CN100338250C - High strength and high toughness cast magnesium alloy and preparing process thereof - Google Patents

High strength and high toughness cast magnesium alloy and preparing process thereof Download PDF

Info

Publication number
CN100338250C
CN100338250C CN 200410020567 CN200410020567A CN100338250C CN 100338250 C CN100338250 C CN 100338250C CN 200410020567 CN200410020567 CN 200410020567 CN 200410020567 A CN200410020567 A CN 200410020567A CN 100338250 C CN100338250 C CN 100338250C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
high
strength
process
toughness
preparing
Prior art date
Application number
CN 200410020567
Other languages
Chinese (zh)
Other versions
CN1699612A (en )
Inventor
马跃群
陈荣石
韩恩厚
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making alloys
    • C22C1/02Making alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Abstract

本发明涉及一种高强度高韧性铸造镁合金及其制备方法。 The present invention relates to a high-strength and high toughness magnesium alloy and a preparation method. 按重量百分比计,镁含量为平衡余量;铝含量为3~9%;锌含量为3.5~9%;锰含量为0.15~1.0%;锑含量为0~2%;稀土元素为0~2%。 Percentage by weight, balance amount of magnesium; aluminum content of 3% to 9%; zinc content of 3.5% to 9%; manganese content is 0.15% to 1.0%; the antimony content of 0 to 2%; rare earth element is 0 to 2 %. 先将各种配料、覆盖剂、模具预热,然后设定坩埚目标温度后开始加热,将预热好的纯镁配料放入坩埚内,在CO First a variety of ingredients, coating agent, a mold preheating, then setting the target temperature of the crucible after heating is started, the preheated ingredients into pure magnesium into a crucible in a CO

Description

一种高强度高韧性铸造镁合金的制备方法 A high strength and high toughness magnesium alloy casting method of preparing

技术领域 FIELD

本发明涉及铸造镁合金技术,具体地说是一种低成本、高强度高韧性铸造镁合金以及通过合金化和热处理,同时提高铸造镁合金强度和韧性的制备方法。 The present invention relates to a magnesium alloy casting technology, in particular to a low cost, high strength and high toughness magnesium alloy by alloying and heat treatment process for preparing magnesium alloy while increasing strength and toughness. 本发明不仅适用于金属型和砂型铸造,同样适用于压力铸造、挤压铸造等工艺。 The present invention is applicable not only to metal mold and sand casting, the same applies pressure casting, squeeze casting and other processes.

背景技术 Background technique

镁合金作为一种新型金属材料,以其密度小、比强度和比刚度高等优点,在航空航天、汽车、3C(计算机、通信、消费类电子)等领域获得了广泛应用。 As a new magnesium alloy metal material, its density, and specific strength, has been applied widely in the aerospace, automotive,. 3C (computer, communications, consumer electronics), and other fields than the stiffness advantages. 以汽车工业为例:一方面,汽车尾气排放量约占全球性大气污染的65%左右;另一方面,能源紧张、油价上涨等问题日益严重。 Automobile Industry: On the one hand, automobile exhaust emissions accounted for about 65% of global air pollution; on the other hand, energy shortages, rising oil prices and other problems have become increasingly serious. 汽车减重是解决这些问题的有效措施。 Car weight loss is an effective measure to solve these problems. 据计算,汽车自重每减轻10%,其燃油效率可提高5.5%左右。 It is calculated per vehicle weight to reduce 10% of its fuel efficiency can be increased by 5.5%. 再如,镁合金还以其良好的导电导热性及易于回收利用等优点,在3C类产品的壳体结构件等处,替代塑料,获得广泛使用。 Again, the magnesium alloy further its good electrical and thermal conductivity and easy to recycle, etc., in the housing structure member 3C products, etc., instead of plastic, widely used. 因此,镁合金也获得了“二十一世纪的绿色工程材料”的美誉。 Therefore, the magnesium alloy also gained the reputation of "green engineering material twenty-first century," the.

目前,商用镁合金大体上可以分为铸造镁合金和变形镁合金两大类,其消耗量的比例大约是35∶1,可见铸造镁合金的市场份额最大。 Currently, commercial magnesium alloys can be divided into cast magnesium alloys and wrought magnesium alloys into two categories, the proportion of its consumption is about 35:1, the largest market share seen casting magnesium alloy. 在铸造镁合金中,AZ91系列和AM60/50系列应用最广泛。 In the cast magnesium alloy, AZ91 series and AM60 / 50 series most widely used. 其中,AZ91系列强度虽高(典型压铸AZ91D的抗拉强度σb为230MPa,屈服强度σ0.2为160MPa),但是塑性较差(典型压铸AZ91D的延伸率δ5为3%);而AM60/50系列塑性虽好(典型压铸AM60/50的延伸率δ5为8~10%),但是强度偏弱(典型压铸AM60/50的抗拉强度σb为200~220MPa,屈服强度σ0.2为110~130MPa)。 Wherein, AZ91 series, although high strength (tensile strength σb typical casting AZ91D was 230MPa, yield strength σ0.2 to 160MPa), but poor ductility (elongation of typical casting AZ91D δ5 3%); and AM60 / 50 Series plastic is good (typical casting elongation AM60 / 50 δ5 of 8 to 10%), but weak intensity (typically die-cast tensile strength σb AM60 / 50 to 200 ~ 220MPa, yield strength σ0.2 of 110 ~ 130MPa) .

为了适应市场要求,进一步扩大铸造镁合金的应用范围,在低成本前提下,同时提高强度和韧性是关键所在。 In order to meet market requirements, to further expand the scope of application of magnesium alloy, under the premise of low cost, while improving the strength and toughness is the key. 尽管许多研究者基于AZ91系列和AM60/50系列进行了微合金化、晶粒细化等工作,但是其结果收效不大或者成本过高。 Although many researchers based on AZ91 series and AM60 / 50 series has been micro-alloying, grain refinement, etc., but the results are not very effective or cost prohibitive. 因此,开发一种低成本、高强高韧的铸造镁合金是目前亟待解决的问题。 Therefore, the development of a low-cost, high strength and toughness of cast magnesium alloy is a serious problem.

发明内容 SUMMARY

本发明的目的在于提供一种低成本、高强度高韧性铸造镁合金,并且通过合理选择合金化元素以及采用合适的热处理手段,得到了一种低成本、高强高韧的铸造镁合金制备方法。 Object of the present invention is to provide a low cost, high strength and high toughness magnesium alloy, and by properly selecting alloying elements and methods using suitable heat treatment, to obtain a low-cost, preparation of high strength and high toughness magnesium alloy casting method.

本发明的技术方案是:本发明通过在镁中加入高含量铝、高含量锌,构成了高铝高锌的新型镁合金体系;在高铝高锌镁合金基础上,通过加入锑、稀土等元素而产生的微合金化作用,达到了镁合金的增强增韧之目的。 Aspect of the present invention are: the present invention by the addition of high levels of aluminum in the magnesium, the zinc content is high, constitutes a new system of high aluminum magnesium alloy of high zinc; zinc based on a high magnesium alloy on the alumina, by the addition of antimony, rare earth micro-alloying elements produced, to achieve the purpose of enhancing toughness magnesium alloy. 该发明的具体组成如下:按重量百分比计,镁(Mg)含量为平衡余量;铝(Al)含量为3.5~9%;锌(Zn)含量为3~9%;锰(Mn)含量为0.15~1.0%;锑(Sb)含量为0~2%;稀土含量为0~2%;其它不可避免的微量杂质铁(Fe)≤0.005%、镍(Ni)≤0.002%、铜(Cu)≤0.015%。 Specific composition of the invention are as follows: percentage by weight, magnesium (Mg) balance amount; aluminum (Al) content of 3.5% to 9%; zinc (Zn) content is 3 to 9%; manganese (Mn) content 0.15 to 1.0%; antimony (Sb) content of 0 to 2%; rare earth content of 0 to 2%; other inevitable trace impurities of iron (Fe) ≤0.005%, of nickel (Ni) ≤0.002%, copper (Cu) ≤0.015%.

本发明的增强增韧机理如下:在高铝高锌镁合金中,除了存在少量的镁铝合金系中常见的β(Mg17Al12)增强相在之外,主要增强相已成为Mg32(AlZn)49相;另外,加入Sb元素后,根据X射线和EDAX电镜观察的结果,会产生新的颗粒增强相Mg3Sb2以及(Mg0.43Zn0.57)2MgSb2等。 Toughening mechanism of the present invention are as follows: zinc-magnesium alloy in high alumina, in addition to the presence of small amounts of magnesium alloy-based common β (Mg17Al12) beyond the reinforcement, the main reinforcing phase has become Mg32 (AlZn) 49 phase ; Further, the addition of Sb element, based on the results of X-ray and electron microscopy EDAX, generate new particles and reinforcing phase Mg3Sb2 (Mg0.43Zn0.57) 2MgSb2 like. 这些新的颗粒增强相不仅起到提高强度的作用,而且会在一定程度上细化高铝高锌合金中的连续脆性相,从而起到提高铸造性能和塑性的作用。 These new functions not only as the reinforcing phase particles increase the strength, but also high alumina refining continuous brittle phases in the zinc alloy to a certain extent, and thus play a role in improving the castability and ductility.

众所周知,镁合金中锌的加入可以提高熔体的流动性,有固溶强化的效果,可以提高强度;但若锌的加入量不合适,将会增大合金的热裂倾向性,恶化铸造成型性能(参见附图1)。 It is well known in the magnesium alloy of zinc added can improve the flowability of the melt, solid solution strengthening effect, can improve the strength; but if the added amount of zinc is not appropriate, will increase the tendency of hot cracking of the alloy, the deterioration of cast molding properties (see figure 1). 目前常见的铸造镁合金如AZ91、AM60、AM50等,综合性能不是很好,其中AZ91的锌含量为0.45-0.9%wt(重量百分比),其强度较高,但韧性较差,AM60和AM50的锌含量≤0.20%wt,其韧性较好,但强度较差。 Current common magnesium alloy such as AZ91, of AM60, AM50, etc., the overall performance is not very good, AZ91 wherein the zinc content is 0.45-0.9% wt (weight), high strength, but poor toughness, of AM60 and AM50 are zinc content ≤0.20% wt, preferably its toughness, but the strength is poor. 本发明根据镁-铝-锌三元相图,通过选择合适的铝、锌含量,从而保证了镁合金的铸造性能、较高的强度和韧性;在此基础上,通过加入锑(Sb)和稀土元素,并通过合适的热处理,使合金强度和韧性又有了较大提高。 According to the present invention, a magnesium - aluminum - zinc ternary phase diagram, by selecting a suitable aluminum, zinc content, thus ensuring castability, strength and high toughness magnesium alloy; On this basis, by the addition of antimony (Sb), and rare earth elements, and by suitable heat treatment, the alloy have greater strength and toughness increase.

本发明合金中铝也是主要强化元素,它通过固溶强化和与镁形成β(Mg17Al12)相以及与镁、锌元素生成Mg32(AlZn)49相的沉淀强化,提高了合金的室温强度。 Aluminum alloy is a major strengthening element of the present invention, and it is by solid solution strengthening with magnesium form β (Mg17Al12) and the phase with magnesium, zinc phase precipitate 49 generated Mg32 (AlZn) to strengthen and improve the room temperature strength of the alloy. 此外,铝的加入还可提高合金的铸造工艺性能。 Furthermore, the addition of aluminum may also improve casting properties of the alloy.

本发明合金中还可以含有0~2%wt的稀土元素钇、钕或富铈混合稀土等,稀土元素能改善合金铸造性能,减少晶界低熔点析出物,提高综合力学性能和良好的固溶强化效果,通过稀土元素对晶界的强化,及其和Zn、Al对合金力学性能的有益作用,以及各种元素的合理搭配,使合金的综合性能更好。 Yttrium alloys of the present invention may further contain 0 ~ 2% wt of neodymium or cerium-rich mixed rare earth, rare earth element alloy casting can improve performance and reduce grain boundary precipitates low melting point, to improve the mechanical properties and good solution strengthening effect, strengthen the rare earth elements by grain boundaries, and its Zn, Al beneficial effect on the mechanical properties of the alloy, as well as a reasonable mix of various elements, the better the overall performance of the alloy.

本发明合金中锰的作用是提高耐腐蚀性能,锰在合金熔炼过程中能与合金中的杂质元素铁形成化合物,沉淀到坩埚底部,去除杂质,消除铁对合金耐腐蚀性能的有害作用。 Manganese alloys of the present invention is to increase the corrosion resistance, manganese can be formed in the alloy during melting and impurity elements iron alloy compound, settle to the bottom of the crucible, to remove impurities, to eliminate deleterious effect of iron on the alloy corrosion resistance.

本发明高强度高韧性铸造镁合金的制备方法,具体步骤如下:1)先将纯镁、镁稀土中间合金、纯铝、铝锰中间合金、纯锌、锑粉各种配料在烘箱中预热至140~160℃,覆盖剂同时放入烘箱进行烘干;将模具在另外的箱式炉中预热至300~400℃;然后设定坩埚目标温度为710~730℃,开始加热;2)当坩埚升温至280~320℃时,通入CO2气体进行气体置换,然后在坩埚底部加入占配料总重量0.3~2%的覆盖剂,并将预热好的纯镁配料放入坩埚内;3)纯镁配料熔化并且等坩埚温度稳定在710~730℃后,加入占配料总重量0.3~2%的覆盖剂,然后依次加入纯铝、铝锰中间合金、镁稀土中间合金以及纯锌配料,最后加入用铝箔纸包好的锑粉配料;4)下面各工序均恒温在710~730℃下进行,配料加完后即可进行搅拌,搅拌均匀后静置4~6分钟,按体积百分比,在99~99.5%CO2+0.5~1%SF The present invention is high strength and high toughness magnesium alloy casting method of preparation, the specific steps are as follows: 1) First of pure magnesium, a magnesium alloy intermediate rare earths, aluminum, aluminum-manganese master alloy, pure zinc, antimony powder variety of ingredients in an oven preheated to 140 ~ 160 ℃, while covering agent into an oven for drying; mold preheated to 300 ~ 400 ℃ in a further box furnace; crucible and set a target temperature of 710 ~ 730 ℃, start heating; 2) when the crucible is heated to 280 ~ 320 ℃, CO2 gas into the gas substitution, and then added at the bottom of the crucible by weight of the total formulation 0.3 to 2% of coating agent, and pure magnesium preheated ingredients into a crucible; 3 after) pure magnesium ingredient melt and the like crucible temperature stabilized at 710 ~ 730 ℃, added accounted for 0.3 to 2% of the total weight of the formulation coating agent, followed by addition of pure aluminum, Al-Mn intermediate alloy, magnesium rare earth intermediate alloy and pure zinc ingredients, wrapped in aluminum foil is added last good antimony powder ingredients; 4 each) following processes are carried out at a temperature 710 ~ 730 ℃, ingredients can be added after the mixture was stirred and allowed to stand after mixing 4 to 6 minutes, by volume percent, in 99 ~ 99.5% CO2 + 0.5 ~ 1% SF 6混合气体保护下掏出表面浮渣;5)掏渣完毕后,停止加热,按体积百分比,在99~99.5%CO2+0.5~1%SF6混合气体保护下浇铸成型。 6 surface scum out under protective gas mixture; After completion 5) dig slag, heating was stopped, by volume percent, in 99 ~ 99.5% CO2 + at 0.5 ~ 1% SF6 mixed gas protection cast molding.

本发明的热处理方式可分为固溶(T4)、时效(T5)、“固溶+时效”(T6)三种,下面分别介绍:①、T4固溶处理最好在保护气氛(如氩气、六氟化硫等)中进行,其温度与铝、锌含量密切相关,具体温度可参考镁-铝-锌三元合金相图(附图1);另外实验表明,少量锰、锑的加入对固溶温度影响不大,可以根据铝、锌含量来确定;T4固溶时间可取为16~24小时,时间过短固溶效果不理想,时间过长会出现晶粒长大。 Heat treatment of the present invention can be classified into solution (T4), aging (T5), "solution + aging" (T6) three kinds, the following were introduced: ①, T4 solution heat treatment is preferably in a protective atmosphere (e.g., argon , sulfur hexafluoride, etc.) is carried out, which is closely related to the temperature of the aluminum, zinc content, with reference to a particular temperature can Mg - Al - Zn ternary phase diagram (Figure 1); Further experiments showed that a small amount of manganese, antimony was added little effect on the solution temperature, may be determined according to the aluminum, zinc content; T4 solution time is preferably 16 to 24 hours, the solution time is too short is not ideal, there will be too long grain growth. ②、T5时效处理,温度取为160~200℃,时间可取为8~24小时。 ②, T5 aging treatment, the temperature is taken as 160 ~ 200 ℃, the time is preferably 8 to 24 hours. ③、T6热处理可以理解为T4与T5方式的组合。 ③, T6 heat treatment may be understood as a combination of T4 and T5 embodiment.

由于热处理改变了颗粒增强相的分布方式和数量,因此显著影响了力学性能。 Since the heat treatment changed the distribution and quantity of the reinforcing phase particles, thus significantly affecting the mechanical properties. T4固溶处理的试样由于中间相基本溶入基体内而以固溶体的方式存在,故而会提高塑性,但是屈服强度会有所降低;T6处理的试样由于中间相又会在晶粒内部或沿晶界重新析出(但分布方式及数量显著不同于铸态试样),故而会在提高强度的同时,塑性有所下降。 Sample T4 solution heat treatment because the mesophase matrix and substantially dissolved in solid solution is present embodiment, and therefore will improve the ductility, but a slight reduction in the yield strength; T6 treatment samples due to the mesophase grains will internally or re-precipitated along the grain boundaries (but distributed manner and significantly different from the number of cast sample), and therefore will be at the same time improving the strength, ductility decrease.

本发明的研制过程虽然采用的是金属型铸造,但根据镁-铝-锌三元合金的压铸性能(参见附图2)可知,本发明的合金成分范围落在可铸造区域,因此同样适用于压力铸造、挤压铸造等工艺,而不会存在热裂和热脆倾向。 Preparation process of the present invention, although the use of a metal casting, but according magnesium - seen Zinc Alloy casting performance (see FIG. 2), the alloy component range of the present invention may fall within the casting region, the same applies to - aluminum pressure casting, squeeze casting and other processes, the thermal cracking and thermal embrittlement tendency not exist.

本发明具有如下优点:1.本发明制备的镁合金,兼具高强度高韧性的特性,特别适合于轻质、高强、高韧的用材需求,如汽车轮毂等;其抗拉强度σb达到260~280MPa,屈服强度σ0.2≥140MPa,延伸率δ5≥6%,冲击功αk≥14J,布氏硬度HB≥70。 The present invention has the following advantages: 1. Preparation of the magnesium alloy of the present invention, both high strength and toughness properties, especially suitable for lightweight, high strength, high toughness requirements of the timber, such as automotive wheels and the like; tensile strength σb 2.6 ~ 280MPa, yield strength σ0.2≥140MPa, elongation δ5≥6%, impact energy αk≥14J, Brinell hardness HB≥70.

2.本发明性价比高。 2. The present invention is a high cost. 本发明所用原材料易得,成本低。 The materials of the present invention is easily obtained with a low cost.

3.本发明冶炼工艺稳定。 3. The stable smelting process of the present invention. 本发明采用的合金化元素,不与铁质坩埚壁或者覆盖剂发生明显副反应,工艺稳定,易于组织生产。 The present invention uses alloying elements, does not occur with iron crucible wall coating agent or significant side reactions, the process is stable, easy production.

4.本发明适用工艺范围广。 4. The process of the present invention is applicable to a wide range. 本发明不仅适用于金属型和砂型铸造,同样适用于压力铸造、挤压铸造等工艺,不存在热裂和热脆倾向。 The present invention is applicable not only to metal mold and sand casting, the same applies pressure casting, squeeze casting and other processes, thermal and thermal embrittlement tendency does not exist.

附图说明 BRIEF DESCRIPTION

图1是Mg-Al-Zn三元合金的压力铸造性能示意图。 Figure 1 is a schematic view of a pressure performance Mg-Al-Zn ternary alloy casting.

图2是Mg-Al-Zn三元合金相图(固相表面)。 FIG 2 is a Mg-Al-Zn ternary alloy phase diagram (solid surface).

图3a~c是不同热处理方式对实施例1合金微观组织的影响,其中图3a为铸态(F)下的电镜照片;图3b为固溶(T4)下的电镜照片;图3c为固溶+时效(T6)下的电镜照片。 FIGS. 3a ~ c is the effect of different heat treatments of Example 1 Alloy Microstructure embodiment, wherein Figure 3a is an electron micrograph cast (F) under; FIG. 3b electron micrograph of a solid solution at (T4); FIG. 3c is a solution SEM photographs at + aging (T6).

图4是本发明所用的平板状拉伸试样示意图,其厚度δ=3mm。 FIG 4 is a flat plate used in the present invention, a schematic drawing specimen having a thickness δ = 3mm.

图5是图4中平板状拉伸试样尺寸图。 FIG 5 is a plate-shaped tensile specimen size 4 in FIG.

图6是实施例1合金和比较例合金AZ91、AM60在T6热处理态的力学性能对比情况。 FIG 6 is a comparative example alloys AZ91 alloy and embodiments, AM60 mechanical properties in comparison of T6 heat-treated form.

图7是实施例2合金和比较例合金AZ91、AM60在T6热处理态的力学性能对比情况。 Example 2 FIG. 7 is a comparative example alloys AZ91 alloy and embodiments, the mechanical properties of the T6 heat treated comparison of AM60.

图8是实施例3合金和比较例合金AZ91、AM60在T6热处理态的力学性能对比情况。 FIG 8 is an alloy of Example 3 and Comparative Example embodiments AZ91 alloy, T6 heat treated in the mechanical properties of the comparison of AM60.

具体实施方式 detailed description

下面结合实施例详述本发明:实施例1本实施例1合金(比较例1合金AZ91、比较例2合金AM60)基本操作步骤如下:I)、合金成分: The following Detailed Description in conjunction with embodiments of the present invention: Example 1 Example 1 of the present embodiment alloy (Comparative Example 1 Alloy AZ91, of AM60 alloy of Comparative Example 2) The basic steps are as follows: I), alloy composition:

II)、合金冶炼及铸造成型:实施例1的冶炼工作是在井式炉中进行,坩埚采用碳钢材质;合金的浇铸成型则在金属型中完成。 II), alloy smelting and casting molding: Example 1 metallurgical work is carried out in a shaft furnace, the crucible using carbon steel; alloy cast molding in the metal mold is completed. 详细工序如下:1)先将纯镁、纯铝、铝锰中间合金、纯锌、锑粉等各种配料在150℃烘箱中预热,RJ-2覆盖剂可同时放入烘箱进行烘干;将模具在另外的箱式炉中预热至350℃,然后设定坩埚目标温度为720℃,开始加热。 Step detail as follows: 1) First of pure magnesium, pure aluminum, Al-Mn master alloy, a pure zinc, antimony powder preheated in a variety of ingredients in an oven at 150 deg.] C, RJ-2 coating agent may be simultaneously placed in an oven for drying; the mold further preheated in a box furnace to 350 ℃, and set a target temperature of crucible 720 ℃, heating was started.

2)当坩埚升温至300℃时,通入(按体积百分比,99.5%CO2+0.5%SF6)混合气体进行气体置换,然后在坩埚底部加入覆盖剂(约占总配料0.5%质量比),并将预热好的纯镁配料放入坩埚内,继续加热。 2) When the crucible is heated to 300 ℃, into (percentage by volume, 99.5% CO2 + 0.5% SF6) gas mixture for gas replacement, and then at the bottom of the crucible was added covering agent (of the total formulation 0.5% by mass ratio), and the pure magnesium preheated ingredients into a crucible, heating was continued.

3)纯镁配料熔化后,再次加入覆盖剂(约占总配料0.5%质量比),然后依次加入纯铝、铝锰中间合金以及纯锌配料,最后用漏勺加入用铝箔纸包好的锑粉配料。 3) After the molten pure magnesium ingredient, again covering agent was added (0.5% of total formulation mass ratio), followed by addition of pure aluminum, aluminum-manganese alloy and pure zinc intermediate ingredients, finally wrapped in aluminum foil was added a colander good antimony powder ingredients.

4)(下面各工序均要求坩埚温度在720℃左右进行)配料加完后即可进行搅拌,搅拌均匀后静置5分钟,在(99.5%CO2+0.5%SF6)混合气体保护下掏出表面浮渣,混合气体加入量以保证合金表面不燃烧为尺度。 4) (in the following steps require a crucible temperature of about 720 ℃) ​​ingredients can be added after the mixture was stirred and allowed to stand after mixing for 5 minutes, pulled out at the surface (99.5% CO2 + 0.5% SF6) gas mixture protected scum, the amount of mixed gas added to ensure that the alloy does not burn the surface of the scale.

5)掏渣完毕后,停止加热,在模具内持续通入(99.5%CO2+0.5%SF6)混合气体,同时浇铸成型。 After completion 5) dig slag, heating was stopped, the mixed gas is continuously fed into the mold (99.5% CO2 + 0.5% SF6), while the cast molding.

比较例AZ91和AM60合金的冶炼及浇铸成型过程与实施例1合金基本是相同的,只是配料中没有锑粉,而且其它配料数量有所不同而已。 Smelting process and cast molding Comparative Examples AM60 and AZ91 alloy with the alloy in Example 1 is substantially the same as the embodiment except that no antimony powder ingredients, and other ingredients was different number.

III)、铸件的热处理:实施例1合金和比较例1合金、比较例2合金的热处理可分为固溶(T4)、时效(T5)、“固溶+时效”(T6)三种:①、参考镁-铝-锌三元合金相图(附图1)并最终由相关实验确定,实施例1合金的T4固溶处理的温度以380℃为宜,温度过低固溶效果不明显,温度过高会发生相变析出以至于合金成分发生变化;T4固溶时间可取为20小时,时间过短固溶效果不理想,时间过长会出现晶粒长大;T4处理的样品,取出后采用空冷至室温。 III), heat treatment of castings: Example 1 and Comparative Example 1 Alloy Alloy embodiment, heat treatment Comparative Example 2 can be divided into a solid solution alloy (T4), aging (T5), "solution + aging" (T6) three kinds: ① reference magnesium - aluminum - zinc ternary phase diagram (FIG. 1) and is ultimately determined by experiments, the solution treatment temperature T4 alloy of Example 1 at 380 deg.] C preferably, the solution temperature is too low no significant effect, after the sample T4 treatment, extraction; preferably T4 solution time was 20 hours, the solution time is too short is not ideal, there will be too long grain growth; excessively high temperature phase change alloy composition changes so that precipitation occurs by air cooling to room temperature.

比较例AZ91和AM60的T4处理温度均为410℃,时间为20小时,原因同上;T4处理的样品,取出后采用空冷至室温。 The treatment temperature T4 AM60 and AZ91 Comparative Examples are 410 deg.] C, the time was 20 hours, for the same reason; T4 treated samples, taken after air cooling to room temperature.

②、实施例1和比较例AZ91、AM60三种合金的T5时效处理均相同。 ②, Example 1 and Comparative Example AZ91 embodiment, T5 three alloys AM60 aging treatment are the same. 温度取为180℃,时间为20小时;T5处理的样品,取出后采用空冷至室温。 Temperatures were taken as 180 ℃, for 20 hours; T5 treated samples, taken after air cooling to room temperature.

③、实施例1和比较例AZ91、AM60三种合金的T6热处理均为T4与T5方式的组合。 ③, Example 1 and Comparative Example AZ91 embodiment, a combination of T4 and T5 T6 heat treatment AM60 embodiment are three alloys. 每种合金先按照各自的合适温度进行20小时的T4固溶处理,然后再进行20小时的T5时效处理。 T4 of each alloy to a solution treatment for 20 hours according to the respective suitable temperature, for 20 hours and then aging treatment T5.

不同热处理方式(F、T4、T6)对实施例1合金微观组织的影响及其演化过程见附图3a-c。 Different heat treatment (F, T4, T6) Alloy Microstructure effect on an embodiment and the evolution see FIG. 3a-c.

IV)、力学性能的样品制备及测试:合金的力学拉伸性能样品是参考国标GB 6397-86的§3.6.2对于板材试样的规定来制备,其结构及详细尺寸见附图4、5。 IV), sample preparation and testing of mechanical properties: Tensile mechanical properties of the samples is a reference alloy GB GB §3.6.2 6397-86 be prepared for a sample of a predetermined sheet, the size of the structure and details, see figures 4,5 .

合金的冲击性能参考国标GB/T229-1994的规定,取10mm×10mm×55mm的无缺口冲击试样。 Impact properties of the alloy predetermined reference national standard GB / T229-1994, whichever is 10mm × 10mm × 55mm unnotched impact specimens.

金属布氏硬度实验方法参考GB231-84,试样尺寸15mm×15mm×5mm。 Brinell hardness test method of Reference GB231-84, a sample size of 15mm × 15mm × 5mm.

实施例1合金的铸态机械性能如下:抗拉强度σb=216MPa,屈服强度σ0.2=106MPa,延伸率δ5=8%。 Mechanical properties of cast alloy of Example 1 as follows: tensile strength σb = 216MPa, yield strength σ0.2 = 106MPa, elongation δ5 = 8%.

实施例1合金的T4态机械性能如下:抗拉强度σb=250MPa,屈服强度σ0.2=101MPa,延伸率δ5=11%。 T4 temper mechanical properties of the alloy of Example 1 as follows: tensile strength σb = 250MPa, yield strength σ0.2 = 101MPa, elongation δ5 = 11%.

实施例1合金的T5态机械性能如下:抗拉强度σb=230MPa,屈服强度σ0.2=128MPa,延伸率δ5=7%。 Example 1 Alloy state T5 embodiment of the mechanical properties as follows: tensile strength σb = 230MPa, yield strength σ0.2 = 128MPa, elongation δ5 = 7%.

实施例1合金的T6态机械性能如下:抗拉强度σb=285MPa,屈服强度σ0.2=140MPa,延伸率δ5=10%,冲击功αk=20J,布氏硬度HB=70。 Mechanical properties of the T6 alloy of Example 1 as follows: tensile strength σb = 285MPa, yield strength σ0.2 = 140MPa, elongation δ5 = 10%, the impact energy αk = 20J, Brinell hardness HB = 70.

由上可见,实施例1合金的各热处理态中,T6态的综合机械性能最优;此外,实施例1合金和比较例合金AZ91、AM60在T6热处理态的力学性能对比情况见附图6。 As seen above, each of the heat treated alloy of Example 1, the optimum mechanical properties of the T6 temper; In addition, the alloy of Example 1 and Comparative Example alloys AZ91 embodiment, see Fig. 6 of AM60 mechanical properties in comparison of T6 heat-treated form.

实施例2与实施例1不同之处在于:本实施例合金基本操作步骤如下:I)、合金成分: Example 2 differs from Example 1 in that: the alloy according to the present embodiment, the basic steps are as follows: I), alloy composition:

II)、合金冶炼及铸造成型:参考实施例1。 II), alloy smelting and casting molding: Reference Example 1. 本实施例合金在冶炼工序的第三步最后不需要加入用铝箔纸包好的锑粉配料。 In the present embodiment, the third step of smelting the alloy last step wrapped with aluminum foil good without adding antimony powder ingredients.

III)、铸件的热处理:参考实施例1中的热处理部分。 III), heat-treated castings: a heat treatment section Reference Example 1 embodiment. 本实施例合金的T4固溶处理的温度以370℃为宜,此温度是参考镁-铝-锌三元合金相图并最终由实验确定的,温度过高会发生相变析出。 Solution treatment temperature T4 alloy according to the present embodiment is preferably 370 deg.] C, the reference temperature is magnesium - aluminum - zinc ternary phase diagram experimentally determined and ultimately, the phase transition temperature will precipitate occurs.

IV)、力学性能的样品制备及测试:力学性能样品制备同实施例1中所述。 IV), sample preparation and testing of mechanical properties: Mechanical properties of the samples prepared in Example 1 in the same embodiment.

实施例2合金的铸态机械性能如下:抗拉强度σb=192MPa,屈服强度σ0.2=104MPa,延伸率δ5=6.2%。 Cast alloys Mechanical properties of Example 2 are as follows: tensile strength σb = 192MPa, yield strength σ0.2 = 104MPa, elongation δ5 = 6.2%.

实施例2合金的T4态机械性能如下:抗拉强度σb=258MPa,屈服强度σ0.2=100MPa,延伸率δ5=10.5%。 T4 temper mechanical properties of the alloy of Example 2 as follows: tensile strength σb = 258MPa, yield strength σ0.2 = 100MPa, elongation δ5 = 10.5%.

实施例2合金的T5态机械性能如下:抗拉强度σb=235MPa,屈服强度σ0.2=137MPa,延伸率δ5=6%。 Example 2 Mechanical Properties Alloy T5 state as follows: Tensile strength σb = 235MPa, yield strength σ0.2 = 137MPa, elongation δ5 = 6%.

实施例2合金的T6态机械性能如下:抗拉强度σb=287MPa,屈服强度σ0.2=161MPa,延伸率δ5=8%,冲击功αk=22J,硬度HB=73。 Mechanical properties of the T6 alloy of Example 2 as follows: tensile strength σb = 287MPa, yield strength σ0.2 = 161MPa, elongation δ5 = 8%, the impact energy αk = 22J, hardness HB = 73.

由上可见,实施例2合金的各热处理态中,T6态的综合机械性能最优;此外,实施例2合金和比较例合金AZ91、AM60在T6热处理态的力学性能对比情况见附图7。 As seen above, each of the heat treated alloy in Example 2, the optimum mechanical properties of the T6 temper; Furthermore, the alloy of Example 2 and comparative example alloys AZ91, AM60 see Fig. 7 in the mechanical properties of the comparison of T6 heat treated.

实施例3与实施例1不同之处在于:本实施例合金基本操作步骤如下:I)、合金成分: Example 3 differs from Example 1: Basic example alloys of the present embodiment the following steps: I), alloy composition:

II)、合金冶炼及铸造成型: II), alloy smelting and casting molding:

参考实施例1。 Reference Example 1. 本实施例合金在冶炼工序的第三步要在加完纯铝、铝锰中间合金配料后,加入镁钇中间合金配料,最后再加纯锌配料。 The present embodiment alloy in the third step of the smelting step to completion of the addition of pure aluminum, the aluminum-manganese alloy intermediate ingredients, yttrium, magnesium master alloy added ingredients in the final formulation plus pure zinc.

III)、铸件的热处理:参考实施例1中的热处理部分。 III), heat-treated castings: a heat treatment section Reference Example 1 embodiment. 本实施例合金的T4固溶处理的温度以360℃为宜,此温度是参考镁-铝-锌三元合金相图并最终由实验确定的,温度过高会发生相变析出。 Solution treatment temperature T4 alloy according to the present embodiment is preferably 360 deg.] C, the reference temperature is magnesium - aluminum - zinc ternary phase diagram experimentally determined and ultimately, the phase transition temperature will precipitate occurs.

IV)、力学性能的样品制备及测试:力学性能样品制备同实施例1中所述。 IV), sample preparation and testing of mechanical properties: Mechanical properties of the samples prepared in Example 1 in the same embodiment.

实施例3合金的铸态机械性能如下:抗拉强度σb=202MPa,屈服强度σ0.2=115MPa,延伸率δ5=6.5%。 Example 3 Mechanical properties of as-cast alloy of the following: tensile strength σb = 202MPa, yield strength σ0.2 = 115MPa, elongation δ5 = 6.5%.

实施例3合金的T4态机械性能如下:抗拉强度σb=248MPa,屈服强度σ0.2=110MPa,延伸率δ5=9.5%。 T4 temper mechanical properties of the alloy of Example 3 are as follows: tensile strength σb = 248MPa, yield strength σ0.2 = 110MPa, elongation δ5 = 9.5%.

实施例3合金的T5态机械性能如下:抗拉强度σb=231MPa,屈服强度σ0.2=132MPa,延伸率δ5=6.3%。 Example 3 Alloy embodiment T5 Modal properties are as follows: Tensile strength σb = 231MPa, yield strength σ0.2 = 132MPa, elongation δ5 = 6.3%.

实施例3合金的T6态机械性能如下:抗拉强度σb=260MPa,屈服强度σ0.2=149MPa,延伸率δ5=8%,冲击功αk=18J,硬度HB=72。 Mechanical properties of the T6 alloy of Example 3 are as follows: tensile strength σb = 260MPa, yield strength σ0.2 = 149MPa, elongation δ5 = 8%, the impact energy αk = 18J, hardness HB = 72.

由上可见,实施例3合金的各热处理态中,T6态的综合机械性能最优;此外,实施例3合金和比较例合金AZ91、AM60在T6热处理态的力学性能对比情况见附图8。 As seen above, each of the optimum mechanical properties after heat treatment in Example 3 of the alloy, T6 state embodiment; Furthermore, the alloy of Example 3 and comparative example alloys AZ91, AM60 see FIG. 8 in the mechanical properties of the comparison of T6 heat treated.

Claims (4)

  1. 1.一种高强度高韧性铸造镁合金的制备方法,其特征在于,按重量百分比计,用于合金化的主要元素组成如下:镁含量为平衡余量;铝含量为3~9%;锌含量为3.5~9%;锰含量为0.15~1.0%;0<锑含量≤2%;0<稀土含量≤2%;具体步骤如下:1)先将纯镁、镁稀土中间合金、纯铝、铝锰中间合金、纯锌、锑粉各种配料在烘箱中预热至140~160℃,覆盖剂同时放入烘箱进行烘干;将模具在另外的箱式炉中预热至300~400℃;然后设定坩埚目标温度为710~730℃,开始加热;2)当坩埚升温至280~320℃时,通入CO2气体进行气体置换,然后在坩埚底部加入占配料总重量0.3~2%的覆盖剂,并将预热好的纯镁配料放入坩埚内;3)纯镁配料熔化并且等坩埚温度稳定在710~730℃后,加入占配料总重量0.3~2%的覆盖剂,然后依次加入纯铝、铝锰中间合金、镁稀土中间合金以及 CLAIMS 1. A method for preparing high strength and high toughness magnesium alloy casting, wherein, in weight percent, for the major alloying elements are as follows: balance amount of magnesium; aluminum content of 3% to 9%; zinc content of 3.5% to 9%; manganese content is 0.15% to 1.0%; 0 <antimony content ≤2%; 0 <rare earth content ≤2%; the following steps: 1) first of pure magnesium, a magnesium alloy intermediate rare earths, aluminum, Al-Mn master alloy, pure zinc, antimony powder variety of ingredients in an oven preheated to 140 ~ 160 ℃, while covering agent into an oven for drying; mold preheated to 300 ~ 400 ℃ in a further box furnace ; then set the crucible target temperature is 710 ~ 730 ℃, start heating; 2) when the crucible is heated to 280 ~ 320 ℃, into the CO2 gas replacement, followed by addition of total weight of the formulation from 0.3 to 2% at the bottom of the crucible covering agent, pure magnesium and preheated ingredients into a crucible; 3) furnish pure magnesium and the melting temperature of the crucible and the like stable at 710 ~ 730 ℃, it added accounted for 0.3 to 2% by weight of the total formulation of coating agent, followed by was added aluminum, aluminum-manganese master alloy, a magnesium alloy, and rare earth intermediate 锌配料,最后加入用铝箔纸包好的锑粉配料;4)下面各工序均恒温在710~730℃下进行,配料加完后即可进行搅拌,搅拌均匀后静置4~6分钟,按体积百分比,在99~99.5%CO2+0.5~1%SF6混合气体保护下掏出表面浮渣;5)掏渣完毕后,停止加热,按体积百分比,在99~99.5%CO2+0.5~1%SF6混合气体保护下浇铸成型;将得到的铸造镁合金经固溶处理,固溶处理温度为350~390℃,固溶处理时间为16~24小时,空冷至室温;或者时效处理,时效处理温度为160~200℃,时效处理时间为8~48小时,空冷至室温;或者固溶处理加时效处理组合,先在350~390℃下进行16-24小时固溶处理后,然后在160~200℃下进行8~48小时的时效处理,空冷至室温。 Zn ingredients and finally wrapped with aluminum foil good antimony powder ingredients; 4 each) following processes are carried out at a temperature 710 ~ 730 ℃, ingredients can be added after the mixture was stirred and allowed to stand after mixing 4 to 6 minutes, according to volume percent, surface scum out at 99 ~ 99.5% CO2 + 0.5 ~ 1% SF6 protective gas mixture; after 5) dig slag completed, heating was stopped, by volume percent, in 99 ~ 99.5% CO2 + 0.5 ~ 1% under a mixed gas of SF6 protective casting molding; magnesium alloy obtained by the solution treatment, the solution treatment temperature is 350 ~ 390 ℃, solution treatment for 16 to 24 hours, air cooled to room temperature; or aging treatment, aging treatment temperature or after solution treatment plus aging treatment compositions, for 16-24 hours prior to solution treatment at 350 ~ 390 ℃, then at 160 to 200; 160 to 200 deg.] C is, the aging treatment time is 8 to 48 hours, cooled to room temperature for 8 to 48 hours of aging at ℃, cooled to room temperature.
  2. 2.按照权利要求1所述的高强度高韧性铸造镁合金的制备方法,其特征在于:所述浇铸成型采用金属型或砂型铸造,或者采用压力铸造或挤压铸造工艺。 2. The high strength according to claim 1 toughness magnesium alloy casting production method, wherein: the metal type or cast molding sand casting, or using pressure casting or squeeze casting process.
  3. 3.按照权利要求1所述的高强度高韧性铸造镁合金的制备方法,其特征在于:所述固溶处理在保护气氛下进行,保护气体为氩气或六氟化硫。 3. The high strength according to claim 1 toughness magnesium alloy casting production method, wherein: said solution treatment is performed under a protective atmosphere, the protective gas is argon or sulfur hexafluoride.
  4. 4.按照权利要求1所述的高强度高韧性铸造镁合金的制备方法,其特征在于:所述锑粉为工业纯锑。 4. The high strength according to claim 1 toughness magnesium alloy casting production method, wherein: said antimony powder is commercially pure antimony.
CN 200410020567 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof CN100338250C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410020567 CN100338250C (en) 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 200410020567 CN100338250C (en) 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof
CN 200580009875 CN100408709C (en) 2004-05-19 2005-04-11 High-strength-toughness magnesium alloy and its preparing method
PCT/CN2005/000479 WO2005111251A8 (en) 2004-05-19 2005-04-11 A high-strength, high-toughness cast magnesium alloy and the method thereof
US10582541 US20090068053A1 (en) 2004-05-19 2005-04-11 High strength and high ductility magnesium alloy and its preparation method

Publications (2)

Publication Number Publication Date
CN1699612A true CN1699612A (en) 2005-11-23
CN100338250C true CN100338250C (en) 2007-09-19

Family

ID=35394170

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200410020567 CN100338250C (en) 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof
CN 200580009875 CN100408709C (en) 2004-05-19 2005-04-11 High-strength-toughness magnesium alloy and its preparing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200580009875 CN100408709C (en) 2004-05-19 2005-04-11 High-strength-toughness magnesium alloy and its preparing method

Country Status (3)

Country Link
US (1) US20090068053A1 (en)
CN (2) CN100338250C (en)
WO (1) WO2005111251A8 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039816A (en) * 2015-07-20 2015-11-11 河南科技大学 Low-cost, high-strength and heat-resisting magnesium alloy and preparation method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406159C (en) 2006-01-20 2008-07-30 中国科学院金属研究所 Method for casting Mg-Al-Zn based magnesium alloy with high strength and high tenacity
ES2615127T3 (en) * 2006-05-19 2017-06-05 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Magnesium base alloy
CN100432258C (en) 2006-11-01 2008-11-12 中国科学院金属研究所 Quasi crystal phase fortified magnesium lithium alloy and its preparation method
CN100515606C (en) 2007-03-19 2009-07-22 东北大学 Horizontal continuous light alloy casting process and apparatus with cooperation of power ultrasound wave and low frequency electromagnetic wave
DE102008037200B4 (en) * 2008-08-11 2015-07-09 Aap Implantate Ag Using a pressure casting process for producing an implant made of magnesium and magnesium alloy
CN101880845A (en) * 2010-06-11 2010-11-10 燕山大学 Method for thinning AM60B cast magnesium alloy grains
CN102764876A (en) * 2011-05-03 2012-11-07 远轻铝业(中国)有限公司 Gravity casting process of back cover board of turbosupercharger
CN102242299A (en) * 2011-07-26 2011-11-16 中国科学院金属研究所 Bi and Nd composite reinforced high-strength cast magnesium alloy and preparation method thereof
CN102321859A (en) * 2011-08-31 2012-01-18 燕山大学 Refinement method of A Z91D cast magnesium alloy grains
CN102994847B (en) * 2011-09-09 2015-01-07 江汉大学 Heatproof magnesium alloy
CN102994835B (en) * 2011-09-09 2015-01-07 江汉大学 Heatproof magnesium alloy
CN102517489B (en) * 2011-12-20 2013-06-19 内蒙古五二特种材料工程技术研究中心 Method for preparing Mg2Si/Mg composites by recovered silicon powder
CN102632822A (en) * 2012-03-31 2012-08-15 北京华盛荣镁业科技有限公司 Passenger car seat frame, manufacturing method thereof and passenger car seat
CN102626779A (en) * 2012-04-25 2012-08-08 辽宁工业大学 Method for preparing magnesium alloy ingot and solidification system
CN103305735B (en) * 2013-06-24 2015-03-11 山东富通电气有限公司 Reinforced magnesium alloy and preparation method thereof
CN103388095B (en) * 2013-07-18 2016-10-26 上海交通大学 Mg-Gd-Y-Zr-based alloy and method of heat treatment of large complex magnesium castings
CN103643064B (en) * 2013-12-25 2015-09-16 昆明理工大学 A method of enhancing lpso phase gradient magnesium alloy material prepared
CN103695745B (en) * 2014-01-16 2015-07-29 徐茂航 Boron nitride reinforced magnesium alloy and preparation method
CN104032196B (en) * 2014-06-25 2015-12-02 河北镁轮镁合金科技有限公司 High strength magnesium alloy material and its preparation method
CN104328317B (en) * 2014-11-26 2016-08-24 衢州市联橙环保科技有限公司 A rare-earth magnesium alloy and manufacturing process
CN104561709B (en) * 2014-12-04 2017-05-17 沈阳工业大学 High creep properties of magnesium alloy and preparation method
CN104630584A (en) * 2015-02-03 2015-05-20 闻喜县瑞格镁业有限公司 Magnesium alloy for high-fluidity high-strength ultrathin-wall component and preparation method of magnesium alloy
CN105522866A (en) * 2015-12-15 2016-04-27 苏州爱盟机械有限公司 Vehicle hub
CN106513630A (en) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 Extrusion casting technology for magnesium alloy hub
CN107099685A (en) * 2017-04-29 2017-08-29 太原科技大学 Preparation method of high-strength and high-toughness rapidly-degraded magnesium alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2314852A (en) * 1940-09-09 1943-03-23 Anglo California Nat Bank Of S Heat treatment of magnesium base alloys
US3119725A (en) * 1961-11-27 1964-01-28 Dow Chemical Co Die-expressed article of magnesium-base alloy and method of making
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
US5855697A (en) * 1997-05-21 1999-01-05 Imra America, Inc. Magnesium alloy having superior elevated-temperature properties and die castability
JP3898302B2 (en) 1997-10-03 2007-03-28 日本パーカライジング株式会社 Metallic materials for surface treatment composition and processing method
JP3603706B2 (en) * 1999-12-03 2004-12-22 株式会社日立製作所 High strength Mg based alloy and Mg based casting alloy and articles
KR20020078936A (en) * 2001-04-11 2002-10-19 학교법인연세대학교 Quasicrystalline phase hardened Mg-based metallic alloy exhibiting warm and hot formability
CN1169988C (en) 2001-08-22 2004-10-06 东南大学 Low cost heat-resistant magnesium alloy
CN1203202C (en) 2002-10-17 2005-05-25 山西至诚科技有限公司 Preparation method of magnesium alloy
JP2004263280A (en) * 2003-03-04 2004-09-24 Toyota Central Res & Dev Lab Inc Corrosionproof magnesium alloy member, corrosionproofing treatment method for magnesium alloy member, and corrosionproofing method for magnesium alloy member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039816A (en) * 2015-07-20 2015-11-11 河南科技大学 Low-cost, high-strength and heat-resisting magnesium alloy and preparation method thereof
CN105039816B (en) * 2015-07-20 2017-05-31 河南科技大学 A low-cost high-strength heat-resistant magnesium alloy and preparation method

Also Published As

Publication number Publication date Type
CN100408709C (en) 2008-08-06 grant
CN1938441A (en) 2007-03-28 application
US20090068053A1 (en) 2009-03-12 application
WO2005111251A1 (en) 2005-11-24 application
CN1699612A (en) 2005-11-23 application
WO2005111251A8 (en) 2006-03-02 application

Similar Documents

Publication Publication Date Title
Khomamizadeh et al. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy
Asl et al. The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys
Zhang et al. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy
Park et al. The twin-roll casting of magnesium alloys
Candan et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy
Wang et al. Effect of yttrium and cerium addition on microstructure and mechanical properties of AM50 magnesium alloy
CN101205578A (en) High-strength high-ductility corrosion-resistant Al-Zn-Mg-(Cu) alloy
CN102127665A (en) Al-Zn-Mg-Cu-Sc-Zr-RE alloy capable of being used as ultrahigh-strength cast aluminum alloy and preparation method thereof
Liu et al. Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy
CN1436870A (en) Al-Zn-Mg-Er rare earth aluminium alloy
CN1851019A (en) Er,Zr composite rein forced Al-Mg-Mn alloy
CN101037753A (en) High-strength heat-proof compression casting magnesium alloy and preparation method thereof
CN102230118A (en) Magnesium alloy of high intensity and high yield ratio and preparation method thereof
Pan et al. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys
Zhang et al. Microstructures, tensile properties and corrosion behavior of die-cast Mg–4Al-based alloys containing La and/or Ce
Wu et al. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy
JPH09271919A (en) Production of heat resistant magnesium alloy member, magnesium alloy used to it and formed member made of magnesium alloy
CN102477507A (en) Preparation method of aluminum alloy casting rod special for hub of load truck
CN101985714A (en) High-plasticity magnesium alloy and preparation method thereof
CN103556020A (en) Manganese copper-based high-damping alloy with high mechanical properties and high manganese content
CN101979692A (en) Al-Zn-Mg-Cu aluminum alloy with ultra-high strength and preparation process thereof
US20120152414A1 (en) Multi-element heat-resistant aluminum alloy material with high strength and preparation method thereof
CN103421991A (en) Composite metamorphic cast aluminum alloy and preparation method and application thereof
CN102146542A (en) High-strength and high-toughness cast Al-Si-Mg alloy
CN101775530A (en) An over-eutectic Al-Si alloy piston material

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right