EP2020217A1 - Operationstisch - Google Patents

Operationstisch Download PDF

Info

Publication number
EP2020217A1
EP2020217A1 EP07015262A EP07015262A EP2020217A1 EP 2020217 A1 EP2020217 A1 EP 2020217A1 EP 07015262 A EP07015262 A EP 07015262A EP 07015262 A EP07015262 A EP 07015262A EP 2020217 A1 EP2020217 A1 EP 2020217A1
Authority
EP
European Patent Office
Prior art keywords
operating table
table according
table top
measuring system
force measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07015262A
Other languages
English (en)
French (fr)
Other versions
EP2020217B1 (de
Inventor
Jörg Meissner
Arnd Kuchenbecker
Dr. Manfred Fehn
Sven Steffens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Medizin Systeme GmbH and Co KG
Original Assignee
Trumpf Medizin Systeme GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38872070&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2020217(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Trumpf Medizin Systeme GmbH and Co KG filed Critical Trumpf Medizin Systeme GmbH and Co KG
Priority to EP07015262A priority Critical patent/EP2020217B1/de
Priority to DE502007007063T priority patent/DE502007007063D1/de
Priority to JP2008185748A priority patent/JP5688873B2/ja
Priority to US12/183,309 priority patent/US7784126B2/en
Priority to CN2008101450217A priority patent/CN101357096B/zh
Priority to EP08013830A priority patent/EP2020218B1/de
Publication of EP2020217A1 publication Critical patent/EP2020217A1/de
Priority to HK09103560.5A priority patent/HK1125285A1/xx
Publication of EP2020217B1 publication Critical patent/EP2020217B1/de
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/08Adjustable operating tables; Controls therefor the table being divided into different adjustable sections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/105Portable, foldable or collapsible tables, e.g. for surgery or treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • A61G2203/32General characteristics of devices characterised by sensor means for force
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • A61G2203/44General characteristics of devices characterised by sensor means for weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/10Devices for lifting patients or disabled persons, e.g. special adaptations of hoists thereto
    • A61G7/1049Attachment, suspending or supporting means for patients
    • A61G7/1057Supported platforms, frames or sheets for patient in lying position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S177/00Weighing scales
    • Y10S177/09Scale bearings

Definitions

  • the invention relates to an operating table with a support column and a support plate mounted on the table top.
  • Such operating tables are known to the skilled person in various embodiments.
  • a patient On the tabletop, a patient can be stored during an operation or examination.
  • Object of the present invention is to provide an operating table of the type mentioned in such a way that it allows improved monitoring of the patient located on the table top.
  • the operating table has a force measuring system for determining the weight of the table top and a patient located on the table top.
  • a force measuring system is integrated. For example, this allows you to monitor the weight of the patient during an operation. Such monitoring is particularly advantageous when the patient suffers a heavy blood loss.
  • the weight of the patient is detected by means of a force measuring system and can be displayed, for example, on a display.
  • the center of gravity of the table top with befindlichem patient is determinable.
  • the mechanical load of the support column is determined by the patient weight and its distribution as well as by the weight and the center of gravity of the table top with possibly existing additional mountable storage segments and possibly fixed to the table top equipment. It is therefore advantageous if by means of the force measuring system, the entire mechanical load of the support column can be detected.
  • the force measuring system has a plurality of spaced-apart sensors, which are connected to a central measuring electronics.
  • the use of several sensors makes it possible to detect the load distribution, ie. H. the distribution of the load acting on the support column.
  • a highly uneven load distribution can be counteracted to counteract a tilting of the operating table in a timely manner.
  • the tabletop is often pivotable relative to a base plate of the support column and / or displaceable.
  • the table top is pivotable about a pivot axis aligned parallel or perpendicular to the table top longitudinal axis. This makes it possible to raise or lower the upper body of a patient lying on the table top or to tilt the patient around the table top longitudinal axis.
  • the table top is displaceable relative to the support column in the longitudinal or transverse direction of the table top.
  • pivoting or moving drive units are used, which is associated with an electronic control unit. In such embodiments, it is particularly advantageous if the maximum pivot angle or the maximum displacement relative to a zero position of the table top in dependence on an output signal of the force measuring system is controllable.
  • the table top is detachably connectable to the table column.
  • the table top can thus be removed from the support column and mounted on demand on this. This allows the patient to be placed outside the operating room on the table top. Subsequently, the table top can be mounted with the patient mounted thereon on the support column. After the operation, the table top can be removed with the patient again from the support column and transferred to a rest room. The number of reburial of the patient can be reduced.
  • the force measuring system is preferably integrated in the support column. This makes it possible to use for the operating table known various tabletops, which are preferably detachably connectable to the support column.
  • the load exerted by the table top and a patient on it on the support column, and preferably also the load distribution can be determined.
  • the occurring during assembly of the table top on the support column and the removal of the table top of the support column lateral forces and moments The guide surfaces of the tabletop and support column, which result from a possible misalignment of the table top due to unfavorable center of gravity can be determined by the force measuring system and processed by a control unit of the operating table so that the support column is pivoted in its upper region such that no lateral Forces occur more. This facilitates the assembly and removal of the tabletop on or from the support column.
  • the support column has a pivotable column head.
  • the column head may be adjustable in height relative to a column shaft and / or pivotable about a horizontal pivot axis.
  • the table top can be mounted on the column head.
  • At least one sensor of the force measuring system is preferably integrated in the column head.
  • all sensors of the force measuring system and preferably also its measuring electronics are integrated in the column head.
  • the column head has a top plate on which the table top can be mounted and which is pivotable relative to a support plate of the support column and preferably adjustable in height.
  • the force measuring system is preferably arranged between the top plate and the support plate.
  • the table top is held on the support plate of the support column via a plurality of support elements, preferably via three support elements, wherein the load acting on each support element can be detected with the aid of at least one sensor of the force measuring system.
  • the force measuring system thus has a plurality of sensors which detect the load acting on the support elements. This makes it possible, on the one hand, to determine the entire load acting on the support plate by means of the force measuring system and, on the other hand, a load distribution can be detected.
  • the determination of such Load distribution is particularly advantageous if the table top is displaceable and / or pivotable, because by determining the load distribution can be counteracted in good time a deterioration of the tilting stability of the operating table.
  • the sensors of the force measuring system are integrated in the support elements.
  • the space required for the force measuring system can thus be kept very low.
  • each support element has at least two sensors, preferably at least four sensors, because this allows the measurement accuracy, which can be achieved by means of the force measuring system, be increased.
  • the support elements are designed as universal joints with two hinge pins which are pivotable about parallel or perpendicular to the table top longitudinal axis pivoted axes, wherein the force acting on at least one hinge pin load with the aid of at least one sensor of the force measuring system can be detected.
  • the table top can be pivoted both about a parallel to the table top longitudinal axis and about an aligned perpendicular to the table top longitudinal axis.
  • the cardan joints are each held on a lifting device, so that they are adjustable in height relative to a support plate of the support column.
  • the lifting device may for example be manually, electrically, hydraulically or pneumatically driven.
  • each cardan joint is assigned a plurality of sensors of the force measuring system, in particular two or four sensors.
  • the measurement accuracy that can be achieved by means of the force measuring system can thereby be improved.
  • the force measuring system has sensors for detecting an electrical resistance change.
  • the electrical resistance change can be caused by a mechanical load acting on a component of the operating table coupled to the sensors. By detecting the change in electrical resistance, the acting mechanical load can thus be determined.
  • the sensors can provide an electrical signal that can be evaluated by an evaluation to which the sensors are connected.
  • the sensors can be configured for example in the form of strain gauges. These are preferably two-dimensional sensors, which are fixed to a component of the operating table, preferably glued to the component, and whose electrical resistance changes in a deformation of the component. The deformation is caused by the mechanical stress and can be detected in the form of a change in the electrical resistance of the sensor.
  • strain gauges are aligned parallel to each other. It has been shown that thereby the measurement accuracy can be increased.
  • Wheatstone bridge circuit It is particularly favorable if in each case four strain gauges are combined to form a Wheatstone bridge circuit.
  • the measuring accuracy can be additionally increased, in particular temperature effects can be compensated.
  • Wheatstone bridge circuits are known per se to those skilled in the art. They each have two pairs of resistors, which are connected in parallel with each other, each pair of resistors having two series-connected electrical resistors.
  • the force measuring system has magnetic-field-sensitive sensors for detecting a change in the magnetic field.
  • Such sensors enable non-contact measured value acquisition. This makes it possible, for example, to determine a mechanical load by detecting the change in a magnetic field caused by the load. The determination of the mechanical load is thus based on the principle of magnetostriction, d. H.
  • the measuring principle is based on the fact that a permanent magnet causes a change of the magnetic field caused by it during a mechanical deformation. This magnetic field change can be detected by means of the magnetic field-sensitive sensors, wherein the sensors output an electrical signal as a function of the magnetic field change caused by the mechanical load.
  • At least one magnetic field-sensitive sensor is designed in the form of a coil.
  • the coil can form a high-resolution magnetic scanning unit that precisely detects changes in a magnetic field.
  • the at least one magnetic field-sensitive sensor is associated with a magnetically coded ferromagnetic material which is mechanically loadable by the weight of the table top with the patient thereon.
  • a ferromagnetic material for example, made of a ferromagnetic steel shaft for Use, which is subject to mechanical stress due to the weight of the patient. The load leads to a slight deformation of the shaft as a function of the size of the patient's weight. Since the shaft is magnetically coded, the magnetic field generated therefrom changes depending on the magnetic load applied to the shaft, and this magnetic field change can be detected by the at least one magnetic field sensitive sensor.
  • the ferromagnetic material is magnetically encoded by being locally magnetized. The material is thus embossed with a magnetic structure that stores it permanently. The embossed magnetic structure leads to the formation of a magnetic field, which changes depending on the applied mechanical load.
  • the ferromagnetic material is designed as a hollow shaft and the associated magnetic field-sensitive sensors are arranged within the hollow shaft. As a result, the space required for the force measuring system can be greatly reduced.
  • a signal processing element is arranged in the hollow shaft, to which the sensors positioned in the hollow shaft are connected.
  • the ferromagnetic material is formed as a magnetically coded hinge pin of a universal joint.
  • the universal joint can, as already explained, the table top be held on the support column.
  • the mechanical load exerted by the table top and the patients on it is thus absorbed by the magnetically coded hinge pins of the cardan joints, and an electrical signal is output by means of sensors arranged in the hinge pins in dependence on the applied mechanical load. Based on This signal can be used to determine the weight of the patient and the distribution of the mechanical load.
  • the maximum swivel angle and the maximum displacement can be determined starting from a zero position of the table top in a structurally simple manner.
  • FIG. 1 schematically an inventive operating table 10 is shown, which has a height-adjustable support column 12, on which a Table top 14 is releasably held.
  • the table top 14 is designed in several parts, it comprises a support column 12 mounted on the base segment 15, on the one hand, a leg segment 16 and on the other hand, a back segment 17 are each pivotally supported about a horizontal pivot axis. At the back segment 17, a head segment 18 is held pivotably.
  • the table top 14 could of course also be designed in one piece.
  • the support column 12 comprises a base plate 20, on which a column shaft 21 is fixed, which carries a column head 22 on the upper side.
  • the column head 22 is in FIG. 2 shown schematically. At the column head 22, the base segment 15 of the table top 14 is releasably held.
  • the column head 22 comprises a top plate 24, on the underside of three universal joints 27, 28 and 29 are arranged.
  • the cardan joints 27, 28 and 29 are respectively held at the free end of a spindle 31, 32 and 33, which is adjustable in height by means of a known per se and therefore not shown in the drawing drive element.
  • the drive elements are integrated in the column shaft 21 and fixed to a support plate 35 of the column shaft 21. By raising the spindles 31, 32 and 33, the top plate 24 can be raised relative to the support plate 35. If the spindles 31, 32 and 33 are raised to the same extent, then the table top 14 is only adjusted in height while the orientation remains the same.
  • the head plate 24 and the table top 14 held on it perform a pivotal movement, wherein the table top 14 can optionally be pivoted about a parallel to the table top longitudinal axis and about an axis perpendicular to the table top axis pivot axis.
  • the cardan joints 27, 28 and 29 are designed identically. They each have a first hinge pin 37, which is mounted pivotably about a pivot axis aligned perpendicular to the table top longitudinal axis in a U-shaped first bearing block 38.
  • the first bearing block 38 is fixed at the free end of the respective spindle 31, 32 and 33, respectively.
  • the universal joints 27, 28 and 29 each have a second hinge pin 40 which is seated on the first hinge pin 37 and in a second bearing block 41, which is also U-shaped, about a parallel to the table plate longitudinal axis aligned pivot axis is pivotally mounted.
  • the second bracket 41 is fixed to the underside of the top plate 24.
  • the cardan joints 27, 28 and 29 each form a support element, via which the table top 14 is held on the support column 12.
  • integrated into the cardan joints 27, 28 and 29 sensors in combination with a in the column shaft 21, preferably between the top plate 24 and the support plate 35, arranged measuring electronics form a force measuring system with which the weight of a patient located on the table top 14 can be determined.
  • each cardan joint 27, 28 and 29 associated with four sensors in the form of strain gauges, wherein in FIG. 4 only two strain gauges 43, 44 are visible.
  • Two strain gauges are parallel to each other on the first hinge pin 37 of each universal joint 27, 28 and 29 fixed by means of an adhesive bond, wherein the second hinge pin 40 is positioned between the two strain gauge pairs.
  • the first hinge pin 37 thus carries a total of four strain gauges, which are connected together in a conventional manner in the form of a Wheatstone bridge bridge. By means of the strain gauges 43, 44, the mechanical load acting on the first hinge pin 37 can be determined.
  • each universal joint 27, 28 and 29 corresponding strain gauges are assigned, thus, on the one hand, the total load, which acts on the cardan shaft 21 via the cardan joints 27, 28 and 29, can be determined, and beyond the load distribution can be detected.
  • the acting load results from the weight of the table top 14 and the head plate 24 and from the weight of the patient located on the table top 14.
  • the patient weight can be determined from the total load.
  • the strain gauges 43, 44 which are each associated with a first hinge pin 37, are connected via connecting wires, which are not shown in the drawing for clarity, with a arranged in the interior of the hollow shaft designed as a first hinge pin 37 signal processing member. From this signal processing element leads a connection cable 46 to the already mentioned central measuring electronics, which is arranged for example in the column shaft 21. Based on the signals from the signal processing members of the cardan joints 27, 28 and 29, an output signal is provided by the meter electronics in response to the mechanical load applied to the cardan joints 27, 28 and 29.
  • the maximum pivot angle by which the table top 14 can be pivoted also determined as the maximum displacement to which the table top 14 relative to the support column 12 in the tabletop longitudinal direction or can be moved transversely to the tabletop longitudinal direction.
  • Maximum pivot angle and maximum displacement of the table top 14 are thus determined depending on the weight of the patient. The greater the patient weight, the lower the maximum pivot angle and the maximum displacement are chosen to ensure optimal stability of the operating table 10 in each case.
  • FIG. 5 a second embodiment of a force measuring system is shown, which can be used at the operating table 10.
  • the first hinge pin 37 of the universal joints 27, 28 and 29 are each formed as a hollow shaft, which carries in its interior a signal processing member 49 from which a connection cable 50 leads to the outside.
  • the signal processing member 49 is connected to the central measuring electronics of the operating table 10, which is arranged for example in the column shaft 21.
  • the first hinge pin 37 of the cardan joints 27, 28 and 29 is made of a ferromagnetic material, preferably an industrial steel is used, which contains between 1.5% and 8% nickel.
  • the first hinge pin 37 has on both sides of the second hinge pin 40 each have a magnetic coding, ie on both sides of the second hinge pin 40, the ferromagnetic first hinge pin 37 was magnetically encoded by him a magnetic structure was impressed by applying a very strong external magnetic field. This magnetic structure keeps the first hinge pin 37 permanently.
  • four magnetic-field-sensitive sensors are arranged in the form of coils within the first hinge pin 37 on both sides of the second hinge pin 40, which are each connected to the signal processing element 49.
  • FIG. 5 are to achieve a better overview on both sides of the second hinge pin 40 each have three coils 53, 54 and 55th shown.
  • the mechanical load is detected without contact with very high accuracy.
  • the force measuring system requires no additional space and is therefore also suitable for retrofitting existing operating tables.
  • force measuring system can also by means of in FIG. 5 not only the patient's weight can be determined, but in addition, depending on the patient's weight, a maximum pivoting angle and a maximum displacement, starting from the in FIG. 1 shown zero position of the table top 14, to be determined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Die Erfindung betrifft einen Operationstisch (10) mit einer Tragsäule (12) und einer auf der Tragsäule (12) gelagerten Tischplatte (14). Um den Operationstisch derart weiterzubilden, dass er eine verbesserte Überwachung eines auf der Tischplatte (14) befindlichen Patienten ermöglicht, wird erfindungsgemäß vorgeschlagen, dass der Operationstisch (10) ein Kraftmesssystem zur Bestimmung des Gewichtes der Tischplatte (14) und des auf der Tischplatte (14) befindlichen Patienten aufweist.

Description

  • Die Erfindung betrifft einen Operationstisch mit einer Tragsäule und einer auf der Tragsäule gelagerten Tischplatte.
  • Derartige Operationstische sind dem Fachmann in vielfältiger Ausführungsform bekannt. Auf der Tischplatte kann ein Patient während einer Operation oder einer Untersuchung gelagert werden.
  • Aufgabe der vorliegenden Erfindung ist es, einen Operationstisch der eingangs genannten Art derart weiterzubilden, dass er eine verbesserte Überwachung des auf der Tischplatte befindlichen Patienten ermöglicht.
  • Diese Aufgabe wird bei einem Operationstisch der gattungsgemäßen Art erfindungsgemäß dadurch gelöst, dass der Operationstisch ein Kraftmesssystem zur Bestimmung des Gewichtes der Tischplatte und eines auf der Tischplatte befindlichen Patienten aufweist.
  • In den erfindungsgemäßen Operationstisch ist ein Kraftmesssystem integriert. Dies gibt beispielsweise die Möglichkeit, das Gewicht des Patienten während einer Operation zu überwachen. Eine derartige Überwachung ist insbesondere dann von Vorteil, wenn der Patient einen starken Blutverlust erleidet. Das Gewicht des Patienten wird mittels eines Kraftmesssystems erfasst und kann beispielsweise auf einem Display angezeigt werden.
  • Von Vorteil ist es, wenn mittels des Kraftmesssystems die Schwerpunktlage der Tischplatte mit darauf befindlichem Patienten bestimmbar ist. Die mechanische Belastung der Tragsäule bestimmt sich durch das Patientengewicht und dessen Verteilung sowie durch das Gewicht und die Schwerpunktlage der Tischplatte mit gegebenenfalls vorhandenen weiteren anbaubaren Lagerungssegmenten und eventuell an der Tischplatte festgelegten Apparaturen. Es ist deshalb von Vorteil, wenn mittels des Kraftmesssystems die gesamte mechanische Belastung der Tragsäule erfassbar ist.
  • Bei einer vorteilhaften Ausführungsform weist das Kraftmesssystem mehrere im Abstand zueinander angeordnete Sensoren auf, die mit einer zentralen Messelektronik verbunden sind. Der Einsatz mehrerer Sensoren ermöglicht es, die Lastverteilung zu erfassen, d. h. die Verteilung der auf die Tragsäule einwirkenden Last. Somit kann einer stark ungleichmäßigen Lastverteilung entgegengewirkt werden, um einem Verkippen des Operationstisches rechtzeitig entgegenzuwirken.
  • Die Tischplatte ist häufig relativ zu einer Grundplatte der Tragsäule verschwenkbar und/oder verschiebbar. Beispielsweise kann vorgesehen sein, dass die Tischplatte um eine parallel oder senkrecht zur Tischplattenlängsachse ausgerichtete Schwenkachse verschwenkbar ist. Dies gibt die Möglichkeit, den Oberkörper eines auf der Tischplatte liegenden Patienten anzuheben oder abzusenken oder auch den Patienten um die Tischplattenlängsachse zu verkippen. Es kann auch vorgesehen sein, dass die Tischplatte relativ zur Tragsäule in Längs- oder Querrichtung der Tischplatte verschiebbar ist. Zum Verschwenken bzw. Verschieben kommen Antriebsaggregate zum Einsatz, denen eine elektronische Steuereinheit zugeordnet ist. Bei derartigen Ausführungsformen ist es von besonderem Vorteil, wenn der maximale Schwenkwinkel bzw. der maximale Verschiebeweg bezogen auf eine Nullstellung der Tischplatte in Abhängigkeit von einem Ausgangssignal des Kraftmesssystems steuerbar ist. Dies gibt die Möglichkeit, je nach Patientengewicht den maximalen Schwenkwinkel bzw. maximalen Verschiebeweg zu begrenzen, so dass beim Verschwenken bzw. Verschieben der Tischplatte die Kippstabilität des Operationstisches keinesfalls beeinträchtigt wird. Weist der Patient nur ein verhältnismäßig geringes Gewicht auf, so kann auf Basis des Ausgangssignals des Kraftmesssystems ein größerer maximaler Schwenkwinkel bzw. ein größerer maximaler Verschiebeweg vorgegeben werden, als dies bei einem Patienten mit einem verhältnismäßig hohen Gewicht der Fall ist. Starr vorgegebene maximale Schwenkwinkel bzw. maximale Verschiebewege können somit entfallen, vielmehr wird der maximale Schwenkwinkel ebenso wie der maximale Verschiebeweg maßgeblich durch das Ausgangssignal des Kraftmesssystems bestimmt.
  • Vorzugsweise ist die Tischplatte mit der Tischsäule lösbar verbindbar. Die Tischplatte kann somit von der Tragsäule abgenommen und bei Bedarf auf dieser montiert werden. Dies gibt die Möglichkeit, den Patienten außerhalb des Operationssaales auf der Tischplatte zu betten. Anschließend kann die Tischplatte mit dem darauf gelagerten Patienten auf der Tragsäule montiert werden. Nach erfolgter Operation kann die Tischplatte mit dem Patienten wieder von der Tragsäule abgenommen und in einen Ruheraum überführt werden. Die Zahl der Umbettungen des Patienten kann dadurch verringert werden.
  • Das Kraftmesssystem ist vorzugsweise in die Tragsäule integriert. Dies ermöglicht es, für den Operationstisch an sich bekannte verschiedenartigste Tischplatten zu verwenden, die vorzugsweise mit der Tragsäule lösbar verbindbar sind. Mittels des Kraftmesssystems kann die von der Tischplatte und einem darauf befindlichen Patienten auf die Tragsäule ausgeübte Last und vorzugsweise auch die Lastverteilung ermittelt werden.
  • Die bei der Montage der Tischplatte auf die Tragsäule und dem Abnehmen der Tischplatte von der Tragsäule auftretenden seitlichen Kräfte und Momente an den Führungsflächen von Tischplatte und Tragsäule, die sich durch eine eventuelle Schiefstellung der Tischplatte aufgrund von ungünstigen Schwerpunktslagen ergeben, können durch das Kraftmesssystem ermittelt und von einer Steuereinheit des Operationstisches so verarbeitet werden, dass die Tragsäule in ihrem oberen Bereich derart verschwenkt wird, dass keine seitlichen Kräfte mehr auftreten. Dies erleichtert die Montage und das Abnehmen der Tischplatte auf der bzw. von der Tragsäule.
  • Günstig ist es, wenn die Tragsäule einen verschwenkbaren Säulenkopf aufweist. Der Säulenkopf kann beispielsweise relativ zu einem Säulenschaft in der Höhe verstellbar und/oder um eine horizontale Schwenkachse verschwenkbar sein. Auf dem Säulenkopf kann die Tischplatte montiert werden. Zumindest ein Sensor des Kraftmesssystems ist bevorzugt in den Säulenkopf integriert. Insbesondere kann vorgesehen sein, dass alle Sensoren des Kraftmesssystems und vorzugsweise auch dessen Messelektronik in den Säulenkopf integriert sind. Es kann beispielsweise vorgesehen sein, dass der Säulenkopf eine Kopfplatte aufweist, auf der die Tischplatte montierbar ist und die relativ zu einer Stützplatte der Tragsäule verschwenkbar und vorzugsweise in ihrer Höhe verstellbar ist. Das Kraftmesssystem ist bevorzugt zwischen der Kopfplatte und der Stützplatte angeordnet.
  • Von besonderem Vorteil ist es, wenn die Tischplatte über mehrere Stützelemente, vorzugsweise über drei Stützelemente, an der Stützplatte der Tragsäule gehalten ist, wobei die auf jedes Stützelement einwirkende Last mit Hilfe von mindestens einem Sensor des Kraftmesssystems erfassbar ist. Das Kraftmesssystem weist somit mehrere Sensoren auf, die die auf die Stützelemente einwirkende Last erfassen. Die ermöglicht zum einen, die gesamte Last, die auf die Stützplatte einwirkt, mittels des Kraftmesssystems zu bestimmen, zum anderen kann eine Lastverteilung erfasst werden. Die Bestimmung einer derartigen Lastverteilung ist insbesondere dann von Vorteil, wenn die Tischplatte verschiebbar und/oder verschwenkbar ist, denn durch die Bestimmung der Lastverteilung kann rechtzeitig einer Beeinträchtigung der Kippstabilität des Operationstisches entgegengewirkt werden.
  • Vorzugsweise sind die Sensoren des Kraftmesssystems in die Stützelemente integriert. Der für das Kraftmesssystem erforderliche Bauraum kann somit sehr gering gehalten werden. Insbesondere ist es möglich, bestehende Operationstische mit einem Kraftmesssystem nachzurüsten.
  • Es kann vorgesehen sein, dass in jedes Stützelement ein einziger Sensor des Kraftmesssystems integriert ist. Von besonderem Vorteil ist es jedoch, wenn jedes Stützelement mindestens zwei Sensoren, vorzugsweise mindestens vier Sensoren aufweist, denn dadurch kann die Messgenauigkeit, die mittels des Kraftmesssystems erzielbar ist, gesteigert werden.
  • Bei einer besonders bevorzugten Ausgestaltung des erfindungsgemäßen Operationstisches sind die Stützelemente als Kardangelenke ausgebildet mit zwei Gelenkbolzen, die um parallel bzw. senkrecht zur Tischplattenlängsachse ausgerichtete Schwenkachsen verschwenkbar sind, wobei die auf mindestens einen Gelenkbolzen einwirkende Last mit Hilfe von mindestens einem Sensor des Kraftmesssystems erfassbar ist. Mittels der Kardangelenke kann die Tischplatte sowohl um eine parallel zur Tischplattenlängsachse als auch um eine senkrecht zur Tischplattenlängsachse ausgerichtete Schwenkachse verschwenkt werden. Hierzu kommen vorzugsweise drei Kardangelenke zum Einsatz. Bevorzugt sind die Kardangelenke jeweils an einer Hubeinrichtung gehalten, so dass sie in ihrer Höhe relativ zu einer Stützplatte der Tragsäule verstellbar sind. Die Hubeinrichtung kann beispielsweise manuell, elektrisch, hydraulisch oder pneumatisch antreibbar sein.
  • Bevorzugt sind jedem Kardangelenk mehrere Sensoren des Kraftmesssystems, insbesondere zwei oder vier Sensoren zugeordnet. Wie bereits erläutert, kann dadurch die Messgenauigkeit, die mittels des Kraftmesssystems erzielbar ist, verbessert werden.
  • Bei einer bevorzugten Ausgestaltung weist das Kraftmesssystem Sensoren zur Erfassung einer elektrischen Widerstandsänderung auf. Die elektrische Widerstandsänderung kann durch eine mechanische Last hervorgerufen werden, die auf ein mit den Sensoren gekoppeltes Bauteil des Operationstisches einwirkt. Durch Erfassung der elektrischen Widerstandsänderung kann somit die einwirkende mechanische Last bestimmt werden. Die Sensoren können ein elektrisches Signal bereitstellen, das von einer Auswerteelektronik, an die die Sensoren angeschlossen sind, ausgewertet werden kann.
  • Die Sensoren können beispielsweise in Form von Dehnungsmessstreifen ausgestaltet sein. Es handelt sich hierbei um vorzugsweise flächig ausgebildete Sensoren, die an einem Bauteil des Operationstisches festgelegt werden, vorzugsweise mit dem Bauteil verklebt werden, und deren elektrischer Widerstand sich bei einer Deformation des Bauteils ändert. Die Deformation wird durch die mechanische Belastung hervorgerufen und kann in Form einer Änderung des elektrischen Widerstandes des Sensors erfasst werden.
  • Vorzugsweise sind jeweils zwei Dehnungsmessstreifen parallel zueinander ausgerichtet. Es hat sich gezeigt, dass dadurch die Messgenauigkeit erhöht werden kann.
  • Besonders günstig ist es, wenn jeweils vier Dehnungsmessstreifen zu einer Wheatstone'schen Brückenschaltung zusammengefasst sind. Die Messgenauigkeit kann dadurch zusätzlich erhöht werden, insbesondere können Temperatureinflüsse kompensiert werden. Derartige Wheatstone'sche Brückenschaltungen sind dem Fachmann an sich bekannt. Sie weisen jeweils zwei Widerstandspaare auf, die parallel zueinander geschaltet sind, wobei jedes Widerstandspaar zwei in Reihe geschaltete elektrische Widerstände aufweist.
  • Alternativ oder ergänzend zu elektrischen Sensoren weist das Kraftmesssystem bei einer besonders bevorzugten Ausgestaltung des erfindungsgemäßen Operationstisches magnetfeldempfindliche Sensoren auf zur Erfassung einer Magnetfeldänderung. Derartige Sensoren ermöglichen eine berührungslose Messwerterfassung. Dies ermöglicht es beispielsweise, eine mechanische Last dadurch zu bestimmen, dass die von der Last hervorgerufene Änderung eines Magnetfeldes erfasst wird. Die Bestimmung der mechanischen Last erfolgt somit auf dem Prinzip der Magnetostriktion, d. h. das Messprinzip beruht darauf, dass ein Permanentmagnet bei einer mechanischen Deformation eine Änderung des von ihm hervorgerufenen Magnetfeldes bewirkt. Diese Magnetfeldänderung kann mittels der magnetfeldempfindlichen Sensoren erfasst werden, wobei die Sensoren ein elektrisches Signal ausgeben in Abhängigkeit von der durch die mechanische Last hervorgerufenen Magnetfeldänderung.
  • Günstig ist es, wenn zumindest ein magnetfeldempfindlicher Sensor in Form einer Spule ausgestaltet ist. Die Spule kann eine hoch auflösende magnetische Abtasteinheit ausbilden, die Änderungen eines Magnetfeldes präzise erfasst.
  • Bei einer bevorzugten Ausgestaltung ist dem mindestens einen magnetfeldempfindlichen Sensor ein magnetisch kodiertes ferromagnetisches Material zugeordnet, das durch das Gewicht der Tischplatte mit dem darauf befindlichen Patienten mechanisch belastbar ist. Als ferromagnetisches Material kann beispielsweise eine aus einem ferromagnetischen Stahl gefertigte Welle zum Einsatz kommen, die einer mechanischen Belastung unterliegt aufgrund des Gewichtes des Patienten. Die Belastung führt zu einer geringfügigen Verformung der Welle in Abhängigkeit von der Größe des Patientengewichtes. Da die Welle magnetisch kodiert ist, ändert sich in Abhängigkeit von der auf die Welle einwirkenden magnetischen Last das von dieser erzeugte Magnetfeld, und diese Magnetfeldänderung kann von dem mindestens einen magnetfeldempfindlichen Sensor erfasst werden. Zur Bereitstellung eines Magnetfeldes wird das ferromagnetische Material magnetisch kodiert, indem es lokal magnetisiert wird. Dem Material wird somit eine magnetische Struktur eingeprägt, die es dauerhaft speichert. Die eingeprägte Magnetstruktur führt zur Ausbildung eines Magnetfeldes, das sich je nach einwirkender mechanischer Last ändert.
  • Von Vorteil ist es, wenn das ferromagnetische Material als Hohlwelle ausgestaltet ist und die zugeordneten magnetfeldempfindlichen Sensoren innerhalb der Hohlwelle angeordnet sind. Dadurch kann der für das Kraftmesssystem erforderliche Bauraum sehr stark reduziert werden.
  • Günstigerweise ist in der Hohlwelle ein Signalverarbeitungsglied angeordnet, an das die in der Hohlwelle positionierten Sensoren angeschlossen sind.
  • Bei einer besonders bevorzugten Ausgestaltung ist das ferromagnetische Material als magnetisch kodierter Gelenkbolzen eines Kardangelenkes ausgebildet. Mittels des Kardangelenkes kann, wie bereits erläutert, die Tischplatte an der Tragsäule gehalten sein. Die von der Tischplatte und dem auf dieser befindlichen Patienten ausgeübte mechanische Last wird somit von den magnetisch kodierten Gelenkbolzen der Kardangelenke aufgenommen, und mittels in den Gelenkbolzen angeordneter Sensoren wird in Abhängigkeit von der einwirkenden mechanischen Last ein elektrisches Signal ausgegeben. Auf Grundlage dieses Signales kann das Patientengewicht und die Verteilung der mechanischen Last bestimmt werden. Außerdem kann auf Basis dieses Signales der maximale Schwenkwinkel und der maximale Verschiebeweg ausgehend von einer Nullstellung der Tischplatte auf konstruktiv einfache Weise bestimmt werden.
  • Die nachfolgende Beschreibung bevorzugter Ausgestaltungen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen:
  • Figur 1:
    eine teilweise aufgetrennte Seitenansicht eines erfindungsge- mäßen Operationstisches mit einer Tischplatte und einer Trag- säule;
    Figur 2:
    eine Detailansicht eines Säulenkopfes der Tragsäule aus Figur 1;
    Figur 3:
    eine perspektivische Darstellung eines Kardangelenkes des Säulenkopfes aus Figur 2;
    Figur 4:
    eine vereinfachte Darstellung des Kardangelenkes aus Figur 3 mit Sensoren eines Kraftmesssystems gemäß einer ersten Ausfüh- rungsform und
    Figur 5:
    eine teilweise aufgetrennte vereinfachte Seitenansicht des Kardangelenkes aus Figur 3 mit Sensoren eines Kraftmess- systems gemäß einer zweiten Ausführungsform.
  • In Figur 1 ist schematisch ein erfindungsgemäßer Operationstisch 10 dargestellt, der eine in ihrer Höhe verstellbare Tragsäule 12 aufweist, auf der eine Tischplatte 14 lösbar gehalten ist. Die Tischplatte 14 ist mehrteilig ausgestaltet, sie umfasst ein an der Tragsäule 12 gelagertes Basissegment 15, an dem einerseits ein Beinsegment 16 und andererseits ein Rückensegment 17 jeweils um eine horizontale Verschwenkachse verschwenkbar gehalten sind. Am Rückensegment 17 ist ein Kopfsegment 18 verschwenkbar gehalten. Alternativ könnte die Tischplatte 14 selbstverständlich auch einteilig ausgestaltet sein.
  • Die Tragsäule 12 umfasst eine Grundplatte 20, an der ein Säulenschaft 21 festgelegt ist, der oberseitig einen Säulenkopf 22 trägt. Der Säulenkopf 22 ist in Figur 2 schematisch dargestellt. Am Säulenkopf 22 ist das Basissegment 15 der Tischplatte 14 lösbar gehalten.
  • Wie insbesondere aus Figur 2 deutlich wird, umfasst der Säulenkopf 22 eine Kopfplatte 24, an der unterseitig drei Kardangelenke 27, 28 und 29 angeordnet sind. Die Kardangelenke 27, 28 und 29 sind jeweils am freien Ende einer Spindel 31, 32 bzw. 33 gehalten, die mittels eines an sich bekannten und deshalb in der Zeichnung nicht dargestellten Antriebselementes in ihrer Höhe verstellbar ist. Die Antriebselemente sind in den Säulenschaft 21 integriert und an einer Stützplatte 35 des Säulenschaftes 21 fixiert. Durch Anheben der Spindeln 31, 32 und 33 kann die Kopfplatte 24 relativ zur Stützplatte 35 angehoben werden. Werden die Spindeln 31, 32 und 33 in gleichem Ausmaß angehoben, so wird die Tischplatte 14 bei gleich bleibender Ausrichtung lediglich in ihrer Höhe verstellt. Werden die Spindeln 31, 32 und 33 jedoch ungleichmäßig angehoben, so führt die Kopfplatte 24 und die an ihr gehaltene Tischplatte 14 eine Schwenkbewegung aus, wobei die Tischplatte 14 wahlweise um eine parallel zur Tischplattenlängsachse und um eine senkrecht zur Tischplattenlängsachse ausgerichtete Schwenkachse verschwenkt werden kann.
  • In der Figur 2 zur Erzielung einer besseren Übersicht nicht dargestellt ist eine zusätzliche Verdrehsicherung der Kopfplatte relativ zur Stützplatte 35. Derartige Verdrehsicherungen sind dem Fachmann bekannt und bedürfen daher vorliegend keiner näheren Erläuterung.
  • Die Kardangelenke 27, 28 und 29 sind identisch ausgestaltet. Sie weisen jeweils einen ersten Gelenkbolzen 37 auf, der um eine senkrecht zur Tischplattenlängsachse ausgerichtete Verschwenkachse in einem U-förmigen ersten Lagerbock 38 verschwenkbar gelagert ist. Der erste Lagerbock 38 ist am freien Ende der jeweiligen Spindel 31, 32 bzw. 33 festgelegt. Zusätzlich weisen die Kardangelenke 27, 28 und 29 jeweils einen zweiten Gelenkbolzen 40 auf, der auf dem ersten Gelenkbolzen 37 aufsitzt und in einem zweiten Lagerbock 41, der ebenfalls U-förmig ausgebildet ist, um eine parallel zur Tischplattenlängsachse ausgerichtete Schwenkachse verschwenkbar gelagert ist. Der zweite Lagerbock 41 ist an der Unterseite der Kopfplatte 24 festgelegt.
  • Die Kardangelenke 27, 28 und 29 bilden jeweils ein Stützelement aus, über das die Tischplatte 14 an der Tragsäule 12 gehalten ist. Um die auf die Kardangelenke 27, 28 und 29 jeweils einwirkende mechanische Last zu erfassen, sind in die Kardangelenke 27, 28 und 29 Sensoren integriert, die in Kombination mit einer im Säulenschaft 21, vorzugsweise zwischen der Kopfplatte 24 und der Stützplatte 35, angeordneten Messelektronik ein Kraftmesssystem ausbilden, mit dem das Gewicht eines auf der Tischplatte 14 befindlichen Patienten bestimmt werden kann.
  • In der in Figur 4 dargestellten Ausführungsform sind jedem Kardangelenk 27, 28 und 29 vier Sensoren in Form von Dehnungsmessstreifen zugeordnet, wobei in Figur 4 nur zwei Dehnungsmessstreifen 43, 44 sichtbar sind. Jeweils zwei Dehnungsmessstreifen sind parallel zueinander am ersten Gelenkbolzen 37 jedes Kardangelenkes 27, 28 und 29 mittels einer Klebeverbindung fixiert, wobei der zweite Gelenkbolzen 40 zwischen den beiden Dehnungsmessstreifenpaaren positioniert ist. Der erste Gelenkbolzen 37 trägt somit insgesamt vier Dehnungsmessstreifen, die elektrisch in üblicher Weise in Form einer Wheatstone'schen Messbrücke zusammengeschaltet sind. Mittels der Dehnungsmessstreifen 43, 44 kann die auf den ersten Gelenkbolzen 37 einwirkende mechanische Last bestimmt werden. Da jedem Kardangelenk 27, 28 und 29 entsprechende Dehnungsmessstreifen zugeordnet sind, kann somit zum einen die Gesamtlast, die über die Kardangelenke 27, 28 und 29 auf den Säulenschaft 21 einwirkt, bestimmt werden, und darüber hinaus kann die Lastverteilung erfasst werden. Die einwirkende Last ergibt sich aus dem Gewicht der Tischplatte 14 und der Kopfplatte 24 sowie aus dem Gewicht des auf der Tischplatte 14 befindlichen Patienten. Somit kann das Patientengewicht aus der Gesamtlast ermittelt werden.
  • Die Dehnungsmessstreifen 43, 44, die jeweils einem ersten Gelenkbolzen 37 zugeordnet sind, sind über Anschlussdrähte, die in der Zeichnung zur Erzielung einer besseren Übersicht nicht dargestellt sind, mit einem im Innern des als Hohlwelle ausgebildeten ersten Gelenkbolzens 37 angeordneten Signalverarbeitungsglied verbunden. Von diesem Signalverarbeitungsglied führt ein Anschlusskabel 46 zu der bereits erwähnten zentralen Messelektronik, die beispielsweise im Säulenschaft 21 angeordnet ist. Basierend auf den Signalen der Signalverarbeitungsglieder der Kardangelenke 27, 28 und 29 wird von der Messelektronik ein Ausgangssignal bereitgestellt in Abhängigkeit von der auf die Kardangelenke 27, 28 und 29 einwirkenden mechanischen Last. In Abhängigkeit von diesem Ausgangssignal wird von einer zentralen Steuereinheit des Operationstisches 10 der maximale Schwenkwinkel, um den die Tischplatte 14 verschwenkt werden kann, ebenso bestimmt wie der maximale Verschiebeweg, um den die Tischplatte 14 relativ zur Tragsäule 12 in Tischplattenlängsrichtung oder auch quer zur Tischplattenlängsrichtung verschoben werden kann. Maximaler Verschwenkwinkel und maximaler Verschiebeweg der Tischplatte 14 sind somit in Abhängigkeit vom Gewicht des Patienten bestimmbar. Je größer das Patientengewicht, desto geringer werden der maximale Schwenkwinkel und der maximale Verschiebeweg gewählt, um in jedem Fall eine optimale Stabilität des Operationstisches 10 zu gewährleisten.
  • In Figur 5 ist eine zweite Ausführungsform eines Kraftmesssystems dargestellt, das beim Operationstisch 10 zum Einsatz kommen kann. Auch bei dieser Ausgestaltung ist der erste Gelenkbolzen 37 der Kardangelenke 27, 28 und 29 jeweils als Hohlwelle ausgebildet, die in ihrem Inneren ein Signalverarbeitungsglied 49 trägt, von dem ein Anschlusskabel 50 nach außen führt. Über das Anschlusskabel 50 ist das Signalverarbeitungsglied 49 mit der zentralen Messelektronik des Operationstisches 10, die beispielsweise im Säulenschaft 21 angeordnet ist, verbunden. Bei der in Figur 5 dargestellten Ausführungsform ist der erste Gelenkbolzen 37 der Kardangelenke 27, 28 und 29 aus einem ferromagnetischen Material gefertigt, vorzugsweise kommt ein industrieller Stahl zum Einsatz, der zwischen 1,5 % und 8 % Nickel enthält. Der erste Gelenkbolzen 37 weist zu beiden Seiten des zweiten Gelenkbolzens 40 jeweils eine magnetische Kodierung auf, d. h. zu beiden Seiten des zweiten Gelenkbolzens 40 wurde der ferromagnetische erste Gelenkbolzen 37 magnetisch kodiert, indem ihm eine magnetische Struktur eingeprägt wurde durch Anlegen eines sehr starken äußeren Magnetfeldes. Diese magnetische Struktur behält der erste Gelenkbolzen 37 dauerhaft bei. Im Bereich der magnetischen Kodierung sind innerhalb des ersten Gelenkbolzens 37 zu beiden Seiten des zweiten Gelenkbolzens 40 jeweils vier magnetfeldempfindliche Sensoren in Form von Spulen angeordnet, die jeweils mit dem Signalverarbeitungsglied 49 verbunden sind. In Figur 5 sind zur Erzielung einer besseren Übersicht zu beiden Seiten des zweiten Gelenkbolzens 40 jeweils drei Spulen 53, 54 und 55 dargestellt. Wirkt auf den magnetisch kodierten ersten Gelenkbolzen 37 eine mechanische Last, so führt dies zu einer Änderung des von den Spulen 53, 54 und 55 erfassbaren Magnetfeldes. Die Magnetfeldänderung wird in Form eines elektrischen Signals über das Anschlusskabel 50 an die zentrale Messelektronik übertragen. Diese ermittelt aus den auf die einzelnen Kardangelenke 27, 28 und 29 einwirkenden Lasten das Gewicht des auf der Tischplatte 14 befindlichen Patienten sowie die Lastverteilung.
  • Bei der in Figur 5 dargestellten Ausführungsform wird die mechanische Last berührungslos mit sehr hoher Messgenauigkeit erfasst. Durch den Einsatz von Hohlwellen für den ersten Gelenkbolzen 37 erfordert das Kraftmesssystem keinen zusätzlichen Bauraum und eignet sich daher auch zur Nachrüstung bestehender Operationstische. Wie bereits bei dem unter Bezugnahme auf Figur 4 dargestellten Kraftmesssystem kann auch mittels der in Figur 5 dargestellten Ausgestaltung nicht nur das Patientengewicht bestimmt werden, sondern zusätzlich können in Abhängigkeit vom Patientengewicht ein maximaler Verschwenkwinkel und ein maximaler Verschiebeweg, ausgehend von der in Figur 1 dargestellten Nullstellung der Tischplatte 14, bestimmt werden.

Claims (22)

  1. Operationstisch mit einer Tragsäule (12) und einer auf der Tragsäule (12) gelagerten Tischplatte (14), dadurch gekennzeichnet, dass der Operationstisch (10) ein Kraftmesssystem zur Bestimmung des Gewichtes der Tischplatte (14) und eines auf der Tischplatte (14) befindlichen Patienten aufweist.
  2. Operationstisch nach Anspruch 1, dadurch gekennzeichnet, dass mittels des Kraftmesssystems die Schwerpunktlage der Tischplatte mit dem darauf befindlichen Patienten bestimmbar ist.
  3. Operationstisch nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kraftmesssystem mehrere im Abstand zueinander angeordnete Sensoren (43, 44; 53, 54, 55) aufweist, die mit einer zentralen Messelektronik verbunden sind.
  4. Operationstisch nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Tischplatte (14) verschwenkbar und/oder verschiebbar ist, wobei der maximale Schwenkwinkel bzw. der maximale Verschiebeweg bezogen auf eine Nullstellung der Tischplatte (14) in Abhängigkeit von einem Ausgangssignal des Kraftmesssystems steuerbar ist.
  5. Operationstisch nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Tischplatte (14) mit der Tragsäule (12) lösbar verbindbar ist.
  6. Operationstisch nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftmesssystem in die Tragsäule (12) integriert ist.
  7. Operationstisch nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Tragsäule (12) einen verschwenkbaren Säulenkopf (22) aufweist, in den zumindest ein Sensor (43, 44; 53, 54, 55) des Kraftmesssystems integriert ist.
  8. Operationstisch nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Tischplatte (14) über mehrere Stützelemente (27, 28, 29) an einer Stützplatte (35) der Tragsäule (12) gehalten ist, wobei die auf jedes Stützelement (27, 28, 29) einwirkende Last mit Hilfe von mindestens einem Sensor (43, 33; 53, 54, 55) des Kraftmesssystems erfassbar ist.
  9. Operationstisch nach Anspruch 8, dadurch gekennzeichnet, dass die Sensoren (43, 44; 53, 54, 55) in die Stützelemente (27, 28, 29) integriert sind.
  10. Operationstisch nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Stützelemente jeweils als Kardangelenk (27, 28, 29) ausgestaltet sind mit zwei Gelenkbolzen (37, 40), die um parallel bzw. senkrecht zur Tischplattenlängsachse ausgerichtete Schwenkachsen verschwenkbar sind, wobei die auf mindestens einen Gelenkbolzen (37) einwirkende Last mit Hilfe von mindestens einem Sensor (43, 44; 53, 54, 55) erfassbar ist.
  11. Operationstisch nach Anspruch 10, dadurch gekennzeichnet, dass jedem Kardangelenk (27, 28, 29) mehrere Sensoren (43, 44; 53, 54, 55) zugeordnet sind.
  12. Operationstisch nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass jedem Kardangelenk (27, 28, 29) mindestens vier Sensoren (43, 44; 53, 54, 55) zugeordnet sind.
  13. Operationstisch nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftmesssystem Sensoren (43, 44) zur Erfassung einer elektrischen Widerstandsänderung aufweist.
  14. Operationstisch nach Anspruch 13, dadurch gekennzeichnet, dass zumindest ein Sensor in Form eines Dehnungsmessstreifens (43, 44) ausgestaltet ist.
  15. Operationstisch nach Anspruch 14, dadurch gekennzeichnet, dass jeweils zwei Dehnungsmessstreifen parallel zueinander ausgerichtet sind.
  16. Operationstisch nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass jeweils vier Dehnungsmessstreifen zu einer Wheatstone'schen Brückenschaltung zusammengefasst sind.
  17. Operationstisch nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftmesssystem magnetfeldempfindliche Sensoren (53, 54, 55) zur Erfassung einer Magnetfeldänderung aufweist.
  18. Operationstisch nach Anspruch 17, dadurch gekennzeichnet, dass zumindest ein magnetfeldempfindlicher Sensor in Form einer Spule (53, 54, 55) ausgestaltet ist.
  19. Operationstisch nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass dem mindestens einen magnetfeldempfindlichen Sensor (53, 54, 55) ein magnetisch kodiertes ferromagnetisches Material zugeordnet ist, das durch das Gewicht der Tischplatte (14) mit dem darauf befindlichen Patienten mechanisch belastbar ist.
  20. Operationstisch nach Anspruch 19, dadurch gekennzeichnet, dass das ferromagnetische Material als Hohlwelle (37) ausgestaltet ist und die zugeordneten magnetfeldempfindlichen Sensoren (53, 54, 55) innerhalb der Hohlwelle (37) angeordnet sind.
  21. Operationstisch nach Anspruch 20, dadurch gekennzeichnet, dass in der Hohlwelle (37) ein Signalverarbeitungsglied (49) angeordnet ist, an das die in der Hohlwelle (37) angeordneten magnetfeldempfindlichen Sensoren (53, 54, 55) angeschlossen sind.
  22. Operationstisch nach Anspruch 19, 20 oder 21, dadurch gekennzeichnet, dass das ferromagnetische Material einen magnetisch kodierten Gelenkbolzen (37) eines Kardangelenkes (27; 28; 29) ausbildet.
EP07015262A 2007-08-03 2007-08-03 Operationstisch Active EP2020217B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP07015262A EP2020217B1 (de) 2007-08-03 2007-08-03 Operationstisch
DE502007007063T DE502007007063D1 (de) 2007-08-03 2007-08-03 Operationstisch
JP2008185748A JP5688873B2 (ja) 2007-08-03 2008-07-17 手術台
US12/183,309 US7784126B2 (en) 2007-08-03 2008-07-31 Operating table
CN2008101450217A CN101357096B (zh) 2007-08-03 2008-08-01 手术台
EP08013830A EP2020218B1 (de) 2007-08-03 2008-08-01 Verfahren zur Ausrichtung von Koppelelementen eines Patientenlagerungssystems sowie Patientenlagerungssystem zur Durchführung des Verfahrens
HK09103560.5A HK1125285A1 (en) 2007-08-03 2009-04-17 Operating table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07015262A EP2020217B1 (de) 2007-08-03 2007-08-03 Operationstisch

Publications (2)

Publication Number Publication Date
EP2020217A1 true EP2020217A1 (de) 2009-02-04
EP2020217B1 EP2020217B1 (de) 2011-04-27

Family

ID=38872070

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07015262A Active EP2020217B1 (de) 2007-08-03 2007-08-03 Operationstisch
EP08013830A Active EP2020218B1 (de) 2007-08-03 2008-08-01 Verfahren zur Ausrichtung von Koppelelementen eines Patientenlagerungssystems sowie Patientenlagerungssystem zur Durchführung des Verfahrens

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08013830A Active EP2020218B1 (de) 2007-08-03 2008-08-01 Verfahren zur Ausrichtung von Koppelelementen eines Patientenlagerungssystems sowie Patientenlagerungssystem zur Durchführung des Verfahrens

Country Status (6)

Country Link
US (1) US7784126B2 (de)
EP (2) EP2020217B1 (de)
JP (1) JP5688873B2 (de)
CN (1) CN101357096B (de)
DE (1) DE502007007063D1 (de)
HK (1) HK1125285A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246025A2 (de) * 2009-04-30 2010-11-03 Hill-Rom Services, Inc. Übertragungshilfsvorrichtung
DE102010051126A1 (de) * 2010-11-11 2012-05-16 Berchtold Holding Gmbh Operationstisch
DE102013223486A1 (de) * 2013-11-18 2015-05-21 Berchtold Holding AG Operationstisch
EP3616667A1 (de) * 2018-09-03 2020-03-04 TRUMPF Medizin Systeme GmbH + Co. KG Operationstisch
DE102021107833A1 (de) 2021-03-29 2022-09-29 MAQUET GmbH Operationstisch mit Lastsensoranordnung

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0802030L (sv) * 2008-09-24 2009-11-17 Swedestyle Ab Anordning för montering av en bordsskiva på ett stativ med drivorgan
US8931124B2 (en) 2008-12-16 2015-01-13 Medsell Pty. Ltd. Surgical table having overload detection means
DE102009018270A1 (de) * 2009-04-21 2010-10-28 Berchtold Holding Gmbh Operationstisch
DE102011080691A1 (de) * 2011-08-09 2013-02-14 Siemens Aktiengesellschaft Patiententisch zur Lagerung eines Patienten
US8978181B2 (en) 2012-03-21 2015-03-17 Midmark Corporation Medical examination table with integrated scale
US9289343B2 (en) 2012-03-23 2016-03-22 Trumpf Medizin Systeme Gmbh + Co. Kg Resilient side rails for medical tables
US8997281B2 (en) 2012-03-23 2015-04-07 Trumpf Medizin Systeme Gmbh + Co. Kg Operating table top assemblies and related devices
US9730851B2 (en) 2012-09-07 2017-08-15 Allen Medical Systems, Inc. Surgical support system
US9107792B2 (en) 2012-09-07 2015-08-18 Allen Medical Systems, Inc. Carriage for a surgical boot of a hip distractor
JP6710683B2 (ja) * 2014-06-26 2020-06-17 フレンケン・ユーロプ・ベスローテン・フェンノートシャップFrencken Europe B.V. 患者支持システムおよびそのような患者支持システム用のレベリングシステム
DE102015100542B4 (de) * 2015-01-15 2018-08-30 MAQUET GmbH Operationstischsäule
DE102015109078B4 (de) * 2015-06-09 2019-01-03 MAQUET GmbH Operationstisch
JP6247670B2 (ja) * 2015-09-02 2017-12-13 ミズホ株式会社 医療装置
EP3167765B1 (de) 2015-11-13 2023-08-23 Hill-Rom Services, Inc. Personenträgervorrichtung mit kühlungsmerkmalen
MX2018011935A (es) * 2016-04-01 2019-01-15 Utopix Medical Llc Cama de cuidado total moldeable con punta oscilante.
DE102016217803B4 (de) * 2016-09-16 2019-03-14 Trumpf Medizin Systeme Gmbh + Co. Kg Patientenlagerungsplatte mit Zubehörteil
KR102284330B1 (ko) * 2016-11-28 2021-08-05 버브 서지컬 인크. 원하지 않는 진동을 감소시키기 위한 로봇 수술 시스템
US10842288B2 (en) 2017-01-31 2020-11-24 Hill-Rom Services, Inc. Person support systems with cooling features
US11478392B2 (en) 2017-02-27 2022-10-25 Mizuho Corporation Medical device
US10806532B2 (en) 2017-05-24 2020-10-20 KindHeart, Inc. Surgical simulation system using force sensing and optical tracking and robotic surgery system
US10945905B2 (en) 2017-05-31 2021-03-16 Mizuho Osi System, apparatus and method for supporting and/or positioning a patient before, during, or after a medical procedure
CN108969269B (zh) * 2018-06-08 2020-12-11 南京瑞杨医用科技有限公司 一种多功能手术床
EP3659569B1 (de) * 2018-11-29 2021-09-01 TRUMPF Medizin Systeme GmbH + Co. KG Operationstisch und verfahren zur bedienung des operationstisches
EP3818969A1 (de) * 2019-11-07 2021-05-12 TRUMPF Medizin Systeme GmbH + Co. KG Operationstisch, system des operationstischs und bewertungseinheit sowie verfahren zum betrieb des systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869266A (en) 1985-12-31 1989-09-26 Stonecrest Systems, Inc. Patient monitoring unit for surgical use
DE19612091A1 (de) * 1995-09-21 1997-03-27 Knapp Juergen Michael Hubsäule
WO1999025303A1 (en) * 1997-11-19 1999-05-27 Officina Di Protesi Trento S.P.A. Multifunctional operating table
EP1634558A1 (de) 2004-09-08 2006-03-15 Eckhard Bangemann Pflegebett
EP1635153A2 (de) 2004-09-13 2006-03-15 Hill-Rom Services, Inc. Kraftmesszelle für ein Krankenbett.
WO2006089399A2 (en) 2005-02-23 2006-08-31 Stryker Canadian Management Inc. Hospital patient support

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048744A (ja) * 1983-08-26 1985-03-16 オ−ジ−技研株式会社 荷重設定型チルトテ−ブル
US4769584A (en) * 1985-06-18 1988-09-06 Thomas J. Ring Electronic controller for therapeutic table
US5022275A (en) * 1988-06-15 1991-06-11 Mitsubishi Denki Kabushiki Kaisha Strain measuring device employing magnetostriction and having a magnetic shielding layer
GB8925950D0 (en) * 1989-11-16 1990-01-04 Fulmer Systems Ltd Improvements in or relating to a transfer trolley
DE4423402C2 (de) * 1994-07-04 1999-12-30 Maquet Ag Stützsäule zur Halterung einer Patientenlagerfläche
DE4423374C2 (de) * 1994-07-04 2000-01-05 Maquet Ag Verbindungseinrichtung zum wahlweisen Verbinden einer Patientenlagerfläche mit der Stützsäule eines Operationstisches
JP3322632B2 (ja) * 1998-04-08 2002-09-09 大和製衡株式会社 寝台装置
JP2001129039A (ja) * 1999-11-08 2001-05-15 Mizuho Co Ltd 手術台
US6640363B1 (en) * 2000-10-16 2003-11-04 Ge Medical Systems Global Technology Company, Llc Mobile imaging table pivot mechanism
US6822571B2 (en) * 2001-11-15 2004-11-23 Stryker Corporation Patient movement detection system for a bed including a load cell mounting assembly
JP3931104B2 (ja) * 2002-03-29 2007-06-13 株式会社ケープ 三軸荷重計測センサ
DE10261759A1 (de) * 2002-12-19 2004-07-15 Trumpf Medizin Systeme Gmbh Patientenlagerungstisch
JP5108776B2 (ja) * 2005-10-11 2012-12-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ベッドにいる患者の複数の異なるパラメータをモニタリングするシステム
DE102005054224A1 (de) 2005-11-14 2007-05-16 Maquet Gmbh & Co Kg Patientenlagersystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869266A (en) 1985-12-31 1989-09-26 Stonecrest Systems, Inc. Patient monitoring unit for surgical use
DE19612091A1 (de) * 1995-09-21 1997-03-27 Knapp Juergen Michael Hubsäule
WO1999025303A1 (en) * 1997-11-19 1999-05-27 Officina Di Protesi Trento S.P.A. Multifunctional operating table
EP1634558A1 (de) 2004-09-08 2006-03-15 Eckhard Bangemann Pflegebett
EP1635153A2 (de) 2004-09-13 2006-03-15 Hill-Rom Services, Inc. Kraftmesszelle für ein Krankenbett.
WO2006089399A2 (en) 2005-02-23 2006-08-31 Stryker Canadian Management Inc. Hospital patient support

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246025A2 (de) * 2009-04-30 2010-11-03 Hill-Rom Services, Inc. Übertragungshilfsvorrichtung
DE102010051126A1 (de) * 2010-11-11 2012-05-16 Berchtold Holding Gmbh Operationstisch
EP2452664A3 (de) * 2010-11-11 2012-11-21 Berchtold Holding GmbH Operationstisch
US8657243B2 (en) 2010-11-11 2014-02-25 Silvio Marugg Operating table
DE102013223486A1 (de) * 2013-11-18 2015-05-21 Berchtold Holding AG Operationstisch
EP3616667A1 (de) * 2018-09-03 2020-03-04 TRUMPF Medizin Systeme GmbH + Co. KG Operationstisch
US11583458B2 (en) 2018-09-03 2023-02-21 Trumpf Medizin Systeme Gmbh + Co. Kg Surgical table
DE102021107833A1 (de) 2021-03-29 2022-09-29 MAQUET GmbH Operationstisch mit Lastsensoranordnung
EP4306095A2 (de) 2021-03-29 2024-01-17 Maquet GmbH Operationstisch mit lastsensoranordnung

Also Published As

Publication number Publication date
US20090031497A1 (en) 2009-02-05
EP2020217B1 (de) 2011-04-27
JP5688873B2 (ja) 2015-03-25
EP2020218A1 (de) 2009-02-04
EP2020218B1 (de) 2012-05-02
DE502007007063D1 (de) 2011-06-09
HK1125285A1 (en) 2009-08-07
JP2009034501A (ja) 2009-02-19
CN101357096A (zh) 2009-02-04
CN101357096B (zh) 2012-07-04
US7784126B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
EP2020217B1 (de) Operationstisch
DE102007022326B4 (de) Koordinatenmessgerät zum Bestimmen von Raumkoordinaten an einem Messobjekt sowie Dreh-Schwenk-Mechanismus für ein solches Koordinatenmessgerät
EP1760446A2 (de) Fahrzeugfunktionsprüfstand
DE102010023033A1 (de) Medizinischer Tisch mit einem Liegenbrett
DE1301915B (de) Vorrichtung zum Pruefen der Fahrwerkgeometrie von Kraftfahrzeugen
EP2391874B1 (de) Flurförderzeug
EP2053345B1 (de) Messvorrichtung für schwere Werkstücke
DE102007019833B4 (de) Tastsystem zur Vermessung einer Oberfläche eines Werkstücks
DE2324685C2 (de) Fahrbare Einrichtung zur Feststellung der Höhenlage bzw. des Zustandes eines Gleises
DE102004041897A1 (de) Vorrichtung und Verfahren zur Positionsbestimmung bei medizinischen Untersuchungen
DE3610897C2 (de)
EP1695048B1 (de) Wägezelle
EP1540269B1 (de) Messgerät zum messen von verzahnungen und durchmessern bei rotationssymmetrischen bauteilen
DE3512935A1 (de) Mehrkoordinaten-messmaschine
CH635680A5 (de) Bremspruefstand fuer kraftfahrzeuge.
DE2130328C2 (de) Fahrbare Einrichtung zur Feststellung der Höhenlage bzw. des Zustandes eines Gleises
DD152409A1 (de) Einrichtung zur ankopplung eines messtisches an das grundgestell einer messmaschine
EP0899536B1 (de) Koordinatenmessgerät oder Bearbeitungsmaschine
DE2404467B2 (de) Zeichenmaschine
EP3631351B1 (de) Untersatz zur fahrzeugvermessung mit referenzsystem
EP1520156A1 (de) Taschenmesser mit wägeorgan
DE10312784B4 (de) Waage mit einer Lastplatte
DE10300087B4 (de) Messvorrichtung für Eckkräfte von Wagenkästen
DD296890A5 (de) Einrichtung zum ueberwachen des abstandes der stirnflaechen von schienen, beispielsweise bei dilatationsstoessen
DE19928151B4 (de) Meßtaster

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRUMPF MEDIZIN SYSTEME GMBH.

17P Request for examination filed

Effective date: 20090610

17Q First examination report despatched

Effective date: 20090708

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 502007007063

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007007063

Country of ref document: DE

Effective date: 20110609

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BERCHTOLD HOLDING GMBH

Effective date: 20120120

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007007063

Country of ref document: DE

Effective date: 20120120

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RIC2 Information provided on ipc code assigned after grant

Ipc: A61G 13/10 20060101ALI20130618BHEP

Ipc: A61G 13/08 20060101AFI20130618BHEP

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007007063

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BERCHTOLD HOLDING GMBH

Effective date: 20120120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502007007063

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20160701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007007063

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 17

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17