that a free passage is given.
  • the course of the cooling pipe alley changes depending on whether the distance between the cooling pipe layers is increased or reduced in the range of the possible. The limits of the possible are given where the flat jet no free passage is given.
  • the cooling pipe lanes are limited on both flanks of cooling tubes.
  • the central axes of these associated cooling tubes lie in planes which are parallel to the middle of the cooling tube lane.
  • the displacement of the cooling tube layers in a multi-layer cooling coil may be in the form that, for example, the first first layer tube and the second second layer tube, as well as the tenth first layer tube with the tenth second layer tube, define a cooling tube lane , The same applies to the tubes of the second layer in relation to the tubes of the third layer and so on.
  • the second cooling tube of the first layer with the first cooling tube of the second layer can limit a cooling tube alley.
  • an adaptation of the nozzle assembly to the geometry of the cooling tubes or the cooling tube bundles takes place on the way.
  • an adapted nozzle stock is kept for each cooling register.
  • the nozzles are fed by pumps with cleaning water. It is advantageous to use a pump with a pump capacity of more than 150 liters per minute to feed 12 nozzles.
  • the pump capacity may also be greater, eg having a capacity of more than 180 liters per minute, even more than 210, even 250 liters and more per minute, and controlled down as needed.
  • the required pump capacity depends not only on the number of nozzles, but also on the cross-section of the services leading to the nozzles and on the nozzle cross-section.
  • Pipes according to DN 25 and / or DN 32 as well as larger pipelines are used.
  • the line for water quantities of 5 to 25 cubic meters to the nozzle has a nominal diameter of DN 32 and in the nozzle a nominal diameter DN25. At the transition from the nominal diameter DN 32 to the nominal diameter DM25 there is a reducer in the line.
  • the nominal diameter DN is regulated according to DIN 11850.
  • the inside diameter for DN 25 is 26mm, for DN 32 it is 32mm. If other nominal diameters are used, it is provided that these nominal diameters do not deviate more than 10%, preferably not more than 5%, from the nominal diameters DN 25 or DN 32.
  • Fig. 1 to 3 and 4a show in accordance with the EP 1604164 B1 different views.
  • the slope of the cooling register is shown.
  • the square profile 2 can not be extended so far that the cleaning device reaches with its head the upper end of the cooling register.
  • the nozzle assembly 50 in the upper position protrudes correspondingly far beyond the head of the cleaning device.
  • the nozzle is supported by a nozzle floor trolley, which runs on the profile 2. The method beyond the head and foot is possible in the embodiment due to the portal-shaped bracket 53, with which the cleaning device is held.
  • the portal-shaped bracket 53 together with the edge profile 2 a trolley, which is laterally movable on the cooling registers.
  • the wagon carries all belonging to the cleaning device components, as they are already the subject of an earlier proposal.
  • These include in the exemplary embodiment, a toothed belt drive (instead Belt drive can also chain hoist or other pulling device with tape or rope be provided), the drive and the nozzle floor carriage 50th
  • driving rollers are provided at the bottom of the bracket.
  • the castors have a detent in the form of a clamp.
  • the profile 2 is suspended in the brackets 53.
  • the suspension is a strut 54.
  • the edge profile 2 is arranged so that a diagonal of the cross section is vertical. This creates inclined surfaces.
  • rollers 55 On the inclined surfaces of the Kantprofiles 2 run rollers 55.
  • the rollers are mounted on metal strips 56.
  • the metal strips are folded at the upper end so that the mounting surfaces for the rollers are at 90 degrees to each other. The same angle, the side surfaces of the Kantprofiles 2 each between them.
  • the bolts 57 at the lower ends of the metal strip bolts 57 are provided.
  • the bolts 57 at the same time form spacers for the metal strips and also fasteners for the nozzle 50th
  • Fig. 3 is for fastening the nozzle assembly 50 to the nozzle floor carriage on the construction formed by the bolt 57 a screw provided.
  • the screw connection allows quick assembly and disassembly.
  • the nozzle block carriage is moved parallel to the cooling tubes.
  • To the nozzle 50 include two tubes 60 and 61 which are perpendicular to the direction of travel of the nozzle floor carriage and nozzles 62 and 63 wear ( Fig. 4a ).
  • the nozzles 62 and 63 are flat jet nozzles.
  • the flat jet generated by the nozzles propagates at an angle whose flanks are designated 72 and 73.
  • the bisector also forms the center 69, 74 of the flat jet.
  • the impact area of a flat jet at the top of the first cooling tube layer in the cooling register has an oblong shape when the observer imagines the landing surface as a flat surface.
  • the length of the impact surface indicates the width of the flat jet, while the width of the impact surface indicates the thickness of the flat jet.
  • the first cooling tube layer has a very complicated surface with the curved tube surfaces and their spacing and with the cooling fins.
  • the nozzles 62 on the tube 60 are inclined in the direction of the tube 60.
  • the nozzles 63 on the pipe 61 are inclined in the direction of the pipe 61, in the opposite direction as the nozzles 62nd
  • the inclination is defined in the embodiment as a deviation of the center 69 of the cooling pipe alley.
  • the cooling tube alley refers to the free passage of the cleaning water between the cooling tubes 65 from the jet direction of the nozzle 62. This free passage follows in the exemplary embodiment Fig. 2 with a four-layer cooling register parallel to the plane in which the cooling pipes in Fig. 2 lie with their longitudinal axis, the in the drawing after Fig. 2 be hit by the middle 69.
  • the nozzles 63 is associated with anotherderohrgasse.
  • the cooling tubes are in Fig. 2 of oval cross-section and provided with cooling fins, not shown.
  • the (measured perpendicular to the impact surface) distance of the nozzles 62 and 63 of the surface to be cleaned of the cooling register is in the embodiment 200 mm.
  • the surface to be cleaned is the surface of the plane in which the cooling tubes of the first layer lie with their upper edge.
  • the spacing of adjacent nozzles 62 on the tube 60 is 100 mm.
  • the conduits which lead to the nozzle are flexible high-pressure pipes of reinforced plastic, in other embodiments of reinforced rubber.
  • the water-contact solid lines are made in the embodiment of stainless steel, VA.
  • the supporting parts of the cleaning device are made of aluminum.
  • Fig. 4 shows a nozzle with a tube 70 and downwardly facing nozzles 71.
  • the nozzles 71 are directed against a single layer of cooling tubes 75.
  • the cooling tubes are in the Fig. 4 shown with the longitudinal direction parallel to the tube 70, at the same time to show the ribs on the cooling tubes 75.
  • the cooling tubes 75 are parallel to the driving profile 76.
  • Fig. 4 from the nozzles 71 also flat jets with flanks 72 and 73 and a center 74 from.
  • the center 74 runs with a slight inclination of 5 degrees to the vertical to the plane in which the cooling tubes lie.
  • Fig. 5 shows a schematic representation of a tube 80 on a nozzle according to the invention, wherein the tube 80 six nozzles 81 are located.
  • Flat jets 82 emerge from the nozzles 81.
  • the impact surface of the flat jets 82 on the surface to be cleaned is designated by 83.
  • the plane is designated, in which the cooling tubes of the uppermost layer lie with its upper edge.
  • the center of the flat jets is denoted by 84, the vertical to the surface to be cleaned is indicated by 85, the inclination of the nozzles 81 in the direction of the tube 80 by 86.
  • the nozzles are made obliquely, that the landing surfaces 83 do not touch each other.
  • the impact surfaces 83 extend obliquely to the longitudinal axis of the tube 80. In the view in the longitudinal direction of the cooling tubes, the impact surfaces overlap each other with the measure 87. The impact surfaces at the same time characterize the cleaning, so that emanating from a nozzle cleaning in the overlap area described is supplemented by the adjacent nozzle.
  • Fig. 7 shows the oblique course of the impact surfaces 83 in a direction perpendicular to the direction of travel of the nozzle with schematically illustrated cooling tubes 95 extending tube 98 in a plan view
  • Fig. 6 shows on the basis of the center 84 and the vertical 85 in another view that the nozzles 81 and the associated flat jets are inclined at the same time slightly in the direction of the cooling tubes.
  • the apparent in this view additional inclination is designated 90 and is in the embodiment 2 degrees, resulting from manufacturing and assembly inaccuracies. With accurate production and assembly, the deviation 90 may be less than 1 degree. The smaller the deviation, the safer the ribs are from being damaged by the cleaning water.
  • Fig. 8 shows another embodiment in which the designated tube 97 is oblique to the direction of travel.
  • the oblique pipe course allows employment of the nozzles arranged exactly perpendicular to the direction of travel and cooling tube longitudinal direction nozzles and exactly perpendicular to the direction of travel and cooling tube longitudinal direction extending impact surface 96th

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cleaning In General (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Heat Treatment Of Articles (AREA)
  • Continuous Casting (AREA)

Claims (15)

  1. Procédé pour nettoyer des tuyaux de refroidissement (82, 84) dans des registres de refroidissement d'échangeurs thermiques, en particulier d'échangeurs thermiques pour des installations de condensation refroidies par air, des refroidisseurs d'eau et des installations chimiques,
    a) les tuyaux de refroidissement étant nettoyés avec de l'eau de nettoyage,
    b) plusieurs buses de nettoyage (62, 63, 71, 81), disposées mobiles dans le sens longitudinal des tuyaux de refroidissement (82, 84), étant employées,
    c) un porte-buses (50) au niveau duquel les buses de nettoyage sont disposées sur une ou plusieurs rangée(s), étant utilisé, et, des buses à jet plat étant utilisées en tant que buses de nettoyage, caractérisé en ce que
    d) les buses de nettoyage (62, 63, 71, 81) sont disposées espacées de 150 à 300 mm, de préférence de 200 à 250 mm, des surfaces à nettoyer (83, 96), au niveau du registre de refroidissement,
    e) en ce que les buses de nettoyage (62, 63, 71, 81) sont placées espacées de 80 à 120 mm de préférence de 90 à 110 mm des buses de nettoyage contiguës (62,63,71,81),
    f) les buses de nettoyage (62, 63, 71, 81) d'une rangée étant, dans la vue du dessus, décalées les unes par rapport aux autres, de sorte qu'avec un jet plat (82, 84) provenant d'une buse de nettoyage contiguë (62, 63, 71, 81), il se produit, au maximum, un recouvrement de 10 % par rapport à la largeur du jet, lors de l'impact sur le registre de refroidissement, de préférence un recouvrement de 5 % maximum, par rapport à la largeur du jet lors de l'impact sur le registre de refroidissement,
    g) les jets plats (82, 84) étant portés en recouvrement, dans l'autre vue, parallèlement aux tuyaux de refroidissement (65, 75) d'au moins 5 % par rapport à la largeur du jet, lors de l'impact sur les registres de refroidissement, de préférence d'au moins 10 % par rapport à la largeur du jet, lors de l'impact sur les registres de refroidissement,
    h) la pression de l'eau de nettoyage étant réglée au maximum à 120 bar, à la sortie des buses de nettoyage (62, 63, 71, 81), de préférence une pression de 40 à 100 bar étant largement préférée,
    hh) une pression de 70 à 100 bar étant réglée pour des tuyaux de refroidissement (65, 75) présentant une section ronde ou elliptique ou ovale, au niveau de la sortie de la buse,
    hhh) une pression de 40 à 50 bar étant réglée pour des tuyaux de refroidissement (65, 75) présentant une section rectangulaire, au niveau de la sortie de la buse.
  2. Procédé pour nettoyer des tuyaux de refroidissement (82, 84) dans des registres de refroidissement d'échangeurs thermiques, en particulier d'échangeurs thermiques pour des installations de condensation refroidies par air, des refroidisseurs d'eau et des installations chimiques,
    a) les tuyaux de refroidissement étant nettoyés avec de l'eau de nettoyage,
    b) plusieurs buses de nettoyage (62, 63, 71, 81), disposées mobiles dans le sens longitudinal des tuyaux de refroidissement (82, 84), étant employées,
    c) un porte-buses (50) au niveau duquel les buses de nettoyage sont disposées sur une ou plusieurs rangée(s), étant utilisé, et, des buses à jet plat étant utilisées en tant que buses de nettoyage, caractérisé en ce que
    d) les buses de nettoyage (62, 63, 71, 81) sont disposées espacées de 150 à 300 mm, de préférence de 200 à 250 mm, des surfaces à nettoyer (83, 96), au niveau du registre de refroidissement,
    e) les buses de nettoyage (62, 63, 71, 81) étant placées espacées de 80 à 120 mm, de préférence de 90 à 110 mm des buses de nettoyage contiguës (62, 63, 71,81),
    f) les buses de nettoyage (62, 63, 71, 81) d'une rangée étant, dans la vue du dessus, décalées les unes par rapport aux autres, de sorte qu'avec un jet plat (82, 84) provenant d'une buse de nettoyage contiguë (62, 63, 71, 81), Il se produit, au maximum, un recouvrement de 10 % par rapport à la largeur du jet, lors de l'impact sur le registre de refroidissement, de préférence un recouvrement de 5 % maximum, par rapport à la largeur du jet lors de l'impact sur le registre de refroidissement,
    g) les jets plats (82, 84) étant portés en recouvrement, dans l'autre vue, parallèlement aux tuyaux de refroidissement (65, 75) d'au moins 5 % par rapport à la largeur du jet, lors de l'impact sur les registres de refroidissement, de préférence d'au moins 10 % par rapport à la largeur du jet, lors de l'impact sur les registres de refroidissement,
    h) les jets plats étant orientés avec leur centre dans la voie de tuyaux de refroidissement, de sorte que les jets plats sont également transversaux au sens longitudinal des tuyaux de refroidissement (65. 75) dans le cas d'ailettes de refroidissement situées transversalement au sens longitudinal des tuyaux de refroidissement (65, 75) et peuvent présenter des écarts suivants du centre de la vole de tuyaux de refroidissement, à savoir,
    hh) au maximum 5 degrés si un diamètre des tuyaux de refroidissement (65, 75) est inférieur à 40 mm, calculé sans les ailettes de refroidissement,
    hhh) au maximum 10 degrés si un diamètre des tuyaux de refroidissement (65, 75) est compris entre 40 et 60 mm, calculé sans les ailettes de refroidissement, et
    hhhh) au maximum 15 degrés si un diamètre des tuyaux de refroidissement (65, 75) est supérieur à 60 mm et inférieur à 150 mm.
  3. Procédé selon la revendication 1, caractérisé en ce que
    i) les jets plats sont orientés avec leur centre dans la voie de tuyaux de refroidissement, de sorte que les jets plats sont également transversaux au sens longitudinal des tuyaux de refroidissement (65, 75) dans le cas d'ailettes de refroidissement situées transversalement au sens longitudinal des tuyaux de refroidissement (65, 75) et peuvent présenter des écarts suivants du centre de la voie de tuyaux de refroidissement, à savoir,
    ii) au maximum 5 degrés si un diamètre des tuyaux de refroidissement (65, 75) est inférieur à 40 mm, calculé sans les ailettes de refroidissement,
    iii) au maximum 10 degrés si un diamètre des tuyaux de refroidissement (65, 75) est compris entre 40 et 60 mm, calculé sans les ailettes de refroidissement, et
    iiii) au maximum 15 degrés si un diamètre des tuyaux de refroidissement (65, 75) est supérieur à 60 mm et inférieur à 150 mm.
  4. Procédé selon la revendication 2 ou 3, caractérisé par l'application à des échangeurs thermiques dotés d'un registre de refroidissement monocouche, au niveau duquel les tuyaux de refroidissement présentent une section transversale égale, sachant que le centre de la voie de tuyaux de refroidissement est perpendiculaire au niveau, dans lequel les tuyaux de refroidissement (65, 75) sont situés avec leur bord supérieur.
  5. Procédé selon la revendication 2 ou 3, caractérisé par l'application à des échangeurs thermiques dotés d'un registre de refroidissement multicouche, avec des positions décalées des tuyaux de refroidissement, et parallèle au plan, sachant que le milieu de la voie de tuyaux de refroidissement est parallèle au plan dans lequel sont situés des axes centraux des tuyaux de refroidissement (65, 75) formant une voie de tuyaux de refroidissement.
  6. Procédé selon l'une des revendications 2, 3 et 5, caractérisé par l'application à des échangeurs thermiques avec des voies de tuyaux de refroidissement qui, sans tenir compte d'autres effets, permettent au jet plat (82, 84) d'une buse (62, 63, 71. 81), en partie, un libre passage.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que les jets plats (82, 84) sont alignés de sorte qu'ils se recouvrent, vu dans le sens longitudinal des tuyaux de refroidissement (65, 75), au niveau des surfaces d'impact (83, 96) et que le chevauchement des jets plats (82, 84) sur la surface d'impact (83, 96) de la première position de tuyaux de refroidissement est d'au moins 5 %, de préférence d'au moins 10 %, de la largeur de jet sur la surface d'impact (83, 96).
  8. Dispositif pour réaliser le procédé selon l'une des revendications 1 à 7, caractérisé par un porte-buses, pouvant se déplacer au-dessus des registres de refroidissement dans leur sens longitudinal et muni de 4 à 12 buses (62, 63, 71, 81).
  9. Dispositif selon la revendication 8, caractérisé par un tuyau, portant les buses (62, 63, 71, 81), du porte-buses (50) lequel présente une section transversale plus grande que celle des tuyaux d'amenée d'eau.
  10. Dispositif selon la revendication 8 ou 9, caractérisé par des tuyaux de porte-buses, perpendiculaires au sens de marche et dotés de buses (62, 63, 71, 81) placées à l'oblique.
  11. Dispositif selon la revendication 8 ou 9, caractérisé par des tuyaux de porte-buses, obliques au sens de marche et dotés de buses (62, 63, 71, 81) mises en place perpendiculairement au sens de marche et au sens longitudinal des tuyaux de refroidissement.
  12. Dispositif selon l'une des revendications 8 à 11, caractérisé en ce que dans l'amenée d'eau au porte-buses, il est prévu une pompe avec un débit d'au moins 150, de préférence d'au moins 180, et de manière encore plus préférable, de 210 litres minimum par minute et/ou une pompe réglable.
  13. Dispositif selon l'une des revendications 8 à 12, caractérisé par une amenée d'eau au porte-buses (50) avec un diamètre nominal de DN 25 et/ou DN 32 ou un autre diamètre nominal divergent de 10 % maximum.
  14. Dispositif selon l'une des revendications 8 à 13, caractérisé par une échelle disposée au-dessus du registre de refroidissement, de préférence avec un garde-corps.
  15. Dispositif selon la revendication 14, caractérisé en ce qu'au moins le garde-corps est repliable.
EP08003923A 2007-09-18 2008-03-03 Dispositif de nettoyage doté d'un conduit de tuyère pour tuyaux de refroidissement Not-in-force EP2040021B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044747 2007-09-18
DE102008008312A DE102008008312A1 (de) 2007-09-18 2008-02-07 Reinigungsvorrichtung mit Düsenstock für Kühlrohre

Publications (3)

Publication Number Publication Date
EP2040021A2 EP2040021A2 (fr) 2009-03-25
EP2040021A3 EP2040021A3 (fr) 2009-11-25
EP2040021B1 true EP2040021B1 (fr) 2011-03-02

Family

ID=40348702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08003923A Not-in-force EP2040021B1 (fr) 2007-09-18 2008-03-03 Dispositif de nettoyage doté d'un conduit de tuyère pour tuyaux de refroidissement

Country Status (5)

Country Link
EP (1) EP2040021B1 (fr)
AT (1) ATE500481T1 (fr)
DE (3) DE102008008312A1 (fr)
ES (1) ES2357704T3 (fr)
ZA (1) ZA200801975B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008404A1 (de) 2010-01-18 2011-09-01 Jnw Cleaningsolutions Gmbh Reinigungsvorrichtung für kleine Wärmetauscher
DE102012021178A1 (de) 2012-06-24 2013-12-24 Innotech Gmbh Stationäre Reinigungsvorrichtung
WO2013178353A2 (fr) 2012-05-29 2013-12-05 Innotech Gmbh Dispositif de nettoyage
DE102012021177A1 (de) 2012-06-24 2013-12-24 Innotech Gmbh Mobile Reinigungsvorrichtung
DE102013007271A1 (de) 2012-05-29 2013-12-05 Innotech Gmbh Reinigungsvorrichtung
DE102013007062A1 (de) 2012-09-13 2014-03-13 Innotech Gmbh Düsen für eine Reinigungsvorrichtung
DE102013018446A1 (de) 2013-04-23 2014-10-23 Innotech Gmbh Düse für eine Reinigungsvorrichtung
DE102018004298A1 (de) 2017-10-17 2019-04-18 Innotech Gmbh Reinigungsvorrichtung
EP3650793A1 (fr) * 2018-11-08 2020-05-13 Buchen KraftwerkService GmbH Procédé et dispositif de nettoyage de refroidisseurs d'air

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843409A (en) 1970-06-26 1974-10-22 Hydro Vel Services Inc Heat exchanger cleaning system
FR2389090A1 (fr) 1977-04-28 1978-11-24 Svenska Rotor Maskiner Ab Procede et appareil pour le nettoyage des surfaces d'echange des plaques de transmission de chaleur d'un regenerateur rotatif
AT371382B (de) * 1980-09-04 1983-06-27 Voest Alpine Ag Hydraulische entzunderungseinrichtung fuer langgestrecktes walzgut
US5263426A (en) 1990-06-29 1993-11-23 Babcock-Hitachi Kabushiki Kaisha Combustion apparatus
EP0500834A1 (fr) 1990-08-31 1992-09-02 BADER, Emil Dispositif de lavage pour echangeurs thermiques a plaques a courants transversaux
DE29506110U1 (de) * 1995-01-20 1995-08-17 Polybloc Ag Plattenwärmeaustauscher mit Benetzungseinrichtung
DE19800018A1 (de) 1998-01-04 1999-07-08 Jaresch U Wegener Dirk Tragbare Reinigungsvorrichtung für Wärmetauscher
DE59910246D1 (de) * 1998-05-11 2004-09-23 E W Gohl Gmbh Verfahren zum Kühlen von Wasser od.dgl. Fliessmedium sowie Vorrichtung dafür
ATE341747T1 (de) 2000-11-07 2006-10-15 J & W Reinigungssysteme Fuer T Mobile reinigungsvorrichtung für wärmetauscher
DE10126700A1 (de) * 2001-05-31 2003-01-23 J & W Reinigungssysteme Fuer T Reinigungsvorrichtung für Wärmetauscher

Also Published As

Publication number Publication date
DE202008017288U1 (de) 2009-07-16
ZA200801975B (en) 2009-08-26
DE502008002712D1 (de) 2011-04-14
DE102008008312A1 (de) 2009-03-19
EP2040021A3 (fr) 2009-11-25
ATE500481T1 (de) 2011-03-15
EP2040021A2 (fr) 2009-03-25
ES2357704T3 (es) 2011-04-28

Similar Documents

Publication Publication Date Title
EP2040021B1 (fr) Dispositif de nettoyage doté d'un conduit de tuyère pour tuyaux de refroidissement
DE102010010011A1 (de) Reinigungsvorrichtung für Wärmetauscher
EP1604164B1 (fr) Dispositif de nettoyage mobile destine a des echangeurs thermiques
DE102007040427A1 (de) mobile oder stationäre Reinigungsvorrichtung für Wärmetauscher
EP2034266A2 (fr) Installation d'échangeur thermique dotée de surfaces inclinées ou verticales et d'un nettoyage
DE102009052676A1 (de) Mobile Reinigungsvorrichtung für Wärmetauscher
DE102010047563A1 (de) Reinigungsvorrichtung für Wärmetauscher mit Leitern
EP2031331A2 (fr) Dispositif de nettoyage pour systèmes de condensation à air ou échangeurs thermiques analogues
DE102009054159A1 (de) Reinigungsvorrichtung für Wärmetauscher
DE102011008404A1 (de) Reinigungsvorrichtung für kleine Wärmetauscher
DE102010032388A1 (de) Mobile Reinigungsvorrichtung für Wärmetauscher
DE19800018A1 (de) Tragbare Reinigungsvorrichtung für Wärmetauscher
DE10126700A1 (de) Reinigungsvorrichtung für Wärmetauscher
DE102010007984B4 (de) Form- und Kühlvorrichtung für eine fließfähige, aufgeschmolzene Lebensmittelmasse
DE102010051657B4 (de) Reinigungsvorrichtung für einen Verbrennungskessel
DE102017101850A1 (de) Installationsanordnung und Verfahren zur automatisierten Reinigung von Lamellenwärmetauschern
DE19739622A1 (de) Transportable Reinigungsvorrichtung für Wärmetauscheranlagen
DE102011113377A1 (de) Reinigungsvorrichtung für Wärmetauscher mit Schlauchführung
DE19843038B4 (de) Vorrichtung zum Kühlen von Walzgut innerhalb der Kühlstrecke einer Walzanlage zur laminarern Bandkühlung
EP2985116B1 (fr) Dispositif de nettoyage et procédé de nettoyage de rouleaux de transport dans un four à refroidisseur à rouleaux d'une installation de production de verre flotté
EP3290855B1 (fr) Dispositif et procédé de nettoyage à haute pression de tuyaux d'un échangeur de chaleur
DE102013007271A1 (de) Reinigungsvorrichtung
DE60009212T2 (de) Warmwalzwerk für dünne Bänder, mit der Möglichkeit die Bänder einzeln mit hoher Geschwindigkeit aufzuwickeln
DD288990A5 (de) Vorrichtung zur partiellen kuehlung zum thermischen richten von gewalzten sonderprofilen
DE3109719C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100226

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008002712

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002712

Country of ref document: DE

Effective date: 20110414

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357704

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110603

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: JNW CLEANINGSOLUTIONS GMBH

Free format text: JNW CLEANINGSOLUTIONS GMBH#HEIDESTRASSE 119#44866 BOCHUM (DE) -TRANSFER TO- JNW CLEANINGSOLUTIONS GMBH#HEIDESTRASSE 119#44866 BOCHUM (DE)

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110702

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002712

Country of ref document: DE

Effective date: 20111205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008002712

Country of ref document: DE

Representative=s name: FEDER WALTER EBERT PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008002712

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120405

Year of fee payment: 5

Ref country code: CH

Payment date: 20120228

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120328

Year of fee payment: 5

Ref country code: GB

Payment date: 20120326

Year of fee payment: 5

Ref country code: BE

Payment date: 20120319

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120402

Year of fee payment: 5

Ref country code: NL

Payment date: 20120404

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120330

Year of fee payment: 5

BERE Be: lapsed

Owner name: JNW CLEANINGSOLUTIONS G.M.B.H.

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130303

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 500481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130304

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210331

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008002712

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001