EP2015935A1 - Druckfester fluidbeaufschlagter körper - Google Patents

Druckfester fluidbeaufschlagter körper

Info

Publication number
EP2015935A1
EP2015935A1 EP07728989A EP07728989A EP2015935A1 EP 2015935 A1 EP2015935 A1 EP 2015935A1 EP 07728989 A EP07728989 A EP 07728989A EP 07728989 A EP07728989 A EP 07728989A EP 2015935 A1 EP2015935 A1 EP 2015935A1
Authority
EP
European Patent Office
Prior art keywords
fibers
layer
body according
pressure
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07728989A
Other languages
English (en)
French (fr)
Inventor
Karl Maile
Karl Berreth
Abram Lyutovich
Roland Weiss
Thorsten Scheibel
Marco Ebert
Martin Henrich
Andreas Lauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schunk Kohlenstofftechnik GmbH
Original Assignee
Schunk Kohlenstofftechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schunk Kohlenstofftechnik GmbH filed Critical Schunk Kohlenstofftechnik GmbH
Publication of EP2015935A1 publication Critical patent/EP2015935A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding

Definitions

  • the invention relates to a pressure-resistant fluidbeaufschlagbaren or -ten body such as pressure tube or pressure vessel.
  • the used bodies of the aforementioned steels withstand pressures of up to 300 bar. Higher temperatures and pressures are not feasible, because of the required resistance to the material creep behavior, not feasible for safety and economy.
  • the present invention has the object, a pressure-resistant fluidbeetzschlagbaren or -ten body such as pressure tube or pressure vessel in such a way that an increase in the process temperatures compared to bodies, which consist of steels, is achieved. Also, the body should be acted upon with pressures that are greater than those previously used are usually used.
  • a pressure-resistant fluidbeetzschlagbaren or -ten body such as pressure tube or pressure vessel consisting of a base body made of steel, a body surrounding the outside first layer of ceramic fiber composite material and one or more arranged on the first layer second layers made of fiber-reinforced ceramic and / or fiber-reinforced plastic.
  • Fluid-impingable bodies according to the invention make it possible to increase the process temperatures in comparison to bodies which consist solely of steels. Also, the possibility of pressurization is given, which is larger than usual. This is done according to the invention by the function separation tightness and emergency property of the steel pipe on the one hand and the high temperature creep resistance of the fiber composite material on the other.
  • a multi-layer body which, in particular in steam turbine processes, offers the possibility of increasing the process temperature by at least 200 ° C. compared with the materials used hitherto, so that the thermal efficiency in power stations can be increased by approximately 7%.
  • a corresponding composite tube shows good compressive and tensile stress in the axial and radial directions and a temperature resistance up to in the range between 900 0 C and 1000 0 C.
  • the existing of fiber composite material first layer acts insofar thermo-insulating, ie generates a temperature gradient of the steel pipe in the outer layer so that it does not oxidize. Also, an economical production is possible.
  • CMC ceramic fiber composites
  • the thermal fiber composites are characterized by an embedded between ceramic fibers, especially long fibers, embedded matrix of ceramic, which is reinforced by the ceramic fibers. Therefore one speaks of fiber-reinforced ceramics, composite ceramics or simply fiber ceramics.
  • matrix and fiber may consist of all known ceramic materials, in which context carbon is also treated as a ceramic material.
  • the fibers of the ceramic composite material are alumina, mullite, silicon carbide, zirconia and / or carbon fibers.
  • Mullite consists of mixed crystals of alumina and silica.
  • the ceramic fiber composite used is preferably SiC / SiC, C / C, C / SiC, Al 2 O 3 / Al 2 O 3 and / or mullite / mullite.
  • the material before the slash designates the fiber type and the material after the slash designates the matrix type.
  • Si precursors and various oxides, such as zirconia can be used as a matrix system for the ceramic fiber composite structure and siloxanes.
  • the first layer preferably has a thickness D 1 of 1 mm ⁇ D 1 ⁇ 20 mm and / or the second layer or layers has a total thickness D 2 of 0 mm ⁇ D 2 ⁇ 50 mm.
  • the fibers of the fiber-reinforced carbon can be arranged radially encircling and / or crossing on the first layer.
  • the fibers of the first layer can likewise be deposited radially on the base body and / or crossing each other.
  • the main body preferably consists of martensitic steel or high-alloy nickel-based alloy material.
  • wall thicknesses D 3 with 2 mm ⁇ D 3 ⁇ 50 mm are to be specified as preferred values, without thereby restricting the teaching according to the invention.
  • the fiber volume Fv of the first layer should be 30% ⁇ F v ⁇ 70%.
  • the porosity P of the first layer is 5% ⁇ P ⁇ 50%.
  • the ceramic fiber composite material can be produced by CVI (Chemical Vapor Infiltration) method, pyrolysis, in particular LPI (Liquid Polymer Infiltration) method or by chemical reaction such as LSI (Liquid Silicon Infiltration) method.
  • CVI Chemical Vapor Infiltration
  • LPI Liquid Polymer Infiltration
  • LSI Liquid Silicon Infiltration
  • Si-based precursor is used as the matrix material, to then be converted into SiC by pyrolysis.
  • Si-based precursors have the advantage that they are readily hardenable and pyrolyzable, so that problem-free production is ensured.
  • the invention is also characterized in a very general way by a pressure-resistant body which can be acted upon by fluid or pressure vessel or pressure vessel consisting of steel and a layer surrounding the basic body consisting of or containing fibers which at a temperature T with T> 500 ° C. is no or show minimal creep strain.
  • Fibers in the creep - in the temperature range above 550 0 C - show no or minimal increase in time of permanent deformation, so the creep, whereby the creep of the inner steel tube is stopped.
  • the fibers are characterized by a high creep strength to the effect that the strength is ensured in particular under atmospheric air at high operating temperatures.
  • Suitable fibers are reinforcing fibers which fall into the classes oxide, carbide, nitridic fibers or C fibers and SiBCN fibers.
  • Plastic fibers such as PAN fibers or polyacrylonitrile fibers are also referred to as reinforcing fibers.
  • Fig. 1 is a schematic diagram of a pressure tube
  • Fig. 2 is a schematic diagram of a container.
  • a pressure tube 10 is shown in sectional view, which is used in particular in the power plant area for steam turbine processes used.
  • the tube 10 is formed as a composite tube.
  • the tube 10 consists of a base body 12 made of steel, on which at least two layers 14, 16 are applied.
  • the arranged on the base body 12 layer 14, which is referred to as the first layer made of a ceramic fiber composite material and the at least one first layer 14 covering the second layer 16 of fiber-reinforced plastic and / or fiber-reinforced ceramic.
  • the plastic content serves to increase the expansion compatibility.
  • the ceramic fiber composite material of the first layer 14 may consist of known ceramic materials, wherein preferably SiC / SiC, Al 2 O 3 / Al 2 O 3 or mullite / mullite are mentioned.
  • the first layer 14 of the ceramic fiber composite material ensures that a thermal insulation between the main body 12 and the at least one second layer 16 of the fiber-reinforced plastic, be it fiber-reinforced plastic, be it fiberglass-reinforced plastic, is built up to such an extent that oxidation of the at least one second layer 16 is prevented. This ensures that the at least one second layer 16 provides the desired reinforcement, so that the composite pipe 10 can be acted upon by the desired high pressures.
  • the second layer is also responsible for generating the bias on the pressure tube or pressure vessel, which increases with increasing application temperatures.
  • the first layer 14 allows the composite pipe 10 to increase the efficiency with the required high temperatures of at least 800 0 C - 850 0 C, optionally applied to 1000 0 C.
  • the fibers of the first layer 14 may be deposited according to the requirements. Thus, the fibers may be crossing and / or surrounding the main body 12 radially surrounding. The same applies with regard to the fibers of the at least one second layer 16.
  • a pressure vessel 18 is shown purely in principle, which is also composed of a base body 20 made of steel and arranged on the base body 20 first and second layers 24, 26, wherein the first layer 24 of a ceramic fiber composite material and the at least one second Layer 26 consists of fiber-reinforced plastic and / or fiber-reinforced ceramic.
  • manufacturing methods and materials can be used, as they have been previously explained.
  • FIG. 2 shows fibers 28, 30 of the first layer 24, which are deposited radially on the base body 22 (long fibers 28) or intersecting (long fibers 30). Other fiber processes known from the prior art are also possible.
  • the base body 12 for example, a clear diameter of 500 mm and a wall thickness of 40 mm.
  • the existing of the ceramic fiber composite material first layer 14 has a thickness D 1 - IO mm and the second made of fiber-reinforced carbon layer 16 has a thickness D 2 - IO mm.
  • the base body 22 may have a diameter of 300 mm and a length of 500 mm and a wall thickness of 30 mm.
  • the thickness D 1 of the first layer 24 may be D 1 - IS mm and the thickness D 2 of the second layer 26 may be D 2 - IO mm, to name numbers purely by way of example.
  • Respective composite tubes 10 or composite container 20 can be acted upon by fluids at a temperature of about 850 °, so that a high-temperature use, especially in steam turbine processes can take place, which compared to pressure tubes or pressure bodies of conventional construction, the thermal efficiency can be significantly increased.
  • corresponding composites show a damage tolerant good-natured failure and creep resistance. Compression and tension in both axial and radial directions are possible without damaging the body. Also, an economical production is possible.
  • the invention is also not leave, if only one layer is applied of reinforcing fibers on the base body with no or minimal increase over time in the temperature range above 550 0 C. show the permanent deformation, so the creep, whereby the creep of the inner body is stopped.
  • the corresponding fibers also have a high creep rupture strength, the strength in particular under atmospheric air is ensured at high operating temperatures.
  • Corresponding fibers can be classified into the classes oxide, carbidic, nitridic or C-fibers or SiBCN-fibers. Also plastic fibers such as PAN or polyacrylonitrile fibers come into question.
  • C-fibers C-fibers, Nextel fibers, 3M fibers, Hi-Nicalon fibers, oxide fibers, SiO 2 , Al 2 O 3 , SiC, SiBCN, PAN and Si 3 N 4 - fibers.
  • a boiler tube which may consist of austenitic or martensitic steel (9% chromium steel), which for example has an outer diameter of about 42 mm and a wall thickness of about 6 mm. This may be wrapped with a layer of previously stated reinforcing fibers having a thickness in the range of 3 mm to 4 mm in order to achieve the desired properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

Die Erfindung bezieht sich auf einen druckfesten fluidbeaufschlagbaren Körper (10) wie Druckrohr oder Druckbehälter bestehend aus einem Grundkörper (12) aus Stahl, einer den Grundkörper außenseitig umschließenden ersten Schicht (14) aus keramischem Faserverbundwerkstoff und zumindest einer auf der ersten Schicht angeordneten zweiten Schicht (16) aus faserverstärktem Kunststoff und/oder faserverstärkter Keramik.

Description

Druckfester fluidbeaufschlagter Körper
Die Erfindung bezieht sich auf einen druckfesten fluidbeaufschlagbaren bzw. -ten Körper wie Druckrohr oder Druckbehälter.
Bei Dampfturbinenprozessen hängt der Wirkungsgrad von der Prozesstemperatur ab. Daher ist man bestrebt, die Prozesstemperatur so hoch wie möglich einzustellen. Nach dem Stand der Technik werden für für Dampfturbinenprozesse benötigte druckfeste Körper wie Druckrohre oder Druckbehälter aus martensitischen Stählen oder hochlegierten Nickel- Basislegierungen hergestellt. Mit diesen Materialien lassen sich Prozesstemperaturen bis 650 0C bzw. 700 0C erzielen. Allerdings wird bei martensitischen Stählen aus Sicherheitsgründen üblicherweise eine Temperatur von mehr als 620 0C nicht überschritten.
Die zum Einsatz gelangenden Körper aus zuvor genannten Stählen halten Drücke bis 300 bar aus. Höhere Temperaturen und Drücke sind nicht realisierbar, wegen der erforderlichen Beständigkeit gegen das Werkstoffkriechverhalten, wegen der Sicherheit und wegen der Wirtschaftlichkeit nicht realisierbar.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen druckfesten fluidbeaufschlagbaren bzw. -ten Körper wie Druckrohr oder Druckbehälter derart weiterzubilden, dass eine Erhöhung der Prozesstemperaturen im Vergleich zu Körpern, die aus Stählen bestehen, erreicht wird. Auch sollen die Körper mit Drücken beaufschlagbar sein, die größer als die bisher üblicherweise zum Einsatz gelangenden sind Zur Lösung der Aufgabe schlägt die Erfindung im Wesentlichen vor einen druckfesten fluidbeaufschlagbaren bzw. -ten Körper wie Druckrohr oder Druckbehälter bestehend aus einem Grundkörper aus Stahl, einer den Grundkörper außenseitig umschließenden ersten Schicht aus keramischem Faserverbundwerkstoff und einer oder mehreren auf der ersten Schicht angeordneten zweiten Schichten aus faserverstärkter Keramik und/oder faserverstärktem Kunststoff.
Erfindungsgemäße fluidbeaufschlagbare bzw. -te Körper wie Druckrohre oder Druckbehälter ermöglichen eine Erhöhung der Prozesstemperaturen im Vergleich zu Körpern, die allein aus Stählen bestehen. Auch ist die Möglichkeit einer Druckbeaufschlagung gegeben, die größer als bisher üblich ist. Dies erfolgt erfindungsgemäß durch die Funktionstrennung Dichtheit und Notfalleigenschaft des Stahlrohres einerseits und der Hochtemperatur- Kriechbeständigkeit des Faserverbundwerkstoffs andererseits.
Erfindungsgemäß wird ein Mehrschichtkörper zur Verfügung gestellt, der insbesondere bei Dampfturbinenprozessen die Möglichkeit bietet, die Prozesstemperatur im Vergleich zu den bisher zum Einsatz gelangenden Materialien um zumindest 200 0C zu erhöhen, wodurch der thermische Wirkungsgrad bei Kraftwerken um ca. 7 % gesteigert werden kann. Ein entsprechendes Verbundrohr zeigt gute Druck- und Zugbeanspruchung in axialer und radialer Richtung und eine Temperaturbeständigkeit bis im Bereich zwischen 900 0C und 1000 0C. Die aus Faserverbundwerkstoff bestehende erste Schicht wirkt insoweit thermo- isolierend, d.h. erzeugt einen Temperaturgradient von dem Stahlrohr in die äußere Schicht, so dass diese nicht oxidiert. Auch ist eine wirtschaftliche Herstellung möglich.
Zwar ist es bekannt, keramische Faserverbundwerkstoffe (Ceramic Matrix Composites (CMC)) bei hohen Temperaturen einzusetzen. So werden CMC -Werkstoffe für Gasturbinen im Bereich der heißen Gase, also der Turbinenbrennkammer, den statischen, den Gasstrom lenkenden Leitschaufeln und den eigentlichen Turbinenschaufeln, die den Verdichter der Gasturbine antreiben, eingesetzt. Allerdings bestehen die entsprechenden Komponenten ausschließlich aus CMC -Werkstoffen und weisen nicht den erfindungsgemäßen Schichtaufbau auf. Dieser stellt jedoch sicher, dass ein Einsatz bei hohen Temperaturen bis 1000 0C und Drücken von 300 bar und mehr problemlos erfolgen kann, wobei gleichzeitig eine Kriechbeständigkeit des Körpers von zumindest 30 Jahren gewährleistet ist.
Die thermischen Faserverbundwerkstoffe sind charakterisiert durch eine zwischen keramischen Fasern, insbesondere Langfasern, eingebettete Matrix aus Keramik, die durch die keramischen Fasern verstärkt wird. Daher spricht man von faserverstärkter Keramik, Verbundkeramik oder auch einfach Faserkeramik. Matrix und Faser können dabei im Prinzip aus allen bekannten keramischen Werkstoffen bestehen, wobei in diesem Zusammenhang auch Kohlenstoff als keramischer Werkstoff behandelt wird.
Insbesondere ist vorgesehen, dass die Fasern des keramischen Verbundwerkstoffes Aluminiumoxid-, Mullit-, Siliziumcarbid-, Zirkonoxid- und/oder Kohlenstoff-Fasern sind. Mullit besteht dabei aus Mischkristallen aus Aluminiumoxid und Siliziumoxid.
Bevorzugterweise wird als keramischer Faserverbundwerkstoff SiC/SiC, C/C, C/SiC, AI2O3/AI2O3 und/oder Mullit/Mullit eingesetzt. Dabei bezeichnet das Material vor dem Schrägstrich den Fasertyp und das Material nach dem Schrägstrich den Matrixtyp. Als Matrixsystem für die keramische Faserverbundstruktur können auch Siloxane, Si- Precursoren und unterschiedlichste Oxide, wie zum Beispiel auch Zirkonoxid, eingesetzt werden.
Bevorzugterweise weisen die erste Schicht eine Dicke D1 mit 1 mm < D1 < 20 mm und/oder die zweite Schicht bzw. Schichten insgesamt eine Dicke D2 mit 0 mm < D2 ≤ 50 mm auf.
Um eine gewünschte Armierung durch die zumindest eine zweite Schicht zu erzielen, können die Fasern des faserverstärkten Kohlenstoffs radial umlaufend und/oder sich kreuzend auf der ersten Schicht angeordnet sein. Die Fasern der ersten Schicht können gleichfalls radial umlaufend und/oder sich kreuzend auf dem Grundkörper abgelegt sein. Der Grundkörper besteht bevorzugterweise aus martensitischem Stahl oder hochlegiertem Nickel-Basislegierungsmaterial. Dabei sind Wandstärken D3 mit 2 mm < D3 < 50 mm als bevorzugte Werte anzugeben, ohne dass hierdurch eine Einschränkung der erfindungsgemäßen Lehre erfolgt.
Das Faservolumen Fv der ersten Schicht sollte betragen 30 % < Fv ≤ 70 %. Bevorzugterweise beträgt die Porosität P der ersten Schicht 5 % < P < 50 %.
Der keramische Faserverbundwerkstoff kann durch CVI (Chemical Vapour Infiltration) - Verfahren, Pyrolyse, insbesondere LPI (Liquid Polymer Infiltration) -Verfahren oder durch chemische Reaktion wie LSI (Liquid Silicon Infiltration) -Verfahren hergestellt werden.
Bevorzugterweise wird als Matrixmaterial ein Precursor auf Si-Basis benutzt, um sodann mittels Pyrolyse in SiC umgewandelt zu werden. Precursor auf Si-Basis zeigen den Vorteil, dass diese leicht hart- und pyrolisierbar sind, so dass eine problemlose Herstellung gegeben ist.
Die Erfindung zeichnet sich ganz allgemein auch durch einen druckfesten fluid- beaufschlagbaren bzw. -ten Körper wie Druckrohr oder Druckbehälter bestehend aus Stahl und einer den Grundkörper umgebenden Schicht bestehend aus oder enthaltend Fasern, die bei einer Temperatur T mit T > 500 0C keine oder minimale Kriechdehnung zeigen.
Es gelangen kriechbeständige Fasern zum Einsatz, d. h. Fasern, die im Kriechbereich - im Temperaturbereich oberhalb 550 0C - keine oder minimale zeitliche Zunahme der bleibenden Verformung, also der Kriechdehnung zeigen, wodurch das Kriechen des innenliegenden Stahlrohres aufgehalten wird. Chemisch sind die Fasern durch eine hohe Zeitstandfestigkeit dahingehend zu charakterisieren, dass die Festigkeit insbesondere unter atmosphärischer Luft bei hohen Betriebstemperaturen gewährleistet ist. Als Fasern kommen Verstärkungsfasern in Frage, die in die Klassen oxidische, carbidi- sche, nitridische Fasern bzw. C-Fasern und SiBCN-Fasern fallen. Kunststofffasern wie PAN-Fasern oder Polyacrylnitril-Fasern sind auch als Verstärkungsfasern zu bezeichnen.
Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen -für sich und/oder in Kombination-, sondern auch aus der nachfolgenden Beschreibung von der Zeichnung zu entnehmenden bevorzugten Ausführungsbeispielen.
Es zeigen:
Fig. 1 eine Prinzipdarstellung eines Druckrohres und
Fig. 2 eine Prinzipdarstellung eines Behälters.
In Fig. 1 ist ein Druckrohr 10 in Schnittdarstellung wiedergegeben, das insbesondere im Kraftwerksbereich für Dampfturbinenprozesse zum Einsatz gelangt. Um das Druckrohr 10 von Fluiden unter Drücken bis 300 bar oder mehr bei Temperaturen von 800°, insbesondere 850° oder mehr durchströmen zu lassen, ist das Rohr 10 als Verbundrohr ausgebildet. Das Rohr 10 besteht aus einem Grundkörper 12 aus Stahl, auf dem zumindest zwei Schichten 14, 16 aufgebracht sind. Dabei besteht die auf dem Grundkörper 12 angeordnete Schicht 14, die als erste Schicht bezeichnet wird, aus einem keramischen Faserverbundwerkstoff und die zumindest eine die erste Schicht 14 abdeckende zweite Schicht 16 aus faserverstärktem Kunststoff und/oder faserverstärkter Keramik. Der Kunststoffanteil dient zur Steigerung der Dehnungsverträglichkeit.
Der keramische Faserverbundwerkstoff aus der ersten Schicht 14 kann aus bekannten keramischen Werkstoffen bestehen, wobei bevorzugterweise SiC/SiC, AI2O3/AI2O3 oder Mullit/Mullit zu nennen sind. Die erste Schicht 14 aus dem keramischen Faserverbundwerkstoff stellt sicher, dass eine thermische Isolierung zwischen dem Grundkörper 12 und der zumindest einen zweiten Schicht 16 aus dem faserverstärkten Kunststoff, sei es kohlen- stofffaserverstärkter Kunststoff, sei es glasfaserverstärkter Kunststoff, in einem Umfang aufgebaut wird, dass eine Oxidation der zumindest einen zweiten Schicht 16 unterbleibt. Hierdurch ist sichergestellt, dass die zumindest eine zweite Schicht 16 die gewünschte Armierung bietet, so dass das Verbundrohr 10 mit den gewünschten hohen Drücken beaufschlagbar ist. Die zweite Schicht ist auch für die Erzeugung der Vorspannung auf dem Druckrohr bzw. Druckbehälter verantwortlich, wobei diese mit zunehmenden Anwendungstemperaturen steigt.
Zur Vorspannung ist anzumerken, dass diese beim Anfahren mit steigendem Druck und Temperatur in der Faserummantelung entsteht und mit der Zeit teilweise durch das Kriechverhalten des innenliegenden Strahlrohres zeitabhängig abgebaut wird.
Die erste Schicht 14 ermöglicht, dass das Verbundrohr 10 zur Steigerung des Wirkungsgrades mit den erforderlichen hohen Temperaturen von zumindest 800 0C - 850 0C, gegebenenfalls bis 1000 0C beaufschlagt werden kann.
Die Fasern der ersten Schicht 14 können den Anforderungen entsprechend abgelegt sein. So können die Fasern sich kreuzend und/oder radial umlaufend den Grundkörper 12 umgeben. Gleiches gilt bezüglich der Fasern der zumindest einen zweiten Schicht 16.
In Fig. 2 ist rein prinzipiell ein Druckbehälter 18 dargestellt, der ebenfalls aus einem Grundkörper 20 aus Stahl und auf dem Grundkörper 20 angeordneten ersten und zweiten Schichten 24, 26 aufgebaut ist, wobei die erste Schicht 24 aus einem keramischen Faserverbundwerkstoff und die zumindest eine zweite Schicht 26 aus faserverstärktem Kunststoff und/oder faserverstärkter Keramik besteht. Dabei können Herstellungsverfahren und Materialien zum Einsatz gelangen, wie diese zuvor erläutert worden sind. Rein beispielhaft sind der Fig. 2 Fasern 28, 30 der ersten Schicht 24 zu entnehmen, die radial umlaufend (Langfasern 28) oder sich kreuzend (Langfasern 30) auf dem Grundkörper 22 abgelegt sind. Andere aus dem Stand der Technik bekannte Faserverläufe sind gleichfalls möglich. Bei dem Ausführungsbeispiel der Fig. 1 weist der Grundkörper 12 zum Beispiel einen lichten Durchmesser von 500 mm und eine Wandstärke von 40 mm auf. Die aus dem keramischen Faserverbundwerkstoff bestehende erste Schicht 14 weist eine Dicke D1 - IO mm und die zweite aus faserverstärktem Kohlenstoff bestehende Schicht 16 eine Dicke D2 - IO mm auf.
Bei dem Druckbehälter 20 nach der Fig. 2 kann der Grundkörper 22 einen Durchmesser von 300 mm und eine Länge von 500 mm sowie eine Wandstärke von 30 mm aufweisen. Die Dicke D1 der ersten Schicht 24 kann betragen D1 - IS mm und die Dicke D2 der zweiten Schicht 26 kann betragen D2 - IO mm, um rein beispielhaft Zahlen zu nennen.
Erfindungsgemäß soll die Dicke D der Faserummantelung sich zu der Wanddicke d des Druckbehälters 20 verhalten wie 0,4 d < D < 0,6, insbesondere d/2 = D.
Entsprechende Verbundrohre 10 bzw. Verbundbehälter 20 können mit Fluiden einer Temperatur von in etwa 850° beaufschlagt werden, so dass ein Hochtemperatureinsatz, insbesondere bei Dampfturbinenprozessen erfolgen kann, wodurch im Vergleich zu Druckrohren bzw. Druckkörpern üblichen Aufbaus der thermische Wirkungsgrad erheblich erhöht werden kann. Gleichzeitig zeigen entsprechende Verbundkörper ein schadenstolerantes gutmütiges Bruchversagen und eine Kriechbeständigkeit. Druck- und Zugbeanspruchung in sowohl axialer als auch radialer Richtung sind möglich, ohne dass der Körper beschädigt wird. Auch ist eine wirtschaftliche Herstellung möglich.
Sind die Ausführungsbeispiele anhand eines Grundkörpers mit auf diesen aufgebrachter ersten und zweiten Schicht erläutert worden, so wird die Erfindung auch dann nicht verlassen, wenn auf den Grundkörper nur eine Schicht aus Verstärkungsfasern aufgebracht wird, die im Temperaturbereich oberhalb 550 0C keine oder minimale zeitliche Zunahme der bleibenden Verformung, also der Kriechdehnung zeigen, wodurch das Kriechen des innenliegenden Grundkörpers aufgehalten wird. Die entsprechenden Fasern weisen auch eine hohe Zeitstandfestigkeit auf, wobei die Festigkeit insbesondere unter atmosphärischer Luft bei hohen Betriebstemperaturen gewährleistet wird. Entsprechende Fasern können in die Klassen oxidische, carbidische, nitridische Fasern oder C-Fasern oder SiBCN-Fasern klassifiziert werden. Auch Kunststofffasern wie PAN- oder Polyacrylnitril-Fasern kommen in Frage.
Insbesondere sind nachstehende Fasern zu nennen: C-Fasern, Nextel-Fasern, 3M-Fasern, Hi-Nicalon-Fasern, oxidische Fasern, SiO2-, Al2O3-, SiC-, SiBCN-, PAN- und Si3N4- Fasern.
Anwendungsbeispiel eines entsprechenden Körpers ist z. B. ein Kesselrohr, das aus Auste- nit oder martensitischem Stahl (9 % Chromstahl) bestehen kann, das beispielhaft einen Außendurchmesser von in etwa 42 mm und eine Wanddicke von in etwa 6 mm aufweist. Dieses kann mit einer Schicht zuvor angegebener Verstärkungsfasern einer Dicke im Bereich von 3 mm bis 4 mm umwickelt sein, um die gewünschten Eigenschaften zu erzielen.

Claims

PatentansprücheDruckfester fluidbeaufschlagter Körper
1. Druckfester fluidbeauf schlagbarer bzw. -ter Körper (10, 20) wie Druckrohr oder Druckbehälter bestehend aus einem Grundkörper (12, 22) aus Stahl, einer den Grundkörper außenseitig umschließenden ersten Schicht (14, 24) aus keramischem Faserverbundwerkstoff und zumindest einer auf der ersten Schicht angeordneten zweiten Schicht (16, 26) aus faserverstärktem Kunststoff und/oder faserverstärkter Keramik.
2. Körper nach Anspruch 1, dadurch gekennzeichnet, dass Fasern des keramischen Verbundwerkstoffs Aluminiumoxid-, Mullit-, Silizium- carbid-, Zirkonoxid- und/oder Kohlenstoff-Fasern sind.
3. Körper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der keramische Faserverbundwerkstoff aus SiC/SiC, C/C, C/SiC, AI2O3/AI2O3, C/Siloxan, SiC/Siloxan und/oder Mullit/Mullit besteht.
4. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Schicht (14) eine Dicke D1 mit 1 mm < D1 < 20 mm aufweist.
5. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine zweite Schicht (16, 26) bzw. die zweiten Schichten insgesamt eine Dicke D2 mit 0 mm < D2 < 50 mm aufweist.
6. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern (28, 30) der ersten Schicht (14, 24) radial umlaufend und/oder sich kreuzend auf dem Grundkörper (12, 22) abgelegt sind.
7. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern der zumindest einen zweiten Schicht (16, 26) in Bezug auf den Grundkörper (12, 22) radial umlaufend und/oder sich kreuzend auf der ersten Schicht angeordnet sind.
8. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Grundkörper (12, 22) aus martensitischem Stahl besteht.
9. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Grundkörper (12, 22) aus hochlegierter Nickel-Basislegierung besteht.
10. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Grundkörper (12, 22) eine Wandstärke D mit 1 mm < D < 50 mm aufweist.
11. Druckfester fluidbeauf schlagbarer bzw. -ter Körper wie Druckrohr oder Druckbehälter bestehend aus einem Grundkörper aus Stahl und zumindest einer den Grundkörper umgebenden Schicht bestehend aus oder enthaltend Fasern, die bei einer Temperatur mit T mit T > 5000C keine oder minimale Kriechdehnung zeigen.
12. Körper nach zumindest Anspruch 11, dadurch gekennzeichnet, dass die Fasern Verstärkungsfasern sind.
13. Körper nach zumindest Anspruch 11 oder 12, dadurch gekennzeichnet, dass oxidische, karbidische, nitridische Fasern, C-Fasern, SiBCN-Fasern, PAN- Fasern und/oder Polyacrylnitril-Fasern die Verstärkungsfasern sind.
14. Körper nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Faserschicht bzw. Faserschichten eine Dicke D und der Behälter eine Materialdicke d mit 0,4 d < D < 0,6 d, vorzugsweise d/2 = D aufweisen.
EP07728989A 2006-05-10 2007-05-10 Druckfester fluidbeaufschlagter körper Withdrawn EP2015935A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006022005 2006-05-10
DE102006038713A DE102006038713A1 (de) 2006-05-10 2006-08-18 Druckfester fluidbeaufschlagter Körper
PCT/EP2007/054537 WO2007128837A1 (de) 2006-05-10 2007-05-10 Druckfester fluidbeaufschlagter körper

Publications (1)

Publication Number Publication Date
EP2015935A1 true EP2015935A1 (de) 2009-01-21

Family

ID=38480478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728989A Withdrawn EP2015935A1 (de) 2006-05-10 2007-05-10 Druckfester fluidbeaufschlagter körper

Country Status (8)

Country Link
US (1) US20090101658A1 (de)
EP (1) EP2015935A1 (de)
JP (1) JP5249924B2 (de)
KR (1) KR20090019823A (de)
CN (1) CN101448636B (de)
CA (1) CA2651100C (de)
DE (1) DE102006038713A1 (de)
WO (1) WO2007128837A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100061847A1 (en) * 2008-09-09 2010-03-11 General Electric Company Steam turbine part including ceramic matrix composite (cmc)
DE102008059591B4 (de) * 2008-11-28 2011-01-27 Xperion Gmbh Behälter
GB0910659D0 (en) * 2009-06-19 2009-08-05 Linde Ag Gas containers
DE102010020886B4 (de) * 2010-03-01 2012-09-06 Mt Aerospace Ag Druckbehälter für kryogene Flüssigkeiten
DE102010032612A1 (de) * 2010-07-28 2012-03-29 Martin GmbH für Umwelt- und Energietechnik Verfahren zum Schutz von Wärmetauscherrohren in Dampfkesselanlagen, Formkörper, Wärmetauscherrohr und Dampfkesselanlage
FR2978697B1 (fr) 2011-08-01 2014-05-16 Commissariat Energie Atomique Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes
DE102011056418B4 (de) 2011-12-14 2022-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lasttragende Armierung von innendruckbeaufschlagten Hohlkörpern
DE102012219870A1 (de) 2012-10-30 2014-05-15 Schunk Kohlenstofftechnik Gmbh Verfahren zur Herstellung eines Verbundkörpers
DE102014109778A1 (de) 2014-07-11 2016-01-14 Nuclear Cargo + Service Gmbh Abschirmbehälter für den Transport und/oder Lagerung von radioaktiven Stoffen
ES2910667T3 (es) * 2015-05-19 2022-05-13 Basf Se Tubo compuesto multicapa estanco al gas
KR102632660B1 (ko) 2015-10-14 2024-02-01 바스프 에스이 세라믹 매트릭스 복합재를 포함하는 열투과성 튜브
CN105438680B (zh) * 2015-12-21 2018-09-28 中车西安车辆有限公司 一种轻质原油铁路罐车罐体
CN105937670A (zh) * 2016-06-29 2016-09-14 无锡必胜必精密钢管有限公司 一种特高压电网用钢管
WO2020145366A1 (ja) * 2019-01-10 2020-07-16 日本碍子株式会社 複合部材
DE102019104536A1 (de) * 2019-02-22 2020-08-27 Sandvik Materials Technology Deutschland Gmbh Rohrstruktur und Verfahren zum Herstellen einer solchen Rohrstruktur
CA3133519A1 (en) * 2019-03-15 2020-09-24 Basf Se Gastight, heat permeable, ceramic and multilayered composite tube
JP7207103B2 (ja) * 2019-04-01 2023-01-18 トヨタ自動車株式会社 高圧タンク及びその製造方法
DE102022202475A1 (de) 2022-03-11 2023-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mehrlagiger Werkstoffverbund, Bauteil umfassend den mehrlagigen Werkstoffverbund, Verfahren zu deren Herstellung und deren Verwendung

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL52406C (de) * 1937-10-12
US3446385A (en) * 1966-08-05 1969-05-27 Koppers Co Inc Filament wound reinforced pressure vessel
US3815773A (en) * 1971-05-17 1974-06-11 Brunswick Corp Cyclic pressure vessel
US4461657A (en) * 1983-05-19 1984-07-24 Union Carbide Corporation High strength steel and gas storage cylinder manufactured thereof
US4689544A (en) * 1985-10-17 1987-08-25 Hughes Aircraft Company Control of the charging of pressurized gas-metal electrical storage cells
US4699288A (en) * 1986-04-28 1987-10-13 Edo Corporation/Fiber Science Division High pressure vessel construction
FR2630810B1 (fr) * 1988-04-27 1990-08-10 Aerospatiale Recipient pour le stockage de fluide sous pression
DE3907087A1 (de) * 1989-03-04 1990-09-13 Rheinmetall Gmbh Hochdruckbehaelter
FR2650367B1 (fr) * 1989-07-26 1993-12-24 Aerospatiale Ste Nationale Indle Bouteille haute pression a parois metalliques minces renforcee par un bobinage a base de fibres de carbone, et procede de fabrication
US5816435A (en) * 1996-10-23 1998-10-06 Palazzo; David T. Double wall storage tank having an extruded outer sheath and a method for making same
DE4300484C1 (de) * 1993-01-11 1994-01-05 Silit Werke Druckbehälter
JPH06331032A (ja) * 1993-05-19 1994-11-29 Japan Steel Works Ltd:The 圧力容器
WO1997020683A1 (fr) * 1995-12-04 1997-06-12 Toray Industries, Inc. Recipient de pression et procede pour le fabriquer
US5822838A (en) * 1996-02-01 1998-10-20 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel
DE19711844B4 (de) * 1997-03-21 2005-06-02 Metall-Spezialrohr Gmbh Verfahren zum Herstellen eines Druckgasbehälters
DE19721128A1 (de) * 1997-05-20 1998-11-26 Messer Griesheim Gmbh Teilweise oder vollständige Verwendung einer an sich bekannten Druckgasflasche für verdichtete, verflüssigte oder gelöste Gase
US6425964B1 (en) * 1998-02-02 2002-07-30 Chrysalis Technologies Incorporated Creep resistant titanium aluminide alloys
DE19817324A1 (de) * 1998-04-18 1999-10-21 Messer Griesheim Gmbh Verfahren zum Speichern von tiefsiedenden permanenten Gasen oder Gasgemischen in Druckbehältern
DE19952611A1 (de) * 1999-11-02 2001-05-23 Eberhard Haack Hochdruckbehälter und Verfahren zu seiner Herstellung
US6783824B2 (en) * 2001-01-25 2004-08-31 Hyper-Therm High-Temperature Composites, Inc. Actively-cooled fiber-reinforced ceramic matrix composite rocket propulsion thrust chamber and method of producing the same
US7032768B2 (en) * 2002-04-04 2006-04-25 Felbaum John W Inert-metal lined steel-bodied vessel end-closure device
JP4314037B2 (ja) * 2003-01-24 2009-08-12 株式会社豊田自動織機 高圧タンク
KR100589450B1 (ko) * 2003-01-24 2006-06-14 가부시키가이샤 도요다 지도숏키 고압탱크
JP3527737B1 (ja) * 2003-03-25 2004-05-17 サムテック株式会社 高剛性繊維を用いた高圧タンク及びその製造方法
JP4700263B2 (ja) * 2003-04-25 2011-06-15 新日本製鐵株式会社 高圧水素ガス用タンク及び配管
JP2005214271A (ja) * 2004-01-28 2005-08-11 Mitsuboshi Belting Ltd 繊維補強圧力容器
US7641949B2 (en) * 2004-05-20 2010-01-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pressure vessel with improved impact resistance and method of making the same
CN100349733C (zh) * 2005-04-18 2007-11-21 山东大学 一种高温碳纤维复合材料炉管及其制造工艺
US7715169B2 (en) * 2005-08-31 2010-05-11 Steven R Mathison Fuel receptacle isolation system for reducing the possibility of static discharge during the refill of high pressure storage tanks in motor vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007128837A1 *

Also Published As

Publication number Publication date
US20090101658A1 (en) 2009-04-23
WO2007128837A1 (de) 2007-11-15
CN101448636B (zh) 2013-02-20
JP2009536297A (ja) 2009-10-08
CA2651100C (en) 2014-07-08
CA2651100A1 (en) 2007-11-15
DE102006038713A1 (de) 2007-11-29
CN101448636A (zh) 2009-06-03
JP5249924B2 (ja) 2013-07-31
KR20090019823A (ko) 2009-02-25

Similar Documents

Publication Publication Date Title
EP2015935A1 (de) Druckfester fluidbeaufschlagter körper
EP0913373B1 (de) Mit Kohlefasern verstärkter Keramikverbundwerkstoff
EP3297971B1 (de) Gasdichtes, mehrschichtiges verbundrohr
EP1708846B1 (de) Verfahren zur reparatur eines bauteils einer strömungsmaschine
DE69916774T2 (de) Verbundwerkstoff auf Keramikbasis und Herstellungsverfahren
EP0000497B1 (de) Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide
DE10126926B4 (de) Brennkammer mit Innenmantel aus einem keramischen Komposit-Material und Verfahren zur Herstellung
DE102011056418B4 (de) Lasttragende Armierung von innendruckbeaufschlagten Hohlkörpern
DE102010043336B4 (de) Brennkammervorrichtung
EP1939529A1 (de) CMC-Brennkammerauskleidung in Doppelschichtbauweise
DE112011102511T5 (de) Mit einem rohrförmigen Element ausgestattete Brennkammer
DE102005047508B4 (de) Filter für eine Abgasnachbehandlungseinrichtung
WO2019141438A1 (de) Faserverbundwerkstoff mit keramischen fasern, bauteil, gasturbine und verfahren
EP2284362A2 (de) Triebwerkswelle in hybrider Bauweise
DE102008020198B4 (de) Düsenerweiterung für ein Triebwerk und Verfahren zur Herstellung und Kühlung einer Düsenerweiterung
WO2016026986A1 (de) Rohrleitung für heissgase und verfahren zu deren herstellung
EP2182198B1 (de) Druckbehälter für den Hochtemperatureinsatz und ein Verfahren zu deren Herstellung
CA2783126C (en) Fibre-reinforced ceramic body
EP1446366A2 (de) Oxidkeramische faserverbundwerkstoffe und ihre verwendung
Bolinger PROCESSING SCALE-UP STUDIES ON CARBON-CARBON COMPOSITES
DE102018100850A1 (de) Feststoffmasse zur Herstellung eines thermisch stabilen und zyklisch beanspruchbaren ultrahochfesten Betons oder hochfesten Betons bzw. eines ultrahochfesten oder hochfesten Betonbauteils
DE10314271A1 (de) Kriech- und thermoschockresistenter Faserverbundwerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAUER, ANDREAS

Inventor name: HENRICH, MARTIN

Inventor name: EBERT, MARCO

Inventor name: SCHEIBEL, THORSTEN

Inventor name: WEISS, ROLAND

Inventor name: LYUTOVICH, ABRAM

Inventor name: BERRETH, KARL

Inventor name: MAILE, KARL

17Q First examination report despatched

Effective date: 20111031

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150430

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150911