EP2021521B1 - Magnesium-based alloy - Google Patents
Magnesium-based alloy Download PDFInfo
- Publication number
- EP2021521B1 EP2021521B1 EP07718397.8A EP07718397A EP2021521B1 EP 2021521 B1 EP2021521 B1 EP 2021521B1 EP 07718397 A EP07718397 A EP 07718397A EP 2021521 B1 EP2021521 B1 EP 2021521B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- less
- magnesium
- alloy
- based alloy
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Definitions
- the invention relates to a magnesium-based alloy and a semifinished product produced therefrom.
- the invention relates to a magnesium-based alloy with uniformly small grain size and high in particular Kaltumformflower the material.
- Magnesium is an alkaline earth metal, crystallized in the hexagonal closest packing of the atoms, has a density of 1.7 kg / dm 3 , a modulus of elasticity of 44 kN / mm 2 and a tensile strength of 150 to 200 N / mm 2 .
- a hexagonal close-packed lattice has only a limited set of slip planes, so magnesium can only be deformed to a small extent at room temperature.
- Alkaline earth metals are generally very reactive. Magnesium is coated in air or water with a thin, adherent, oxide / hydroxide topcoat and is at least partially resistant to especially water. However, despite the protective surface layer, the high reactivity of magnesium may cause corrosion.
- magnesium may be predominantly alloyed with the elements aluminum (Al), zinc (Zn), manganese (Mn), these alloys generally being multiphase in the form of mixed crystals and intermetallic phases at room temperature available.
- known magnesium alloys have the disadvantages of an inhomogeneous structural adjustment in the bolt during extrusion at elevated temperature and a limited ductility of the material at room temperature.
- magnesium-based wrought alloys One of the major advantages of magnesium is the low density of the metal, so that experts have long been confronted with the desire for magnesium-based wrought alloys.
- KR20030055753 discloses a magnesium base alloy containing in% by weight: 3-10% Zn, 0.5-4.0% Ag, 0.1-4.0% Si, 0.1-2.0% Ca, magnesium and manufacturing-related impurities as the remainder.
- the invention is now the goal of creating a magnesium-based alloy, which provides a fine-grain billet in a hot pressing an optionally conditioned continuous casting bolt, the material of which is highly deformable at elevated temperature and at room temperature. It is a further object of the invention to improve or to influence the corrosion resistance of the material.
- This goal is for a magnesium-based alloy consisting of wt.% Zinc (Zn) more than 0.8, but less than 6.2 Zircon (Zr) Traces, but less than 1.0 Manganese (Mn) more than 0.04, however, less than 0.6 Calcium (Ca) more than 0.04, but less than 2.0 Silicon (Si) Traces, but less than 1.0 Antimony (Sb) Traces, but less than 0.5 Aluminum (AI) Traces, but less than 0.5 Silver (Ag) more than 0.1, but less than 2.0 Magnesium and manufacturing impurities are reached as the remainder.
- the advantages achieved with the magnesium base alloy according to the invention lie essentially in a strictly balanced element concentration and a microalloying technology in which the interaction of all alloying elements and the reaction kinetics and grain growth criteria are taken into account, the advantages being in particular a homogeneous fine grain structure of the material, high cold workability and an improvement in the corrosion resistance thereof.
- Zirconium is fine-grained by precipitations from the melt and enrichment at the crystallization front. Contents of more than 1.0 wt% Zr coarsen the precipitates in for the crack initiation of the material under adverse conditions.
- Manganese at levels greater than 0.04 but less than 0.6 weight percent has a multiple effect in the alloy.
- Mn binds in the melt Fe, which compound precipitates
- Mn forms with zirconium even at a higher temperature in the melt phases, which can have a fine grain.
- Grain-boundary stabilizing precipitates in conventional magnesium alloys are generally more noble than the magnesium matrix, so that the corrosion resistance is impaired by galvanic effects.
- the non-noble Ca 2 Mg 6 Zn 3 phase precipitates, so that a galvanic corrosion mechanism is significantly reduced. The result is improved corrosion resistance.
- the alloying element silicon is soluble in magnesium only to a very small extent or in traces and forms the phase Mg 2 Si. About 1.0 wt .-% Si, the phase content in the material of the alloy is large and deteriorates its mechanical properties.
- Antimony is essentially related to silicon because antimony can provide a modification of the Mg 2 Si phase, with a required Sb concentration in the alloying metal being about half that of Si.
- magnesium-based alloys which may contain up to 8 wt .-% aluminum and above, also have an application potential in terms of increased material strength and creep resistance
- aluminum is an undesirable element in the material according to the invention.
- contents of greater than 0.5 wt .-% can arise brittle grain boundary phases of the type Mg 17 Al 12 , which also act in a coarse formation of corrosion.
- brittle grain boundary phases of the type Mg 17 Al 12 , which also act in a coarse formation of corrosion.
- brittle compact which may also have significant grain size differences over the cross section and the longitudinal direction.
- Silver has a high potential as a grain growth inhibiting element in the alloy according to the invention in the contents of more than 0.1, but less than 2.0 wt .-%. Ag is in these concentrations in the warm state of the alloyed material in solution, which was found at levels of about 0.1 wt .-% Ag, an increase in concentration at the grain boundaries is formed, which highly effectively precludes grain growth. Furthermore, a hardening effect of the material over the Mg 4 Ag phase can be achieved by Ag. Higher Ag contents as 2.0% by weight, in particular, have economic and corrosion-chemical disadvantages.
- the sum concentration of the micro-alloying elements Mn, Ca and Si of greater than 0.1, but less than 0.65 Wt .-% in the magnesium base material.
- a semi-finished product of a magnesium-based alloy according to the invention which has been deformed with a cross-sectional area ratio of greater than 1:16, in particular greater than 1:20 from a cast bolt to a compact at a temperature of about 380 ° C, has a Grain size of the structure of less than 10 microns and that with a high degree of isotropy based on the cross section and in the longitudinal direction.
- Inventive compacts can be further deformed or pressed at temperatures below 200 ° C, in particular at room temperature, with an error-free surface or gloss surface can be achieved.
- Tab. 2 gives the chemical composition of the investigated materials.
- Fig. 1 shows the result of the elongation as a function of the tension in the tensile test according to EN 10002-1: 2001 of magnesium base alloys.
- the comparative alloys ZK31, AZ31 and ZM21 had, as shown Fig. 1 shows consistently lower elongation at break Ac than the materials of the invention. Out Fig. 2 the dendritic cast structure of the alloy L1 can be seen. An average particle size of 140 ⁇ m was determined with a substantially homogeneous structure over the entire cross section of the block.
- Fig. 3 is the largely homogeneous structure in the cast state of the block of the alloy L1 over the cross section in with different magnifications at a scale of 500 microns ( Fig. 3.1 ), 200 ⁇ m ( Fig. 3.2 ), 50 ⁇ m ( Fig. 3.3 ) and 20 ⁇ m ( Fig. 3.4 ) and shows spherical grains with some grain boundary phases.
- Fig. 4 shows a deformed with a press ratio of 1:25 at 380 ° C material of the alloy according to the invention L1 in the longitudinal and transverse direction of the edge and middle region of the sample.
- Fig. 4 , 1 and Fig. 4 , 2 are cross-section images of the edge and the center of the bar, where Fig. 4 , 3 and Fig. 4.4 represent the corresponding longitudinal grinding patterns. An average particle size of 9 ⁇ m to 6 ⁇ m was measured.
- Fig. 5 the globulitic cast structure of an alloy L2 according to the invention is shown. With a largely homogeneous particle size distribution over the cast block, the average particle size was 40 ⁇ m.
- Fig. 6 shows the cast structure of Fig. 5 (L2) in its very fine form with scale values of 500 ⁇ m ( Fig. 6.1 ), 200 ⁇ m ( Fig. 6.2 ), 50 ⁇ m ( Fig. 6.3 ) and 20 ⁇ m ( Fig. 6.4 ). There are small fine precipitation phases at the grain boundaries.
- Fig. 7 is the structure of a compact of alloy L2 of a cast block pressed at a temperature of 380 ° C. with a press ratio of 1:25 in the transverse direction at the edge ( Fig. 7.1 ) and in the center area ( Fig. 7.2 ) and longitudinally at the edge ( Fig. 7.3 ) and in the middle region of the rod ( Fig. 7.4 ).
- the average grain size was about 2 microns.
- the cast structure of a block of a comparative alloy AZ31 shows Fig. 8 , A measurement of the microstructure revealed a grain size of 360 ⁇ m with a substantially homogeneous distribution over the cross section.
- the microstructure After extruding at 380 ° C, the microstructure was partially coarsely recrystallized and inhomogeneous, whereby no secured grain size determination was possible.
- the cast structure (chill casting) in the block of the comparative alloy ZK31 was globulitic and had a particle size of 80 ⁇ m with good homogeneity over the cross section.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Extrusion Of Metal (AREA)
- Continuous Casting (AREA)
Description
Die Erfindung betrifft eine Magnesium-Basislegierung und ein daraus hergestelltes Halbzeug.The invention relates to a magnesium-based alloy and a semifinished product produced therefrom.
In Präzisierung bezieht sich die Erfindung auf eine Magnesium-Basislegierung mit gleichmäßig geringer Korngröße und einem hohen insbesondere Kaltumformvermögen des Werkstoffes.In more detail, the invention relates to a magnesium-based alloy with uniformly small grain size and high in particular Kaltumformvermögen the material.
Magnesium ist ein Erdalkalimetall, kristallisiert in hexagonal dichtester Kugelpackung der Atome, hat eine Dichte von 1,7 kg/dm3, ein Elastizitätsmodul von 44 kN/mm2 und eine Zugfestigkeit von 150 bis 200 N/mm2. Ein hexagonal dichtgepacktes Gitter besitzt lediglich eine beschränkte Schar von Gleitebenen, sodass Magnesium nur in geringem Ausmaß bei Raumtemperatur umformbar ist.Magnesium is an alkaline earth metal, crystallized in the hexagonal closest packing of the atoms, has a density of 1.7 kg / dm 3 , a modulus of elasticity of 44 kN / mm 2 and a tensile strength of 150 to 200 N / mm 2 . A hexagonal close-packed lattice has only a limited set of slip planes, so magnesium can only be deformed to a small extent at room temperature.
Erdalkalimetalle sind im Allgemeinen sehr reaktionsfreudig. Magnesium wird in Luft oder Wasser mit einer dünnen, festhaftenden, oxidischen/hydroxidischen Deckschicht überzogen und ist gegenüber insbesondere Wasser zumindest teilweise beständig. Allerdings bewirkt die hohe Reaktivität von Magnesium trotz schützender Oberflächenschicht gegebenenfalls Korrosion.Alkaline earth metals are generally very reactive. Magnesium is coated in air or water with a thin, adherent, oxide / hydroxide topcoat and is at least partially resistant to especially water. However, despite the protective surface layer, the high reactivity of magnesium may cause corrosion.
Zur Erhöhung der Festigkeit, Verminderung der Kerbempfindlichkeit und Verbesserung der Korrosionsbeständigkeit kann Magnesium vorwiegend mit den Elementen Aluminium (AI), Zink (Zn), Mangan (Mn) legiert sein, wobei diese Legierungen im Allgemeinen bei Raumtemperatur mehrphasig in Form von Mischkristallen und intermetallischen Phasen vorliegen.To increase strength, reduce notch sensitivity and improve corrosion resistance, magnesium may be predominantly alloyed with the elements aluminum (Al), zinc (Zn), manganese (Mn), these alloys generally being multiphase in the form of mixed crystals and intermetallic phases at room temperature available.
Durch ein Lösungsglühen mit nachfolgendem Abschrecken lassen sich die Zähigkeit bzw Duktilität und durch langsames Abkühlen oder Ausscheidungshärten die Festigkeit des aus diesen Legierungen bestehenden Werkstoffes beeinflussen.By solution heat treatment followed by quenching, the toughness or ductility and, by slow cooling or precipitation hardening, the strength of the material consisting of these alloys can be influenced.
Die wichtigsten, derzeit gebräuchlichen Magnesiumlegierungen weisen eine in Tab. 1 aufgelistete Bezeichnung und chemische Zusammensetzung auf.The most important currently used magnesium alloys have a name and chemical composition listed in Tab. 1.
Bekannte Magnesiumlegierungen haben jedoch die Nachteile einer inhomogenen Gefügeeinstellung im Bolzen beim Strangpressen bei erhöhter Temperatur sowie einer beschränkten Duktilität des Werkstoffes bei Raumtemperatur.However, known magnesium alloys have the disadvantages of an inhomogeneous structural adjustment in the bolt during extrusion at elevated temperature and a limited ductility of the material at room temperature.
Einen wesentlichen Vorteil von Magnesium stellt insbesondere die niedrige Dichte des Metalls dar, sodass seit langem die Fachwelt mit dem Wunsch nach Knetlegierungen auf Magnesiumbasis konfrontiert worden ist.One of the major advantages of magnesium is the low density of the metal, so that experts have long been confronted with the desire for magnesium-based wrought alloys.
Aus einer Veröffentlichung "
Mit der gleichen Zielsetzung einer Festigungssteigerung und Verbesserung der Kriechbeständigkeit erfolgte gemäß dem Dokument "
Um hochfeste und verformte Magnesium-Basislegierungen zu schaffen, wurde, wie im Dokument "
Die Erfindung setzt sich nun zum Ziel eine Magnesium-Basislegierung zu schaffen, welche bei einem Warmpressen eines gegebenenfalls konditionierten Stranggussbolzens einen Feinkorn-Pressbolzen erbringt, wobei der Werkstoff desselben bei erhöhter Temperatur und bei Raumtemperatur hoch umformbar ist. Weiters ist es Ziel der Erfindung, die Korrosionsbeständigkeit des Werkstoffes zu verbessern oder zu beeinflussen.The invention is now the goal of creating a magnesium-based alloy, which provides a fine-grain billet in a hot pressing an optionally conditioned continuous casting bolt, the material of which is highly deformable at elevated temperature and at room temperature. It is a further object of the invention to improve or to influence the corrosion resistance of the material.
Dieses Ziel wird bei einer Magnesium-Basislegierung bestehend aus Gew.%
Die mit der erfindungsgemäß zusammengesetzten Magnesium-Basislegierung erreichten Vorteile liegen im Wesentlichen in einer streng ausgewogenen Elementkonzentration und einer Mikrolegierungstechnologie, in welcher die Wechselwirkung aller Legierungselemente und die Reaktionskinetik sowie die Kornwachstumskriterien berücksichtigt sind, wobei die Vorteile insbesondere eine homogene Feinkornstruktur des Werkstoffes, eine hohe Kaltumformbarkeit und eine Verbesserung des Korrosionswiderstandes desselben darstellen.The advantages achieved with the magnesium base alloy according to the invention lie essentially in a strictly balanced element concentration and a microalloying technology in which the interaction of all alloying elements and the reaction kinetics and grain growth criteria are taken into account, the advantages being in particular a homogeneous fine grain structure of the material, high cold workability and an improvement in the corrosion resistance thereof.
Zink in Gehalten von mehr als 0,8 bis weniger als 6,2 Gew.-% in der Legierung beeinflusst das Erstarrungsintervall maßgebend und verhindert eine Bildung von sehr groben Stängelkristallen bei der Erstarrung. Geringere Konzentrationen als 0,8 Gew.-% Zn führen zu einer überproportional abnehmenden Wirkung, hingegen ergeben Gehalte von mehr als 6,2 Gew.-% eine nachteilig wirkende eutektische Erstarrung der Schmelze.Zinc at levels greater than 0.8 to less than 6.2 weight percent in the alloy significantly affects the solidification interval and prevents formation of very coarse columnar crystals upon solidification. Lower concentrations than 0.8% by weight of Zn lead to a disproportionately decreasing effect, whereas contents of more than 6.2% by weight result in a disadvantageously acting eutectic solidification of the melt.
Zirkon wirkt durch Ausscheidungen aus der Schmelze und bei Anreicherung an der Kristallisationsfront kornfeinend. Gehalte von über 1,0 Gew.-% Zr vergröbern die Ausscheidungen in für die Rissinitiation des Werkstoffes bei Belastungen nachteiliger Weise.Zirconium is fine-grained by precipitations from the melt and enrichment at the crystallization front. Contents of more than 1.0 wt% Zr coarsen the precipitates in for the crack initiation of the material under adverse conditions.
Mangan in Gehalten von mehr als 0,04, jedoch weniger als 0,6 Gew.-% hat in der Legierung eine mehrfache Wirkung. Zum einen bindet Mn in der Schmelze Fe ab, welche Verbindung ausfällt, zum anderen bildet Mn mit Zirkon schon bei höherer Temperatur in der Schmelze Phasen, die kornfeinend wirken können.Manganese at levels greater than 0.04 but less than 0.6 weight percent has a multiple effect in the alloy. On the one hand, Mn binds in the melt Fe, which compound precipitates, on the other hand Mn forms with zirconium even at a higher temperature in the melt phases, which can have a fine grain.
Calcium mit Gehalten von mehr als 0,04, jedoch weniger als 2,0 Gew.-% im Metall erbringt eine Phasenbildung in der festen Legierung, welche Phasen als Korngrenzenstabilisator ein Kristallwachstum wirkungsvoll behindern. Diese Ca2M96Zn3-Phase, die Zn in den oben erwähnten Gehalten in der Legierung voraussetzt, entsteht im Bereich von 0,1 bis 1 Vol.-% besonders fein sowie homogen im Werkstoff verteilt, wodurch eine hervorragende Feinkornstruktur im Material erhalten bleibt.Calcium at levels greater than 0.04 but less than 2.0 weight percent in the metal provides phase formation in the solid alloy, which phases as a grain boundary stabilizer effectively hinder crystal growth. This Ca 2 M 96 Zn 3 phase, The Zn in the above-mentioned levels in the alloy, is produced in the range of 0.1 to 1 vol .-% particularly fine and homogeneously distributed in the material, whereby an excellent fine grain structure is retained in the material.
Korngrenzen-stabilisierende Ausscheidungen sind in konventionellen Magnesiumlegierungen in der Regel elektrochemisch edler als die Magnesiummatrix, sodass die Korrosionsbeständigkeit durch galvanische Effekte beeinträchtig wird. In der erfindungsgemäßen Legierung scheidet sich die unedle Ca2Mg6Zn3- Phase aus, sodass ein galvanischer Korrosionsmechanismus signifikant reduziert wird. Die Folge ist eine verbesserte Korrosionsbeständigkeit.Grain-boundary stabilizing precipitates in conventional magnesium alloys are generally more noble than the magnesium matrix, so that the corrosion resistance is impaired by galvanic effects. In the alloy according to the invention, the non-noble Ca 2 Mg 6 Zn 3 phase precipitates, so that a galvanic corrosion mechanism is significantly reduced. The result is improved corrosion resistance.
Das Legierungselement Silizium ist in Magnesium lediglich in sehr geringem Maße bzw. in Spuren löslich und bildet die Phase Mg2Si. Über 1,0 Gew.-% Si ist der Phasenanteil im Werkstoff der Legierung groß und verschlechtert dessen mechanischen Eigenschaften.The alloying element silicon is soluble in magnesium only to a very small extent or in traces and forms the phase Mg 2 Si. About 1.0 wt .-% Si, the phase content in the material of the alloy is large and deteriorates its mechanical properties.
Antimon ist im Wesentlichen im Zusammenhang mit Silizium zu sehen, weil Antimon eine Modifikation der Mg2Si-Phase erbringen kann, wobei eine erforderliche Sb-Konzentration im Legierungsmetall ca. die Hälfte jener des Si betragen sollte.Antimony is essentially related to silicon because antimony can provide a modification of the Mg 2 Si phase, with a required Sb concentration in the alloying metal being about half that of Si.
Obwohl Magnesium-Basislegierungen, welche Aluminium bis 8 Gew.-% und darüber enthalten können, auch im Hinblick auf eine erhöhte Materialfestigkeit und Kriechbeständigkeit durchaus ein Anwendungspotential besitzen, stellt im erfindungsgemäßen Werkstoff Aluminium ein unerwünschtes Element dar. Durch Gehalte von größer 0,5 Gew.-% können spröde Korngrenzenphasen vom Typ Mg17Al12 entstehen, die in grober Ausbildung auch korrosionsfördernd wirken. Weiters bilden sich beim Fließpressen des Materials unter ca. 230 °C Risse, die zu einem brüchigen Pressling führen können, wobei dieser auch erhebliche Korngrößenunterschiede über den Querschnitt und die Längsrichtung aufweisen kann.Although magnesium-based alloys, which may contain up to 8 wt .-% aluminum and above, also have an application potential in terms of increased material strength and creep resistance, aluminum is an undesirable element in the material according to the invention. By contents of greater than 0.5 wt .-% can arise brittle grain boundary phases of the type Mg 17 Al 12 , which also act in a coarse formation of corrosion. Furthermore, during the extrusion of the material below about 230 ° C cracks, which can lead to a brittle compact, which may also have significant grain size differences over the cross section and the longitudinal direction.
Silber weist als Kornwachstum hemmendes Element in der erfindungsgemäßen Legierung ein hohes Potential in den Gehalten von mehr als 0,1, jedoch weniger als 2,0 Gew.-% auf. Ag befindet sich in diesen Konzentrationen im warmen Zustand des legierten Werkstoffes in Lösung, wobei, wie gefunden wurde, bei Gehalten von über 0,1 Gew.-% Ag eine Konzentrationserhöhung an den Korngrenzen gebildet wird, welche höchst wirkungsvoll einem Kornwachstum entgegensteht. Weiters kann durch Ag ein Aushärteeffekt des Werkstoffes über die Phase Mg4Ag erreicht werden. Höhere Ag-Gehalte als 2,0 Gew.-% haben insbesondere wirtschaftliche und korrosionschemische Nachteile.Silver has a high potential as a grain growth inhibiting element in the alloy according to the invention in the contents of more than 0.1, but less than 2.0 wt .-%. Ag is in these concentrations in the warm state of the alloyed material in solution, which was found at levels of about 0.1 wt .-% Ag, an increase in concentration at the grain boundaries is formed, which highly effectively precludes grain growth. Furthermore, a hardening effect of the material over the Mg 4 Ag phase can be achieved by Ag. Higher Ag contents as 2.0% by weight, in particular, have economic and corrosion-chemical disadvantages.
In den Ansprüchen 2 und 3 sind bevorzugte chemische Zusammensetzungen der erfindungsgemäßen Magnesium-Basislegierungen angegeben.In claims 2 and 3 preferred chemical compositions of the magnesium-based alloys according to the invention are given.
Von besonderer Bedeutung für eine homogen feinkörnige Gefügestruktur und eine hohe Verformbarkeit eines Gegenstandes aus der erfindungsgemäßen Legierung im Bereich der Raumtemperatur ist, wie gefunden wurde, die Summenkonzentration der Mikrolegierungselemente Mn, Ca und Si von größer als 0,1, jedoch kleiner als 0,65 Gew.-% im Magnesium-Basiswerkstoff.Of particular importance for a homogeneous fine-grained microstructure and a high deformability of an article of the alloy according to the invention in the range of room temperature, it was found, the sum concentration of the micro-alloying elements Mn, Ca and Si of greater than 0.1, but less than 0.65 Wt .-% in the magnesium base material.
Ein Halbzeug aus einer Magnesium-Basislegierung nach der Erfindung, welches mit einem Querschnitts-Flachenverhältnis von größer als 1:16, insbesondere von größer 1:20 von einem Gussbolzen zu einem Pressling bei einer Temperatur von ca. 380 °C verformt wurde, besitzt eine Korngröße des Gefüges von kleiner 10 µm und zwar mit weitgehender Isotropie bezogen auf den Querschnitt und in Längsrichtung. Erfindungsgemäße Presslinge können bei Temperaturen unter 200 °C, insbesondere bei Raumtemperatur, weiterverformt oder verpresst werden, wobei eine fehlerfreie Oberfläche bzw. Glanzoberfläche erreichbar ist.A semi-finished product of a magnesium-based alloy according to the invention, which has been deformed with a cross-sectional area ratio of greater than 1:16, in particular greater than 1:20 from a cast bolt to a compact at a temperature of about 380 ° C, has a Grain size of the structure of less than 10 microns and that with a high degree of isotropy based on the cross section and in the longitudinal direction. Inventive compacts can be further deformed or pressed at temperatures below 200 ° C, in particular at room temperature, with an error-free surface or gloss surface can be achieved.
Die Erfindung soll im Folgenden mit einigen Versuchsergebnissen untermauert werden.The invention will be substantiated below with some experimental results.
In Tab. 2 ist die chemische Zusammensetzung der untersuchten Werkstoffe angeführt.Tab. 2 gives the chemical composition of the investigated materials.
Die Figuren zeigen:
- Fig. 1
- Spannungs-Dehnungsverhalten von untersuchten Legierungen
- Fig. 2
- Versuchslegierung L1, Guss-Gefüge
- Fig. 3x
- Versuchslegierung L1, Guss-Gefüge
Fig. 3.1 Vergrößerungsmaßstab: 500 µm
Fig. 3.2 Vergrößerungsmaßstab: 200 µm
Fig. 3.3 Vergrößerungsmaßstab: 50 µm
Fig. 3.4 Vergrößerungsmaßstab: 20 µm - Fig.
- 4xVersuchslegierung L1, verformt
Fig. 4.1 Querschliff-Rand
Fig. 4.2 Querschliff-Mitte
Fig. 4.3 Längsschliff-Rand
Fig. 4.4 Längsschliff-Mitte - Fig. 5
- Versuchsiegierung L2, Guss-Gefüge
- Fig. 6x
- Versuchslegierung L2, Guss-Gefüge
Fig. 6.1 Vergrößerungsmaßstab: 500 µm
Fig. 6.2 Vergrößerungsmaßstab: 200 µm
Fig. 6.3 Vergrößerungsmaßstab: 50 µm
Fig. 6.4 Vergrößerungsmaßstab: 20 µm - Fig. 7x
- Versuchslegierung L2
Fig. 7.1 Querschliff-Rand
Fig. 7.2 Querschliff-Mitte
Fig. 7.3 Längsschliff-Rand
Fig. 7.4 Längsschliff-Mitte - Fig. 8
- Vergleichslegierung AZ31, Gusszustand
- Fig. 9
- Vergleichslegierung ZK31, Gusszustand
- Fig. 1
- Stress-strain behavior of investigated alloys
- Fig. 2
- Trial alloy L1 , cast structure
- Fig. 3x
- Trial alloy L1 , cast structure
Fig. 3.1 Magnification scale: 500 μm
Fig. 3.2 Magnification scale: 200 μm
Fig. 3.3 Magnification scale: 50 μm
Fig. 3.4 Magnification scale: 20 μm - FIG.
- 4x trial alloy L1 , deformed
Fig. 4.1 Cross-section edge
Fig. 4.2 Cross section center
Fig. 4.3 Longitudinal edge
Fig. 4.4 Longitudinal center - Fig. 5
- Experimental production L2 , cast structure
- Fig. 6x
- Trial alloy L2, cast structure
Fig. 6.1 Magnification scale: 500 μm
Fig. 6.2 Magnification scale: 200 μm
Fig. 6.3 Magnification scale: 50 μm
Fig. 6.4 Magnification scale: 20 μm - Fig. 7x
- Trial alloy L2
Fig. 7.1 cross section edge
Fig. 7.2 Cross section center
Fig. 7.3 Longitudinal edge
Fig. 7.4 Longitudinal center - Fig. 8
- Comparative Alloy AZ31, cast condition
- Fig. 9
- Comparative alloy ZK31, casting condition
Es wird im Folgenden auf die in der Tab. 2 angegebenen Legierungsbezeichnungen und Legierungszusammensetzungen Bezug genommen.In the following, reference will be made to the alloy designations and alloy compositions given in Tab.
Die Probe mit einer Bezeichnung L1 aus einer erfindungsgemäßen Legierung mit einer Verformung mittels indirekten Pressverfahrens und mit einem Pressverhältnis von 1:25 erbrachte im Zugversuch (A50) bei Raumtemperatur eine Dehnung von über 25% bei einer maximalen Spannung von ca. 260 MPa.The sample labeled L1 of an alloy according to the invention with deformation by indirect pressing and with a compression ratio of 1:25 yielded an elongation of more than 25% at room temperature in the tensile test (A50) at a maximum stress of about 260 MPa.
An der Probe aus einer weiteren Versuchslegierung L2 nach der Erfindung wurde nach einer gleichen Pressverformung des Gussblockes bei 380 °C bei Raumtemperatur eine Dehngrenze von Rp0,2= 330 MPa des Werkstoffes ermittelt, wobei als Maß für die Duktilität ein Dehnwert von größer 15%, im gegebenen Fall von ca. 19%, vorlag.On the sample of a further trial alloy L2 according to the invention, a yield strength of Rp 0.2 = 330 MPa of the material was determined at 380 ° C. after room pressure at 380 ° C., whereby a strain value of greater than 15% was used as a measure of the ductility. , in the given case of about 19%, existed.
Die Vergleichslegierungen ZK31, AZ31 und ZM21 wiesen, wie aus
In
In
In
Das Gussgefüge eines Blockes aus einer Vergleichslegierung AZ31 zeigt
Nach einem Strangpressen bei 380 °C war das Gefüge teilweise grob rekristallisiert und inhomogen, wodurch keine gesicherte Korngrößenbestimmung möglich war.After extruding at 380 ° C, the microstructure was partially coarsely recrystallized and inhomogeneous, whereby no secured grain size determination was possible.
Wie in
Nach einem Warmpressen des Gussbolzens war das Strangpressprofil teilweise inhomogen rekristallisiert. Eine Kristallgrößenbestimmung mit einer gewissen Aussagekraft war am Pressprofil nicht möglich.
Claims (4)
- A fine-grain magnesium-based alloy consisting of, as a % by weight,
zinc (Zn) more than 0.8, but less than 6.2 zirconium (Zr) traces, but less than 1.0 manganese (Mn) more than 0.04, but less than 0.6 calcium (Ca) more than 0.04, but less than 2.0 silicon (Si) traces, but less than 1.0 antimony (Sb) traces, but less than 0.5 silver (Ag) more than 0.1, but less than 2.0 - The magnesium-based alloy as claimed in claim 1, in which the microalloying elements Mn, Ca and Si are present in a total concentration of greater than 0.1, but less than 0.65, preferably of greater than 0.15 but less than 0.5.
- The magnesium-based alloy as claimed in claim 1 or claim 2, in which the concentration of one or more alloying elements, as a % by weight, is
Zn more than 1.0, preferably more than 1.5, but less than 5.9, preferably less than 4.0 Zr less than 0.8, preferably less than 0.6 Mn more than 0.06, preferably more than 0.09, but less than 0.4, preferably less than 0.2 Ca more than 0. 1, preferably more than 0.14 but less than 1.0, preferably less than 0.6 Si less than 0.5, preferably less than 0.2 Sb less than 0.25, preferably less than 0.1 Al less than 0.1, preferably less than 0.08 Ag more than 0.2, preferably more than 0.38 but less than 1.2, preferably less than 0.9 - A semi-finished product formed from a magnesium-based alloy with a chemical composition as claimed in one of claims 1 to 3, deformed with a press ratio of at least 1:20, which semi-finished product has a grain size of less than 10 µm and has extensive isotropy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200731889A SI2021521T1 (en) | 2006-05-19 | 2007-04-19 | Magnesium-based alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0086906A AT503854B1 (en) | 2006-05-19 | 2006-05-19 | MAGNESIUM-BASED ALLOY |
PCT/AT2007/000181 WO2007134345A1 (en) | 2006-05-19 | 2007-04-19 | Magnesium-based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2021521A1 EP2021521A1 (en) | 2009-02-11 |
EP2021521B1 true EP2021521B1 (en) | 2016-11-16 |
Family
ID=38180383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07718397.8A Not-in-force EP2021521B1 (en) | 2006-05-19 | 2007-04-19 | Magnesium-based alloy |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090291015A1 (en) |
EP (1) | EP2021521B1 (en) |
AT (1) | AT503854B1 (en) |
ES (1) | ES2615127T3 (en) |
SI (1) | SI2021521T1 (en) |
WO (1) | WO2007134345A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120315B (en) * | 2014-03-03 | 2016-05-25 | 北京鼎盛泰来科贸有限公司 | For magnesium alloy, the Manufacturing approach and use of Food Contact processing |
EP3470001B1 (en) * | 2017-10-10 | 2021-04-21 | AIT Austrian Institute of Technology GmbH | Implant for tension-resistant connection of at least two parts of a broken tubular bone |
JP7076731B2 (en) * | 2018-02-21 | 2022-05-30 | 国立研究開発法人物質・材料研究機構 | Magnesium alloy and manufacturing method of magnesium alloy |
CN114752832B (en) * | 2022-05-17 | 2023-03-03 | 郑州轻研合金科技有限公司 | High-strength low-notch sensitivity magnesium-lithium alloy and preparation method and application thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB464030A (en) * | 1935-10-07 | 1937-04-07 | John Leslie Haughton | Improvements in magnesium alloys |
GB544352A (en) * | 1940-10-04 | 1942-04-09 | Dow Chemical Co | Improved magnesium base alloys |
GB1525759A (en) * | 1975-12-22 | 1978-09-20 | Magnesium Elektron Ltd | Magnesium alloys |
US4675157A (en) * | 1984-06-07 | 1987-06-23 | Allied Corporation | High strength rapidly solidified magnesium base metal alloys |
CA1273825A (en) * | 1985-03-29 | 1990-09-11 | Jonathan H. Harris | Amorphous metal alloy compositions for reversible hydrogen storage |
FR2642439B2 (en) * | 1988-02-26 | 1993-04-16 | Pechiney Electrometallurgie | |
JP4082217B2 (en) * | 2001-04-09 | 2008-04-30 | 住友電気工業株式会社 | Magnesium alloy material and method for producing the same |
KR100435325B1 (en) * | 2001-12-27 | 2004-06-10 | 현대자동차주식회사 | High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method |
KR100452452B1 (en) * | 2002-06-18 | 2004-10-12 | 현대자동차주식회사 | High strength magnesium alloy improved corrosion resistance and method for manufacturing the same |
JP2004263280A (en) * | 2003-03-04 | 2004-09-24 | Toyota Central Res & Dev Lab Inc | Corrosionproof magnesium alloy member, corrosionproofing treatment method for magnesium alloy member, and corrosionproofing method for magnesium alloy member |
CN100338250C (en) * | 2004-05-19 | 2007-09-19 | 中国科学院金属研究所 | High strength and high toughness cast magnesium alloy and preparing process thereof |
JP4697657B2 (en) * | 2005-03-22 | 2011-06-08 | 住友電気工業株式会社 | Manufacturing method of magnesium long material |
-
2006
- 2006-05-19 AT AT0086906A patent/AT503854B1/en not_active IP Right Cessation
-
2007
- 2007-04-19 EP EP07718397.8A patent/EP2021521B1/en not_active Not-in-force
- 2007-04-19 US US12/301,364 patent/US20090291015A1/en not_active Abandoned
- 2007-04-19 ES ES07718397.8T patent/ES2615127T3/en active Active
- 2007-04-19 WO PCT/AT2007/000181 patent/WO2007134345A1/en active Application Filing
- 2007-04-19 SI SI200731889A patent/SI2021521T1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2007134345A1 (en) | 2007-11-29 |
AT503854A4 (en) | 2008-01-15 |
SI2021521T1 (en) | 2017-04-26 |
EP2021521A1 (en) | 2009-02-11 |
AT503854B1 (en) | 2008-01-15 |
US20090291015A1 (en) | 2009-11-26 |
ES2615127T3 (en) | 2017-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1840235B1 (en) | Magnesium alloy and corresponding production method | |
DE112010002575B4 (en) | Recycled magnesium alloy, process for improving the corrosion resistance of a recycled magnesium alloy and magnesium alloy | |
DE102009012073B4 (en) | Use of an aluminum casting alloy | |
AT500508B1 (en) | HIGH-STRENGTH ABRASIVELY SINTERED ALUMINUM ALLOYING AND PRODUCTION METHOD THEREFOR | |
DE19937184B4 (en) | Magnesium alloy for high temperature applications | |
DE69703441T2 (en) | Heavy plate or extruded part made of aluminum-magnesium alloy | |
DE112015000499B4 (en) | Method for producing a plastically deformed aluminum alloy product | |
DE69508319T2 (en) | High-strength and highly ductile aluminum alloy and process for its production | |
EP1819838B1 (en) | Titanium aluminide based alloy | |
EP2735621A1 (en) | Aluminium die casting alloy | |
DE3541781A1 (en) | HEAT-RESISTANT, HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR PRODUCING A COMPONENT MADE FROM THIS ALLOY | |
DE102016219711B4 (en) | Aluminum alloy for die casting and process for its heat treatment | |
EP2840156B1 (en) | Magnesium alloy and method for producing same | |
DE3407307A1 (en) | USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS | |
EP1017867B1 (en) | Aluminium based alloy and method for subjecting it to heat treatment | |
EP2984196B1 (en) | Aluminum-free magnesium alloy and use thereof | |
EP2021521B1 (en) | Magnesium-based alloy | |
EP1458898B1 (en) | Method of fabrication of an aluminium alloy article by hot- and cold-forming | |
DE3486352T2 (en) | Aluminum-lithium alloy. | |
DE69402406T2 (en) | Heat-resistant magnesium alloy | |
EP2088216B1 (en) | Aluminium alloy | |
JP2663078B2 (en) | Aluminum alloy for T6 treatment with stable artificial aging | |
EP2157201A1 (en) | Mg-BASED ALLOY | |
EP3670689A1 (en) | Heat-resistant aluminium alloy | |
AT507490B1 (en) | ALUMINUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081023 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RIEMELMOSER, FRANZ Inventor name: KILIAN, HELMUT Inventor name: KUEHLEIN, MARIA Inventor name: KETTNER, MICHAEL Inventor name: LOEFFLER, JOERG, F. Inventor name: UGGOWITZER, PETER, J. |
|
17Q | First examination report despatched |
Effective date: 20100201 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160816 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LKR LEICHTMETALLKOMPETENZZENTRUM RANSHOFEN GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 846015 Country of ref document: AT Kind code of ref document: T Effective date: 20161215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007015261 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: INDUSTRIAL PROPERTY SERVICES GMBH, CH Ref country code: CH Ref legal event code: NV Representative=s name: INDUSTRIAL PROPERTY SEVICES GMBH, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170316 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2615127 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170419 Year of fee payment: 11 Ref country code: DE Payment date: 20170419 Year of fee payment: 11 Ref country code: FR Payment date: 20170419 Year of fee payment: 11 Ref country code: CH Payment date: 20170419 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007015261 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170331 Year of fee payment: 11 Ref country code: SI Payment date: 20170330 Year of fee payment: 11 Ref country code: IT Payment date: 20170424 Year of fee payment: 11 Ref country code: ES Payment date: 20170510 Year of fee payment: 11 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170817 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170419 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007015261 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 846015 Country of ref document: AT Kind code of ref document: T Effective date: 20180419 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180419 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20181204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180420 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070419 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161116 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170316 |