EP2029240B1 - Vanne à air comprimé / soupape deluge pour systèmes d'arroseurs automatiques - Google Patents

Vanne à air comprimé / soupape deluge pour systèmes d'arroseurs automatiques Download PDF

Info

Publication number
EP2029240B1
EP2029240B1 EP20070797979 EP07797979A EP2029240B1 EP 2029240 B1 EP2029240 B1 EP 2029240B1 EP 20070797979 EP20070797979 EP 20070797979 EP 07797979 A EP07797979 A EP 07797979A EP 2029240 B1 EP2029240 B1 EP 2029240B1
Authority
EP
European Patent Office
Prior art keywords
valve
clapper
lever
collar
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20070797979
Other languages
German (de)
English (en)
Other versions
EP2029240A2 (fr
EP2029240A4 (fr
Inventor
David Deurloo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reliable Automatic Sprinkler Co Inc
Original Assignee
Reliable Automatic Sprinkler Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliable Automatic Sprinkler Co Inc filed Critical Reliable Automatic Sprinkler Co Inc
Publication of EP2029240A2 publication Critical patent/EP2029240A2/fr
Publication of EP2029240A4 publication Critical patent/EP2029240A4/fr
Application granted granted Critical
Publication of EP2029240B1 publication Critical patent/EP2029240B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/68Details, e.g. of pipes or valve systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1821Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism for check valves with a hinged or pivoted closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1826Check valves which can be actuated by a pilot valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7898Pivoted valves
    • Y10T137/7901Valve head movably connected for accommodation to seat

Definitions

  • the present invention relates to a dry pipe/deluge valve for automatic fire protection sprinkler systems, and in particular a hydraulically-operated valve for use as a primary control valve in a dry pilot, deluge, preaction, or other special types of fire protection systems.
  • a conventional fire protection system includes automatic sprinklers connected to a conduit to receive pressurized fire-extinguishing fluid, such as water. Such systems are referred to as "wet pipe” systems.
  • a typical sprinkler has a base with a threaded portion for connection to the conduit and an output orifice to output the fluid to provide fire control and/or suppression.
  • the output orifice is sealed by a seal cap, which is held in place by a release mechanism.
  • the release mechanism is designed to release the cap under predetermined conditions, thereby initiating the flow of fire-extinguishing fluid.
  • a typical release mechanism includes a thermally-responsive element, e.g., a frangible bulb or fusible link, and may also include a latching mechanism.
  • Certain fire protection systems have a central valve, referred to as a "dry pipe valve” or “deluge valve,” that controls the flow of fire extinguishing fluid from a high pressure supply input to a system output connected to the sprinkler conduits.
  • a typical dry pipe valve has a main chamber for controlling fluid flow from the supply input to the system output.
  • the valve also has a secondary, i.e., "sensing" chamber, to which a fluid-based control line is connected.
  • the valve maintains a balance (i.e., a pressure differential) between the pressure in the sensing chamber and the pressure in the fluid supply input line, which is sealed with a cover (referred to as a "clapper") in the main chamber.
  • a pressure drop in the sensing chamber below a certain threshold allows the clapper to be forced open by the pressure in the supply line, thereby initiating the flow of fluid through the main chamber to the sprinkler system output.
  • the sprinkler conduits initially act as "pilot" lines, which means that the water in these conduits (in a "wet pilot” system) serves as a means for detecting a fire condition, rather than as a means of extinguishing a fire.
  • the pilot lines are connected to the sensing chamber of the dry pipe valve.
  • the resulting drop in water pressure in the pilot lines (and sensing chamber) triggers the dry pipe valve to initiate the flow of fire-extinguishing fluid to the sprinklers.
  • the sprinklers on the wet pilot lines (or on a separate set of conduits) then act to extinguish the fire.
  • a "dry pilot" system may be used in applications in which wet pilot lines are not suitable, such as for refrigerated or sub-freezing storage. Dry pilot systems contain pressurized air or other gases, such as nitrogen, in the conduits connected to the sprinklers, rather than water.
  • an actuator which is usually a separate component from the valve
  • This causes the valve to open, as described above, and initiates the flow of fire-extinguishing fluid to the sprinklers.
  • Electrically-actuated systems employ a solenoid valve that is triggered by electronic fire or smoke detection devices or other types of electrical control devices.
  • the solenoid may be connected in series with a wet or dry pilot system. For example, in a "preaction" system, a loss of pressure in the pilot lines initiates an alarm, but the system does not open the central valve until the solenoid is electrically-actuated, e.g., by an electrical signal from a smoke detection system.
  • Such systems may be used in sensitive areas, such as computer facilities, in which inadvertent activation of the sprinklers would cause significant damage.
  • US1911197 discloses a dry pipe valve for automatic sprinkler systems.
  • US5143112 discloses a top-entry check valve having a seat, cage, disc and removable bonnet utilizes threaded projections engaging the valve body to prevent movement of the seat, cage and disc in the downstream direction.
  • An annular shoulder in the valve body prevents movement of the seat, cage and disc in the upstream direction.
  • the disc has a hinge pin which is cradled in hinge pin supports of the cage to hold the disc in place. Removal of the bonnet allows access to the valve chamber for replacement of the seat, cage, disc or threaded projections.
  • US6000473 discloses a low differential check valve for a fire control system, having particular adaptability in a dry system.
  • the check valve is maintained in its closed position by a latch which is controlled by a plunger.
  • the plunger is activated, and moved to release the latch, upon the sensing of drop in system air pressure by a higher differential mechanism external of the check valve.
  • the check valve may then be reset, with its clapper moved to its closed condition, without requiring internal access of the check valve to release a clapper latch.
  • US6557645 discloses a differential-type dry pipe valve for a fire protection sprinkler system having a ratio of effective air sealing area to service water sealing area that is smaller than a ratio of service water pressure to system air pressure at which the fire protection sprinkler system is actuated.
  • the present invention provides a dry/deluge valve for an automatic sprinkler system.
  • the valve includes a main chamber having an input port for receiving fluid from a supply line and an output port.
  • a clapper assembly is installed in the main chamber for sealing the input port.
  • the clapper assembly includes a threaded valve seat configured to be screwed into a wall of the main chamber, so as to be in communication with the input port.
  • the assembly further includes a collar configured to receive the valve seat, wherein the collar is held in position by the valve seat.
  • a clapper configured to seal the input port, in cooperation with the valve seat, is hinged to the collar, and a lever also is hinged to the collar and is movable between a first position in which the clapper is held closed by the lever and a second position in which the clapper is allowed to open.
  • the dry pipe/deluge valve further includes a sensing chamber having components responsive to a control pressure of the sensing chamber, the components being in communication with the lever to move the lever between the first position and the second position.
  • Embodiments of the present invention may include one or more of the following features.
  • the input and output ports may be sized to have a thicker portion at an end thereof to allow the valve to be machined to any pipe size selected from the group 5.08cm (2 inches), 6.24cm (2.5 inches), 7.62cm (3 inches) consisting of: 5.08cm (2 inches), 6.24cm (2.5 inches),7.62cm (3inches) and 76 mm.
  • the input and output ports may have a nominal size of 20.32cm (8 inches).
  • the lever may have an extended portion that tends to rotate the lever toward the clapper.
  • the extended portion of the lever in the first position, may contact an upper edge of the clapper to prevent the clapper from opening or may contact a lower edge of the clapper to prevent the clapper from re-seating.
  • the clapper may be hinged to the collar using a rod that extends through an edge of the clapper and through support portions that extend from the collar.
  • the collar may form a slip fit with the valve seat, such that an upper lip of the valve seat rests on a surface of the collar.
  • the valve seat may include an upper rim having a circumferential canal.
  • the upper rim may have holes that lead through an interior of the valve seat to corresponding alarm output ports on an outer surface of the valve seat.
  • the clapper assembly may include a sealing disk removably attached to an underside of the clapper, so as to engage with the valve seat when the clapper is closed.
  • the sealing disk may include a metal disk having a seal formed on a surface thereof and at least one threaded post extending from a central portion of an opposite surface.
  • the sealing disk may have three threaded posts extending from the central portion of the surface opposite the seal surface.
  • the seal may be formed of a layer of rubber that is vulcanized to the metal disk.
  • the seal may have a circumferential portion with edges that form a concave rim around the disk.
  • the sensing chamber may include a control input port for receiving fluid from a control supply and a control output port.
  • a piston may be provided that is responsive to a fluid pressure in the sensing chamber.
  • a push-rod may be in communication with the piston and may extend into the main chamber and abut the lever to hold the lever in the first position.
  • the sensing chamber may further include a diaphragm positioned between the fluid in the sensing chamber and the piston.
  • Fig. 1 is a perspective view of a dry pipe/deluge valve for an automatic sprinkler system, in accordance with the present invention.
  • Fig. 2 is a a perspective view of the clapper assembly.
  • Fig. 3A is an exploded view of the clapper assembly.
  • Fig. 3B is a sectional view of a sealing disk for inside of the clapper.
  • Fig. 4 is cross-sectional view of the dry pipe/deluge valve with the clapper in the closed position.
  • Fig. 5 is a cross-sectional view of the dry pipe/deluge valve with the clapper in the open position.
  • Fig. 6 is across-sectional view of the dry pipe/deluge valve with the clapper in the anti-reseat position
  • Fig. 1 shows a dry pipe/deluge valve 100, in accordance with the present invention, having a body 110 with a main chamber 120 and a sensing chamber 130.
  • the valve 100 may be formed, for example, of ductile iron, using a casting process.
  • An input port 140 for a high pressure fluid supply line is provided at the bottom of the main chamber 120.
  • the supply line connected to the input port 140 may have an inner diameter of, e.g., about 5.08cm(2 inches), and may provide fluid at a pressure of, e.g., up to about 172kpa (250psi).
  • other sizes also are possible, such as, for example 6.24cm (2.5 inches), 7.62cm (3 inches), 76 mm and 20.32cm (8 inches).
  • a system output port 150 which is connected to a system of sprinkler conduits (not shown), is provided at the top of the main chamber 120.
  • the output port 150 has a nominal diameter the same size as the supply input port 140.
  • the main chamber 120 has an access panel, which is removed in this view to show the interior of the main chamber 120.
  • the clapper 160 is part of a clapper assembly 200, as shown in Fig. 2 , which includes an annular collar 210 and a threaded valve seat 220.
  • the clapper assembly 200 is assembled outside of the valve body 110, inserted through the access panel, and then screwed into the bottom of the main chamber 120 of the valve body 110, as further described below.
  • the clapper 160 is hinged to the collar 210 on one side, so that it can flip open (up and to the right, in the view of Fig. 1 ) to release the fluid in the supply line connected to the input port 140.
  • the clapper hinge 225 includes a cylindrical rod 230 that extends through a rod housing portion 235 formed in the edge of the clapper 160.
  • the rod 230 extends beyond the rod housing portion 235 at both ends and through support portions 240 extending from the collar 210.
  • the edge of the clapper 160 opposite the hinge 225 is held in place with a releasable lever 250, as further described below.
  • the lever 250 pivots about a rod 255 that extends through the lower portion of the lever 250 and into support portions of the collar 260 on both sides of the lever 250.
  • Fig. 3A shows an exploded view of the clapper assembly 200.
  • the clapper 160 is connected to the collar 210 via a hinge 225, which can be assembled before the clapper assembly 200 is installed.
  • the hinge between the lever 250 and the collar 210 can also be pre-assembled.
  • the valve seat 220 fits into the collar 210 with a slip fit, so that the lip 305 on the upper edge of the valve seat 220 rests on an inner edge 310 of the collar 210.
  • the valve seat 220 has protrusions 315 on the interior surface thereof that are configured to cooperate with an installation tool designed to be inserted into the valve seat 220 to screw the valve seat 220 into the bottom of the main chamber 120.
  • the threaded portion of the valve seat 220 that installs into the valve body 110 may be about 0.75 inches in length and may have about 12 threads per inch.
  • the components of the clapper assembly may be formed, for example, of brass, or preferably stainless steel, through a casting process, such as investment casting.
  • the clapper assembly 200 can be installed in the main chamber 120 of the valve body 110 without rotating the collar 210.
  • This arrangement is advantageous in that it does not require clearance in the front and back of the main chamber 120 for the support portions 240 and 260 that extend from the collar 210, because the collar does not need to be rotated during assembly. This allows for a smaller main chamber 120 and a smaller overall valve body 110.
  • the valve seat 220 when it is screwed into the valve body 110, holds the collar 210 in place. Stops 155 (see Fig.
  • valve seat 220 is installed or uninstalled (only the front stop is illustrated; the other is located behind the collar, such that the support portions 240 are received between the stops 155).
  • This arrangement is also advantageous over certain conventional valves that require the seat to be installed with pins, which require tight tolerances to ensure proper installation.
  • a sealing disk 320 attaches to the inner surface 325 of the clapper 160, i.e., the surface facing the supply input line.
  • the sealing disk 320 is metal, e.g., stainless steel, with a rubber seal 330 directly vulcanized onto the bottom surface of the disk 320.
  • the rubber seal 330 includes a outer circumferential portion 335 that extends from the disk 320 and is configured to rest on an upper rim 350 of the valve seat 220 (see Fig. 3A ).
  • the circumferential portion 335 has two inclined edges 340 that form a trapezoidally-shaped, concave rim 345 around the disk 320.
  • the upper rim 350 of the valve seat 220 forms a circumferential canal to capture water that may leak between the seal 330 and the valve seat 220 (see Fig. 3A ).
  • the upper rim 350 has a number of holes 355 around its periphery that lead through the interior of the walls of the valve seat 220 to alarm output ports 360 around the outer surface of the valve seat 220.
  • a threaded post 365 extends from the top of the sealing disk 320 (and may be cast as part of the disk or attached thereto by welding) to allow installation on the clapper 160.
  • the post 365 is inserted through an opening 370 in the center of the clapper 160 and secured with a nut 375, which includes an upper portion 380 that acts as a bumper to absorb shock when the clapper 160 opens.
  • the sealing disk 320 may have more than one post 365.
  • the sealing disk may have three posts arranged in a triangular configuration near the center of the disk. This configuration is advantageous over certain conventional designs in that it does not require holes to be tapped through the rubber seal 330 or the disk 320 in order to attach it to the clapper 160, which may lead to leakage.
  • the sensing chamber 130 is cylindrically-shaped and extends from the side of the main chamber 120 opposite the position of the clapper 160 hinge.
  • the end of the sensing chamber has a removable cylindrical housing 170, which has a control fluid input port 175 on the bottom of the housing and a control fluid output port 180 on the top of the housing.
  • the control output port 180 is connected to an actuator or a wet pilot line system (not shown). In operation, a loss in pressure in the pilot system, due to activation of an automatic sprinkler, releases fluid from the control output port 180, thereby initiating activation of the valve 100, as further described below.
  • Fig. 4 is a cross-sectional view of valve body 110, showing the main 120 and sensing 130 chambers.
  • the edge of the clapper 160 opposite the hinge is held in place by a lever 250, which in turn is held in place by a piston 405 and push-rod 410 assembly that extends into the main chamber 120 from the sensing chamber 130.
  • the push-rod 410 extends from the sensing chamber 130 into the main chamber 120 through the bore 412 of a threaded, cylindrical push-rod guide 415 that is screwed into the wall 420 between the chambers.
  • the push-rod 410 may be about 7.62cm (3 inches) in length and about 1.27cm (.5 inches) in diameter (for the embodiment having an input port size of between 2 and 3 inches).
  • a spring 422 surrounds the push-rod guide 415 and is configured to exert force on the piston 405 in a direction away from the main chamber 120.
  • the push-rod guide 415 has a circumferential groove 425 in the bore 412 to receive an o-ring to help seal the space between the push-rod 410 and the guide 415.
  • the piston 405, push-rod 410, and spring 422 may all be formed, for example, of stainless steel.
  • the push-rod guide 415 may be formed, for example, of plastic, and in particular a commercially available acetal resin, such as Delrin® (DuPont Corporation).
  • the sensing chamber 130 contains pressurized fluid, supplied through the control input port 175, in a volume between the head of the piston 405 and the walls of the sensing chamber 130.
  • the pressure in the sensing chamber 130 acts to maintain the piston 405 in the unreleased position against the right side of the sensing chamber 130.
  • the force of the fluid pressure against the piston 405 is countered by force supplied by the spring 422 and the force exerted by the lever 250 against the push-rod 410, due to the upward force on the clapper 160.
  • a diaphragm 440 is positioned to prevent fluid from passing from the sensing chamber 130, around the piston 405, and into the main chamber 120.
  • the diaphragm 440 is a made from a thin piece of polymer material, e.g., Ethylene Propylene Diene Monomer (EPDM), of about .61mm (0.024 inches) in thickness.
  • EPDM Ethylene Propylene Diene Monomer
  • the diaphragm 440 is positioned between and is held in place by the cooperation of the removable cylindrical housing 170 of the sensing chamber 130 and the valve body 110.
  • the diaphragm 440 covers the piston 405 head and the space 442 between the sides of the piston 405 and the walls of the sensing chamber 130: as can be seen in Fig.
  • the diaphragm 440 is folded into this space 442, and in fact lies in space 442 folded over itself.
  • the folding of the diaphragm 440 around the sides of the piston 405 helps to ensure smooth operation of the piston 405, because the diaphragm 440 material slides against itself with relatively little friction as the piston moves to the released position.
  • the input 140 and output 150 ports of the main chamber 120 are cast to have thick portions at the ends thereof, with grooves 465 near the ends formed by machining.
  • These end portions may have, for example, an internal diameter of about 5.08cm (2 inches) and an external diameter of about 10.16 cm (4inches).
  • the grooves may have an external diameter of about 8.89cm (3.5 inches).
  • the end portions may be machined on the internal and external surface to form ports for desired standard pipe sizes, such as 5.08cm (2 inches), 6.24cm (2.5 inches), 76mm, and 7.62cm (3 inches).
  • desired standard pipe sizes such as 5.08cm (2 inches), 6.24cm (2.5 inches), 76mm, and 7.62cm (3 inches).
  • the inside surface is left as-is and the outer surface is machined to reduce the external diameter by about an inch.
  • the inside surface is machined to expand the diameter by about 2.54cm (1 inch) and the outside surface is machined just slightly to create a properly finished surface.
  • This arrangement is advantageous in that a single mold can be used to cast at least four different valve sizes.
  • Fig. 5 shows a cross-sectional view of the valve 100 following activation, which is typically initiated by activation of an automatic sprinkler on the wet or dry pilot system connected to the control output 180 of the sensing chamber 130.
  • an automatic sprinkler on the wet or dry pilot system connected to the control output 180 of the sensing chamber 130.
  • a dry pilot system as discussed in the Background section, the activation of a pilot line sprinkler leads to a loss of air pressure in the pilot system, which in turn activates a pneumatic actuator (not shown). The actuator then opens a valve to release fluid from the control output 180 of the sensing chamber 130.
  • the system may also have a hand-operated emergency switch (not shown) that releases the pressurized fluid from the sensing chamber 130.
  • activation of a solenoid valve by an electronic sensor, such as a smoke detector may also be required to initiate activation.
  • the lever 250 is provided with an extended portion 605, the weight of which tends to cause the lever 250 to rotate back toward the clapper 160 (i.e., clockwise in Fig. 6 ) after activation, thereby catching the edge of the clapper 160 and preventing it from closing (this is termed the "anti-reseat position" of the clapper 160).
  • a spring may be used to bias the lever 250 toward the clapper 160.
  • the valve 100 is reset by shutting off the input supply and rotating the lever 250 away from the clapper 160 using a reset knob (not shown), which rotates the rod 255 about which the lever 250 rotates, until the clapper 160 falls into the fully closed position.
  • the reset knob is then released, which allows the lever 250 to rotate back into position over the edge of the clapper 160, due to the weight of the extended portion 605 of the lever 250.
  • Pressure is then restored to the sensing chamber 130 to force the piston 405 and push-rod 410 assembly back into the unreleased position. At that point, the input supply may be restored.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Check Valves (AREA)

Claims (15)

  1. Vanne (100) pour un système d'extincteur automatique, la vanne comprenant : une chambre principale (120) ayant un orifice d'entrée (140) pour recevoir du fluide d'une conduite d'alimentation et ayant en outre un orifice de sortie (150) ; un ensemble de vanne à clapet (200) installé dans la chambre principale pour réaliser l'étanchéité de l'orifice d'entrée, caractérisée en ce que l'ensemble de vanne à clapet comprend : un siège de vanne fileté (220) configuré pour être vissé dans une paroi de la chambre principale, afin d'être en communication avec l'orifice d'entrée ; un collier (210) configuré pour recevoir le siège de vanne, dans laquelle le collier est maintenu en position par le siège de vanne ; une vanne à clapet configurée pour fermer hermétiquement l'orifice d'entrée, en coopération avec le siège de vanne, la vanne à clapet (160) étant articulée (225) par rapport au collier ; et un levier (250) articulé par rapport au collier et mobile entre une première position dans laquelle la vanne à clapet est maintenue fermée par le levier et une seconde position dans laquelle la vanne à clapet est autorisée à s' ouvrir ;
    une chambre de détection (130) comprenant des composants sensibles à une pression de régulation de la chambre de détection, les composants étant en communication avec le levier pour déplacer le levier entre la première position et la seconde position.
  2. Vanne (100) selon la revendication 1, dans laquelle l'orifice d'entrée et/ou l'orifice de sortie est (sont) dimensionné(s) pour avoir une partie plus épaisse au niveau de son (leur) extrémité afin de permettre à la vanne d'être usinée à n'importe qu'elle taille de tuyau choisie dans le groupe comprenant : 5,08 cm (2 pouces), 6,35 cm (2,5 pouces), 7,62 cm (3 pouces), et 76 mm, facultativement, dans laquelle l'orifice d'entrée et l'orifice de sortie ont une taille nominale de 20,32 cm (8 pouces).
  3. Vanne (100) selon la revendication 1, dans laquelle la chambre de détection (130) comprend : un orifice d'entrée de régulation (175) pour recevoir le fluide d'une alimentation de régulation ; un orifice de sortie de régulation ; un piston (405) sensible à une pression de fluide dans la chambre de détection ; une tige de poussée en communication avec le piston, la tige de poussée s'étendant dans la chambre principale et venant en butée contre le levier pour maintenir le levier dans la première position.
  4. Vanne (100) selon la revendication 3, dans laquelle la chambre de détection (130) comprend en outre un diaphragme (440) positionné entre le fluide dans la chambre de détection et le piston.
  5. Vanne (100) selon la revendication 1, dans laquelle le levier (250) a une partie étendue qui a tendance à faire tourner le levier vers la vanne à clapet facultativement, dans laquelle la partie étendue du levier, dans la première position, est en contact avec un bord supérieur de la vanne à clapet pour empêcher l'ouverture de la vanne à clapet.
  6. Vanne (100) selon la revendication 1, dans laquelle le levier (250) a une partie étendue qui a tendance à faire tourner le levier vers la vanne à clapet facultativement, dans laquelle la partie étendue du levier, dans la première position, est en contact avec un bord inférieur de la vanne à clapet pour empêcher la réinstallation de la vanne à clapet.
  7. Vanne (100) selon la revendication 1, dans laquelle la vanne à clapet est articulée par rapport au collier en utilisant une tige (230) qui s'étend à travers un bord de la vanne à clapet et à travers des parties de support (240) qui s'étendent à partir du collier.
  8. Vanne (100) selon la revendication 1, dans laquelle le collier (210) forme un raccord coulissant avec le siège de vanne, de sorte qu'une lèvre supérieure du siège de vanne (220) repose sur une surface du collier.
  9. Vanne (100) selon la revendication 1, dans laquelle le siège de vanne (220) comprend un bord supérieur (350) ayant un canal circonférentiel.
  10. Vanne (100) selon la revendication 9, dans laquelle le bord supérieur comprend une pluralité de trous (355) qui conduisent, en passant par un intérieur du siège de vanne, à des orifices de sortie d'alarme (360) correspondants sur une surface externe du siège de soupape.
  11. Vanne (100) selon la revendication 1, dans laquelle l'ensemble de vanne à clapet comprend en outre un disque d'étanchéité (320) fixé de manière amovible sur une face inférieure de la vanne à clapet, afin de se mettre en prise avec le siège de vanne lorsque la vanne à clapet est fermée.
  12. Vanne (100) selon la revendication 11, dans laquelle le disque d'étanchéité (320) comprend un disque métallique ayant un joint d'étanchéité (330) formé sur sa surface et au moins un montant fileté s'étendant à partir d'une partie centrale d'une surface opposée.
  13. Vanne (100) selon la revendication 12, dans laquelle le disque d'étanchéité comprend trois montants filetés s'étendant à partir de la partie centrale de la surface opposée à la surface de joint d'étanchéité.
  14. Vanne (100) selon la revendication 12, dans laquelle le joint d'étanchéité (330) comprend une couche de caoutchouc qui est vulcanisée sur le disque métallique.
  15. Vanne (100) selon la revendication 14, dans laquelle le joint d'étanchéité comprend une partie circonférentielle avec des bords qui forment un bord concave autour du disque.
EP20070797979 2006-06-02 2007-06-01 Vanne à air comprimé / soupape deluge pour systèmes d'arroseurs automatiques Active EP2029240B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/445,740 US7673695B2 (en) 2006-06-02 2006-06-02 Dry pipe/deluge valve for automatic sprinkler systems
PCT/US2007/070175 WO2007143522A2 (fr) 2006-06-02 2007-06-01 Vanne à air comprimé / soupape deluge pour systèmes d'arroseurs automatiques

Publications (3)

Publication Number Publication Date
EP2029240A2 EP2029240A2 (fr) 2009-03-04
EP2029240A4 EP2029240A4 (fr) 2011-06-22
EP2029240B1 true EP2029240B1 (fr) 2013-08-14

Family

ID=38802236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070797979 Active EP2029240B1 (fr) 2006-06-02 2007-06-01 Vanne à air comprimé / soupape deluge pour systèmes d'arroseurs automatiques

Country Status (7)

Country Link
US (1) US7673695B2 (fr)
EP (1) EP2029240B1 (fr)
AU (1) AU2007256859B2 (fr)
CA (1) CA2656568C (fr)
ES (1) ES2432221T3 (fr)
HK (1) HK1129081A1 (fr)
WO (1) WO2007143522A2 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008076858A1 (fr) 2006-12-15 2008-06-26 Long Robert A Système d'extinction des incendies et procédé associé
US20110127049A1 (en) * 2006-12-15 2011-06-02 Long Robert A Apportioner valve assembly and fire suppression system
US8128058B2 (en) * 2008-04-22 2012-03-06 National Diversified Sales, Inc. Flow control device
US20100081373A1 (en) * 2008-10-01 2010-04-01 Lockheed Martin Corporation Satellite feed assembly with integrated filters and test couplers
CA2767222C (fr) * 2009-07-08 2016-11-08 Aerocrine Ab Clapet anti-retour
US20110061751A1 (en) * 2009-09-15 2011-03-17 Siam Cast Iron Works Co., Ltd. Tilting Disc Swing Check Valve
CA2762561C (fr) 2010-12-23 2021-01-26 Michael L. Hennegan Systeme de gicleur d'incendie muni d'une tuyauterie combinee de detection et de repartition
US10426983B2 (en) 2010-12-23 2019-10-01 Michael L. Hennegan Fire sprinkler system having combined detection and distribution piping
EP2675534B1 (fr) * 2011-02-16 2019-05-29 Tyco Fire Products LP Soupape différentielle et système associé
US8851195B2 (en) * 2011-08-08 2014-10-07 The Reliable Automatic Sprinkler Co., Inc. Differential dry pipe valve
FR3002154B1 (fr) * 2013-02-21 2015-12-04 Vactec Installation de lutte contre les incendies, incluant un reseau de sprinklers sous vide, susceptibles d'etre declenches par un actuateur pilote par un actionneur maitre
CN104645535A (zh) * 2013-11-17 2015-05-27 盐城市瑞恒电力石化设备制造有限公司 智能化消防泄压防爆安全阀
US10201723B2 (en) 2014-07-14 2019-02-12 The Reliable Automatic Sprinkler Co., Inc. Dry pipe/deluge valve for automatic sprinkler systems
PT3218624T (pt) 2014-11-16 2020-03-25 Bermad Cs Ltd Válvula de dilúvio com dreno de assento de válvula
AU2016348531B2 (en) 2015-11-06 2022-04-14 Oklahoma Safety Equipment Company, Inc. Rupture disc device and method of assembly thereof
FR3065777B1 (fr) * 2017-04-27 2019-07-12 Airbus Operations Systeme d'adaptation comportant un bouchon, pour un clapet anti-retour monte sur un carter
JP6924986B2 (ja) * 2017-05-10 2021-08-25 ヤマトプロテック株式会社 流水検知装置
US10941869B2 (en) * 2018-04-25 2021-03-09 Joshua Terry Prather Dual lock flow gate
US10844690B2 (en) * 2018-04-25 2020-11-24 Joshua Terry Prather Dual lock flow gate
CN108679242B (zh) * 2018-06-21 2024-02-27 上海鸿研物流技术有限公司 铰接式阀门
US20240184962A1 (en) * 2021-06-03 2024-06-06 Tyco Fire Products Lp Fire sprinkler simulation system

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US440100A (en) * 1890-11-04 Automatic valve
US1790467A (en) * 1931-01-27 griffith
US914883A (en) * 1907-06-03 1909-03-09 George I Rockwood Dry-pipe valve.
US1464244A (en) * 1919-03-06 1923-08-07 Charles W Mills Alarm valve
US1505958A (en) * 1921-08-11 1924-08-26 Samuel E Huntting Valve
US1464926A (en) * 1922-10-05 1923-08-14 Harry G Eastwood Automatic sprinkler alarm valve
US1600468A (en) * 1925-02-02 1926-09-21 Hennebohle Frank Automatic sprinkler alarm valve
US1662839A (en) * 1925-02-04 1928-03-20 Tyden Emil Dry-pipe-valve accelerator
US1911107A (en) * 1926-06-21 1933-05-23 Byron B Carter Dry pipe valve for automatic sprinkler systems
US1900632A (en) * 1929-05-01 1933-03-07 Alfred E Boardman Fire extinguishing sprinkler valve
US1941694A (en) * 1929-10-09 1934-01-02 Walter M S Kilgour Alarm device
US1941695A (en) * 1929-10-30 1934-01-02 Walter M S Kilgour Alarm device
US1913027A (en) * 1929-12-12 1933-06-06 Star Sprinkler Corp Alarm valve for sprinkler systems
US1856333A (en) * 1931-03-13 1932-05-03 Jr Willis K Hodgman Dry pipe valve
US1947309A (en) * 1931-04-24 1934-02-13 Globe Automatic Sprinkler Co Valve for fire-extinguishing systems
US1932324A (en) * 1931-04-24 1933-10-24 Globe Automatic Sprinkler Co Valve for fire extinguishing systems
US1933214A (en) * 1931-10-26 1933-10-31 Halford Marion Eugene Automatic sprinkler system-alarm valve
US2099069A (en) * 1931-12-15 1937-11-16 Automatic Sprinkler Company Fire extinguishing and alarm apparatus
US1976022A (en) * 1932-06-20 1934-10-09 Charles W Hutchinson Remotely controlled deluge valve
US2003884A (en) * 1933-02-02 1935-06-04 Halford Marion Eugene Control valve for automatic sprinkler systems
US2266421A (en) * 1940-07-26 1941-12-16 William B Griffith Valve for sprinkler systems
US2290358A (en) * 1940-08-21 1942-07-21 Automatic Sprinkler Company Sprinkler system with pressure tank water supply
US2357133A (en) * 1942-11-02 1944-08-29 Automatic Sprinkler Co Pressure actuated valve
US2389817A (en) * 1944-03-10 1945-11-27 Automatic Sprinkler Co Valve for sprinkler systems
US2400372A (en) * 1944-04-06 1946-05-14 Automatic Sprinkler Company Fluid pressure actuated valve
US2398461A (en) * 1944-04-18 1946-04-16 Automatic Sprinkler Company Pressure actuated sprinkler valve
US2384342A (en) * 1944-07-07 1945-09-04 Automatic Sprinkler Co Valve
US2469831A (en) * 1945-02-07 1949-05-10 Leroy M Lewis Deluge valve
US2475489A (en) * 1945-06-18 1949-07-05 Bert E Gathercoal Valve for automatic sprinkler systems
US2447174A (en) * 1946-08-27 1948-08-17 William B Griffith Dry pipe valve
US2505761A (en) * 1946-10-31 1950-05-02 Russell W Gieseler Fire protection automatic sprinkler system
US2506468A (en) * 1947-05-13 1950-05-02 Automatic Sprinkler Corp Automatic sprinkler valve
US2597474A (en) * 1948-09-23 1952-05-20 William B Griffith Dry pipe valve
US2717001A (en) * 1950-07-15 1955-09-06 Perrault Ainslie Valve seat
US2713916A (en) * 1952-11-25 1955-07-26 Automatic Sprinkler Corp Automatic sprinkler system
US3075547A (en) * 1960-04-22 1963-01-29 Scaramucci Domer Swing check valve
GB1030008A (en) * 1963-11-25 1966-05-18 Mather & Platt Ltd Improvements in or relating to control valves for fire fighting systems
US3331391A (en) * 1964-06-01 1967-07-18 Grinnell Corp Check valve clapper construction
US3315748A (en) * 1965-06-25 1967-04-25 Grinnell Corp Fire protection valve
US3447609A (en) * 1967-08-31 1969-06-03 James Harvey Fast-acting deluge-type fire extinguisher system
BE754214A (fr) * 1969-08-01 1971-02-01 Grinnell Corp Accelerateur pour systeme extincteur d'incendie
US3883111A (en) * 1973-09-24 1975-05-13 Acf Ind Inc Clapper-type check valve
GB1553468A (en) * 1977-07-14 1979-09-26 Mather & Platt Ltd Control valves
JPS5563066A (en) 1978-11-06 1980-05-12 Kobe Steel Ltd Swing type check valve
DE3230086A1 (de) * 1982-08-13 1984-02-23 Verband der Sachversicherer e.V., 5000 Köln Trockenalarmventil/spruehflutventil fuer feuerloeschanlagen
US4854342A (en) * 1988-09-14 1989-08-08 Central Sprinkler Corporation Clapper seal for dry pipe valve
US5143112A (en) * 1991-09-18 1992-09-01 Scaramucci John P Top-entry check valve with cartridge secured by threaded projections
US5295503A (en) * 1992-10-02 1994-03-22 Central Sprinkler Corporation Modular valve for a building standpipe
US6068057A (en) * 1998-05-15 2000-05-30 Reliable Automatic Sprinkler Co., Inc. Dry pipe valve system
US6000473A (en) * 1998-05-18 1999-12-14 Victaulic Fire Safety Company L.L.C. Low differential check valve for sprinkler systems
US6029749A (en) * 1998-05-18 2000-02-29 Victaulic Fire Safety Company, L.L.C. Actuator for check valve
US5992532A (en) * 1998-08-11 1999-11-30 The Viking Corporation Wet pipe fire protection system
US6666277B2 (en) * 2000-03-27 2003-12-23 Victaulic Company Of America Low pressure pneumatic and gate actuator
US6557645B1 (en) * 2000-06-13 2003-05-06 Grinnell Corporation Dry pipe valve for fire protection sprinkler system
JP3607180B2 (ja) 2000-08-24 2005-01-05 千住スプリンクラー株式会社 流水検知装置
US6578602B1 (en) * 2001-08-10 2003-06-17 Automatic Fire Control, Incorporated Alarm valve system
JP2003275335A (ja) 2002-03-25 2003-09-30 Senju Sprinkler Kk 流水検知装置およびスプリンクラー消火設備
US7240740B2 (en) * 2004-01-16 2007-07-10 Victaulic Company Diaphragm valve with pivoting closure member
US20060081292A1 (en) * 2004-10-15 2006-04-20 Magic Plastics, Inc. Quickly opening hinged check valve with pre-determined upstream pressure required to open

Also Published As

Publication number Publication date
WO2007143522A2 (fr) 2007-12-13
CA2656568C (fr) 2013-01-08
EP2029240A2 (fr) 2009-03-04
WO2007143522A3 (fr) 2008-10-16
ES2432221T3 (es) 2013-12-02
AU2007256859A1 (en) 2007-12-13
US20070295518A1 (en) 2007-12-27
US7673695B2 (en) 2010-03-09
HK1129081A1 (en) 2009-11-20
CA2656568A1 (fr) 2007-12-13
AU2007256859B2 (en) 2011-09-15
EP2029240A4 (fr) 2011-06-22

Similar Documents

Publication Publication Date Title
EP2029240B1 (fr) Vanne à air comprimé / soupape deluge pour systèmes d'arroseurs automatiques
US10201723B2 (en) Dry pipe/deluge valve for automatic sprinkler systems
CA1084475A (fr) Vanne de regulation
US7438087B1 (en) Overpressure rotary valve assembly with locking pin and collapsible member
US20110147016A1 (en) Fluid Selective Check Valve
CA2346080A1 (fr) Actionneur pour soupape de retenue
TWI607781B (zh) 火焰抑制系統
GB2273795A (en) Valve for fire extinguishing systems
KR101200621B1 (ko) 동파방지용 스프링클러
US4205820A (en) Control valves
JPH0560126B2 (fr)
US4552221A (en) Dry-head or deluge-type valve for fire-extinguishing systems
US11247086B2 (en) Pilot actuator for actuating a control valve
US11358015B2 (en) Pilot actuator for actuating a control valve
JP2020168265A (ja) 一斉開放弁並びにチャッキ弁構造
US4359098A (en) Automatic on-off fire sprinkler head
RU2229052C1 (ru) Термозапорный клапан
JP2009017997A (ja) 流水検知装置および一斉開放弁
JP2908308B2 (ja) 遮断装置
GB2431455A (en) Fire extinguisher valve
JPS621510Y2 (fr)
JP2777823B2 (ja) 安全弁付自動排水弁
KR20210057399A (ko) 소화기용 파열디스크 어셈블리
ZA200608294B (en) Dispensing arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081229

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1129081

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20110519

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 35/00 20060101AFI20080221BHEP

Ipc: F16K 15/18 20060101ALI20110513BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 35/00 20060101AFI20130206BHEP

Ipc: A62C 35/68 20060101ALI20130206BHEP

Ipc: F16K 15/18 20060101ALI20130206BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 626444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007032270

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2432221

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131202

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1129081

Country of ref document: HK

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 626444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130814

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131115

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007032270

Country of ref document: DE

Effective date: 20140515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140627

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007032270

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140601

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007032270

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070601

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230627

Year of fee payment: 17

Ref country code: GB

Payment date: 20230628

Year of fee payment: 17