EP2027210A1 - Schuhsohlen mit wasserabsorbierenden eigenschaften - Google Patents

Schuhsohlen mit wasserabsorbierenden eigenschaften

Info

Publication number
EP2027210A1
EP2027210A1 EP07729230A EP07729230A EP2027210A1 EP 2027210 A1 EP2027210 A1 EP 2027210A1 EP 07729230 A EP07729230 A EP 07729230A EP 07729230 A EP07729230 A EP 07729230A EP 2027210 A1 EP2027210 A1 EP 2027210A1
Authority
EP
European Patent Office
Prior art keywords
water
components
polyurethane foam
absorbing polymer
propellant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07729230A
Other languages
English (en)
French (fr)
Inventor
Markus SCHÜTTE
Andre Kamm
Raffaela Villa
Davide Fusetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07729230A priority Critical patent/EP2027210A1/de
Publication of EP2027210A1 publication Critical patent/EP2027210A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a batch process for producing a polyurethane foam comprising (a) polyisocyanates with (b) at least one higher molecular weight compound having at least two reactive hydrogen atoms and (c) optionally low molecular weight chain extenders and / or crosslinking agents, (d) blowing agents, containing optionally water, (e) catalysts, (f) water-absorbing polymer, (g) capsules optionally containing latent heat storage and (h) optionally mixing other additives and reacting the resulting reaction mixture to polyurethane foam, either the propellant d) contains no water, or if the propellant d) contains water, propellant d) and water-absorbing polymer f) is brought into contact only during the preparation of the reaction mixture.
  • the invention further relates to polyurethane foams obtainable by such a process and to shoe soles comprising such a polyurethane foam.
  • a pleasant climate is important for human well-being. Above all, the temperature and humidity of the immediate body environment play an important role. This body climate is generally influenced by clothing.
  • Clothing should support as much as possible the body's own mechanisms for heat regulation.
  • One such mechanism is sweating.
  • the body produces moisture that evaporates on the skin surface. The body is thereby deprived of evaporation energy in the form of heat.
  • the absorption capacity of the materials for water can be increased, for example, by hydrophilic polyurethane foams, wherein the hydrophilicity of the foams can be achieved by using polar polyols such as polyesterols or special polyetherols with high levels of ethylene oxide (EO). Examples thereof can be found in the specifications US Pat. No. 3,869,993, US Pat. No. 3,884,417 and WO 2004074343.
  • polar polyols such as polyesterols or special polyetherols with high levels of ethylene oxide (EO).
  • EO ethylene oxide
  • a disadvantage of such materials is the swelling with increase in volume upon absorption of high amounts of moisture.
  • foams are obtained with lower elasticity and higher compression set. This is a particular disadvantage when using such materials in shoes as insoles.
  • WO 03097345 discloses a hydrophilic polyurethane foam with a content of water-absorbing polymer of not more than 0.1% by weight, which makes it possible to transport moisture in the polyurethane foam material. According to WO 03097345, a higher content of water-absorbing polymer causes it to gel in regions of high humidity, thereby preventing the transport of moisture. Further, WO 03097345 discloses that in the preparation of the polyurethane foam, an aqueous phase containing the water-absorbent polymer is used.
  • WO 9744183 also discloses the use of water-absorbing particles in a polyurethane foam.
  • the foams disclosed in WO 9744183 are prepared in the form of blocks. These are obtained in a continuous procedure by reacting a hydrophilic isocyanate prepolymer in combination with acrylic latex and water and then pressed in a further step by Thermover- molding to soles. In this process, the isocyanate is reacted with a high stoichiometric excess of water.
  • the prepolymers used in this case are obtained by reacting TDI or MDI with hydrophilic polyetherols and generally have NCO contents of between 5 and 8%.
  • the water-absorbing polymer is used together with the isocyanate-reactive component.
  • Foam and shaping takes place in one step. This eliminates subsequent additional necessary for the molding steps and associated overhead, for example, by post-processing of the parts and material loss by cutting waste.
  • Water-absorbing polymers can not be used because of their properties or only in very small proportions in the isocyanate or in the water-containing isocyanate-reactive component, since these swell with water and thereby greatly increase the viscosity of the polyol. This leads to only a limited miscibility of the isocyanate component with the isocyanate-reactive component and thus inhomogeneous products.
  • the object of the present invention is to provide a simple process which makes it possible to produce polyurethane foams having a content of water-absorbing polymer of up to 20% by weight, based on the total weight of the polyurethane foam.
  • a discontinuous process for preparing a polyurethane foam which comprises (a) polyisocyanates with (b) at least one higher molecular weight compound having at least two reactive hydrogen atoms and (c) optionally low molecular weight chain extender and (d) blowing agents containing optionally water, (e) catalysts, (f) water-absorbing polymer, (g) optionally Capsules containing latent heat storage and (h) optionally other additives and reacting the resulting reaction mixture to polyurethane foam, either the propellant d) contains no water or, if the propellant d) contains water, propellant d) and water-absorbing polymer f) only at the Preparation of the reaction mixture is brought into contact.
  • this invention by polyurethane foams, obtainable by a process according to the invention, as well as soles containing such a polymer, dissolved.
  • Polyurethane foams in the sense of the invention include all types of polyurethane foams. Particularly preferred are flexible foams and microcellular elastomers, for example foams, such as are commonly used in shoe applications, for example as an insole, midsole or soles, or foams, such as those used in upholstery materials, for example in armguards.
  • the polyisocyanates (a) used for the preparation of the polyurethane foams according to the invention comprise the known from the prior art aliphatic, cycloaliphatic and aromatic di- or polyfunctional isocyanates (component a-1) and any mixtures thereof.
  • polymeric MDI polymeric MDI
  • tetramethylene diisocyanate tetramethylene diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • 4,4'-MDI and / or HDI is used.
  • the particularly preferred 4,4'-MDI may contain minor amounts, up to about 10% by weight, of allophanate- or uretonimine-modified polyisocyanates. It is also possible to use small amounts of polyphenylene polymethylene polyisocyanate (polymer MDI). The total amount of these high-functionality polyisocyanates should not exceed 5% by weight of the isocyanate used.
  • the polyisocyanate component (a) is preferably used in the form of polyisocyanate prepolymers.
  • These polyisocyanate prepolymers are obtainable by reacting polyisocyanates (a-1) described above, for example at temperatures of 30 to 100 ° C., preferably at about 80 ° C., with polyols (a-2) to give the prepolymer.
  • polyisocyanates (a-1) described above, for example at temperatures of 30 to 100 ° C., preferably at about 80 ° C.
  • polyols (a-2) to give the prepolymer.
  • 4,4'-MDI is preferably used together with uretonimine-modified MDI and commercial polyols based on polyesters, for example starting from adipic acid, or polyethers, for example starting from ethylene oxide or propylene oxide.
  • Ether-based prepolymers are preferably obtained by reacting polyisocyanates (a-1), more preferably 4,4'-MDI, with 2- to 3-functional polyoxypropylene and / or polyoxypropylene-polyoxyethylene polyols. They are usually prepared by the generally known base-catalyzed addition of propylene oxide alone or in admixture with ethylene oxide to H-functional, in particular OH-functional starter substances. Examples of starter substances used are water, ethylene glycol or propylene glycol or glycerol or trimethylolpropane.
  • component (a-2) polyethers can be used, as described below under (b).
  • the ethylene oxide is preferably used in an amount of 10-50% by weight, based on the total amount of alkylene oxide.
  • the incorporation of the alkylene oxides can be carried out in blocks or as a random mixture. Particularly preferred is the incorporation of an ethylene oxide end block ("EO cap") to increase the content of more reactive primary OH end groups.
  • EO cap ethylene oxide end block
  • mixtures of diols based on polyoxypropylene and polyoxypropylene-polyoxyethylene are used.
  • the hydroxyl number (OH number) of these diols is preferably between 20 and 100 mg KOH / g.
  • relatively high molecular weight compounds (b) having at least two reactive hydrogen atoms it is expedient to use those having a functionality of from 2 to 8 and an OH number of 9 to 1150 mg KOH / g.
  • Polyetherpoly- amines and / or preferably polyols selected from the group of Polyetherpolyo- Ie, polyester polyols prepared from alkanedicarboxylic acids and polyhydric alcohols, Polythioetherpolyole, polyesteramides, hydroxyl-containing polyacetals and hydroxyl-containing aliphatic polycarbonates or mixtures of at least two of said polyols.
  • polyester polyols and / or polyether polyols Preferably used polyester polyols and / or polyether polyols.
  • alkyd resins or polyester molding compounds having reactive, olefinically unsaturated double bonds are unsuitable as relatively high molecular weight compounds (b) having at least two reactive hydrogen atoms.
  • polyetherols are used.
  • Suitable polyether polyols can be prepared by known processes, for example by anionic polymerization with alkali metal hydroxides, such as sodium or potassium hydroxide, or alkali metal, such as sodium methoxide, sodium or potassium, or potassium isopropoxide as catalysts and with the addition of at least one starter molecule, the 2 to 8 reactive hydrogen atoms or prepared by Doppelmetallcyanidkatalysatoren, as described for example in EP 90444 or WO 05/090440.
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1, 3-propylene oxide, 1, 2 or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and 1, 2-propylene oxide.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • Suitable starter molecules are, for example: water, polyhydric, especially dihydric to octahydric alcohols, such as ethanediol, propanediol 1, 2 and -1, 3, diethylene glycol, dipropylene glycol, butanediol 1, 4, hexanediol 1, 6, glycerol, Trimethylol propane, pentaerythritol, sorbitol and sucrose, organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and terephthalic acid, aliphatic and aromatic, optionally N-mono-, N 1 N- and N, N'-dialkyl-substituted diamines having 1 to 4 carbon atoms in Alkyl radical, such as optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1, 3-propylenediamine, 1, 3 or 1, 4-butylenediamine,
  • alkanolamines such as ethanolamine, diethanolamine, N-methyl- and N-ethyl-ethanolamine, N-methyl- and N-ethyl-diethanolamine and triethanolamine and ammonia.
  • polyhydric especially dihydric to hexahydric alcohols, such as ethanediol, propanediol 1, 2 and 1, 3, diethylene glycol, dipropylene glycol, butanediol 1, 4, hexanediol 1, 6, glycerol, trimethylolpropane, pentaerythritol, Sorbitol and sucrose.
  • dihydric to hexahydric alcohols such as ethanediol, propanediol 1, 2 and 1, 3, diethylene glycol, dipropylene glycol, butanediol 1, 4, hexanediol 1, 6, glycerol, trimethylolpropane, pentaerythritol, Sorbitol and sucrose.
  • the polyether polyols preferably polyoxypropylene and polyoxypropylene polyoxyethylene polyols having Etylenoxidendblocks have a functionality of preferably 2 to 4 and especially 2 and / or 3 and preferably an OH number between 12 and 155 mg KOH / g and in particular between 20 and 75 mg KOH /G.
  • polymer-modified polyols preferably polymer-modified polyesterols or polyetherols, particularly preferably graft polyether or graft polyesterols, in particular graft polyetherols.
  • This is a so-called polymer polyol, which usually has a content of, preferably thermoplastic, polymers of from 5 to 60% by weight, preferably from 10 to 55% by weight, particularly preferably from 30 to 55% by weight, and in particular 40 to 50 wt .-%, having.
  • polymer polyols are described, for example, in US Pat. No.
  • 4,342,840 and EP-A-250,351 are usually prepared by free-radical polymerization of suitable olefinic monomers, for example styrene, acrylonitrile, (meth) acrylates, (meth) acrylic acid and / or acrylamide Graft base serving polyester or polyether prepared.
  • suitable olefinic monomers for example styrene, acrylonitrile, (meth) acrylates, (meth) acrylic acid and / or acrylamide Graft base serving polyester or polyether prepared.
  • the side chains are generally formed by transferring the radicals from growing polymer chains to polyesterols or polyetherols.
  • the Po In addition to the graft copolymers, lymer polyol predominantly contains the homopolymers of the olefins dispersed in unchanged polyesterol or polyetherol.
  • the monomers used are acrylonitrile, styrene, in particular exclusively styrene.
  • the monomers are optionally in the presence of other monomers, a macromer, a moderator and using a radical initiator, usually azo or peroxide compounds, polymerized in a polyesterol or polyetherol as a continuous phase.
  • the macromers are incorporated into the copolymer chain.
  • This forms block copolymers with a polyester or polyether and a poly-acrylonitrile-styrene block which act as phase mediators in the interface of continuous phase and dispersed phase and suppress the agglomeration of the polymer polyesterol particles.
  • the proportion of macromers is usually 1 to 20% by weight, based on the total weight of the monomers used to prepare the polymer polyol.
  • the proportion of polymer polyol is greater than 5 wt .-%, based on the total weight of component (b).
  • the polymer polyols may, for example, based on the total weight of component (b) in an amount of 7 to 90
  • the polymer polyol is particularly preferably polymer polyesterol or polymer polyetherol.
  • the polyurethane foams according to the invention can be prepared without or with the concomitant use of (c) chain extenders and / or crosslinking agents.
  • chain extenders, crosslinking agents or, if appropriate, mixtures thereof can prove to be advantageous for modifying the mechanical properties, for example the hardness.
  • chain extenders and / or crosslinking agents substances having at least two isocyanate-reactive groups, such as OH or amine groups, are used. Preference is given to using diols and / or triols having molecular weights of less than 400, preferably from 60 to 300 and in particular from 60 to 150.
  • Suitable examples are aliphatic, cycloaliphatic and / or araliphatic diols having 2 to 14, preferably 2 to 10, carbon atoms, such as ethylene glycol, 1,3-propanediol, 1, 10, o, m-, p-dihydroxycyclohexane, Diethylene glycol, dipropylene glycol and preferably butanediol 1, 4, hexanediol-1, 6 and bis (2-hydroxyethyl) hydroquinone, triols such as 1, 2,4-, 1, 3,5-trihydroxy-cyclohexane, glycerol and trimethylolpropane , and low molecular weight hydroxyl-containing polyalkylene oxides based on ethylene and / or 1, 2-propylene oxide and the aforementioned diols and / or triols as starter molecules.
  • chain extenders c) monoethylene glycol, 1, 4-butanediol and / or glycerol are used. If chain extenders, crosslinking agents or mixtures thereof are used, these are expediently used in amounts of from 1 to 60% by weight, preferably from 1.5 to 50% by weight and in particular from 2 to 40% by weight, based on the weight of the components (b) and (c) are used.
  • blowing agents (d) are present in the production of polyurethane foams. These blowing agents optionally contain water (referred to as component (d-1)). In addition to water (d-1), additionally generally known chemically and / or physically active compounds can be used as blowing agent (d) (the further chemical blowing agents are used as constituent (d-2) and the physical blowing agents as constituent (d-3) ) designated).
  • Chemical blowing agents are compounds which form gaseous products by reaction with isocyanate, such as, for example, water or formic acid. Physical blowing agents are understood as compounds which are dissolved or emulsified in the starting materials of polyurethane production and evaporate under the conditions of polyurethane formation.
  • hydrocarbons for example, hydrocarbons, halogenated hydrocarbons, and other compounds, for example perfluorinated alkanes, such as perfluorohexane, chlorofluorocarbons, and ethers, esters, ketones and / or acetals, for example (cyclo) aliphatic hydrocarbons having 4 to 8 carbon atoms or hydrofluorocarbons as Solkane ® 365 mfc from Solvay.
  • the blowing agent employed is a mixture of these blowing agents containing water, in particular water as the sole blowing agent. If no water is used as the blowing agent, preferably only physical blowing agents are used.
  • the content of (d-1) water in a preferred embodiment is from 0.1 to 2 wt .-%, preferably 0.2 to 1, 5 wt .-%, particularly preferably 0.3 to 1, 2 wt. %, in particular 0.4 to 1 wt .-%, based on the total weight of the components
  • water (d-1) comprises not only water which is added as a separate component, but also water, for example in one of the components
  • microbeads containing physical blowing agent are added to the reaction of components (a), (b) and optionally (c) as additional blowing agent.
  • the microspheres may also be used in admixture with the aforementioned additional chemical blowing agents (d-2) and / or physical blowing agents (d-3).
  • microspheres usually consist of a shell of thermoplastic polymer and are filled in the core with a liquid, low-boiling substance based on alkanes.
  • a liquid, low-boiling substance based on alkanes The preparation of such microspheres is described, for example, in US Pat. No. 3,615,972.
  • the microspheres generally have a diameter of 5 to 50 on. Examples of suitable microspheres are available under the trade name Expancell® from Akzo Nobel.
  • microspheres are generally added in an amount of 0.5 to 5% based on the total weight of components (b), (c) and (d).
  • catalysts (e) for the preparation of the polyurethane foams preference is given to using compounds which greatly accelerate the reaction of the hydroxyl-containing compounds of component (b) and optionally (c) with the polyisocyanates (a).
  • amidines such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine
  • tertiary amines such as triethylamine, tributylamine, dimethylbenzylamine, N-methyl-, N-ethyl-, N-cyclohexylmorpholine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethylbutanediamine, N, N, N ', N'-tetramethylhexanediamine, pentamethyldiethylenetriamine, tetramethyldiminoethyl ether, bis (dimethylaminopropyl ) urea, dimethylpiperazine
  • organic metal compounds preferably organic tin compounds such as stannous salts of organic carboxylic acids, e.g. Stannous acetate, stannous octoate, stannous ethylhexanoate and stannous laurate and the dialkyltin (IV) salts of organic carboxylic acids, e.g. Dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate and dioctyltin diacetate; and bismuth carboxylates such as bismuth (III) neodecanoate, bismuth 2-ethylhexanoate and bismuth octanoate or mixtures thereof.
  • the organic metal compounds can be used alone or preferably in combination with strongly basic amines. When component (b) is an ester, it is preferred to use only amine catalysts.
  • Water-absorbing polymers (f) are especially polymers of (co) polymerized hydrophilic monomers such as partially neutralized acrylic acid, 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate, graft (co) polymers of one or more hydrophilic monomers on a suitable grafting, crosslinked Cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide, partially crosslinked polyvinylpyrrolidone or Polyvinylpyr- rolidoncopolymerisaten or swellable in aqueous liquids natural products, such as guar derivatives or bentonites, water-absorbing polymers (f) based on partially neutralized acrylic acid are preferred.
  • polymerized hydrophilic monomers such as partially neutralized acrylic acid, 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate
  • graft (co) polymers of one or more hydrophilic monomers on a suitable grafting crosslinked Cellulose or starch
  • Such polymers are used as absorbent products for the manufacture of diapers, tampons, sanitary towels and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the preparation of the water-absorbing polymers (f) is described, for example, in the monograph "Modern Superabsorbent Polymer Technology", FL Buchholz and AT. Graham, Wiley-VCH, 1998, or Ullmann's Encyclopedia of Industrial Chemistry, 6th Edition, Vol. 35, pages 73-103.
  • the preferred method of preparation is solution or gel polymerization. In this technology, a monomer mixture is first prepared, which is discontinuously neutralized and then transferred to a polymerization reactor, or is already presented in the polymerization reactor. In the subsequent discontinuous or continuous process, the reaction takes place to the polymer gel, which is already comminuted in the case of a stirred polymerization. The polymer gel is then dried, ground and sieved and then transferred for further surface treatment.
  • the water-absorbing polymers are obtained, for example, by polymerization of a monomer solution containing
  • Suitable ethylenically unsaturated carboxylic acids or sulfonic acids aa) include, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, 4-pentenoic acid, 2-acrylamide-2-methylpropanesulfonic acid, vinylsulfonic acid, 3-allyoxy-2-hydroxypropane-1-sulfonate and itaconic acid.
  • Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids can be mono-, di- or tricarboxylic acids.
  • R 1 is particularly preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on Acrylic acid, wherein acrylic acid salts are taken into account as acrylic acid.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used.
  • the crosslinkers bb) are compounds having at least two polymerizable groups which can be polymerized into the polymer network in a free-radical manner.
  • Suitable crosslinkers bb) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-A 0 530 438, di- and triacrylates, as in EP-A 0 547 847, EP-A 0 559 476, EP -A 0 632 068, WO 93/21237, WO 03/104299, WO 03/104300,
  • WO 03/104301 and DE-A 103 31 450 mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, as described in DE-A 103 31 456 and WO 04/013064, or crosslinker mixtures, for example in DE-A A 195 43 368, DE-A 196 46 484, WO 90/15830 and WO 02/32962.
  • Suitable crosslinkers bb) include in particular N, N'-methylenebisacrylamide and N 1 N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A 0 343 427.
  • esters of unsaturated mono- or polycarboxylic acids of polyols such as diacrylate or triacrylate, for example butanediol or ethylene glycol di
  • crosslinkers bb) are pentaerythritol di-, pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol di- and glycerol triallyl ethers, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of Polyethylene glycols, wherein the polyethylene glycol used has a molecular weight between 300 and 1000.
  • crosslinkers bb) are di- and triacrylates of 3 to 15 times ethoxylated glycerol, of 3 to 15 times ethoxylated trimethylolpropane, of 3 to 15 times ethoxylated trimethylolethane, especially di- and triacrylates of 2 to 6-times ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, and the 3-fold mixed ethoxylated or propoxylated glycerol or trimethylolpropane, 15-ethoxylated glycerol or trimethylolpropane, and the 40-times ethoxylated glycerol, trimethylolethane or trimethylolpropane ,
  • Very particularly preferred crosslinkers bb) are the polyethyleneglyoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 03/104301. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol. Very particular preference is given to diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol. Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • Examples of ethylenically unsaturated monomers cc) copolymerizable with the monomers aa) are acrylamide, methacrylamide, crotonamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate.
  • Water-soluble polymers dd) can be polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, polyglycols, in particular di- and trivalent polyols based on ethylene oxide and / or propylene oxide, or polyacrylic acids, preferably polyvinyl alcohol, polyglycols and starch.
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance.
  • the monomer solutions are largely freed of oxygen before the polymerization (inerting), for example by means of flowing through with an inert gas, preferably nitrogen.
  • an inert gas preferably nitrogen.
  • the polymerization inhibitors are significantly weakened in their effect.
  • the oxygen content of the monomer solution prior to the polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight.
  • Water-absorbing polymers are usually obtained by polymerization of an aqueous monomer solution and optionally subsequent comminution of the hydrogel. Suitable preparation methods are described in the literature. Water-absorbing polymers can be obtained, for example
  • the reaction is preferably carried out in a kneader, as described, for example, in WO 01/38402, or on a belt reactor, as described, for example, in EP-A 0 955 086.
  • the neutralization may also be carried out in part after the polymerization at the hydrogel stage. It is therefore possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups before the polymerization by adding a part of the neutralizing agent already to the monomer solution and the desired final degree of neutralization only after the polymerization is adjusted at the hydrogel stage.
  • the monomer solution can be neutralized by mixing in the neutralizing agent.
  • the hydrogel can be mechanically comminuted, for example by means of a meat grinder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed. For this purpose, the gel mass obtained can be further gewolfft for homogenization.
  • the neutralization of the monomer solution to the final degree of neutralization is preferred.
  • the neutralized hydrogel is then dried with a belt or drum dryer until the residual moisture content is preferably below 15 wt .-%, in particular below 10 wt .-%, wherein the water content according to the recommended by the EDANA (European Disposables and Nonwovens Association) Test Method no 430.2-02 "Moisture content" is determined.
  • a fluidized bed dryer or a heated ploughshare mixer can be used for drying.
  • it is advantageous in the drying of this gel to ensure rapid removal of the evaporating water.
  • the dryer temperature must be optimized, the air supply and removal must be controlled, and in any case sufficient ventilation must be ensured.
  • the solids content of the gel before drying is therefore preferably between 30 and 80% by weight.
  • Particularly advantageous is the ventilation of the dryer with nitrogen or other non-oxidizing inert gas.
  • nitrogen or other non-oxidizing inert gas it is also possible simply to lower only the partial pressure of the oxygen during the drying in order to prevent oxidative yellowing processes.
  • sufficient ventilation and removal of the water vapor also leads to an acceptable product.
  • Advantageous in terms of color and product quality is usually the shortest possible drying time.
  • the dried hydrogel is preferably ground and sieved, it being possible to use roll mills, pin mills or vibratory mills for milling.
  • the particle size of the sieved, dry hydrogel is preferably below 1000 .mu.m, more preferably below 800 .mu.m, most preferably below 600 .mu.m, and preferably above 10 .mu.m, more preferably above 50 .mu.m, most preferably above 100 .mu.m.
  • particle size (sieve cut) of 106 to 850 ⁇ m.
  • the particle size is determined according to the test method No. 420.2-02 "Particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the base polymers are then preferably surface postcrosslinked.
  • Suitable postcrosslinkers for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxylate groups of the hydrogel.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as described in EP-A 0 083 022, EP-A 0 543 303 and EP-A 0 937 736, di- or polyfunctional alcohols, such as in DE-C 33 14 019, DE-C 35 23 617 and EP-A 0 450 922, or ⁇ -hydroxyalkylamides, as described in DE-A 102 04 938 and US Pat. No.
  • DE-A 40 20 780 cyclic carbonates, in DE-A 198 07 502 2- oxazolidone and its derivatives, such as 2-hydroxyethyl-2-oxazolidone, in DE-A 198 07 992 bis- and poly-2 oxazolidinone, in DE-A 198 54 573 2-oxotetrahydro-1, 3-oxazine and its derivatives, in DE-A 198 54 574 N-acyl-2-oxazolidones, in DE-A 102 04 937 cyclic ureas, in DE-A A 103 34 584 bicyclic amide acetals, described in EP-A 1 199 327 oxetanes and cyclic ureas and in WO 03/031482 morpholine-2,3-dione and its derivatives as suitable surface postcrosslinkers.
  • the postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the hydrogel or the dry base polymer powder. Following the spraying, the polymer powder is thermally dried, whereby the crosslinking reaction can take place both before and during drying.
  • the spraying of a solution of the crosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • Vertical mixers are particularly preferred, plowshare mixers and paddle mixers are very particularly preferred.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers. Moreover, fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air. Also suitable is a downstream dryer, such as a hopper dryer, a rotary kiln or a heatable screw. However, it is also possible, for example, to use an azeotropic distillation as the drying process.
  • Preferred drying temperatures are in the range 50 to 250 ° C, preferably at 50 to 200 ° C, and particularly preferably at 50 to 150 ° C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is less than 30 minutes, more preferably less than 10 minutes.
  • the capsules (g) containing latent heat storage are particles with a capsule core and a capsule wall.
  • these particles will be referred to as microcapsules.
  • Latent heat stores which can be used in the context of this invention are mentioned, for example, in DE 102004031529.
  • the capsule core contains predominantly, preferably more than 95% by weight, latent heat storage materials.
  • the capsule wall generally contains polymeric materials.
  • the capsule core is solid or liquid depending on the temperature.
  • Latent heat storage materials are generally lipophilic substances that have their solid / liquid phase transition in the temperature range of -20 to 120 ° C. In the context of this invention, however, latent heat storage materials are used which have their solid / liquid phase transition in the region just below the human body temperature. Preferably, such latent heat storage materials are used, which have their solid / liquid phase transition in the temperature range of 15 to 45 ° C, preferably from 20 to 40 ° C, in particular from 24 to 35 ° C.
  • the proportion of the latent heat storage microcapsules containing (g) is generally 0 to 30 wt .-%, preferably 1 to 20 wt .-%, more preferably 2 to 12 and in particular 3 to 8 wt .-% microcapsules (c), based on the total weight of the polyurethane foam.
  • Particularly preferred is the use of a combination of latent heat storage and water-absorbing polymer In this case, preferably 3 to 8 wt .-% latent heat storage and 1 to 10 wt .-% water-absorbing polymer used. This combination has the advantage that latent heat storage and water-absorbing polymer complement each other in influencing the microclimate on the body surface.
  • auxiliaries and / or additives (h) may also be added to the reaction mixture for the preparation of the polyurethane foams. Mention may be made, for example, of surface-active substances, foam stabilizers, cell regulators,
  • Release agents release agents, fillers, dyes, pigments, hydrolysis protectants, odor-binding substances, fungistatic and bacteriostatic substances.
  • Suitable surface-active substances are, for example, compounds which serve to assist the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure. Mention may be made, for example, of emulsifiers, such as the sodium salts of castor oil sulfates or of fatty acids, and salts of fatty acids with amines, for example diethylamine, diethanolamine stearate, diethanolamine of ricinoleate, salts of sulfonic acids, for example alkali metal or ammonium salts of dodecylbenzene or dinaphthylmethanedisulfonic acid and ricinoleic acid; Foam stabilizers, such as siloxane-oxalkylene copolymers and other organopolysiloxanes, ethoxylated alkylphenols, ethoxylated fatty alcohols, paraffin oils, castor oil or ricinoleic acid esters, Turkish red oil and peanut
  • oligomeric acrylates having polyoxyalkylene and fluoroalkane radicals as side groups are also suitable.
  • the surface-active sub- Punching are usually used in amounts of from 0.01 to 5 parts by weight, based on 100 parts by weight of component (b).
  • Suitable release agents are: reaction products of fatty acid esters with polyisocyanates, salts of polysiloxanes containing amino groups and fatty acids, salts of saturated or unsaturated (cyclo) aliphatic carboxylic acids having at least 8 carbon atoms and tertiary amines, and in particular internal release agents, such as Carboxylic acid esters and / or amides prepared by esterification or amidation of a mixture of montanic acid and at least one aliphatic carboxylic acid having at least 10 carbon atoms with at least difunctional alkanolamines, polyols and / or polyamines having molecular weights of 60 to 400 (EP- A-153 639), mixtures of organic amines, metal salts of stearic acid and organic mono- and / or dicarboxylic acids or their anhydrides (DE-A-3 607 447) or mixtures of an imino compound, the metal salt of a carboxylic acid and optionally a carboxylic acid (
  • Fillers are the usual conventional organic and inorganic fillers, reinforcing agents, weighting agents, agents for improving the abrasion behavior in paints, coating agents, etc., to be understood.
  • inorganic fillers such as silicate minerals, for example phyllosilicates such as antigorite, benzonite, serpentine, hornblende, amphibole, chrysotile, talc;
  • Metal oxides such as kaolin, aluminum oxides, titanium oxides, zinc oxide and iron oxides, metal salts such as chalk, barite and inorganic pigments, such as cadmium sulfide, zinc sulfide and glass, etc.
  • kaolin China Clay
  • Suitable organic fillers are, for example, carbon black, melamine, rosin, cyclopentadienyl resins and graft polymers, and cellulose fibers, polyamide, polyacrylonitrile, polyurethane,
  • Polyester fibers based on aromatic and / or aliphatic dicarboxylic acid esters and in particular carbon fibers are examples of polyester fibers.
  • the inorganic and organic fillers can be used individually or as mixtures and are advantageously added to the reaction mixture in amounts of from 0.5 to 50% by weight, preferably from 1 to 40% by weight, based on the weight of the components (a) to (c), but the content of mats, nonwovens and woven fabrics of natural and synthetic fibers can reach values up to 80% by weight.
  • odor-binding substances it is possible to use all odor-binding substances known for this purpose.
  • MOF metal organic frameworks
  • Suitable fungistatic and bacteriostatic substances may be any fungistatic and bacteriostatic substances suitable for these purposes, for example metals or metal powders such as silver, titanium, copper or zinc or materials which can liberate ions of these substances, such as silver zeolite A, quaternary ammonium compounds, polymeric compounds such as chitin and chitosan, partially crosslinked polyacrylic acid or its salts or polyhexamethylene biguanides and natural substances such as tea tree oil.
  • metals or metal powders such as silver, titanium, copper or zinc or materials which can liberate ions of these substances, such as silver zeolite A, quaternary ammonium compounds, polymeric compounds such as chitin and chitosan, partially crosslinked polyacrylic acid or its salts or polyhexamethylene biguanides and natural substances such as tea tree oil.
  • the polyisocyanates (a), higher molecular weight compounds having at least two reactive hydrogen atoms (b) and optionally chain extenders and / or crosslinking agents (c) are reacted in amounts such that the equivalence ratio of NCO groups the polyisocyanate (a) to the sum of the reactive hydrogen atoms of the components (b), (c), (d) and (e) 0.75 to 1, 25: 1, preferably 0.85 to 1, 15: 1.
  • polyurethane foams at least partially contain bound isocyanurate groups
  • a ratio of 1: 1 corresponds to an isocyanate index of 100.
  • the polyurethane foams are advantageously produced by the one-shot process, for example by the reaction injection molding, high pressure or low pressure technique in open or closed molds, for example metallic molds, e.g. made of aluminum, cast iron or steel.
  • water-absorbing polymer (f) and substantial amounts of water are brought into contact only during the preparation of the reaction mixture.
  • substantially amounts of water does not include the moisture usually contained in the higher molecular weight compound having at least two reactive hydrogens (b) or chain extenders (c) but only further additions of water, more specifically, “substantial amounts of water”. a water content of 0.1 wt .-% and more, based on the total weight of components (b) to understand (h).
  • the reaction mixture is preferably co-mixed with a polyol component (A1) and a polyol component (A2) an isocyanate component (B) containing (a) polyisocyanates.
  • the polyol components (A1) and (A2) preferably each contain a part of the minimum at least one higher molecular weight compound having at least two reactive hydrogen atoms (b), wherein the component (A1) contains no water-absorbing polymer and the component (A2) substantially no water, that is preferably less than 0.1 wt .-%, more preferably less as 0.01 wt .-% water.
  • low molecular weight chain extenders (c) When low molecular weight chain extenders (c) are used, they may be contained in the polyol component (A1) or (A2) or both.
  • the component (A2) particularly preferably contains no catalyst, in particular no amine catalyst.
  • Components (g) and (h), if present, may also be used in both component (A1) and component (A2).
  • the mixing ratios of components (b) to (h) in components (A1) and (A2) are adjusted such that the viscosities of both components are less than 50%, more preferably less than 20% and especially less than 10%, based on the viscosity of the higher-viscosity component, different.
  • the water-absorbing polymer can also be metered in as a solid in the mixing head.
  • isocyanate component, polyol component and water-absorbing polymer are added separately to the mixing head where they are mixed into the reaction mixture.
  • the starting components are mixed at a temperature of 15 to 90 ° C, preferably from 20 to 50 ° C and introduced into the open or optionally under elevated pressure in the closed mold.
  • the mixing can be carried out mechanically by means of a stirrer or a stirring screw or under high pressure in the so-called countercurrent injection method. In this case, the low-pressure processing is preferred.
  • the mold temperature is expediently 20 to 90 ° C, preferably 30 to 60 ° C and in particular 45 to 50 ° C.
  • the polyurethane foams of the invention are preferably open-celled to a large extent.
  • the components (a) to (h) are selected such that the polyurethane foam according to the invention is an open-cell foam.
  • the polyurethane foams according to the invention preferably have an open cell content of more than 90%, preferably more than 93%, particularly preferably more than 95%, in particular more than 97%.
  • the polyurethane foams produced by the process according to the invention can be used anywhere where the removal of moisture from the body surface is problematic, such as in shoes, for example as a shoe sole or as insole or footbed, in the range of helmets, in the range of straps, for example for backpacks , In the range of elbows and knee pads, insocks, the foot enclosing shoe inserts usually made of foamed material, the for absorption of shocks are suitable for ski boots and rollerblades, in seats, such as car seats, or mattresses.
  • the density of polyurethane foams can be adjusted depending on the application. Usually, the densities of polyurethane foams according to the invention are in the range from 0.05 to 1.2 g / cm 3 .
  • a density of 0.05 to 0.25 g / cm 3 for use as a shoe sole 0.1 to 0.8 g / cm 3 , preferably from 0.1 to 0 , 6 g / cm 3 .
  • polyurethane foams according to the invention are used as shoe soles, the soles of the soles are surrounded to the outside by a water-impermeable material, for example rubber. This is intended to prevent moisture from entering the foam of the invention from the outside, for example during rainfall.
  • An inventive method is easy to carry out, the dosage of 3 components in a mixing head for the preparation of reaction mixtures for the production of polyurethane foams is not a problem.
  • molded foams having complicated geometries can be obtained simply, quickly and essentially without waste products.
  • composite materials, such as shoes by direct foaming of the foam according to the invention to a carrier material, for example, the sole material to the foam according to the invention.
  • polyurethane foams are available with a high content of water-absorbing polymer.
  • the content of latent heat storage (g) due to their temperature-regulating properties to a further increase in well-being.
  • the polyurethane foams according to the invention have advantageous mechanical properties, for example a low swelling behavior. In the following, these advantageous properties are illustrated in the form of examples.
  • Polyol 1 Polyetherol based on glycerol, propylene oxide and ethylene oxide with a
  • Polyol 2 Lupranol® 4800 from Elastogran GmbH; Polymer polyetherol having a solids content of 45 wt .-% and an OH number of 20 mg KOH / g.
  • Cat 1 Tertiary amine-based catalyst dissolved in 1,4-butanediol.
  • Cat 2 Tertiary amine-based catalyst dissolved in dipropylene glycol
  • Cat 3 catalyst based on a tertiary amine
  • Stabilizer cell stabilizer based on a silicone Iso 135/74: Isocyanate prepolymer Elastogran GmbH based on 4,4'-MDI modified isocyanates and a mixture of polyetherols having an average functionality of 1, 5 to 2.0 and an NCO content of 23.8 wt .-%
  • SAP 1 Superabsorber Luquasorb® 1010 from BASF AG
  • SAP 2 Superabsorber Luquasorb® 1060 from BASF AG
  • PCM Latent heat storage Ceracap® NB 1007 X from BASF AG
  • Example 1 to 3 and Comparative Example C1 the components A1, optionally A2 and B were combined immediately before foaming and briefly but intensively mixed. The reaction mixture was then poured into a 20x20x0.5 cm plate mold and the mold was sealed. After the reaction, several samples were cut from the polyurethane plates of Examples 1 to 3 and Comparative Example C1. The specimens were conditioned at room temperature and 50% relative humidity for 24 hours and then the water vapor uptake in a climatic chamber at 40 ° C and 90% relative humidity was examined. Table 2 gives information about the water vapor absorption of the polyurethane foams: Table 2: Water vapor absorption of various polyurethane foams
  • Examples 1 to 3 show that the polyurethane foams produced have a significantly greater water vapor absorption in comparison to Comparative Example 1.
  • Machine tests were carried out on a low pressure system of Elastogran Maschinenbau (type F20).
  • the machine has three storage tanks, with components A1 and A2 contained in two containers and component B containing the third container.
  • the three different components were intimately mixed together in the mixing head and discharged into a sole mold for a footbed.
  • Table 3 shows the composition of the components used.
  • Example 4 the desorption behavior of the polyurethane foam was investigated in Example 4.
  • the sample was stored after storage for 120 minutes at 40 ° C and 90% relative humidity at room temperature and 50% relative humidity and determined at certain time intervals, the mass of the molding.
  • Table 5 gives information about the desorption behavior of the sample.

Abstract

Die vorliegende Erfindung betrifft ein diskontinuierliches Verfahren zur Herstellung eines Polyurethanschaumstoffs, bei dem man (a) Polyisocyanate mit (b) mindestens einer höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffatomen und (c) gegebenenfalls niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmitteln, (d) Treibmitteln, enthaltend gegebenenfalls Wasser, (e) Katalysatoren, (f) wasserabsorbierendem Polymer, (g) gegebenenfalls Latentwärmespeicher enthaltenden Kapseln und (h) gegebenenfalls sonstige Zusatzstoffen vermischt und die so erhaltene Reaktionsmischung zum Polyurethanschaumstoff umsetzt, wobei entweder das Treibmittel d) kein Wasser enthält oder, falls das Treibmittel d) Wasser enthält, Treibmittel d) und wasserabsorbierendes Polymer f) erst bei der Herstellung der Reaktionsmischung in Kontakt gebracht wird. Weiter betrifft die Erfindung Polyurethanschaumstoffe, erhältlich nach einem solchen Verfahren und Schuhsohlen, enthaltend einen solchen Polyurethanschaumstoff.

Description

Schuhsohlen mit wasserabsorbierenden Eigenschaften
Beschreibung
Die vorliegende Erfindung betrifft ein diskontinuierliches Verfahren zur Herstellung eines Polyurethanschaumstoffs, bei dem man (a) Polyisocyanate mit (b) mindestens einer höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffatomen und (c) gegebenenfalls niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmitteln, (d) Treibmitteln, enthaltend gegebenenfalls Wasser, (e) Katalysatoren, (f) wasserabsorbierendem Polymer, (g) gegebenenfalls Latentwärmespeicher enthaltenden Kapseln und (h) gegebenenfalls sonstige Zusatzstoffen vermischt und die so erhaltene Reaktionsmischung zum Polyurethanschaumstoff umsetzt, wobei entweder das Treibmittel d) kein Wasser enthält oder, falls das Treibmittel d) Wasser enthält, Treibmittel d) und wasserabsorbierendes Polymer f) erst bei der Herstellung der Reaktions- mischung in Kontakt gebracht wird. Weiter betrifft die Erfindung Polyurethanschaumstoffe, erhältlich nach einem solchen Verfahren und Schuhsohlen, enthaltend einen solchen Polyurethanschaumstoff.
Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Be- Schreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemäßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.
Für das menschliche Wohlbefinden ist ein angenehmes Klima wichtig. Dabei spielen vor allem Temperatur und Feuchte der unmittelbaren Körperumgebung eine wichtige Rolle. Dieses Körperklima wird im allgemeinen durch Kleidung beeinflusst.
Kleidung sollte dabei möglichst die körpereigenen Mechanismen zur Wärmeregulation unterstützen. Ein solcher Mechanismus ist das Schwitzen. Um beispielsweise überschüssige Wärme abzuführen, produziert der Körper dabei Feuchtigkeit, die auf der Hautoberfläche verdunstet. Dem Körper wird dabei Verdunstungsenergie in Form von Wärme entzogen.
Kann diese Feuchtigkeit nicht von der Körperoberfläche abgeführt werden, beispielsweise weil die Kleidung den Feuchtigkeitstransport nach außen nicht unterstützt, ist die Luft in der unmittelbaren Körperumgebung schnell mit Feuchtigkeit gesättigt und zusätzliche Feuchtigkeit kann nicht mehr verdunsten. Dadurch bleibt der Abkühlungsef- fekt aus, was zu einem verstärkten Schweißausstoß führt. Durch dieses übermäßige Schwitzen wird das Wohlbefinden stark beeinträchtigt. Besonders problematisch ist das Abführen von Feuchtigkeit im Bereich von Schuhen, Helmen oder Tragegurten, beispielsweise von Rucksäcken. Polyurethanschaumstoffe sind in solchen Anwendungen aufgrund ihres geringen Gewichts und ihrer exzellenten Dämpfungseigenschaften besonders gut geeignet, besitzen jedoch häufig eine nur unzureichende Absorptionskapazität für Wasser. Die Absorptionskapapzität der Materialien für Wasser kann beispielsweise durch hydrophile Polyurethanschaumstoffe erhöht werden, wobei die Hydrophilie der Schäume durch Verwendung von polaren Po- lyolen wie z.B. Polyesterolen oder speziellen Polyetherolen mit hohen Gehalten an Ethylenoxid (EO) erzielt werden kann. Beispiele hierzu finden sich in den Schriften US 3861993, US 3889417 und WO 2004074343. Ein Nachteil solcher Materialien ist das Aufquellen unter Volumenzunahme bei Absorption von hohen Mengen an Feuchtigkeit. Des weiteren werden Schäume mit geringeren Elastizitäten und höheren Druckverformungsresten erhalten. Dies stellt insbesondere ein Nachteil bei Verwendung solcher Materialien in Schuhen als Einlegesohlen dar.
Ein weiterer Ansatz zur Erhöhung der Wasseraufnahmekapazität ist der Einsatz von wasseraufnehmenden Partikeln. WO 03097345 offenbart einen hydrophilen Polyurethanschaumstoff mit einem Gehalt an wasserabsorbierendem Polymer von maximal 0,1 Gew.-%, wodurch der Transport von Feuchtigkeit im Polyurethanschaumstoffmate- rial ermöglicht wird. Gemäß WO 03097345 führt ein höherer Gehalt an wasserabsorbierendem Polymer dazu, dass dieser in Regionen mit einer hohen Feuchtigkeit vergelt und dadurch den Transport von Feuchtigkeit unterbindet. Weiter offenbart WO 03097345, dass bei der Herstellung des Polyurethanschaumstoffs eine wässrige Phase, enthaltend das wasserabsorbierende Polymer, eingesetzt wird.
WO 9744183 offenbart ebenfalls den Einsatz von wasserabsorbierenden Partikeln in einem Polyurethanschaumstoff. Die in WO 9744183 offenbarten Schäume werden in Form von Blöcken hergestellt. Diese werden in kontinuierlicher Fahrweise durch Umsetzung eines hydrophilen Isocyanat-Prepolymers in Kombination mit Acryllatex und Wasser erhalten und anschließend in einem weiteren Arbeitsschritt durch Thermover- formung zu Sohlen verpresst. Bei diesem Verfahren wird das Isocyanat mit einem hohen stöchiometrischem Überschuß an Wasser umgesetzt. Die hierbei verwendeten Prepolymere werden durch Umsetzung von TDI oder MDI mit hydrophilen Polyetherolen erhalten und weisen im allgemeinen NCO-Gehalte zwischen 5 und 8% auf. Das wasserabsorbierende Polymer wird zusammen mit der Isocyanat-reaktiven Komponente eingesetzt.
Die in WO 03097345 und WO 9744183 offenbarten Systeme müssen in darauffolgenden zusätzlichen Schritten durch Ofenlagerung vom überschüssigen Wasser befreit und in ihre endgültige Form gebracht werden. Ein Großteil aller heutzutage produzierten Polyurethanschaumstoffe wird in diskontinuierlicher Verarbeitung hergestellt, bei der eine genau abgemessenen Menge an Reaktionsmischung in eine Form gegeben und darin zu einem Formkörper ausgehärtet wird. Dabei wird eine Isocyanatkomponente mit einer Isocyanat-reaktiven Komponente, ent- haltend eine höhermolekulare Verbindung mit mindestens zwei reaktiven Wasserstoffatomen, Treibmittel, Katalysatoren und gegebenenfalls niedermolekulare Kettenverlän- gerungs- und/oder Vernetzungsmittel und sonstige Zusatzstoffe, umgesetzt. Im Zuge der zunehmend kritischeren Rahmenbedingungen zum Einsatz physikalischer Treibmittel, wie z.B. Fluorchlorkohlenwasserstoffen, werden Systeme eingesetzt, die als Treibmittel Wasser enthalten, gegebenenfalls als alleiniges Treibmittel. Üblicherweise enthalten diese Systeme zwischen 0,1 und 10 Gew.-% Wasser, bezogen auf das Gesamtgewicht der eingesetzten Komponenten mit Ausnahme der Isocyanatkomponente.
Es erweist sich bei der diskontinuierlichen Herstellung von Schäumen als vorteilhaft, daß die Mischungen direkt in eine Form gegeben werden und die Herstellung des
Schaumstoffes sowie die Formgebung in einem Schritt erfolgt. Dadurch entfallen spätere zusätzliche für die Formgebung notwendigen Arbeitsschritte und damit verbundener Mehraufwand beispielsweise durch Nachbearbeitung der Teile sowie Materialverlust durch Schneidabfälle.
Wasserabsorbierende Polymere können aufgrund ihrer Eigenschaften nicht oder nur in sehr geringen Anteilen in der Isocyanat- oder in der wasserhaltigen Isocyanat-reaktiven Komponente eingesetzt werden, da diese mit Wasser quellen und dadurch die Viskosität der Polyolkomponente stark erhöhen. Dies führt zu einer nur eingeschränkten Mischbarkeit der Isocyanatkomponente mit der Isocyanat-reaktiven Komponente und damit zu inhomogenen Produkten.
Aufgabe der vorliegenden Erfindung ist es ein einfaches Verfahren zu liefern, das es ermöglicht Polyurethanschaumstoffe mit einem Gehalt an wasserabsorbierendem Po- lymer von bis zu 20 Gew.-%, bezogen auf das Gesamtgewicht des Polyurethanschaumstoffs, herzustellen.
Weiter ist es Aufgabe der vorliegenden Erfindung ein Polyurethanschaumstoff zu liefern, der 1 bis 20 Gew.-% wasserabsorbierendes Polymer, bezogen auf das Gesamt- gewicht des Polyurethans, enthält.
Gelöst wird diese Aufgabe in der vorliegenden Erfindung durch ein diskontinuierliches Verfahren zur Herstellung eines Polyurethanschaumstoffs, bei dem man (a) Polyisocy- anate mit (b) mindestens einer höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffatomen und (c) gegebenenfalls niedermolekularen Kettenverlän- gerungs- und/oder Vernetzungsmitteln, (d) Treibmitteln, enthaltend gegebenenfalls Wasser, (e) Katalysatoren, (f) wasserabsorbierendem Polymer, (g) gegebenenfalls Latentwärmespeicher enthaltenden Kapseln und (h) gegebenenfalls sonstige Zusatzstoffen vermischt und die so erhaltene Reaktionsmischung zum Polyurethanschaumstoff umsetzt, wobei entweder das Treibmittel d) kein Wasser enthält oder, falls das Treibmittel d) Wasser enthält, Treibmittel d) und wasserabsorbierendes Polymer f) erst bei der Herstellung der Reaktionsmischung in Kontakt gebracht wird. Weiter wird diese Erfindung durch Polyurethanschaumstoffe, erhältlich nach einem erfindungsgemäßen Verfahren, sowie Schuhsohlen, enthaltend ein solches Polymer, gelöst.
Polyurethanschaumstoffe im Sinn der Erfindung umfassen alle Arten von Polyurethan- Schaumstoffen. Besonders bevorzugt sind Weichschaumstoffe sowie mikrozelluläre Elastomere, beispielsweise Schaumstoffe, wie sie üblicherweise in Schuhanwendungen eingesetzt werden, zum Beispiel als Einlegesohle, Zwischensohle oder Formsohle, oder auch Schaumstoffe, wie sie in Polstermaterialien, beispielsweise in Armschützern, eingesetzt werden.
Die zur Herstellung der erfindungsgemäßen Polyurethanschaumstoffe verwendeten Polyisocyanate (a) umfassen die aus dem Stand der Technik bekannten aliphatischen, cycloaliphatischen und aromatischen zwei- oder mehrwertigen Isocyanate (Bestandteil a-1) sowie beliebige Mischungen daraus. Beispiele sind 4,4'-Diphenylmethan- diisocyanat, 2,4-Diphenylmethandiisocyanat die Mischungen aus monomeren Diphe- nylmethandiisocyanaten und höherkernigen Homologen des Diphenylmethandiisocya- nats (Polymer-MDI), Tetramethylendiisocyanat, Hexamethylendiisocyanat (HDI), Toluy- lendiisocyanat TDI) oder Mischungen daraus.
Bevorzugt wird 4,4'-MDI und/oder HDI verwendet. Das besonders bevorzugt verwendete 4,4'-MDI kann geringe Mengen, bis etwa 10 Gew.-%, allophanat- oder uretoni- minmodifizierte Polyisocyanate enthalten. Es können auch geringe Mengen Polypheny- lenpolymethylenpolyisocyanat (Polymer-MDI) eingesetzt werden. Die Gesamtmenge dieser hochfunktionellen Polyisocyanate sollte 5 Gew.-% des eingesetzten Isocyanats nicht überschreiten.
Die Polyisocyanatkomponente (a) wird bevorzugt in Form von Polyisocyanatprepoly- meren eingesetzt. Diese Polyisocyanatprepolymere sind erhältlich, indem vorstehend beschriebene Polyisocyanate (a-1), beispielsweise bei Temperaturen von 30 bis 100 °C, bevorzugt bei etwa 80 °C, mit Polyolen (a-2), zum Prepolymer umgesetzt werden. Vorzugsweise wird zur Herstellung der erfindungsgemäßen Prepolymere 4,4'-MDI zusammen mit uretoniminmodifiziertem MDI und handelsüblichen Polyolen auf Basis von Polyestern, beispielsweise ausgehend von Adipinsäure, oder Polyethern, beispielsweise ausgehend von Ethylenoxid oder Propylenoxid, verwendet.
Polyole (a-2) sind dem Fachmann bekannt und beispielsweise beschrieben im "Kunststoffhandbuch, 7, Polyurethane", Carl Hansel Verlag, 3. Auflage 1993, Kapitel 3.1. Prepolymere auf Etherbasis werden vorzugsweise erhalten durch Umsetzung von Po- lyisocyanaten (a-1 ), besonders bevorzugt 4,4'-MDI, mit 2- bis 3-funktionelle Polyo- xypropylen- und/oder Polyoxypropylen-Polyoxyethylenpolyolen. Ihre Herstellung erfolgt zumeist durch die allgemein bekannte basisch katalysierte Anlagerung von Propyleno- xid allein oder im Gemisch mit Ethylenoxid an H-funktionelle, insbesondere OH- funktionelle Startsubstanzen. Als Startsubstanzen dienen beispielsweise Wasser, Ethy- lenglykol oder Propylenglykol beziehungsweise Glycerin oder Trimethylolpropan. Beispielsweise können als Komponente (a-2) Polyether verwendet werden, wie sie nach- stehend unter (b) beschrieben sind.
Bei Verwendung von Ethylenoxid/Propylenoxidmischungen wird das Ethylenoxid bevorzugt in einer Menge von 10-50 Gew.-%, bezogen auf die Gesamtmenge an Alkyle- noxid, eingesetzt. Der Einbau der Alkylenoxide kann hierbei blockweise oder als statis- tisches Gemisch erfolgen. Besonders bevorzugt ist der Einbau eines Ethylenoxid- Endblocks ("EO-cap"), um den Gehalt an reaktiveren primären OH-Endgruppen zu erhöhen.
Bevorzugt eingesetzt werden Diole, basierend auf Polyoxypropylen mit 10 bis 30, be- vorzugt 12,5 bis 20 Gew.-% Polyoxyethyleneinheiten am Kettenende, so dass mehr als 80% der OH-Gruppen primäre OH-Gruppen sind. In einer besonders bevorzugten Ausführungsform werden Mischungen aus Diolen, basierend auf Polyoxypropylen und Po- lyoxypropylen-Polyoxyethylen, verwendet. Die Hydroxylzahl (OH-Zahl) dieser Diole liegt vorzugsweise zwischen 20 und 100 mg KOH/g. Als höhermolekulare Verbindungen (b) mit mindestens zwei reaktiven Wasserstoffatomen werden zweckmäßigerweise solche mit einer Funktionalität von 2 bis 8 und einer OH-Zahl von 9 bis 1 150 mg KOH/g verwendet. Bewährt haben sich z.B. Polyetherpoly- amine und/oder vorzugsweise Polyole, ausgewählt aus der Gruppe der Polyetherpolyo- Ie, Polyesterpolyole, hergestellt aus Alkandicarbonsäuren und mehrwertigen Alkoholen, Polythioetherpolyole, Polyesteramide, hydroxylgruppenhaltigen Polyacetale und hydro- xylgruppenhaltigen aliphatischen Polycarbonate oder Mischungen aus mindestens zwei der genannten Polyole. Vorzugsweise Anwendung finden Polyesterpolyole und/oder Polyetherpolyole. Als höhermolekulare Verbindungen (b) mit mindestens zwei reaktiven Wasserstoffatomen ungeeignet sind hingegen Alkydharze oder Polyester- formmassen mit reaktiven, olefinisch ungesättigten Doppelbindungen.
Vorzugsweise werden Polyetherole eingesetzt. Geeignete Polyetherpolyole können nach bekannten Verfahren, beispielsweise durch anionische Polymerisation mit Alkalihydroxiden, wie Natrium- oder Kaliumhydroxid, oder Alkalialkoholaten, wie Natrium- methylat, Natrium- oder Kaliumethylat, oder Kaliumisopropylat als Katalysatoren und unter Zusatz mindestens eines Startermoleküls, das 2 bis 8 reaktive Wasserstoffatome gebunden enthält, oder durch Doppelmetallcyanidkatalysatoren, wie beispielweise in EP 90444 oder WO 05/090440 beschrieben, hergestellt werden.
Geeignete Alkylenoxide sind beispielsweise Tetrahydrofuran, 1 ,3-Propylenoxid, 1 ,2- bzw. 2,3-Butylenoxid, Styroloxid und vorzugsweise Ethylenoxid und 1 ,2-Propylenoxid. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Als Startermoleküle kommen beispielsweise in Betracht: Wasser, mehrwertige, insbesondere zwei- bis achtwertige Alkohole, wie Ethandiol, Propandiol- 1 ,2 und -1 ,3, Diethylenglykol, Dipropylenglykol, Butandiol-1 ,4, Hexandiol-1 ,6, Glycerin, Trimethylol-propan, Pentaerythrit, Sorbit und Saccharose, organische Dicarbonsäuren, wie Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N1N- und N,N'-dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie gegebenenfalls mono- und dialkylsubstituier- tes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1 ,3-Propylendiamin, 1 ,3- bzw. 1 ,4-Butylendiamin, 1 ,2-, 1 ,3-, 1 ,4-, 1 ,5- und 1 ,6-Hexamethylendiamin, Phenylendiami- ne, 2,3-, 2,4- und 2,6-Toluylendiamin und 4,4'-, 2,4'- und 2,2'-Diamino-diphenylmethan.
Als Startermoleküle kommen ferner in Betracht: Alkanolamine, wie Ethanolamin, Diethanolamin, N-Methyl- und N-Ethyl-ethanolamin, N-Methyl- und N-Ethyl- diethanolamin und Triethanolamin und Ammoniak.
Vorzugsweise verwendet werden mehrwertige, insbesondere zwei- bis achtwertige Alkohole, wie Ethandiol, Propandiol-1 ,2 und -1 ,3, Diethylenglykol, Dipropylenglykol, Butandiol-1 ,4, Hexandiol-1 ,6, Glycerin, Trimethylol-propan, Pentaerythrit, Sorbit und Saccharose.
Die Polyetherpolyole, vorzugsweise Polyoxypropylen- und Polyoxypropylen- polyoxyethylenpolyole mit Etylenoxidendblocks, besitzen eine Funktionalität von vorzugsweise 2 bis 4 und insbesondere 2 und/oder 3 und vorzugsweise eine OH-Zahl zwischen 12 und 155 mg KOH/g und insbesondere zwischen 20 und 75 mg KOH/g.
Als Polyole eignen sich ferner polymermodifizierte Polyole, vorzugsweise polymermodifizierte Polyesterole oder Poyetherole, besonders bevorzugt Pfropf-Polyether- bzw. Pfropf-Polyesterole, insbesondere Pfropf-Polyetherole. Hierbei handelt es sich um ein sogenanntes Polymerpolyol, welches üblicherweise einen Gehalt an, bevorzugt ther- moplastischen, Polymeren von 5 bis 60 Gew.-%, bevorzugt 10 bis 55 Gew.-%, besonders bevorzugt 30 bis 55 Gew.-% und insbesondere 40 bis 50 Gew.-%, aufweist. Diese Polymerpolyole sind beispielsweise in US 4342840 und EP-A-250 351 beschrieben und werden üblicherweise durch radikalische Polymerisation von geeigneten olefini- schen Monomeren, beispielsweise Styrol, Acrylnitril, (Meth)Acrylaten, (Meth)Acrylsäure und/oder Acrylamid, in einem als Pfropfgrundlage dienenden Polyester- bzw. Polye- therol hergestellt. Die Seitenketten entstehen im allgemeinen durch Übertragung der Radikale von wachsenden Polymerketten auf Polyesterole oder Polyetherole. Das Po- lymer-Polyol enthält neben dem Propfcopolymerisaten überwiegend die Homopolyme- re der Olefine, dispergiert in unverändertem Polyesterol bzw. Polyetherol.
In einer bevorzugten Ausführungsform werden als Monomere Acrylnitril, Styrol, insbe- sondere ausschließlich Styrol verwendet. Die Monomere werden gegebenenfalls in Gegenwart weiterer Monomerer, eines Makromers, eines Moderators und unter Einsatz eines Radikal-Initiators, meist Azo- oder Peroxidverbindungen, in einem Polyesterol oder Polyetherol als kontinuierlicher Phase polymerisiert.
Während der radikalischen Polymerisation werden die Makromere mit in die Copoly- merkette eingebaut. Dadurch bilden sich Blockcopolymere mit einem Polyester- bzw. Polyether- und einem Poly-acrylnitril-styrol-Block, welche in der Grenzfläche von kontinuierlicher Phase und dispergierter Phase als Phasenvermittler wirken und das Agglomerieren der Polymerpolyesterolpartikel unterdrücken. Der Anteil der Ma- kromere beträgt üblicherweise 1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der zur Herstellung des Polymerpolyols eingesetzten Monomere.
Vorzugsweise ist der Anteil an Polymerpolyol größer als 5 Gew.-%, bezogen auf das Gesamtgewicht der Komponente (b). Die Polymerpolyole können beispielsweise, be- zogen auf das Gesamtgewicht der Komponente (b) in einer Menge von 7 bis 90
Gew.-%, oder von 1 1 bis 80 Gew.-% enthalten sein. Besonders bevorzugt handelt es sich bei dem Polymerpolyol um Polymerpolyesterol oder Polymerpolyetherol.
Die erfindungsgemäßen Polyurethanschaumstoffe können ohne oder unter Mitverwen- düng von (c) Kettenverlängerungs- und/oder Vernetzungsmitteln hergestellt werden. Zur Modifizierung der mechanischen Eigenschaften, z.B. der Härte, kann sich jedoch der Zusatz von Kettenverlängerungsmitteln, Vernetzungsmitteln oder gegebenenfalls auch Gemischen davon als vorteilhaft erweisen. Als Kettenverlängerungs- und/oder Vernetzungsmittel werden Substanzen mit mindestens zwei gegenüber Isocyanat reak- tiven Gruppen, wie OH- oder Amingruppen, verwendet. Vorzugsweise werden Diole und/oder Triole mit Molekulargewichten kleiner als 400, vorzugsweise von 60 bis 300 und insbesondere 60 bis 150 eingesetzt. In Betracht kommen beispielsweise aliphati- sche, cycloaliphatische und/oder araliphatische Diole mit 2 bis 14, vorzugsweise 2 bis 10 Kohlenstoffatomen, wie Ethylenglykol, Propandiol-1 ,3, Decandiol-1 ,10, o-, m-, p- Dihydroxycyclohexan, Diethylenglykol, Dipropylenglykol und vorzugsweise Butandiol- 1 ,4, Hexandiol-1 ,6 und Bis-(2-hydroxyethyl)-hydrochinon, Triole, wie 1 ,2,4-, 1 ,3,5- Trihydroxy-cyclohexan, Glycerin und Trimethylolpropan, und niedermolekulare hydro- xylgruppenhaltige Polyalkylenoxide auf Basis Ethylen- und/oder 1 ,2-Propylenoxid und den vorgenannten Diolen und/oder Triolen als Startermoleküle. Besonders bevorzugt werden als Kettenverlängerer c) Monoethylenglycol, 1 ,4-Butandiol und/oder Glycerin eingesetzt. Sofern Kettenverlängerungsmittel, Vernetzungsmittel oder Mischungen davon Anwendung finden, kommen diese zweckmäßigerweise in Mengen von 1 bis 60 Gew.-%, vorzugsweise 1 ,5 bis 50 Gew.-% und insbesondere 2 bis 40 Gew.-%, bezogen auf das Gewicht der Komponenten (b) und (c) zum Einsatz.
Ferner sind bei der Herstellung von Polyurethanschaumstoffen Treibmittel (d) zugegen. Diese Treibmittel enthalten gegebenenfalls Wasser (als Bestandteil (d-1 ) bezeichnet). Als Treibmittel (d) können neben Wasser (d-1) noch zusätzlich allgemein bekannte chemisch und/oder physikalisch wirkende Verbindungen eingesetzt werden (dabei werden die weiteren chemischen Treibmittel als Bestandteil (d-2) und die physikalischen Treibmittel als Bestandteil (d-3) bezeichnet). Unter chemischen Treibmitteln versteht man Verbindungen, die durch Reaktion mit Isocyanat gasförmige Produkte bilden, wie beispielsweise Wasser oder Ameisensäure. Unter physikalischen Treibmitteln versteht man Verbindungen, die in den Einsatzstoffen der Polyurethan-Herstellung gelöst oder emulgiert sind und unter den Bedingungen der Polyurethanbildung verdampfen. Dabei handelt es sich beispielsweise um Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, und andere Verbindungen, wie zum Beispiel perfluorierte Alkane, wie Perfluorhexan, Fluorchlorkohlenwasserstoffe, und Ether, Ester, Ketone und/oder Acetale, beispielsweise (cyclo)aliphatische Kohlenwasserstoffe mit 4 bis 8 Kohlenstoff- atomen, oder Fluorkohlenwasserstoffe, wie Solkane® 365 mfc der Firma Solvay. In einer bevorzugten Ausführungsform wird als Treibmittel eine Mischung dieser Treibmittel, enthaltend Wasser, eingesetzt, insbesondere Wasser als alleiniges Treibmittel. Wird kein Wasser als Treibmittel eingesetzt werden vorzugsweise ausschließlich physikalische Treibmittel verwendet.
Der Gehalt an (d-1 ) Wasser beträgt in einer bevorzugten Ausführungsform von 0,1 bis 2 Gew.-%, bevorzugt 0,2 bis 1 ,5 Gew.-%, besonders bevorzugt 0,3 bis 1 ,2 Gew.-%, insbesondere 0,4 bis 1 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten
(a) bis (h). Dabei umfasst Wasser (d-1 ) nicht nur Wasser, das als eigene Komponente zugegeben wird, sondern auch Wasser, das beispielsweise in einer der Komponenten
(b) bis (h) enthalten ist.
In einer weiteren bevorzugten Ausführungsform werden der Umsetzung der Komponenten (a), (b) und gegebenenfalls (c) als zusätzliches Treibmittel Mikrokugeln, die physikalisches Treibmittel enthalten, zugegeben. Die Mikrokugeln können auch im Gemisch mit den vorstehend genannten zusätzlichen chemischen Treibmitteln (d-2) und/oder physikalisdchen Treibmitteln (d-3) eingesetzt werden.
Die Mikrokugeln bestehen üblicherweise aus einer Hülle aus thermoplastischem PoIy- mer und sind im Kern mit einem flüssigen, niedrig siedenden Substanz auf Basis von Alkanen gefüllt. Die Herstellung solcher Mikrokugeln ist beispielsweise in US 3 615 972 beschrieben. Die Mikrokugeln weisen im allgemeinen einen Durchmesser von 5 bis 50 μm auf. Beispiele für geeignete Mikrokugeln sind unter dem Handelsnamen Expan- cell® der Firma Akzo Nobel erhältlich.
Die Mikrokugeln werden im allgemeinen in einer Menge von 0,5 bis 5 %, bezogen auf das Gesamtgewicht der Komponenten (b), (c) und (d) zugesetzt.
Als Katalysatoren (e) zur Herstellung der Polyurethanschaumstoffe werden bevorzugt Verbindungen verwendet, welche die Reaktion der Hydroxylgruppen enthaltenden Verbindungen der Komponente (b) und gegebenenfalls (c) mit den Polyisocyanaten (a) stark beschleunigen. Genannt seien beispielsweise Amidine, wie 2,3-Dimethyl-3,4,5,6- tetrahydropyrimidin, tertiäre Amine, wie Triethylamin, Tributylamin, Dimethylbenzyla- min, N-Methyl-, N-Ethyl-, N-Cyclohexylmorpholin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'-Tetramethyl-butandiamin, N,N,N',N'-Tetramethyl-hexandiamin, Pentamethyl- diethylentriamin, Tetramethyl-diaminoethylether, Bis-(dimethylaminopropyl)-harnstoff, Dimethylpiperazin, 1 ,2-Dimethylimidazol, 1-Aza-bicyclo-(3,3,0)-octan und vorzugsweise 1 ,4-Diaza-bicyclo-(2,2,2)-octan und Alkanolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyl-diethanolamin und Dimethylethanolamin. Ebenso kommen in Betracht organische Metallverbindungen, vorzugsweise organische Zinnverbindungen, wie Zinn-(ll)-salze von organischen Carbonsäuren, z.B. Zinn-(ll)- acetat, Zinn-(ll)-octoat, Zinn-(ll)-ethylhexoat und Zinn-(ll)-laurat und die Dialkylzinn- (IV)-salze von organischen Carbonsäuren, z.B. Dibutyl-zinndiacetat, Dibutylzinndilau- rat, Dibutylzinn-maleat und Dioctylzinn-diacetat, sowie Bismutcarboxylate, wie Bis- mut(lll)-neodecanoat, Bismut-2-etyhlhexanoat und Bismut-octanoat oder Mischungen davon. Die organischen Metallverbindungen können allein oder vorzugsweise in Kom- bination mit stark basischen Aminen eingesetzt werden. Handelt es sich bei der Komponente (b) um einen Ester, werden vorzugsweise ausschließlich Aminkatalysatoren eingesetzt.
Wasserabsorbierende Polymere (f) sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren wie zum Beispiel teilneutralisierte Acryl- säure, 2-Hydroxyethyl-methacrylat und 2-Hydroxyethylacrylat, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid, teilweise vernetzten Polyvinylpyrrolidon bzw. Polyvinylpyr- rolidoncopolymerisaten oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate oder Bentonite, wobei wasserabsorbierende Polymere (f) auf Basis teilneutralisierter Acrylsäure bevorzugt werden. Solche Polymere werden als absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaft- liehen Gartenbau verwendet. Die Herstellung der wasserabsorbierenden Polymere (f) wird beispielsweise in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley-VCH, 1998, oder in Ullmann's Encyclopedia of Industrial Chemistry, 6. Auflage, Band 35, Seiten 73 bis 103, beschrieben. Das bevorzugte Herstellungsverfahren ist die Lösungs- oder Gelpolymerisation. Bei dieser Technologie wird zunächst eine Monomermischung hergestellt, die diskontinuierlich neutralisiert und dann in einen Polymerisationsreaktor überführt wird, oder bereits im Polymerisationsreaktor vorgelegt wird. Im sich anschließenden diskontinuierlichen oder kontinuierlichen Verfahren erfolgt die Reaktion zum Polymergel, das im Falle einer gerührten Polymerisation bereits zerkleinert wird. Das Polymergel wird anschließend getrocknet, gemahlen und gesiebt und dann zur weiteren Oberflächenbehandlung transferiert.
Die wasserabsorbierenden Polymere werden beispielsweise durch Polymerisation einer Monomerlösung, enthaltend
aa) mindestens eine ethylenisch ungesättigte Carbonsäure und/oder Sulfonsäure, bb) mindestens einen Vernetzer, cc) wahlweise ein oder mehrere mit dem Monomeren aa) copolymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und dd) wahlweise ein oder mehrere wasserlösliche Polymere, auf die die Monomere aa), bb) und ggf. cc) zumindest teilweise aufgepfropft werden können,
erhalten.
Geeignete ethylenisch ungesättigte Carbonsäuren bzw. Sulfonsäuren aa) sind beispielsweise Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, 4- Pentensäure, 2-Acrylamid-2-methylpropansulfonsäure, Vinylsulfonsäure, 3-Allyoxy-2- hydroxypropan-1-sulfonat und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Die Monomere aa), insbesondere Acrylsäure, enthalten vorzugsweise bis zu
0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind
Hydrochinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeutet.
Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindestens 10 Gew.-ppm, besonders bevorzugt mindestens 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Die Vernetzer bb) sind Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer bb) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A 0 530 438 beschrieben, Di- und Triacrylate, wie in EP-A 0 547 847, EP-A 0 559 476, EP-A 0 632 068, WO 93/21237, WO 03/104299, WO 03/104300,
WO 03/104301 und DE-A 103 31 450 beschrieben, gemischte Acrylate, die neben Ac- rylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE-A 103 31 456 und WO 04/013064 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 und WO 02/32962 beschrieben.
Geeignete Vernetzer bb) sind insbesondere N,N'-Methylenbisacrylamid und N1N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP-A 0 343 427 beschrieben sind. Weiterhin geeignete Vernetzer bb) sind Pentaerythritoldi-, Pentaerythritoltri- und Pen- taerythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyze- rindi- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Polyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 300 und 1000 aufweist.
Besonders vorteilhafte Vernetzer bb) sind jedoch Di- und Triacrylate des 3- bis 15-fach ethoxylierten Glyzerins, des 3- bis 15-fach ethoxylierten Trimethylolpropans, des 3- bis 15-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6-fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer bb) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine wie sie beispielsweise in WO 03/104301 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischerweise unter 10 Gew.-ppm) im wasserabsorbierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränderte Oberflächenspannung (typischerweise mindestens 0,068 N/m) im Vergleich zu Wasser gleicher Temperatur auf.
Mit den Monomeren aa) copolymerisierbare ethylenisch ungesättigte Monomere cc) sind beispielsweise Acrylamid, Methacrylamid, Crotonsäureamid, Dimethylaminoethyl- methacrylat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopro- pylacrylat, Dimethylaminobutylacrylat, Dimethylaminoethylmethacrylat, Diethylami- noethylmethacrylat, Dimethylaminoneopentylacrylat und Dimethylaminoneopentyl- methacrylat.
Als wasserlösliche Polymere dd) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, Polyglykole, insbesondere zwei- und dreiwertige Polyole auf Basis von Ethylenoxyd und/oder Propylenoxid, oder Polyacrylsäuren, vorzugsweise Polyvinylal- kohol, Polyglykoleund Stärke, eingesetzt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Üblicherweise werden die Monomerlösungen vor der Polymerisation weitgehend von Sauerstoff befreit (Inertisierung), beispielsweise mittels Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff. Dadurch werden die Polymerisationsinhibitoren in ihrer Wirkung deutlich abgeschwächt. Vorzugsweise wird der Sauerstoff- gehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
Die Herstellung eines geeigneten Grundpolymers sowie weitere geeignete hydrophile ethylenisch ungesättigte Monomere dd) werden in DE-A 199 41 423, EP-A 0 686 650, WO 01/45758 und WO 03/104300 beschrieben.
Wasserabsorbierende Polymere werden üblicherweise durch Polymerisation einer wässrigen Monomerlösung und wahlweise einer anschließenden Zerkleinerung des Hydrogels erhalten. Geeignete Herstellverfahren sind in der Literatur beschrieben. Wasserabsorbierende Polymere können beispielsweise erhalten werden durch
- Gelpolymerisation im Batchverfahren bzw. Rohrreaktor und anschließender Zerkleinerung im Fleischwolf, Extruder oder Kneter (EP-A 0 445 619, DE-A 198 46 413)
- Polymerisation im Kneter, wobei durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert wird, (WO 01/38402)
Polymerisation auf dem Band und anschließende Zerkleinerung im Fleischwolf, Extruder oder Kneter (DE-A 38 25 366, US 6,241 ,928) - Emulsionspolymerisation, wobei bereits Perlpolymerisate relativ enger Gelgrößenverteilung anfallen (EP-A 0 457 660)
In-situ Polymerisation einer Gewebeschicht, die zumeist im kontinuierlichen Betrieb zuvor mit wässriger Monomerlösung besprüht und anschließend einer Photopolymerisation unterworfen wurde (WO 02/94328, WO 02/94329)
Die Umsetzung wird vorzugsweise in einem Kneter, wie beispielsweise in WO 01/38402 beschrieben, oder auf einem Bandreaktor, wie beispielsweise in EP-A 0 955 086 beschrieben, durchgeführt.
Die Neutralisation kann auch teilweise nach der Polymerisation auf der Stufe des Hydrogels durchgeführt werden. Es ist daher möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Po- lymerisation auf der Stufe des Hydrogels eingestellt wird. Die Monomerlösung kann durch Einmischen des Neutralisationsmittels neutralisiert werden. Das Hydrogel kann mechanisch zerkleinert werden, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden. Die Neutralisation der Monomerlösung auf den Endneutralisationsgrad ist bevorzugt. Das neutralisierte Hydrogel wird dann mit einem Band- oder Walzentrockner getrocknet bis der Restfeuchtegehalt vorzugsweise unter 15 Gew.-%, insbesondere unter 10 Gew.-% liegt, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt wird. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein beheizter Pflugscharmischer verwendet werden. Um besonders weiße Produkte zu erhalten, ist es vorteilhaft bei der Trocknung dieses Gels einen schnellen Abtransport des verdampfenden Wassers sicherzustellen. Dazu ist die Trocknertemperatur zu optimieren, die Luftzu- und -abführung muss kontrolliert erfol- gen, und es ist in jedem Fall auf ausreichende Belüftung zu achten. Die Trocknung ist naturgemäß umso einfacher und das Produkt umso weißer, je höher der Feststoffgehalt des Gels ist. Bevorzugt liegt der Feststoffgehalt des Gels vor der Trocknung daher zwischen 30 und 80 Gew.-%. Besonders vorteilhaft ist die Belüftung des Trockners mit Stickstoff oder einem anderen nicht-oxidierenden Inertgas. Wahlweise kann aber auch einfach nur der Partialdruck des Sauerstoffs während der Trocknung abgesenkt werden, um oxidative Vergilbungsvorgänge zu verhindern. Im Regelfall führt aber auch eine ausreichende Belüftung und Abführung des Wasserdampfes zu einem noch akzeptablen Produkt. Vorteilhaft hinsichtlich Farbe und Produktqualität ist in der Regel eine möglichst kurze Trocknungszeit.
Das getrocknete Hydrogel wird vorzugsweise gemahlen und gesiebt, wobei zur Mahlung üblicherweise Walzenstühle, Stiftmühlen oder Schwingmühlen eingesetzt werden können. Die Partikelgröße des gesiebten, trockenen Hydrogels beträgt vorzugsweise unter 1000 μm, besonders bevorzugt unter 800 μm, ganz besonders bevorzugt unter 600 μm, und vorzugsweise über 10 μm, besonders bevorzugt über 50 μm, ganz besonders bevorzugt über 100 μm.
Ganz besonders bevorzugt ist eine Partikelgröße (Siebschnitt) von 106 bis 850 μm. Die Partikelgröße wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Particle size distribution" bestimmt.
Die Grundpolymere werden vorzugsweise anschließend oberflächennachvernetzt. Hierzu geeignete Nachvernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polya- ziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in EP-A 0 083 022, EP-A 0 543 303 und EP-A 0 937 736 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE-C 33 14 019, DE-C 35 23 617 und EP-A 0 450 922 be- schrieben, oder ß-Hydroxyalkylamide, wie in DE-A 102 04 938 und US 6,239,230 beschrieben. Des weiteren sind in DE-A 40 20 780 zyklische Karbonate, in DE-A 198 07 502 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE-A 198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A 198 54 573 2-Oxotetrahydro- 1 ,3-oxazin und dessen Derivate, in DE-A 198 54 574 N-Acyl-2-Oxazolidone, in DE-A 102 04 937 zyklische Harnstoffe, in DE-A 103 34 584 bizyklische Amidacetale, in EP-A 1 199 327 Oxetane und zyklische Harnstoffe und in WO 03/031482 Morpholin- 2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben.
Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Ober- flächennachvernetzers auf das Hydrogel oder das trockene Grundpolymerpulver aufgesprüht wird. Im Anschluss an das Aufsprühen wird das Polymerpulver thermisch getrocknet, wobei die Vernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schaufelmischer.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Es kann aber auch beispielsweise eine azeotrope Destillation als Trocknungsverfahren benutzt werden.
Bevorzugte Trocknungstemperaturen liegen im Bereich 50 bis 250°C, bevorzugt bei 50 bis 200°C, und besonders bevorzugt bei 50 bis 150°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 30 Minuten, besonders bevorzugt unter 10 Minuten.
Bei den Latentwärmespeicher enthaltenden Kapseln (g) handelt es sich um Teilchen mit einem Kapselkern und einer Kapselwand. Nachfolgend werden diese Teilchen als Mikrokapseln bezeichnet. Latentwärmespeicher, die im Rahmen dieser Erfindung verwendet werden können, sind beispielsweise in DE 102004031529 genannt. Der Kapselkern enthält überwiegend, bevorzugt zu mehr als 95 Gew.-%, Latentwärmespeichermaterialien. Die Kapselwand enthält im allgemeinen polymere Materialien. Der Kapselkern ist dabei je nach der Temperatur fest oder flüssig.
Latentwärmespeichermaterialien sind in der Regel lipophile Substanzen, die ihren fest/flüssig Phasenübergang im Temperaturbereich von -20 bis 120 °C haben. Im Rahmen dieser Erfindung werden jedoch Latentwärmespeichermaterialien verwendet, die ihren fest/flüssig Phasenübergang im Bereich knapp unterhalb der menschlichen Körpertemperatur haben. Bevorzugt werden solche Latentwärmespeichermaterialien ver- wendet, die ihren fest/flüssig Phasenübergang im Temperaturbereich von 15 bis 45 °C, bevorzugt von 20 bis 40 °C, insbesondere von 24 bis 35 °C haben.
Der Anteil der Latentwärmespeicher enthaltenden Mikrokapseln (g) beträgt im allgemeinen 0 bis 30 Gew.-%, bevorzugt 1 bis 20 Gew.-%, besonders bevorzugt 2 bis 12 und insbesondere 3 bis 8 Gew.-% Mikrokapseln (c), bezogen auf das Gesamtgewicht des Polyurethanschaumstoffs. Besonders bevorzugt ist der Einsatz einer Kombination aus Latentwärmespeicher und wasserabsorbierendem Polymer Dabei werden vorzugsweise 3 bis 8 Gew.-% Latentwärmespeicher und 1 bis 10 Gew.-% wasserabsorbierendes Poylmer verwendet. Diese Kombination hat den Vorteil, dass Latentwärme- Speicher und wasserabsorbierendes Polymer sich bei der Beeinflussung des Mikroklimas an der Körperoberfläche ergänzen.
Der Reaktionsmischung zur Herstellung der Polyurethanschäume können gegebenenfalls auch noch Hilfsmittel und/oder Zusatzstoffe (h) zugegeben werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler,
Trennmittel, Füllstoffe, Farbstoffe, Pigmente, Hydrolyseschutzmittel, geruchsbindende Stoffe, fungistatische und bakteriostatisch wirkende Substanzen.
Als oberflächenaktive Substanzen kommen z.B. Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur zu regulieren. Genannt seien beispielsweise Emul- gatoren, wie die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren, sowie Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure und Ricinolsäure; Schaumstabilisatoren, wie Siloxan-Oxalkylen-Mischpolymerisate und andere Organopolysilo- xane, oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Ricinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnussöl, und Zellregler, wie Paraffine, Fettalkohole und Dimethylpolysiloxane. Zur Verbesserung der Emulgierwirkung, der Zellstruk- tur und/oder Stabilisierung des Schaumes eignen sich ferner oligomere Acrylate mit Polyoxyalkylen- und Fluoralkanresten als Seitengruppen. Die oberflächenaktiven Sub- stanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile der Komponente (b), angewandt.
Als geeignete Trennmittel seien beispielhaft genannt: Umsetzungsprodukte von Fett- säureestern mit Polyisocyanaten, Salze aus Aminogruppen enthaltenden Polysiloxa- nen und Fettsäuren, Salze aus gesättigten oder ungesättigten (cyclo)aliphatischen Carbonsäuren mit mindestens 8 C-Atomen und tertiären Aminen sowie insbesondere innere Trennmittel, wie Carbonsäureester und/oder -amide, hergestellt durch Veresterung oder Amidierung einer Mischung aus Montansäure und mindestens einer aliphati- sehen Carbonsäure mit mindestens 10 C-Atomen mit mindestens difunktionellen Alka- nolaminen, Polyolen und/oder Polyaminen mit Molekulargewichten von 60 bis 400 (EP- A-153 639), Gemischen aus organischen Aminen, Metallsalzen der Stearinsäure und organischen Mono- und/oder Dicarbonsäuren oder deren Anhydride (DE-A-3 607 447) oder Gemischen aus einer Iminoverbindung, dem Metallsalz einer Carbonsäure und gegebenenfalls einer Carbonsäure (US 4 764 537).
Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, üblichen organischen und anorganischen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Mittel zur Verbesserung des Abriebverhaltens in Anstrichfarben, Beschich- tungsmittel usw. zu verstehen. Im einzelnen seien beispielhaft genannt: anorganische Füllstoffe wie silikatische Mineralien, beispielsweise Schichtsilikate wie Antigorit, Ben- tonit, Serpentin, Hornblenden, Amphibole, Chrisotil, Talkum; Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide, Zinkoxid und Eisenoxide, Metallsalze wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmiumsulfid, Zinksulfid sowie Glas u.a.. Vor- zugsweise verwendet werden Kaolin (China Clay), Aluminiumsilikat und Copräzipitate aus Bariumsulfat und Aluminiumsilikat sowie natürliche und synthetische faserförmige Mineralien wie Wollastonit, Metall- und insbesondere Glasfasern verschiedener Länge, die gegebenenfalls geschlichtet sein können. Als organische Füllstoffe kommen beispielsweise in Betracht: Russ, Melamin, Kollophonium, Cyclopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyacrylnitril-, Polyurethan-,
Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbon- säureestern und insbesondere Kohlenstofffasern.
Die anorganischen und organischen Füllstoffe können einzeln oder als Gemische ver- wendet werden und werden der Reaktionsmischung vorteilhafterweise in Mengen von 0,5 bis 50 Gew.-%, vorzugsweise 1 bis 40 Gew.-%, bezogen auf das Gewicht der Komponenten (a) bis (c), zugegeben, wobei jedoch der Gehalt an Matten, Vliesen und Geweben aus natürlichen und synthetischen Fasern Werte bis 80 Gew.-% erreichen kann.
Als geruchsbindende Stoffe können alle für diese Zwecke bekannten geruchsbindenden Stoffe eingesetzt werden. Beispielsweise sind Cyclodextrine, Cucurbituril, Calixa- rene, Metall-organische-Gerüste (metall organic frameworks MOF), wie beispielsweise in J. Mater. Chem., 2006, 16, 626-636 beschrieben, Aktivkohle, Zeolithe, Schichtsilikate, wie Bentonite, und Metalloxide, wie z.B. Zinkoxid, genannt.
Als geeignete fungistatische und bakteriostatisch wirkende Substanzen können alle für diese Zwecke geeigneten fungistatische und bakteriostatisch wirkende Substanzen eingesetzt werden, beispielsweise Metalle bzw. Metallpulver, wie Silber, Titan, Kupfer oder Zink bzw. Materialien, welche Ionen dieser Stoffe freisetzten können, wie Silber- zeolith A, quaternäre Ammoiniumverbindungen, polymere Verbindungen, wie Chitin und Chitosan, teilvernetzte Polyacrylsäure bzw. ihre Salze oder Polyhexamethylen biguanide und Naturstoffe, wie zum Beispiel Teebaumöl.
Zur Herstellung der Polyurethanschaumstoffe werden die Polyisocyanate (a), höhermolekularen Verbindungen mit mindestens zwei reaktiven Wasserstoffatomen (b) und gegebenenfalls Kettenverlängerungs- und/oder Vernetzungsmittel (c) in solchen Men- gen zur Umsetzung gebracht, dass das Äquivalenz-Verhältnis von NCO-Gruppen der Polyisocyanate (a) zur Summe der reaktiven Wasserstoffatome der Komponenten (b), (c), (d) und (e) 0,75 bis 1 ,25:1 , vorzugsweise 0,85 bis 1 ,15:1 beträgt. Falls die Polyurethanschaumstoffe zumindest teilweise Isocyanuratgruppen gebunden enthalten, wird üblicherweise ein Verhältnis von NCO-Gruppen der Polyisocyanate (a) zur Summe der reaktiven Wasserstoffatome der Komponente (b), (c) und (d) von 1 ,5 bis 20:1 , vorzugsweise 1 ,5 bis 8:1 angewandt. Ein Verhältnis von 1 :1 entspricht dabei einem Isocy- anatindex von 100.
Die Polyurethanschaumstoffe werden vorteilhafterweise nach dem one shot-Verfahren, beispielsweise mit Hilfe der Reaktionsspritzguss-, Hochdruck- oder Niederdruck- Technik in offenen oder geschlossenen Formwerkzeugen, beispielsweise metallischen Formwerkzeugen, z.B. aus Aluminium, Gusseisen oder Stahl, hergestellt.
Es ist dabei erfindungswesentlich, dass wasserabsorbierendes Polymer (f) und we- sentliche Mengen an Wasser erst bei der Herstellung der Reaktionsmischung in Kontakt gebracht werden. Dabei umfasst „wesentliche Mengen an Wasser" nicht die Feuchtigkeit, die gewöhnlich in der höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffen (b) oder Kettenverlängerern (c) enthalten sind, sondern nur weitere Zugaben an Wasser. Genauer ist unter „wesentlichen Mengen an Wasser" ein Wassergehalt von 0,1 Gew.-% und mehr, bezogen auf das Gesamtgewicht der Komponenten (b) bis (h) zu verstehen.
Wird Wasser als Treibmittel eingesetzt, das heißt, wenn die Komponenten (b) bis (h) mehr als 0,1 Gew.-% an Wasser enthalten, wird die Reaktionsmischung vorzugsweise durch Vermischen einer Polyolkomponente (A1) und einer Polyolkomponente (A2) mit einer Isocyanatkomponente (B), enthaltend (a) Polyisocyanate, erhalten. Dabei enthalten die Polyolkomponenten (A1 ) und (A2) vorzugsweise jeweils einen Teil der mindes- tens einen höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffatomen (b), wobei die Komponente (A1 ) kein wasserabsorbierendes Polymer enthält und die Komponente (A2) im wesentlichen kein Wasser, das heißt vorzugsweise weniger als 0,1 Gew.-%, besonders bevorzugt weniger als 0,01 Gew.-% Wasser, enthält.
Werden niedermolekulare Kettenverlängerungsmittel (c) verwendet, können diese in der Polyolkomponente (A1) oder (A2) oder in beiden enthalten sein. Besonders bevorzugt enthält die Komponente (A2) keinen Katalysator, insbesondere keinen Aminkata- lysator. Die Komponenten (g) und (h), falls vorhanden, können ebenfalls sowohl in Komponente (A1 ) als auch in Komponente (A2) eingesetzt werden. Vorzugsweise werden die Mischungsverhältnisse der Komponenten (b) bis (h) in den Komponenten (A1 ) und (A2) so eingestellt, dass die Viskositäten beider Komponenten sich um weniger als 50 %, besonders bevorzugt um weniger als 20 % und insbesondere um weniger als 10 %, bezogen auf die Viskosität der höherviskosen Komponente, unterscheiden.
Alternativ zur Aufteilung der Polyolkomponente in eine Polyolkomponente (A1 ) und eine Polyolkomponente (A2) kann das wasserabsorbierende Polymer auch im Mischkopf als Feststoff zudosiert werden. In dieser Ausführungsform werden Isocyanatkom- ponente, Polyolkomponente und wasserabsorbierendes Polymer getrennt in den Mischkopf gegeben und dort zur Reaktionsmischung vermischt.
Die Ausgangskomponenten werden bei einer Temperatur von 15 bis 90 °C, vorzugsweise von 20 bis 50 °C gemischt und in das offene oder gegebenenfalls unter erhöhtem Druck in das geschlossene Formwerkzeug eingebracht. Die Vermischung kann mechanisch mittels eines Rührers oder einer Rührschnecke oder unter hohem Druck im sogenannten Gegenstrominjektionsverfahren durchgeführt werden. Dabei wird die Niederdruck-Verarbeitung bevorzugt. Die Formwerkzeugtemperatur beträgt zweckmäßigerweise 20 bis 90 °C, vorzugsweise 30 bis 60 °C und insbesondere 45 bis 50 °C.
Die erfindungsgemäßen Polyurethanschaumstoffe sind vorzugsweise zu einem großen Teil offenzellig. Dabei werden die Komponenten (a) bis (h) so gewählt, dass es sich bei dem erfindungsgemäßen Polyurethanschaumstoff um einen offenzelligen Schaumstoff handelt. Bevorzugt besitzen die erfindungsgemäßen Polyurethanschaumstoffe eine Offenzelligkeit von mehr als 90 %, bevorzugt von mehr als 93 %, besonders bevorzugt von mehr als 95 %, insbesondere mehr als 97 %.
Die nach dem erfindungsgemäßen Verfahren hergestellten Polyurethanschaumstoffe können überall eingesetzt werden, wo das Abführen von Feuchtigkeit von der Körperoberfläche problematisch ist, wie in Schuhen, beispielsweise als Schuhsohle oder als Einlegesohle bzw. Fußbett, im Bereich von Helmen, im Bereich von Tragegurten, beispielsweise für Rucksäcke, im Bereich von Ellenbogen- und Knieschützern, bei In- socks, den Fuß umschließende Schuheinlagen meist aus geschäumten Material, die zur Absorption von Stößen geeignet sind, für Skistiefel und Rollerblades, bei Sitzen, beispielsweise Autositzen, oder bei Matratzen. Dabei kann die Dichte der Polyurethanschaumstoffe in Abhängigkeit von der Anwendung eingestellt werden. Üblicherweise liegen die Dichten erfindungsgemäßer Polyurethanschaumstoffe im Bereich von 0,05 bis 1 ,2 g/cm3. Für den Einsatz als Matratze oder Autositz wird dabei vorzugsweise eine Dichte von 0,05 bis 0,25 g/cm3 eingestellt, für den Einsatz als Schuhsohle 0,1 bis 0,8 g/cm3, vorzugsweise von 0,1 bis 0,6 g/cm3.
Werden erfindungsgemäße Polyurethanschaumstoffe als Schuhsohle eingesetzt, sind die Schuhsohlen nach außen von einem wasserundurchlässigen Material umgeben, beispielsweise Gummi. Dadurch soll verhindert werden, dass Nässe von außen, beispielsweise bei Regen, in den erfindungsgemäßen Schaumstoff eindringt.
Ein erfindungsgemäßes Verfahren ist einfach durchführbar, die Dosierung von 3 Kom- ponenten in einem Mischkopf zur Herstellung von Reaktionsmischungen zur Herstellung von Polyurethanschaumstoffen ist unproblematisch. Durch einspritzen in Formen können Formschaumstoffe mit komplizierte Geometrien einfach, schnell und im wesentlichen ohne Abfallprodukte erhalten werden. Weiter ist es möglich Verbundmaterialien, beispielsweise Schuhe, durch Direktanschäumung des erfindungsgemäßen Schaumstoffs an ein Trägermaterial, beispielsweise des Sohlenmaterials an den
Schuhschaft, in einem Arbeitsschritt ohne Verwendung von Klebstoffen herzustellen.
Durch das erfindungsgemäße Verfahren sind Polyurethanschaumstoffe mit einem hohen Gehalt an wasserabsorbierendem Polymer erhältlich. Dabei führt der Gehalt an Latentwärmespeicher (g) aufgrund ihrer Temperatur regelnden Eigenschaften zu einer weiteren Steigerung des Wohlbefindens. Die erfindungsgemäßen Polyurethanschaumstoffe weisen vorteilhafte mechanische Eigenschaften auf, beispielsweise ein geringes Quellungsverhalten. Im Folgenden werden diese vorteilhaften Eigenschaften in Form von Beispielen verdeutlicht.
Verwendete Einsatzstoffe:
Polyol 1 : Polyetherol auf Basis von Glycerin, Propylenoxid und Ethylenoxid mit einer
OH-Zahl von 31 mg KOH/g und einer Viskosität von 800 mPas bei 25°C Polyol 2: Lupranol® 4800 der Firma Elastogran GmbH; Polymerpolyetherol mit einem Feststoffgehalt von 45 Gew.-% und einer OH-Zahl von 20 mg KOH/g.
Vernetzer: Glycerin
KV: Monoethylengylcol
Kat 1 : Katalysator auf Basis eines tertiären Amins gelöst in 1 ,4-Butandiol Kat 2: Katalysator auf Basis eines tertiären Amins gelöst in Dipropylenglycol
Kat 3: Katalysator auf Basis eines tertiären Amins
Stabilisator: Zellstabilisator auf Basis eines Silikons lso 135/74: Isocyanat-Prepolymer der Firma Elastogran GmbH auf Basis von 4,4'-MDI modifizierten Isocyanaten und einem Gemisch von Polyetherolen mit einer mittleren Funktionalität von 1 ,5 bis 2,0 und einem NCO-Gehalt von 23,8 Gew.-%
SAP 1 : Superabsorber Luquasorb® 1010 der Firma BASF AG SAP 2: Superabsorber Luquasorb® 1060 der Firma BASF AG PCM: Latentwärmespeicher Ceracap® NB 1007 X der Firma BASF AG
Tabelle 1 :
Für die Beispiele 1 bis 3 und das Vergleichsbeispiel V1 wurden die Komponenten A1 , gegebenenfalls A2 und B unmittelbar vor dem verschäumen zusammengeführt und kurz aber intensiv vermischt. Das Reaktionsgemisch wurde anschließend in eine Plattenform mit den Maßen 20x20x0,5 cm gegossen und die Form verschlossen. Nach der Reaktion wurden aus den Polyurethanplatten der Beispiele 1 bis 3 und dem Vergleichsbeispiel V1 mehrere Probenkörper geschnitten. Die Probenkörper wurden bei Raumtemperatur und 50% relativer Luftfeuchte für 24 Stunden konditioniert und anschließend wurde die Wasserdampfaufnahme in einem Klimaschrank bei 40°C und 90% relativer Luftfeuchte untersucht. Tabelle 2 gibt Aufschluss über die Wasserdampfaufnahme der Polyurethanschäume: Tabelle 2: Wasserdampfaufnahme verschiedener Polyurethanschäume
Die Beispiele 1 bis 3 zeigen, dass die hergestellten Polyurethanschäume eine signifikant größere Wasserdampfaufnahme im Vergleich zu Vergleichsbeispiel 1 besitzen.
Auf einer Niederdruckanlage der Firma Elastogran Maschinenbau (Typ F20) wurden Maschinenversuche durchgeführt. Die Maschine verfügt über drei Vorratsbehälter, wobei in zwei Behältern die Komponenten A1 und A2 enthalten waren und der dritte Behälter die Komponente B enthielt. Die drei verschiedenen Komponenten wurden im Mischkopf miteinander innig vermischt und in eine Sohlenform für ein Fußbett ausgetragen. Tabelle 3 zeigt die Zusammensetzung der verwendeten Komponenten.
Tabelle 3: Zusammensetzung der verwendeten Komponenten
Analog zu den Beispielen 1 bis 3 wurden die hergestellten Formkörpern für 24 Stunden bei Raumtemperatur und 50% relativer Luftfeuchte konditioniert. Anschließend wurde die Wasserdampfaufnahme bei 40°C und 90% relativer Luftfeuchte bestimmt Die erhaltenen Werte sind in Tabelle 4 angegeben.
Tabelle 4: Wasserdampfaufnahme der hergestellten Fußbetten
Zusätzlich wurde am Beispiel 4 das Desorptionsverhalten des Polyurethanschaums untersucht. Hierzu wurde die Probe nach der Lagerung über 120 Minuten bei 40°C und 90% relativer Luftfeuchte bei Raumtemperatur und 50% relativer Luftfeuchte aufbewahrt und in bestimmten Zeitintervallen die Masse des Formkörpers bestimmt. Tabelle 5 gibt Aufschluss über das Desorptionsverhalten der Probe.
Tabelle 5: Desorptionsverhalten von Beispiel 4 nach Wasserdampfaufnahme (120 min / 40°C, 90% rel. Luftfeuchtigkeit; Ausgangsgewicht 76,8 g)
Aus der Tabelle 5 ist ersichtlich, dass die Wasserdampfaufnahme reversibel erfolgt. In einen Zeitraum von 8 Stunden bei Raumtemperatur und 50 % relativer Feuchte werden 75% des sorbierten Wassers abgegeben, nach 24 Stunden ist das sorbierte Wasser wieder vollständig abgegeben.

Claims

Patentansprüche
1. Verfahren zur diskontinuierlichen Herstellung eines Polyurethanschaumstoffs, bei dem man a) Polyisocyanate mit b) mindestens einer höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffatomen und c) gegebenenfalls niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmitteln d) Treibmitteln, enthaltend gegebenenfalls Wasser, e) Katalysatoren, f) wasserabsorbierenden Polymeren, g) gegebenenfalls Latentwärmespeicher enthaltenden Kapseln und h) gegebenenfalls sonstigen Zusatzstoffe, vermischt und die so erhaltene Reaktionsmischung zum Polyurethanschaumstoff umsetzt, dadurch gekennzeichnet, dass entweder das Treibmittel d) kein Wasser enthält oder, falls das Treibmittel d) Wasser enthält, Treibmittel d) und wasserabsorbierendes Polymer f) erst bei der Herstellung der Reaktionsmischung in Kontakt ge- bracht werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Treibmittel d) Wasser enthält.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Gehalt an Wasser in den Komponenten (b) bis (h) 0,1 bis 2 Gew.-%, bezogen auf das Gesamt gewicht der Komponenten (a) bis (h) beträgt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass der Gehalt an Latentwärmespeicher enthaltenden Kapseln 1 bis 20 Gew.-%, bezogen auf das
Gesamtgewicht der Komponenten (a) bis (h), beträgt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass der Gehalt an wasserabsorbierendem Polymer 1 bis 20 Gew.-%, bezogen auf das Gesamtge- wicht der Komponenten (a) bis (h) beträgt.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche des wasserabsorbierenden Polymers nachvernetzt ist.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass das wasserabsorbierende Polymer einen Teilchendurchmesser von 0,01 mm bis 1 mm hat.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die Komponenten b) bis h) in mindestens zwei Polyolkomponenten A1 und A2 enthalten sind und die Reaktionsmischung durch Vermischen der Polyolkomponenten und mindestens einer Isocyanatkomponente (B), enthaltend Polyisocyanate (a), erhalten wird, wobei die Komponente (A1) kein wasserabsorbierendes Polymer enthält und die Komponente (A2) im wesentlichen kein Wasser enthält.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass e) Katalysator in Komponente (A1 ) enthalten ist.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass sich die Viskositäten der Komponenten (A1) und (A2) um weniger als 50 %, bezogen auf die Viskosität der höherviskosen Komponente, unterscheiden.
1 1. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die Wasserabsorbierenden Polymeren als Feststoff im Mischkopf zu den Komponenten (a) bis (e) sowie (g) und (h) zugegeben werden.
12. Verfahren nach Anspruch 1 bis 1 1 , dadurch gekennzeichnet, dass die Reakti- onsmischung in eine Form gegeben wird.
13. Polyurethanschaumstoff erhältlich nach einem Verfahren nach Anspruch 1 bis 12, enthaltend 1 bis 20 Gew.-% wasserabsorbierendes Polymer.
14. Polyurethanschaumstoff nach Anspruch 13, dadurch gekennzeichnet, dass dieser eine Offenzelligkeit von 90% nach DIN ISO 4590 aufweist.
15. Schuhsohle enthaltend ein Polyurethanschaumstoff nach Anspruch 13 oder 14.
16. Schuhsohle nach Anspruch 15, dadurch gekennzeichnet, dass die Schuhsohle nach außen mit einem wasserundurchlässigen Material umgeben ist.
17. Schuhsohle nach Anspruch 15, dadurch gekennzeichnet, dass die Schuhsohle eine Einlegesohle ist.
18. Schuhsohle nach Anspruch 15, dadurch gekennzeichnet, dass die Schuhsohle ein Fußbett ist.
EP07729230A 2006-05-22 2007-05-16 Schuhsohlen mit wasserabsorbierenden eigenschaften Withdrawn EP2027210A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07729230A EP2027210A1 (de) 2006-05-22 2007-05-16 Schuhsohlen mit wasserabsorbierenden eigenschaften

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06114342 2006-05-22
EP07729230A EP2027210A1 (de) 2006-05-22 2007-05-16 Schuhsohlen mit wasserabsorbierenden eigenschaften
PCT/EP2007/054782 WO2007135069A1 (de) 2006-05-22 2007-05-16 Schuhsohlen mit wasserabsorbierenden eigenschaften

Publications (1)

Publication Number Publication Date
EP2027210A1 true EP2027210A1 (de) 2009-02-25

Family

ID=38227752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07729230A Withdrawn EP2027210A1 (de) 2006-05-22 2007-05-16 Schuhsohlen mit wasserabsorbierenden eigenschaften

Country Status (6)

Country Link
US (1) US20090234039A1 (de)
EP (1) EP2027210A1 (de)
JP (1) JP2009537683A (de)
KR (1) KR20090019817A (de)
CN (1) CN101454396B (de)
WO (1) WO2007135069A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018932B1 (ko) * 2008-05-21 2011-03-02 전영식 귓속의 물을 제거하는 이어 플러그
DE102008035947B4 (de) 2008-07-31 2015-03-26 Kraussmaffei Technologies Gmbh Verfahren zur Herstellung eines Produktes aus reaktiven Ausgangsstoffen
AT507849B1 (de) 2009-01-22 2011-09-15 Eurofoam Gmbh Schaumstoffelement mit darin eingelagerter zellulose
AT507850B1 (de) 2009-01-22 2016-01-15 Eurofoam Gmbh Schaumstoffelement mit darin eingelagerten hydrophilen mitteln
EP2470143A1 (de) * 2009-08-26 2012-07-04 Bayer Materialscience AG Polyurethan-schaumstoffe mit latentwärmespeicher
WO2012065299A1 (en) * 2010-11-16 2012-05-24 Basf Se Dimensionally stable low-density polyurethane moldings
EP2476714A1 (de) * 2011-01-13 2012-07-18 Basf Se Polyurethanintegralschaumstoffe mit verbesserter Oberflächenhärte
US20120193572A1 (en) * 2011-02-01 2012-08-02 Sleep Innovations, Inc. Bedding product having phase change material
CA2778640A1 (en) * 2011-06-10 2012-12-10 Corporation Zedbed International Inc. Composite memory foam and uses thereof
AT512273B1 (de) 2011-11-16 2014-06-15 Chemiefaser Lenzing Ag Hydrophobe kunststoffe mit cellulosischer hydrophillierung
US9023910B2 (en) * 2012-01-18 2015-05-05 Basf Se Low-density polyurethane shoe soles or sole parts with high rebound resilience and low compression set
JP6081796B2 (ja) * 2012-12-28 2017-02-15 東邦化学工業株式会社 2液硬化型ポリウレタン樹脂組成物
WO2014178137A1 (ja) * 2013-05-01 2014-11-06 株式会社アシックス 靴底用部材
GB2532837B (en) 2014-08-27 2017-10-25 Nike Innovate Cv Article of footwear with soil-shedding performance
US10314364B2 (en) 2014-08-27 2019-06-11 Nike, Inc. Soil-shedding article of footwear, and method of using the same
US10463105B2 (en) 2014-08-27 2019-11-05 Nike, Inc. Articles of footwear, apparel, and sports equipment with soil-shedding properties
US10085513B2 (en) 2014-08-27 2018-10-02 Nike, Inc. Article of footwear with soil-shedding performance
US10076159B2 (en) 2014-08-27 2018-09-18 Nike, Inc. Soil-shedding article of footwear, and method of using the same
KR101688324B1 (ko) * 2015-08-03 2016-12-20 한국신발피혁연구원 중창 제조방법
US11484615B2 (en) * 2016-02-15 2022-11-01 Aqdot Limited Cucurbituril compositions and their use
GB2547281B (en) 2016-02-15 2019-10-16 Aqdot Ltd Pro-fragrance composition
US10675609B2 (en) 2016-03-02 2020-06-09 Nike, Inc. Articles with soil-shedding performance
US10531705B2 (en) 2016-03-02 2020-01-14 Nike, Inc. Hydrogel tie layer
US10362834B2 (en) 2016-03-02 2019-07-30 Nike, Inc. Hydrogel connection
US10455893B2 (en) 2016-03-02 2019-10-29 Nike, Inc. Hydrogel with mesh for soil deflection
CN110678097B (zh) 2017-06-01 2021-11-05 耐克创新有限合伙公司 利用泡沫颗粒制造物品的方法
TWI700175B (zh) 2017-08-01 2020-08-01 荷蘭商耐基創新公司 製造用於鞋類物品之外底的組件之方法
US11078343B2 (en) 2017-10-06 2021-08-03 Evonik Operations Gmbh Absorbent polymeric foam for shoe insoles
KR102608646B1 (ko) 2017-10-19 2023-12-01 나이키 이노베이트 씨.브이. 아웃솔 및 아웃솔의 제조 방법
CN107828206A (zh) * 2017-11-25 2018-03-23 菏泽海诺知识产权服务有限公司 一种鞋子保养用组合物
US11074899B2 (en) * 2018-03-15 2021-07-27 International Business Machines Corporation VOC sequestering acoustic foam
WO2019212761A1 (en) * 2018-05-03 2019-11-07 Nike Innovate C.V. Layered materials, methods of making, methods of use, and articles incorporation the layered materials
CN113382652B (zh) * 2018-12-06 2022-11-15 耐克创新有限合伙公司 利用泡沫颗粒的缓冲元件
KR101964409B1 (ko) * 2018-12-27 2019-04-01 (주)에스앤에프 자가 맞춤형 수경화성 신발 인솔
CN110092881A (zh) * 2019-05-22 2019-08-06 吴聚精 一种吸水泡棉及其生产工艺
EP4070939A1 (de) 2019-11-19 2022-10-12 NIKE Innovate C.V. Verfahren zum herstellen von artikeln, die schaumpartikel aufweisen
CN111019329A (zh) * 2019-12-25 2020-04-17 温州市创本鞋材有限公司 一种鞋垫及其制备工艺
CN111635627A (zh) * 2020-06-01 2020-09-08 丁震 一种乌拉草运动鞋垫及其制作方法
CN112250901B (zh) * 2020-11-06 2022-04-01 江苏海洋大学 一种多功能互穿网络聚合物乳液在聚氨酯软泡塑料改性中的应用
KR20230049425A (ko) * 2021-10-06 2023-04-13 임현승 신발 및 의류 산업용 특수 신소재 uhd puf 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889417A (en) * 1972-08-10 1975-06-17 Grace W R & Co Method for preparing horticultural foam structures
US3861993A (en) * 1973-02-13 1975-01-21 Grace W R & Co Composite foam scouring pad
US4773408A (en) * 1985-01-04 1988-09-27 E. R. Squibb & Sons, Inc. Wound dressing
US5064653A (en) * 1988-03-29 1991-11-12 Ferris Mfg. Co. Hydrophilic foam compositions
DE68923025T2 (de) * 1988-03-31 1995-11-16 Canon Kk Austauschbare Tintenstrahlkassette und Tintenstrahldruckgerät mit einer solchen.
DE4211302A1 (de) * 1992-04-06 1993-10-07 Mueller Michaela In Wasser quellfähige, aber gegen Wasser und viele Chemikalien beständige Produkte zur einfachen Herstellung von bei Kontakt mit Wasser quellfähigen Dichtungen mit kompakter, mikroporöser oder geschäumter Struktur und beliebiger Geometrie
DE4308347A1 (de) * 1993-03-17 1994-09-29 Beiersdorf Ag Hydrophile Polyurethanschaumgele, insbesondere zur Behandlung von tiefen Wunden und Verfahren zu deren Herstellung
JPH0762226A (ja) * 1993-08-31 1995-03-07 Toyo Kuoritei One:Kk 吸水性ポリウレタンフォームの製造方法
DE4406219A1 (de) * 1994-02-25 1995-08-31 Basf Schwarzheide Gmbh Kompakte Formkörper oder Formkörper mit einem zelligen Kern und einer verdichteten Oberfläche auf Polyurethan-Basis, Verfahren zu ihrer Herstellung und ihre Verwendung als Schuh- oder Schuhsohlenmaterial
DE4418319C3 (de) * 1994-05-26 2001-08-09 Stockhausen Chem Fab Gmbh Schichtförmig aufgebauter Körper zur Absorption von Flüssigkeiten sowie seine Herstellung und seine Verwendung
WO1996016099A1 (en) * 1994-11-22 1996-05-30 Imperial Chemical Industries Plc Process for making flexible foams
US5719201A (en) * 1995-03-30 1998-02-17 Woodbridge Foam Corporation Superabsorbent hydrophilic isocyanate-based foam and process for production thereof
CN1224372A (zh) * 1996-05-30 1999-07-28 穆尔公司 吸收性制鞋材料
US6589444B2 (en) * 1997-11-10 2003-07-08 Honeywell International Inc. Process for separating water from chemical mixtures
DE19955839C1 (de) * 1999-11-19 2001-03-01 Hilti Ag Verwendung von quellbare Füllstoffe enthaltenden Kunststoffschäumen zur Abdichtung von Mauerdurchführungen
DE10116757A1 (de) * 2001-04-04 2002-10-10 Basf Ag Verwendung von offenzelligen, hydrophilen, aliphatischen Polymethan-Schaumstoffen in Hygieneartikeln
DE10163162A1 (de) * 2001-12-20 2003-07-03 Basf Ag Mikrokapseln
AU2003243198A1 (en) * 2002-05-15 2003-12-02 H. H. Brown Shoe Technologies, Inc. Doing Business As Dicon Technologies Moisture transpiration composite and products therefrom
DE102004061406A1 (de) * 2004-12-21 2006-07-06 Bayer Innovation Gmbh Infektionsresistente Polyurethanschäume, Verfahren zu ihrer Herstellung und Verwendung in antiseptisch ausgestatteten Wundauflagen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007135069A1 *

Also Published As

Publication number Publication date
US20090234039A1 (en) 2009-09-17
CN101454396B (zh) 2011-10-12
CN101454396A (zh) 2009-06-10
KR20090019817A (ko) 2009-02-25
WO2007135069A1 (de) 2007-11-29
JP2009537683A (ja) 2009-10-29

Similar Documents

Publication Publication Date Title
EP2027210A1 (de) Schuhsohlen mit wasserabsorbierenden eigenschaften
EP1969017B1 (de) Herstellung eines wasserabsorbierenden harzes unter einmischen eines teilchenförmigen additivs
EP0151937B1 (de) Verfahren zur Herstellung von schaumstoffhaltigen Polyurethan(harnstoff)-Massen, schaumstoffhaltige Polyurethan(harnstoff)-Massen und ihre Verwendung
EP1250373B1 (de) Modifizierte polyurethanschaumstoffe als adsorbentien
EP2104686B2 (de) Verfahren zur herstellung mechanisch stabiler wasserabsorbierender polymerpartikel
EP2625207A1 (de) Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2254925B1 (de) Grobzellige polyurethanelastomere
WO2014023794A1 (de) Kombinationsschaum
EP1326898B1 (de) Vernetztes, wasserquellbares polymerisat und verfahren zu seiner herstellung
EP1683831A1 (de) Nanopartikel für die Herstellung von Polyurethanschaum
DE102005010198A1 (de) Hydrolysestabile, nachvernetzte Superabsorber
EP1866345B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
DE1121326B (de) Verfahren zur Herstellung von geschaeumten Ionenaustauschmaterialien auf Grundlage von kunstharzgebundenen, feinzerteilten Anion- oder Kationaustauscherharzen
WO2008077779A1 (de) Verfahren zur herstellung mechanisch stabiler wasserabsorbierender polymerpartikel
DE3526184A1 (de) Verfahren zur herstellung von fuellstoffe enthaltenden, polymer-gebundenen traegermassen, die nach diesem verfahren erhaltenen traegermassen und ihre verwendung
WO2012055834A1 (de) Hydrophile, aliphatische polyurethan-schäume
WO2008040633A1 (de) Verbundstoffe aus einem elastischen polyurethanformkörper und gummi mit verbesserter haftung
DE102012200272A1 (de) Polyurethanintegralschaumstoffe mit verbesserter Oberflächenhärte
EP2751159A1 (de) Dispersion aus einer flüssigen und einer festen phase
EP2780044B1 (de) Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2011006608A1 (de) Verfahren zur herstellung von flächigen, hydrophilen, aliphatischen polyurethan-schäumen
WO2011161041A1 (de) Verfahren zur herstellung von hydrophilen, aliphatischen polyurethan-schäumen mit niedriger rohdichte
KR20170002470A (ko) 첨가제를 이용한 표면-가교된 흡수성 폴리머 입자의 후처리
WO2008116763A1 (de) Modifizierte polyurethanschaumstoffe enthaltend mikroverkapseltes latentwärmespeichermaterial
DE102005040433A1 (de) Kunstschnee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20100820

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160622