EP2021521B1 - Magnesium-based alloy - Google Patents

Magnesium-based alloy Download PDF

Info

Publication number
EP2021521B1
EP2021521B1 EP07718397.8A EP07718397A EP2021521B1 EP 2021521 B1 EP2021521 B1 EP 2021521B1 EP 07718397 A EP07718397 A EP 07718397A EP 2021521 B1 EP2021521 B1 EP 2021521B1
Authority
EP
European Patent Office
Prior art keywords
less
magnesium
alloy
based alloy
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07718397.8A
Other languages
German (de)
French (fr)
Other versions
EP2021521A1 (en
Inventor
Peter J. Uggowitzer
Jörg F. LÖFFLER
Franz Riemelmoser
Maria KÜHLEIN
Michael Kettner
Helmut Kilian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
Original Assignee
LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LKR Leichtmetallkompetenzzentrum Ranshofen GmbH filed Critical LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
Priority to SI200731889A priority Critical patent/SI2021521T1/en
Publication of EP2021521A1 publication Critical patent/EP2021521A1/en
Application granted granted Critical
Publication of EP2021521B1 publication Critical patent/EP2021521B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to a magnesium-based alloy and a semifinished product produced therefrom.
  • the invention relates to a magnesium-based alloy with uniformly small grain size and high in particular Kaltumformflower the material.
  • Magnesium is an alkaline earth metal, crystallized in the hexagonal closest packing of the atoms, has a density of 1.7 kg / dm 3 , a modulus of elasticity of 44 kN / mm 2 and a tensile strength of 150 to 200 N / mm 2 .
  • a hexagonal close-packed lattice has only a limited set of slip planes, so magnesium can only be deformed to a small extent at room temperature.
  • Alkaline earth metals are generally very reactive. Magnesium is coated in air or water with a thin, adherent, oxide / hydroxide topcoat and is at least partially resistant to especially water. However, despite the protective surface layer, the high reactivity of magnesium may cause corrosion.
  • magnesium may be predominantly alloyed with the elements aluminum (Al), zinc (Zn), manganese (Mn), these alloys generally being multiphase in the form of mixed crystals and intermetallic phases at room temperature available.
  • known magnesium alloys have the disadvantages of an inhomogeneous structural adjustment in the bolt during extrusion at elevated temperature and a limited ductility of the material at room temperature.
  • magnesium-based wrought alloys One of the major advantages of magnesium is the low density of the metal, so that experts have long been confronted with the desire for magnesium-based wrought alloys.
  • KR20030055753 discloses a magnesium base alloy containing in% by weight: 3-10% Zn, 0.5-4.0% Ag, 0.1-4.0% Si, 0.1-2.0% Ca, magnesium and manufacturing-related impurities as the remainder.
  • the invention is now the goal of creating a magnesium-based alloy, which provides a fine-grain billet in a hot pressing an optionally conditioned continuous casting bolt, the material of which is highly deformable at elevated temperature and at room temperature. It is a further object of the invention to improve or to influence the corrosion resistance of the material.
  • This goal is for a magnesium-based alloy consisting of wt.% Zinc (Zn) more than 0.8, but less than 6.2 Zircon (Zr) Traces, but less than 1.0 Manganese (Mn) more than 0.04, however, less than 0.6 Calcium (Ca) more than 0.04, but less than 2.0 Silicon (Si) Traces, but less than 1.0 Antimony (Sb) Traces, but less than 0.5 Aluminum (AI) Traces, but less than 0.5 Silver (Ag) more than 0.1, but less than 2.0 Magnesium and manufacturing impurities are reached as the remainder.
  • the advantages achieved with the magnesium base alloy according to the invention lie essentially in a strictly balanced element concentration and a microalloying technology in which the interaction of all alloying elements and the reaction kinetics and grain growth criteria are taken into account, the advantages being in particular a homogeneous fine grain structure of the material, high cold workability and an improvement in the corrosion resistance thereof.
  • Zirconium is fine-grained by precipitations from the melt and enrichment at the crystallization front. Contents of more than 1.0 wt% Zr coarsen the precipitates in for the crack initiation of the material under adverse conditions.
  • Manganese at levels greater than 0.04 but less than 0.6 weight percent has a multiple effect in the alloy.
  • Mn binds in the melt Fe, which compound precipitates
  • Mn forms with zirconium even at a higher temperature in the melt phases, which can have a fine grain.
  • Grain-boundary stabilizing precipitates in conventional magnesium alloys are generally more noble than the magnesium matrix, so that the corrosion resistance is impaired by galvanic effects.
  • the non-noble Ca 2 Mg 6 Zn 3 phase precipitates, so that a galvanic corrosion mechanism is significantly reduced. The result is improved corrosion resistance.
  • the alloying element silicon is soluble in magnesium only to a very small extent or in traces and forms the phase Mg 2 Si. About 1.0 wt .-% Si, the phase content in the material of the alloy is large and deteriorates its mechanical properties.
  • Antimony is essentially related to silicon because antimony can provide a modification of the Mg 2 Si phase, with a required Sb concentration in the alloying metal being about half that of Si.
  • magnesium-based alloys which may contain up to 8 wt .-% aluminum and above, also have an application potential in terms of increased material strength and creep resistance
  • aluminum is an undesirable element in the material according to the invention.
  • contents of greater than 0.5 wt .-% can arise brittle grain boundary phases of the type Mg 17 Al 12 , which also act in a coarse formation of corrosion.
  • brittle grain boundary phases of the type Mg 17 Al 12 , which also act in a coarse formation of corrosion.
  • brittle compact which may also have significant grain size differences over the cross section and the longitudinal direction.
  • Silver has a high potential as a grain growth inhibiting element in the alloy according to the invention in the contents of more than 0.1, but less than 2.0 wt .-%. Ag is in these concentrations in the warm state of the alloyed material in solution, which was found at levels of about 0.1 wt .-% Ag, an increase in concentration at the grain boundaries is formed, which highly effectively precludes grain growth. Furthermore, a hardening effect of the material over the Mg 4 Ag phase can be achieved by Ag. Higher Ag contents as 2.0% by weight, in particular, have economic and corrosion-chemical disadvantages.
  • the sum concentration of the micro-alloying elements Mn, Ca and Si of greater than 0.1, but less than 0.65 Wt .-% in the magnesium base material.
  • a semi-finished product of a magnesium-based alloy according to the invention which has been deformed with a cross-sectional area ratio of greater than 1:16, in particular greater than 1:20 from a cast bolt to a compact at a temperature of about 380 ° C, has a Grain size of the structure of less than 10 microns and that with a high degree of isotropy based on the cross section and in the longitudinal direction.
  • Inventive compacts can be further deformed or pressed at temperatures below 200 ° C, in particular at room temperature, with an error-free surface or gloss surface can be achieved.
  • Tab. 2 gives the chemical composition of the investigated materials.
  • Fig. 1 shows the result of the elongation as a function of the tension in the tensile test according to EN 10002-1: 2001 of magnesium base alloys.
  • the comparative alloys ZK31, AZ31 and ZM21 had, as shown Fig. 1 shows consistently lower elongation at break Ac than the materials of the invention. Out Fig. 2 the dendritic cast structure of the alloy L1 can be seen. An average particle size of 140 ⁇ m was determined with a substantially homogeneous structure over the entire cross section of the block.
  • Fig. 3 is the largely homogeneous structure in the cast state of the block of the alloy L1 over the cross section in with different magnifications at a scale of 500 microns ( Fig. 3.1 ), 200 ⁇ m ( Fig. 3.2 ), 50 ⁇ m ( Fig. 3.3 ) and 20 ⁇ m ( Fig. 3.4 ) and shows spherical grains with some grain boundary phases.
  • Fig. 4 shows a deformed with a press ratio of 1:25 at 380 ° C material of the alloy according to the invention L1 in the longitudinal and transverse direction of the edge and middle region of the sample.
  • Fig. 4 , 1 and Fig. 4 , 2 are cross-section images of the edge and the center of the bar, where Fig. 4 , 3 and Fig. 4.4 represent the corresponding longitudinal grinding patterns. An average particle size of 9 ⁇ m to 6 ⁇ m was measured.
  • Fig. 5 the globulitic cast structure of an alloy L2 according to the invention is shown. With a largely homogeneous particle size distribution over the cast block, the average particle size was 40 ⁇ m.
  • Fig. 6 shows the cast structure of Fig. 5 (L2) in its very fine form with scale values of 500 ⁇ m ( Fig. 6.1 ), 200 ⁇ m ( Fig. 6.2 ), 50 ⁇ m ( Fig. 6.3 ) and 20 ⁇ m ( Fig. 6.4 ). There are small fine precipitation phases at the grain boundaries.
  • Fig. 7 is the structure of a compact of alloy L2 of a cast block pressed at a temperature of 380 ° C. with a press ratio of 1:25 in the transverse direction at the edge ( Fig. 7.1 ) and in the center area ( Fig. 7.2 ) and longitudinally at the edge ( Fig. 7.3 ) and in the middle region of the rod ( Fig. 7.4 ).
  • the average grain size was about 2 microns.
  • the cast structure of a block of a comparative alloy AZ31 shows Fig. 8 , A measurement of the microstructure revealed a grain size of 360 ⁇ m with a substantially homogeneous distribution over the cross section.
  • the microstructure After extruding at 380 ° C, the microstructure was partially coarsely recrystallized and inhomogeneous, whereby no secured grain size determination was possible.
  • the cast structure (chill casting) in the block of the comparative alloy ZK31 was globulitic and had a particle size of 80 ⁇ m with good homogeneity over the cross section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft eine Magnesium-Basislegierung und ein daraus hergestelltes Halbzeug.The invention relates to a magnesium-based alloy and a semifinished product produced therefrom.

In Präzisierung bezieht sich die Erfindung auf eine Magnesium-Basislegierung mit gleichmäßig geringer Korngröße und einem hohen insbesondere Kaltumformvermögen des Werkstoffes.In more detail, the invention relates to a magnesium-based alloy with uniformly small grain size and high in particular Kaltumformvermögen the material.

Magnesium ist ein Erdalkalimetall, kristallisiert in hexagonal dichtester Kugelpackung der Atome, hat eine Dichte von 1,7 kg/dm3, ein Elastizitätsmodul von 44 kN/mm2 und eine Zugfestigkeit von 150 bis 200 N/mm2. Ein hexagonal dichtgepacktes Gitter besitzt lediglich eine beschränkte Schar von Gleitebenen, sodass Magnesium nur in geringem Ausmaß bei Raumtemperatur umformbar ist.Magnesium is an alkaline earth metal, crystallized in the hexagonal closest packing of the atoms, has a density of 1.7 kg / dm 3 , a modulus of elasticity of 44 kN / mm 2 and a tensile strength of 150 to 200 N / mm 2 . A hexagonal close-packed lattice has only a limited set of slip planes, so magnesium can only be deformed to a small extent at room temperature.

Erdalkalimetalle sind im Allgemeinen sehr reaktionsfreudig. Magnesium wird in Luft oder Wasser mit einer dünnen, festhaftenden, oxidischen/hydroxidischen Deckschicht überzogen und ist gegenüber insbesondere Wasser zumindest teilweise beständig. Allerdings bewirkt die hohe Reaktivität von Magnesium trotz schützender Oberflächenschicht gegebenenfalls Korrosion.Alkaline earth metals are generally very reactive. Magnesium is coated in air or water with a thin, adherent, oxide / hydroxide topcoat and is at least partially resistant to especially water. However, despite the protective surface layer, the high reactivity of magnesium may cause corrosion.

Zur Erhöhung der Festigkeit, Verminderung der Kerbempfindlichkeit und Verbesserung der Korrosionsbeständigkeit kann Magnesium vorwiegend mit den Elementen Aluminium (AI), Zink (Zn), Mangan (Mn) legiert sein, wobei diese Legierungen im Allgemeinen bei Raumtemperatur mehrphasig in Form von Mischkristallen und intermetallischen Phasen vorliegen.To increase strength, reduce notch sensitivity and improve corrosion resistance, magnesium may be predominantly alloyed with the elements aluminum (Al), zinc (Zn), manganese (Mn), these alloys generally being multiphase in the form of mixed crystals and intermetallic phases at room temperature available.

Durch ein Lösungsglühen mit nachfolgendem Abschrecken lassen sich die Zähigkeit bzw Duktilität und durch langsames Abkühlen oder Ausscheidungshärten die Festigkeit des aus diesen Legierungen bestehenden Werkstoffes beeinflussen.By solution heat treatment followed by quenching, the toughness or ductility and, by slow cooling or precipitation hardening, the strength of the material consisting of these alloys can be influenced.

Die wichtigsten, derzeit gebräuchlichen Magnesiumlegierungen weisen eine in Tab. 1 aufgelistete Bezeichnung und chemische Zusammensetzung auf.The most important currently used magnesium alloys have a name and chemical composition listed in Tab. 1.

Bekannte Magnesiumlegierungen haben jedoch die Nachteile einer inhomogenen Gefügeeinstellung im Bolzen beim Strangpressen bei erhöhter Temperatur sowie einer beschränkten Duktilität des Werkstoffes bei Raumtemperatur.However, known magnesium alloys have the disadvantages of an inhomogeneous structural adjustment in the bolt during extrusion at elevated temperature and a limited ductility of the material at room temperature.

Einen wesentlichen Vorteil von Magnesium stellt insbesondere die niedrige Dichte des Metalls dar, sodass seit langem die Fachwelt mit dem Wunsch nach Knetlegierungen auf Magnesiumbasis konfrontiert worden ist.One of the major advantages of magnesium is the low density of the metal, so that experts have long been confronted with the desire for magnesium-based wrought alloys.

Aus einer Veröffentlichung " The Effect of Ca Addition on Age Hardening Behaviors and Mechanical Properties in Mg-Zn Alloy" (Materials Science Forum Vols. 419-422 (2003) pp. 307-312 ) ist beispielsweise bekannt geworden, einer Legierung aus Magnesium und 6 Gew.-% Zink 0,1 bis 0,5 Gew.-% Calcium zuzusetzen, um die mechanischen Eigenschaften zu erhöhen und die Aushärtungsparameter zu verbessern.From a publication " The Effect of Ca Addition on Age Hardening Behaviors and Mechanical Properties in Mg-Zn Alloy "(Materials Science Forum Vols. 419-422 (2003) pp. 307-312 For example, it has become known to add 0.1 to 0.5% by weight of calcium to an alloy of magnesium and 6% by weight of zinc in order to increase the mechanical properties and to improve the curing parameters.

Mit der gleichen Zielsetzung einer Festigungssteigerung und Verbesserung der Kriechbeständigkeit erfolgte gemäß dem Dokument " Microstructure and mechanical properties of Mg-Zn-Si-based alloys" (Materials Science and Engineering A357 (2003) 314-320 ) ein Zulegieren von 1 Gew.-% Si und gegebenenfalls 0,25 Gew.-% Ca einem Magnesium-Basiswerkstoff mit 6 Gew.-% Zn.With the same objective of strengthening and improving creep resistance, according to the document " Microstructure and mechanical properties of Mg-Zn-Si-based alloys "(Materials Science and Engineering A357 (2003) 314-320 ) a Zulegieren of 1 wt .-% Si and optionally 0.25 wt .-% Ca a magnesium base material with 6 wt .-% Zn.

Um hochfeste und verformte Magnesium-Basislegierungen zu schaffen, wurde, wie im Dokument " Microstructure and Mechanical Properties of Mg-Zn-Ag Alloys" (Materials Science Forum Vols. 419-422 (2003) pp.159-164 ) offenbart, auch versucht, einer Legierung Z6 Silber (Ag) zuzusetzen, wobei mit einem Gehalt von 3 Gew.-% Ag eine bemerkenswerte Kornfeinung und eine Härtesteigerung erreicht werden konnte.In order to create high strength and deformed magnesium base alloys, as in the document " Microstructure and Mechanical Properties of Mg-Zn-Ag Alloys "(Materials Science Forum Vols. 419-422 (2003) pp.159-164 ) also attempted to add silver (Ag) to an alloy Z6, wherein with a content of 3 wt.% Ag a remarkable grain refinement and a hardness increase could be achieved.

KR20030055753 offenbart einer Magnesium-Basislegierung enthaltend in Gew.-%: 3-10% Zn, 0.5-4.0% Ag, 0.1-4.0% Si, 0.1-2.0 % Ca, Magnesium und herstellungsbedingte Verunreinigungen als Rest. KR20030055753 discloses a magnesium base alloy containing in% by weight: 3-10% Zn, 0.5-4.0% Ag, 0.1-4.0% Si, 0.1-2.0% Ca, magnesium and manufacturing-related impurities as the remainder.

Die Erfindung setzt sich nun zum Ziel eine Magnesium-Basislegierung zu schaffen, welche bei einem Warmpressen eines gegebenenfalls konditionierten Stranggussbolzens einen Feinkorn-Pressbolzen erbringt, wobei der Werkstoff desselben bei erhöhter Temperatur und bei Raumtemperatur hoch umformbar ist. Weiters ist es Ziel der Erfindung, die Korrosionsbeständigkeit des Werkstoffes zu verbessern oder zu beeinflussen.The invention is now the goal of creating a magnesium-based alloy, which provides a fine-grain billet in a hot pressing an optionally conditioned continuous casting bolt, the material of which is highly deformable at elevated temperature and at room temperature. It is a further object of the invention to improve or to influence the corrosion resistance of the material.

Dieses Ziel wird bei einer Magnesium-Basislegierung bestehend aus Gew.% Zink (Zn) mehr als 0,8, jedoch weniger als 6,2 Zirkon (Zr) Spuren, jedoch weniger als 1,0 Mangan (Mn) mehr als 0,04, jedoch weniger als 0,6 Calcium (Ca) mehr als 0,04, jedoch weniger als 2,0 Silizium (Si) Spuren, jedoch weniger als 1,0 Antimon (Sb) Spuren, jedoch weniger als 0,5 Aluminium (AI) Spuren, jedoch weniger als 0,5 Silber (Ag) mehr als 0,1, jedoch weniger als 2,0 Magnesium und herstellungsbedingte Verunreinigungen als Rest erreicht. This goal is for a magnesium-based alloy consisting of wt.% Zinc (Zn) more than 0.8, but less than 6.2 Zircon (Zr) Traces, but less than 1.0 Manganese (Mn) more than 0.04, however, less than 0.6 Calcium (Ca) more than 0.04, but less than 2.0 Silicon (Si) Traces, but less than 1.0 Antimony (Sb) Traces, but less than 0.5 Aluminum (AI) Traces, but less than 0.5 Silver (Ag) more than 0.1, but less than 2.0 Magnesium and manufacturing impurities are reached as the remainder.

Die mit der erfindungsgemäß zusammengesetzten Magnesium-Basislegierung erreichten Vorteile liegen im Wesentlichen in einer streng ausgewogenen Elementkonzentration und einer Mikrolegierungstechnologie, in welcher die Wechselwirkung aller Legierungselemente und die Reaktionskinetik sowie die Kornwachstumskriterien berücksichtigt sind, wobei die Vorteile insbesondere eine homogene Feinkornstruktur des Werkstoffes, eine hohe Kaltumformbarkeit und eine Verbesserung des Korrosionswiderstandes desselben darstellen.The advantages achieved with the magnesium base alloy according to the invention lie essentially in a strictly balanced element concentration and a microalloying technology in which the interaction of all alloying elements and the reaction kinetics and grain growth criteria are taken into account, the advantages being in particular a homogeneous fine grain structure of the material, high cold workability and an improvement in the corrosion resistance thereof.

Zink in Gehalten von mehr als 0,8 bis weniger als 6,2 Gew.-% in der Legierung beeinflusst das Erstarrungsintervall maßgebend und verhindert eine Bildung von sehr groben Stängelkristallen bei der Erstarrung. Geringere Konzentrationen als 0,8 Gew.-% Zn führen zu einer überproportional abnehmenden Wirkung, hingegen ergeben Gehalte von mehr als 6,2 Gew.-% eine nachteilig wirkende eutektische Erstarrung der Schmelze.Zinc at levels greater than 0.8 to less than 6.2 weight percent in the alloy significantly affects the solidification interval and prevents formation of very coarse columnar crystals upon solidification. Lower concentrations than 0.8% by weight of Zn lead to a disproportionately decreasing effect, whereas contents of more than 6.2% by weight result in a disadvantageously acting eutectic solidification of the melt.

Zirkon wirkt durch Ausscheidungen aus der Schmelze und bei Anreicherung an der Kristallisationsfront kornfeinend. Gehalte von über 1,0 Gew.-% Zr vergröbern die Ausscheidungen in für die Rissinitiation des Werkstoffes bei Belastungen nachteiliger Weise.Zirconium is fine-grained by precipitations from the melt and enrichment at the crystallization front. Contents of more than 1.0 wt% Zr coarsen the precipitates in for the crack initiation of the material under adverse conditions.

Mangan in Gehalten von mehr als 0,04, jedoch weniger als 0,6 Gew.-% hat in der Legierung eine mehrfache Wirkung. Zum einen bindet Mn in der Schmelze Fe ab, welche Verbindung ausfällt, zum anderen bildet Mn mit Zirkon schon bei höherer Temperatur in der Schmelze Phasen, die kornfeinend wirken können.Manganese at levels greater than 0.04 but less than 0.6 weight percent has a multiple effect in the alloy. On the one hand, Mn binds in the melt Fe, which compound precipitates, on the other hand Mn forms with zirconium even at a higher temperature in the melt phases, which can have a fine grain.

Calcium mit Gehalten von mehr als 0,04, jedoch weniger als 2,0 Gew.-% im Metall erbringt eine Phasenbildung in der festen Legierung, welche Phasen als Korngrenzenstabilisator ein Kristallwachstum wirkungsvoll behindern. Diese Ca2M96Zn3-Phase, die Zn in den oben erwähnten Gehalten in der Legierung voraussetzt, entsteht im Bereich von 0,1 bis 1 Vol.-% besonders fein sowie homogen im Werkstoff verteilt, wodurch eine hervorragende Feinkornstruktur im Material erhalten bleibt.Calcium at levels greater than 0.04 but less than 2.0 weight percent in the metal provides phase formation in the solid alloy, which phases as a grain boundary stabilizer effectively hinder crystal growth. This Ca 2 M 96 Zn 3 phase, The Zn in the above-mentioned levels in the alloy, is produced in the range of 0.1 to 1 vol .-% particularly fine and homogeneously distributed in the material, whereby an excellent fine grain structure is retained in the material.

Korngrenzen-stabilisierende Ausscheidungen sind in konventionellen Magnesiumlegierungen in der Regel elektrochemisch edler als die Magnesiummatrix, sodass die Korrosionsbeständigkeit durch galvanische Effekte beeinträchtig wird. In der erfindungsgemäßen Legierung scheidet sich die unedle Ca2Mg6Zn3- Phase aus, sodass ein galvanischer Korrosionsmechanismus signifikant reduziert wird. Die Folge ist eine verbesserte Korrosionsbeständigkeit.Grain-boundary stabilizing precipitates in conventional magnesium alloys are generally more noble than the magnesium matrix, so that the corrosion resistance is impaired by galvanic effects. In the alloy according to the invention, the non-noble Ca 2 Mg 6 Zn 3 phase precipitates, so that a galvanic corrosion mechanism is significantly reduced. The result is improved corrosion resistance.

Das Legierungselement Silizium ist in Magnesium lediglich in sehr geringem Maße bzw. in Spuren löslich und bildet die Phase Mg2Si. Über 1,0 Gew.-% Si ist der Phasenanteil im Werkstoff der Legierung groß und verschlechtert dessen mechanischen Eigenschaften.The alloying element silicon is soluble in magnesium only to a very small extent or in traces and forms the phase Mg 2 Si. About 1.0 wt .-% Si, the phase content in the material of the alloy is large and deteriorates its mechanical properties.

Antimon ist im Wesentlichen im Zusammenhang mit Silizium zu sehen, weil Antimon eine Modifikation der Mg2Si-Phase erbringen kann, wobei eine erforderliche Sb-Konzentration im Legierungsmetall ca. die Hälfte jener des Si betragen sollte.Antimony is essentially related to silicon because antimony can provide a modification of the Mg 2 Si phase, with a required Sb concentration in the alloying metal being about half that of Si.

Obwohl Magnesium-Basislegierungen, welche Aluminium bis 8 Gew.-% und darüber enthalten können, auch im Hinblick auf eine erhöhte Materialfestigkeit und Kriechbeständigkeit durchaus ein Anwendungspotential besitzen, stellt im erfindungsgemäßen Werkstoff Aluminium ein unerwünschtes Element dar. Durch Gehalte von größer 0,5 Gew.-% können spröde Korngrenzenphasen vom Typ Mg17Al12 entstehen, die in grober Ausbildung auch korrosionsfördernd wirken. Weiters bilden sich beim Fließpressen des Materials unter ca. 230 °C Risse, die zu einem brüchigen Pressling führen können, wobei dieser auch erhebliche Korngrößenunterschiede über den Querschnitt und die Längsrichtung aufweisen kann.Although magnesium-based alloys, which may contain up to 8 wt .-% aluminum and above, also have an application potential in terms of increased material strength and creep resistance, aluminum is an undesirable element in the material according to the invention. By contents of greater than 0.5 wt .-% can arise brittle grain boundary phases of the type Mg 17 Al 12 , which also act in a coarse formation of corrosion. Furthermore, during the extrusion of the material below about 230 ° C cracks, which can lead to a brittle compact, which may also have significant grain size differences over the cross section and the longitudinal direction.

Silber weist als Kornwachstum hemmendes Element in der erfindungsgemäßen Legierung ein hohes Potential in den Gehalten von mehr als 0,1, jedoch weniger als 2,0 Gew.-% auf. Ag befindet sich in diesen Konzentrationen im warmen Zustand des legierten Werkstoffes in Lösung, wobei, wie gefunden wurde, bei Gehalten von über 0,1 Gew.-% Ag eine Konzentrationserhöhung an den Korngrenzen gebildet wird, welche höchst wirkungsvoll einem Kornwachstum entgegensteht. Weiters kann durch Ag ein Aushärteeffekt des Werkstoffes über die Phase Mg4Ag erreicht werden. Höhere Ag-Gehalte als 2,0 Gew.-% haben insbesondere wirtschaftliche und korrosionschemische Nachteile.Silver has a high potential as a grain growth inhibiting element in the alloy according to the invention in the contents of more than 0.1, but less than 2.0 wt .-%. Ag is in these concentrations in the warm state of the alloyed material in solution, which was found at levels of about 0.1 wt .-% Ag, an increase in concentration at the grain boundaries is formed, which highly effectively precludes grain growth. Furthermore, a hardening effect of the material over the Mg 4 Ag phase can be achieved by Ag. Higher Ag contents as 2.0% by weight, in particular, have economic and corrosion-chemical disadvantages.

In den Ansprüchen 2 und 3 sind bevorzugte chemische Zusammensetzungen der erfindungsgemäßen Magnesium-Basislegierungen angegeben.In claims 2 and 3 preferred chemical compositions of the magnesium-based alloys according to the invention are given.

Von besonderer Bedeutung für eine homogen feinkörnige Gefügestruktur und eine hohe Verformbarkeit eines Gegenstandes aus der erfindungsgemäßen Legierung im Bereich der Raumtemperatur ist, wie gefunden wurde, die Summenkonzentration der Mikrolegierungselemente Mn, Ca und Si von größer als 0,1, jedoch kleiner als 0,65 Gew.-% im Magnesium-Basiswerkstoff.Of particular importance for a homogeneous fine-grained microstructure and a high deformability of an article of the alloy according to the invention in the range of room temperature, it was found, the sum concentration of the micro-alloying elements Mn, Ca and Si of greater than 0.1, but less than 0.65 Wt .-% in the magnesium base material.

Ein Halbzeug aus einer Magnesium-Basislegierung nach der Erfindung, welches mit einem Querschnitts-Flachenverhältnis von größer als 1:16, insbesondere von größer 1:20 von einem Gussbolzen zu einem Pressling bei einer Temperatur von ca. 380 °C verformt wurde, besitzt eine Korngröße des Gefüges von kleiner 10 µm und zwar mit weitgehender Isotropie bezogen auf den Querschnitt und in Längsrichtung. Erfindungsgemäße Presslinge können bei Temperaturen unter 200 °C, insbesondere bei Raumtemperatur, weiterverformt oder verpresst werden, wobei eine fehlerfreie Oberfläche bzw. Glanzoberfläche erreichbar ist.A semi-finished product of a magnesium-based alloy according to the invention, which has been deformed with a cross-sectional area ratio of greater than 1:16, in particular greater than 1:20 from a cast bolt to a compact at a temperature of about 380 ° C, has a Grain size of the structure of less than 10 microns and that with a high degree of isotropy based on the cross section and in the longitudinal direction. Inventive compacts can be further deformed or pressed at temperatures below 200 ° C, in particular at room temperature, with an error-free surface or gloss surface can be achieved.

Die Erfindung soll im Folgenden mit einigen Versuchsergebnissen untermauert werden.The invention will be substantiated below with some experimental results.

In Tab. 2 ist die chemische Zusammensetzung der untersuchten Werkstoffe angeführt.Tab. 2 gives the chemical composition of the investigated materials.

Die Figuren zeigen:

Fig. 1
Spannungs-Dehnungsverhalten von untersuchten Legierungen
Fig. 2
Versuchslegierung L1, Guss-Gefüge
Fig. 3x
Versuchslegierung L1, Guss-Gefüge
Fig. 3.1 Vergrößerungsmaßstab: 500 µm
Fig. 3.2 Vergrößerungsmaßstab: 200 µm
Fig. 3.3 Vergrößerungsmaßstab: 50 µm
Fig. 3.4 Vergrößerungsmaßstab: 20 µm
Fig.
4xVersuchslegierung L1, verformt
Fig. 4.1 Querschliff-Rand
Fig. 4.2 Querschliff-Mitte
Fig. 4.3 Längsschliff-Rand
Fig. 4.4 Längsschliff-Mitte
Fig. 5
Versuchsiegierung L2, Guss-Gefüge
Fig. 6x
Versuchslegierung L2, Guss-Gefüge
Fig. 6.1 Vergrößerungsmaßstab: 500 µm
Fig. 6.2 Vergrößerungsmaßstab: 200 µm
Fig. 6.3 Vergrößerungsmaßstab: 50 µm
Fig. 6.4 Vergrößerungsmaßstab: 20 µm
Fig. 7x
Versuchslegierung L2
Fig. 7.1 Querschliff-Rand
Fig. 7.2 Querschliff-Mitte
Fig. 7.3 Längsschliff-Rand
Fig. 7.4 Längsschliff-Mitte
Fig. 8
Vergleichslegierung AZ31, Gusszustand
Fig. 9
Vergleichslegierung ZK31, Gusszustand
The figures show:
Fig. 1
Stress-strain behavior of investigated alloys
Fig. 2
Trial alloy L1 , cast structure
Fig. 3x
Trial alloy L1 , cast structure
Fig. 3.1 Magnification scale: 500 μm
Fig. 3.2 Magnification scale: 200 μm
Fig. 3.3 Magnification scale: 50 μm
Fig. 3.4 Magnification scale: 20 μm
FIG.
4x trial alloy L1 , deformed
Fig. 4.1 Cross-section edge
Fig. 4.2 Cross section center
Fig. 4.3 Longitudinal edge
Fig. 4.4 Longitudinal center
Fig. 5
Experimental production L2 , cast structure
Fig. 6x
Trial alloy L2, cast structure
Fig. 6.1 Magnification scale: 500 μm
Fig. 6.2 Magnification scale: 200 μm
Fig. 6.3 Magnification scale: 50 μm
Fig. 6.4 Magnification scale: 20 μm
Fig. 7x
Trial alloy L2
Fig. 7.1 cross section edge
Fig. 7.2 Cross section center
Fig. 7.3 Longitudinal edge
Fig. 7.4 Longitudinal center
Fig. 8
Comparative Alloy AZ31, cast condition
Fig. 9
Comparative alloy ZK31, casting condition

Fig. 1 zeigt das Ergebnis der Dehnung in Abhängigkeit der Spannung im Zugversuch nach EN 10002-1:2001 von Magnesium-Basislegierungen. Fig. 1 shows the result of the elongation as a function of the tension in the tensile test according to EN 10002-1: 2001 of magnesium base alloys.

Es wird im Folgenden auf die in der Tab. 2 angegebenen Legierungsbezeichnungen und Legierungszusammensetzungen Bezug genommen.In the following, reference will be made to the alloy designations and alloy compositions given in Tab.

Die Probe mit einer Bezeichnung L1 aus einer erfindungsgemäßen Legierung mit einer Verformung mittels indirekten Pressverfahrens und mit einem Pressverhältnis von 1:25 erbrachte im Zugversuch (A50) bei Raumtemperatur eine Dehnung von über 25% bei einer maximalen Spannung von ca. 260 MPa.The sample labeled L1 of an alloy according to the invention with deformation by indirect pressing and with a compression ratio of 1:25 yielded an elongation of more than 25% at room temperature in the tensile test (A50) at a maximum stress of about 260 MPa.

An der Probe aus einer weiteren Versuchslegierung L2 nach der Erfindung wurde nach einer gleichen Pressverformung des Gussblockes bei 380 °C bei Raumtemperatur eine Dehngrenze von Rp0,2= 330 MPa des Werkstoffes ermittelt, wobei als Maß für die Duktilität ein Dehnwert von größer 15%, im gegebenen Fall von ca. 19%, vorlag.On the sample of a further trial alloy L2 according to the invention, a yield strength of Rp 0.2 = 330 MPa of the material was determined at 380 ° C. after room pressure at 380 ° C., whereby a strain value of greater than 15% was used as a measure of the ductility. , in the given case of about 19%, existed.

Die Vergleichslegierungen ZK31, AZ31 und ZM21 wiesen, wie aus Fig. 1 hervorgeht, durchwegs geringere Bruchdehnungswerte Ac als die erfindungsgemäßen Werkstoffe auf. Aus Fig. 2 ist das dendritische Gussgefüge der Legierung L1 ersichtlich. Eine mittlere Korngröße von 140 µm wurde bei im Wesentlichen homogener Struktur über den gesamten Querschnitt des Blockes ermittelt.The comparative alloys ZK31, AZ31 and ZM21 had, as shown Fig. 1 shows consistently lower elongation at break Ac than the materials of the invention. Out Fig. 2 the dendritic cast structure of the alloy L1 can be seen. An average particle size of 140 μm was determined with a substantially homogeneous structure over the entire cross section of the block.

In Fig. 3 ist das weitestgehend homogene Gefüge im Gusszustand des Blockes aus der Legierung L1 über den Querschnitt in mit verschiedenen Vergrößerungen bei einer Maßstabangabe 500 µm (Fig. 3.1), 200 µm (Fig. 3.2), 50 µm (Fig. 3.3) und 20 µm (Fig. 3.4) dargestellt und zeigt sphärische Körner mit einigen Korngrenzenphasen.In Fig. 3 is the largely homogeneous structure in the cast state of the block of the alloy L1 over the cross section in with different magnifications at a scale of 500 microns ( Fig. 3.1 ), 200 μm ( Fig. 3.2 ), 50 μm ( Fig. 3.3 ) and 20 μm ( Fig. 3.4 ) and shows spherical grains with some grain boundary phases.

Fig. 4 zeigt ein mit einem Pressverhältnis von 1:25 bei 380 °C verformtes Material der erfindungsgemäßen Legierung L1 in Längs- und Querrichtung vom Rand- und Mittelbereich der Probe. Fig. 4 shows a deformed with a press ratio of 1:25 at 380 ° C material of the alloy according to the invention L1 in the longitudinal and transverse direction of the edge and middle region of the sample.

Fig. 4 . 1 und Fig. 4 . 2 sind Querschliffbilder vom Rand und der Mitte des Stabes, wobei Fig. 4 . 3 und Fig. 4.4 die entsprechenden Längsschliffbilder darstellen. Es wurde eine mittlere Korngröße von 9 µm bis 6 µm gemessen. Fig. 4 , 1 and Fig. 4 , 2 are cross-section images of the edge and the center of the bar, where Fig. 4 , 3 and Fig. 4.4 represent the corresponding longitudinal grinding patterns. An average particle size of 9 μm to 6 μm was measured.

In Fig. 5 ist das globulitische Gussgefüge einer erfindungsgemäßen Legierung L2 dargestellt. Bei weitestgehend homogener Kornverteilung über den Gussblock betrug die mittlere Korngröße 40 µm.In Fig. 5 the globulitic cast structure of an alloy L2 according to the invention is shown. With a largely homogeneous particle size distribution over the cast block, the average particle size was 40 μm.

Fig. 6 zeigt das Gussgefüge von Fig. 5 (L2) in seiner hochfeinen Ausbildungsform mit Maßstabangaben von 500 µm (Fig. 6.1), 200 µm (Fig. 6.2), 50 µm (Fig. 6.3) und 20 µm (Fig. 6.4). Es sind geringe feine Ausscheidungsphasen an den Korngrenzen festzustellen. Fig. 6 shows the cast structure of Fig. 5 (L2) in its very fine form with scale values of 500 μm ( Fig. 6.1 ), 200 μm ( Fig. 6.2 ), 50 μm ( Fig. 6.3 ) and 20 μm ( Fig. 6.4 ). There are small fine precipitation phases at the grain boundaries.

In Fig. 7 ist das Gefüge eines Presslings aus einer Legierung L2 eines bei einer Temperatur von 380 °C mit einem Pressverhältnis von 1:25 verpressten Gussblockes in Querrichtung am Rand (Fig. 7.1) und im Zentrumsbereich (Fig. 7.2) sowie in Längsrichtung am Rand (Fig. 7.3) und im Mittelbereich des Stabes (Fig. 7.4) wiedergegeben. Die mittlere Korngröße betrug etwa 2 µm.In Fig. 7 is the structure of a compact of alloy L2 of a cast block pressed at a temperature of 380 ° C. with a press ratio of 1:25 in the transverse direction at the edge ( Fig. 7.1 ) and in the center area ( Fig. 7.2 ) and longitudinally at the edge ( Fig. 7.3 ) and in the middle region of the rod ( Fig. 7.4 ). The average grain size was about 2 microns.

Das Gussgefüge eines Blockes aus einer Vergleichslegierung AZ31 zeigt Fig. 8 . Ein Ausmessen der Mikrostruktur ergab eine Korngröße von 360 µm bei im Wesentlichen homogener Verteilung über den Querschnitt.The cast structure of a block of a comparative alloy AZ31 shows Fig. 8 , A measurement of the microstructure revealed a grain size of 360 μm with a substantially homogeneous distribution over the cross section.

Nach einem Strangpressen bei 380 °C war das Gefüge teilweise grob rekristallisiert und inhomogen, wodurch keine gesicherte Korngrößenbestimmung möglich war.After extruding at 380 ° C, the microstructure was partially coarsely recrystallized and inhomogeneous, whereby no secured grain size determination was possible.

Wie in Fig. 9 dargestellt, war das Gussgefüge (Kokillenguss) im Block der Vergleichslegierung ZK31 globulitisch und wies eine Korngröße von 80 µm mit guter Homogenität über den Querschnitt auf.As in Fig. 9 The cast structure (chill casting) in the block of the comparative alloy ZK31 was globulitic and had a particle size of 80 μm with good homogeneity over the cross section.

Nach einem Warmpressen des Gussbolzens war das Strangpressprofil teilweise inhomogen rekristallisiert. Eine Kristallgrößenbestimmung mit einer gewissen Aussagekraft war am Pressprofil nicht möglich. Tab. 1: Zusammensetzungen von Magnesiumlegierungen gemäß dem Stand der Technik (in Gew.-%) Legierungs-Bezeichnung Zn Mn Al Si Ca Zr Mg Z6 6,0 Rest ZM 21 2,0 1,0 Rest ZK 31 3,0 0,6 Rest AZ 91* 0,8 0,4 9,0 max. 0,5 Rest AM 60* 0,25 6,0 Rest AZ 31 1,0 bis 1,0 3,0 Rest * im Wesentlichen Gusslegierungen Tab. 2: Zusammensetzungen untersuchter Werkstoffe (in Gew.-%) Legierungs-Bezeichnung Zn Mn Al Si Ca Zr Ag Mg L 1 2,9 0,2 - 0,2 0,5 Rest L2 2,8 0,1 - 0,2 0,8 0,4 Rest ZM 21** 1,8 0,7 Rest ZK 31** 2,7 0,5 Rest AZ 31 1,0 0,3 3,0 Rest ** keine Normlegierungen After a hot pressing of the cast bolt, the extruded profile was partially inhomogeneously recrystallized. A crystal size determination with a certain significance was not possible at the press profile. <B><u> Tab. 1: </ u></b> Compositions of magnesium alloys according to the prior art (in% by weight) Alloy designation Zn Mn al Si Ca Zr mg Z6 6.0 rest ZM 21 2.0 1.0 rest CC 31 3.0 0.6 rest AZ 91 * 0.8 0.4 9.0 Max. 0.5 rest AM 60 * 0.25 6.0 rest AZ 31 1.0 to 1.0 3.0 rest * essentially cast alloys Alloy designation Zn Mn al Si Ca Zr Ag mg L 1 2.9 0.2 - 0.2 0.5 rest L2 2.8 0.1 - 0.2 0.8 0.4 rest ZM 21 ** 1.8 0.7 rest ZK 31 ** 2.7 0.5 rest AZ 31 1.0 0.3 3.0 rest ** no standard alloys

Claims (4)

  1. A fine-grain magnesium-based alloy consisting of, as a % by weight, zinc (Zn) more than 0.8, but less than 6.2 zirconium (Zr) traces, but less than 1.0 manganese (Mn) more than 0.04, but less than 0.6 calcium (Ca) more than 0.04, but less than 2.0 silicon (Si) traces, but less than 1.0 antimony (Sb) traces, but less than 0.5 silver (Ag) more than 0.1, but less than 2.0
    the remainder being magnesium and production-related impurities.
  2. The magnesium-based alloy as claimed in claim 1, in which the microalloying elements Mn, Ca and Si are present in a total concentration of greater than 0.1, but less than 0.65, preferably of greater than 0.15 but less than 0.5.
  3. The magnesium-based alloy as claimed in claim 1 or claim 2, in which the concentration of one or more alloying elements, as a % by weight, is Zn more than 1.0, preferably more than 1.5, but less than 5.9, preferably less than 4.0 Zr less than 0.8, preferably less than 0.6 Mn more than 0.06, preferably more than 0.09, but less than 0.4, preferably less than 0.2 Ca more than 0. 1, preferably more than 0.14 but less than 1.0, preferably less than 0.6 Si less than 0.5, preferably less than 0.2 Sb less than 0.25, preferably less than 0.1 Al less than 0.1, preferably less than 0.08 Ag more than 0.2, preferably more than 0.38 but less than 1.2, preferably less than 0.9
  4. A semi-finished product formed from a magnesium-based alloy with a chemical composition as claimed in one of claims 1 to 3, deformed with a press ratio of at least 1:20, which semi-finished product has a grain size of less than 10 µm and has extensive isotropy.
EP07718397.8A 2006-05-19 2007-04-19 Magnesium-based alloy Not-in-force EP2021521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200731889A SI2021521T1 (en) 2006-05-19 2007-04-19 Magnesium-based alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0086906A AT503854B1 (en) 2006-05-19 2006-05-19 MAGNESIUM-BASED ALLOY
PCT/AT2007/000181 WO2007134345A1 (en) 2006-05-19 2007-04-19 Magnesium-based alloy

Publications (2)

Publication Number Publication Date
EP2021521A1 EP2021521A1 (en) 2009-02-11
EP2021521B1 true EP2021521B1 (en) 2016-11-16

Family

ID=38180383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07718397.8A Not-in-force EP2021521B1 (en) 2006-05-19 2007-04-19 Magnesium-based alloy

Country Status (6)

Country Link
US (1) US20090291015A1 (en)
EP (1) EP2021521B1 (en)
AT (1) AT503854B1 (en)
ES (1) ES2615127T3 (en)
SI (1) SI2021521T1 (en)
WO (1) WO2007134345A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120315B (en) * 2014-03-03 2016-05-25 北京鼎盛泰来科贸有限公司 For magnesium alloy, the Manufacturing approach and use of Food Contact processing
EP3470001B1 (en) * 2017-10-10 2021-04-21 AIT Austrian Institute of Technology GmbH Implant for tension-resistant connection of at least two parts of a broken tubular bone
JP7076731B2 (en) * 2018-02-21 2022-05-30 国立研究開発法人物質・材料研究機構 Magnesium alloy and manufacturing method of magnesium alloy
CN114752832B (en) * 2022-05-17 2023-03-03 郑州轻研合金科技有限公司 High-strength low-notch sensitivity magnesium-lithium alloy and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB464030A (en) * 1935-10-07 1937-04-07 John Leslie Haughton Improvements in magnesium alloys
GB544352A (en) * 1940-10-04 1942-04-09 Dow Chemical Co Improved magnesium base alloys
GB1525759A (en) * 1975-12-22 1978-09-20 Magnesium Elektron Ltd Magnesium alloys
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
CA1273825A (en) * 1985-03-29 1990-09-11 Jonathan H. Harris Amorphous metal alloy compositions for reversible hydrogen storage
FR2642439B2 (en) * 1988-02-26 1993-04-16 Pechiney Electrometallurgie
JP4082217B2 (en) * 2001-04-09 2008-04-30 住友電気工業株式会社 Magnesium alloy material and method for producing the same
KR100435325B1 (en) * 2001-12-27 2004-06-10 현대자동차주식회사 High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method
KR100452452B1 (en) * 2002-06-18 2004-10-12 현대자동차주식회사 High strength magnesium alloy improved corrosion resistance and method for manufacturing the same
JP2004263280A (en) * 2003-03-04 2004-09-24 Toyota Central Res & Dev Lab Inc Corrosionproof magnesium alloy member, corrosionproofing treatment method for magnesium alloy member, and corrosionproofing method for magnesium alloy member
CN100338250C (en) * 2004-05-19 2007-09-19 中国科学院金属研究所 High strength and high toughness cast magnesium alloy and preparing process thereof
JP4697657B2 (en) * 2005-03-22 2011-06-08 住友電気工業株式会社 Manufacturing method of magnesium long material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2007134345A1 (en) 2007-11-29
AT503854A4 (en) 2008-01-15
SI2021521T1 (en) 2017-04-26
EP2021521A1 (en) 2009-02-11
AT503854B1 (en) 2008-01-15
US20090291015A1 (en) 2009-11-26
ES2615127T3 (en) 2017-06-05

Similar Documents

Publication Publication Date Title
EP1840235B1 (en) Magnesium alloy and corresponding production method
DE112010002575B4 (en) Recycled magnesium alloy, process for improving the corrosion resistance of a recycled magnesium alloy and magnesium alloy
DE102009012073B4 (en) Use of an aluminum casting alloy
AT500508B1 (en) HIGH-STRENGTH ABRASIVELY SINTERED ALUMINUM ALLOYING AND PRODUCTION METHOD THEREFOR
DE19937184B4 (en) Magnesium alloy for high temperature applications
DE69703441T2 (en) Heavy plate or extruded part made of aluminum-magnesium alloy
DE112015000499B4 (en) Method for producing a plastically deformed aluminum alloy product
DE69508319T2 (en) High-strength and highly ductile aluminum alloy and process for its production
EP1819838B1 (en) Titanium aluminide based alloy
EP2735621A1 (en) Aluminium die casting alloy
DE3541781A1 (en) HEAT-RESISTANT, HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR PRODUCING A COMPONENT MADE FROM THIS ALLOY
DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
EP2840156B1 (en) Magnesium alloy and method for producing same
DE3407307A1 (en) USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
EP2984196B1 (en) Aluminum-free magnesium alloy and use thereof
EP2021521B1 (en) Magnesium-based alloy
EP1458898B1 (en) Method of fabrication of an aluminium alloy article by hot- and cold-forming
DE3486352T2 (en) Aluminum-lithium alloy.
DE69402406T2 (en) Heat-resistant magnesium alloy
EP2088216B1 (en) Aluminium alloy
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
EP2157201A1 (en) Mg-BASED ALLOY
EP3670689A1 (en) Heat-resistant aluminium alloy
AT507490B1 (en) ALUMINUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEMELMOSER, FRANZ

Inventor name: KILIAN, HELMUT

Inventor name: KUEHLEIN, MARIA

Inventor name: KETTNER, MICHAEL

Inventor name: LOEFFLER, JOERG, F.

Inventor name: UGGOWITZER, PETER, J.

17Q First examination report despatched

Effective date: 20100201

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160816

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LKR LEICHTMETALLKOMPETENZZENTRUM RANSHOFEN GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 846015

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015261

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INDUSTRIAL PROPERTY SERVICES GMBH, CH

Ref country code: CH

Ref legal event code: NV

Representative=s name: INDUSTRIAL PROPERTY SEVICES GMBH, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2615127

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170419

Year of fee payment: 11

Ref country code: DE

Payment date: 20170419

Year of fee payment: 11

Ref country code: FR

Payment date: 20170419

Year of fee payment: 11

Ref country code: CH

Payment date: 20170419

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015261

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170331

Year of fee payment: 11

Ref country code: SI

Payment date: 20170330

Year of fee payment: 11

Ref country code: IT

Payment date: 20170424

Year of fee payment: 11

Ref country code: ES

Payment date: 20170510

Year of fee payment: 11

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170817

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015261

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 846015

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20181204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180420

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070419

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161116

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316