EP2006954B1 - Communication device for a railway vehicle - Google Patents

Communication device for a railway vehicle Download PDF

Info

Publication number
EP2006954B1
EP2006954B1 EP08104085.9A EP08104085A EP2006954B1 EP 2006954 B1 EP2006954 B1 EP 2006954B1 EP 08104085 A EP08104085 A EP 08104085A EP 2006954 B1 EP2006954 B1 EP 2006954B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
antenna
slots
vehicle
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08104085.9A
Other languages
German (de)
French (fr)
Other versions
EP2006954A1 (en
Inventor
Marc Heddebaut
Denis Duhot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport SA
Institut Francais des Sciences et Technologirs des Transports de lAmenagement et des Reseaux
Original Assignee
Alstom Transport SA
Institut Francais des Sciences et Technologirs des Transports de lAmenagement et des Reseaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport SA, Institut Francais des Sciences et Technologirs des Transports de lAmenagement et des Reseaux filed Critical Alstom Transport SA
Publication of EP2006954A1 publication Critical patent/EP2006954A1/en
Application granted granted Critical
Publication of EP2006954B1 publication Critical patent/EP2006954B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3225Cooperation with the rails or the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal
    • B61L3/16Continuous control along the route
    • B61L3/22Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation
    • B61L3/227Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation using electromagnetic radiation

Definitions

  • the present invention relates to a communication device between one or more rail vehicles and a control station in general, and relates, more particularly, to a continuous radiating waveguide communication device.
  • a fundamental mode radiant waveguide communication device also called TE 01 mode
  • This device comprises a hollow tube parallel to a transport path and deposited along this path in a continuous manner, forming a waveguide, of which a single emitting face is pierced with a network of geometrically asymmetrical openings for the passage of a electromagnetic radiation at microwave frequencies.
  • This network of openings (called “slots" in the remainder of the description because of their narrow and elongated geometry) is itself then arranged to direct its emissive face at a small distance from the integral antenna of the vehicle, movable on along the radiating waveguide.
  • the geometry, the dimensions of the slots as well as the spacing between these slots are dimensioned according to the frequency ranges used.
  • the section of the guide is of the order of the wavelength and the large dimension of the slits is small in front of the wavelength.
  • the frequency range that can be used varies by country. In France and in many parts of the world, it can advantageously be carried out in the range of 2.4 GHz where are the exploitable channels according to IEEE 802.11 b and g standards called Wi-Fi for Wireless Fidelity or in the 5.8 GHz band according to IEEE 802.11 a.
  • the electromagnetic theory considers that for distances between antennas of the order of magnitude of the wavelength or of a small number of wavelengths, these antennas are said to operate in the near field and require a particular approach in order to study their coupling. For example, at 2.4 GHz, that is to say for a wavelength in air of 12.5 cm, the near field condition as conventionally expressed in electromagnetism is valid until at a distance of the order of magnitude of three to four wavelengths, or 40 to 50 centimeters. Beyond this distance, the antenna starts to operate in the far field.
  • the global signal radiated by the waveguide can be likened to the sum of each of the near field radiation of the few slots located upstream and downstream of the waveguide. current point where the antenna of the vehicle is. The energy is radiated perpendicular to the plane of the slots. It is not possible to demonstrate, for these short spans, a preferred direction of radiation such as would be obtained by considering the combination of far-field radiation of the slits when they have, between them, relations of appropriate phase and power.
  • the vehicle is provided with an antenna for transmitting and / or receiving microwave waves, promoting this close-field coupling between the emitting portion of the waveguide and the antenna of the vehicle, without any particular favorable orientation.
  • the traffic control station is provided with a power supply member of the microwave waveguide and / or at least one microwave wave reception member from the waveguide.
  • This device makes it possible to continuously maintain a high bandwidth link (> 100 MHz) between the ground control station and the vehicles.
  • the device also simultaneously authorizes the speed measurement of the vehicles without material contact with the ground and the location of the vehicles by reading a pseudo-random sequence etched in the structure of the waveguide.
  • the device is operational whatever the environment of the track (tunnel, viaduct, trench ).
  • the use of high frequencies in the range of 2 - 6 GHz makes it possible to overcome most of the problems of electromagnetic compatibility that are binding in the railway environment.
  • the waveguide is made of metal.
  • the choice of this metal is a compromise between cost constraints and inherent conductivity constraints of the metal, affecting the conduction performance of the wave in the waveguide.
  • the longitudinal attenuation will be higher or lower and the number of transmitters / receivers per kilometer of waveguide required will be proportionally higher or lower.
  • the total longitudinal loss is the sum of the Joule loss and the loss due to the removal of energy from the wave that is radiated by the waveguide slots.
  • an aluminum waveguide exhibits a Joule linear loss of 15-16 dB / km and a linear loss by constraint limited by construction to 2-3 dB / km .
  • the antenna-train generally receives a single electric field component oriented in a privileged direction of the space and thus shows only a fraction of the energy emitted from the guide, the other part proves radiated without use. This in turn reduces the signal-to-noise ratio of the link, which in turn limits the effective throughput of the ground-to-train communication which must, however, be high in a modern ground-train communication system.
  • the possible propagation in this waveguide of several simultaneous propagation modes generates between these different modes of propagation beats and local signal attenuations requiring the use of a sandwich guide structure acting as a filter. modes, complex to achieve with acceptable materials in the railway environment, in terms of mechanical strength or emission of toxic fumes in case of fire ...
  • the rail network to be equipped with communication devices is dual-channel, waveguides are arranged parallel to each channel, with as many transmitters / receivers as necessary on each side.
  • the traffic control station thus communicates with each train running on each of the channels by sending the microwave waves in the two communication devices.
  • the problem that the invention aims to solve is to reduce the number of transmitters / receivers installed on the ground and to limit the length of guides to be installed along the double rail tracks in order to limit the quantity of material and the quantity of components required. without generating any particular mechanical constraint, to limit the time of installation or maintenance of the device while allowing a control station to communicate at high speed of information with the trains running on the two parallel tracks with the same security and the same availability as the communication device of the prior art.
  • These two parallel paths are spaced a significant distance, as expressed in wavelengths of the microwave communication signals used.
  • the continuous communication device between at least one railway vehicle and a control station, comprises at least one waveguide disposed between two parallel tracks resting on a non-emissive face, comprising two emissive faces each pierced by a network of openings for the passage of electromagnetic radiation in microwaves of given wavelength constituted by slots, at least one vehicle provided with at least one microwave transmission and reception antenna, the control station being provided with at least one microwave waveguide supply member and at least one microwave wave receiving member from the waveguide, and is such that the waveguide is parallelepipedic shape, whose emitting faces are arranged vertically.
  • a first advantage of the double grating slotted waveguide communication device is thus to halve the amount of material required to make the waveguides while only slightly increasing the number of emitters / receivers.
  • a second advantage of the dual-slot grating waveguide communication device is to impose fewer installation constraints on the track by deporting the waveguide out of the way itself, thereby facilitating operations. maintenance of it.
  • a third advantage is that with this arrangement, the waveguide, although robust is less exposed to material damage related to falling objects or trailing vehicles including track maintenance.
  • a fourth advantage is that the vertical arrangement of the double network of slots makes it less sensitive to the accumulation of dirt, water, snow, ice ... on its emitting surfaces.
  • the dimensions of the waveguide are such that only the basic propagation mode TE 01 is used, which leads to a mechanical simplification of the guide since the different propagation modes must no longer be filtered.
  • the figure 1 represents a communication device between a control station P and at least one vehicle A traveling on a track, comprising a plurality of fixed waveguides 1, 1 ', 1 n , etc., arranged continuously and end to end along the way.
  • the length of the communication device depends on the type of network.
  • a waveguide is several hundred meters long and the communication device comprises n waveguides covering the entire railway network.
  • the waveguide 1 consists of two separate sections 1a and 1b, in which the waves are injected, for example by means of a coaxial transition towards a waveguide, at the ends 2a and 2b of the sections 1a and 1b. 1 b.
  • the ends 3a and 3b of the waveguide 1 are charged in order to avoid the establishment of a standing wave regime in the waveguide, for example by means of a waveguide to coaxial transition and a charge.
  • the ends 3a, 3b do not transmit any wave to the adjacent waveguides 1 'and 1 n .
  • the waves are transmitted or received by a transmitter / receiver 4 which is connected to a communication network R connecting all the emitters / receivers 4, 4 ', 4 n ...; at the control point P.
  • the information flows from checkpoint P to vehicle A -or conversely- by the communication network R, the transceivers 4, 4 ', 4 n and the waveguides 1, 1 1 n .
  • the waveguide 1 is of parallelepiped shape, the large faces 6a, 6b being pierced with slots 8a, 8b (here shown vertical) which radiate or receive the waves.
  • the faces 6a, 6b are said to be “large” because their side b is larger than the side a of the "small” faces 7a, 7b.
  • the large dimension b of the emissive faces 6a, 6b is of the order of magnitude of the wavelength.
  • the large dimension D of the slots is much smaller than the length of the side b : it is at least five times smaller than the wavelength propagated in the guide. This makes it possible to limit the linear radiation losses to 2-3 dB / km while maintaining a power radiated by the guide sufficient to ensure high-speed communication with the vehicle.
  • b ⁇ ⁇ And D ⁇ ⁇ / 5 ⁇ being the wavelength of the electromagnetic radiation propagating in the guide.
  • the large dimension D of the slots is arranged in the vertical direction perpendicular to the direction of the waveguide.
  • This arrangement and the very dissymmetrical shape of the slots (D is at least 6 times greater than the small size of the slots) allow to radiate essentially a single electric field component, oriented in the direction of the guide. This electric field component is exploited by the antenna of the vehicle. This limits the energy taken from the guide and radiated outward to the minimum required for ground-vehicle communication.
  • a waveguide operating at a low frequency of 2.4 GHz in fundamental mode has a large face b of about 12.5 cm, the wavelength ⁇ of the electromagnetic radiation propagating in the guide.
  • the large dimension of the slots D is 19 mm, the small dimension of the slots is 3 mm and the inter-slot pitch is 61 mm.
  • the large dimension D 1 of all the slots 8a of an emissive face-for example the emitting face 6a- can be uniformly increased with respect to the large dimension D 2 of the slots 8b of the other emissive face 6b.
  • This arrangement makes it possible to reinforce the electromagnetic radiation towards one of the two paths. This allows, by way of example, to compensate for a lack of symmetry in laying the waveguide between the channels as related to the configuration imposed by the site, a channel that may be further distant from the waveguide 1 than the other.
  • the guide could be of circular or oval section and have a similar behavior of its electromagnetic radiation in the air.
  • the figure 4 is a view of the continuous communication device between the traffic control station P (not shown) and two trains A and B traveling in two opposite directions on two parallel tracks, 2 and 3.
  • the following description is given when two trains are present on the channels 2 and 3 but it is understood that the operation of the device is exactly the same even when there is only one train running on a single lane.
  • the waveguide 1 is disposed between the two channels 2 and 3, its small face 7b being placed on the ground, or on a support at a distance from the ground, the large faces 6a, 6b, which are emissive, being at the vertical.
  • this waveguide 1 could be suspended in a tunnel vault, between two channels (2, 3).
  • the traffic control station P communicates with the trains A and B by injecting into the waveguides 1, 1 ', 1 n of the signals S1, S2 in the form of a set of microwave waves, which propagate according to a mode of propagation "Go" inside the waveguide 1a, 1b and which are all radiated by the emitting faces of the waveguide 1a, 1b towards the antennas 5 of the trains A and B (the waves emitted are symbolized on the Fig. 4 by two-way double arrows).
  • Each onboard antenna thus receives all the waves injected into the waveguide 1a, 1b ( Fig. 1 ), the receiver of each antenna processing in a known manner the received signals S1, S2 so as to identify which signal is addressed to it.
  • One or more antennas may be provided on board, on the same side or on each side of the train.
  • the power of the waves is maximum near the ends 2a, 2b ( Fig. 2 ) on the other hand, at the ends 3a, 3b, the power of the waves is minimal since the wave has lost energy by propagating along the guide and radiating by slots 8a, 8b.
  • the embedded antennas 5 are transmitters and receivers.
  • the trains A and B communicate with the control station P by transmitting microwave signals via the on-board antennas 5 to the waveguide 1, these signals then being propagated from the slots 8a, 8b of the emitting faces 6a, 6b towards the ends 2a, 2b ( Fig. 1 ) of the waveguide 1 with a propagation mode "return" identical to that of the "go".
  • the power of the wave injected into the waveguide 1 decreases towards the ends 2a, 2b to reach the transmitter / receiver 4 (FIG. Fig. 1 ).
  • antennas can be made from a waveguide type transmission line. So the "Antenna Engineering Handbook” by Richard C. Johnson and Henry Jasik publishes, in his second edition edited by McGraw-Hill Book Company (chapter 10 page 11 ), an antenna description called "Leaky wave antenna”. This antenna is constructed from a waveguide of rectangular section of short length. It uses slots whose large size is of the order of magnitude of the half-wavelength.
  • These antennas are developed in order to obtain on the one hand a significant efficiency, that is to say in particular having the ability to radiate by means of a reduced antenna (of the order of a few wavelengths) all the energy that is communicated to them and, on the other hand, to focus at a great distance the energy radiated in the preferred direction of the desired space.
  • a reduced antenna of the order of a few wavelengths
  • Such an antenna thus operates in far field and its radiation pattern is directional.
  • the object of the invention is on the contrary to strongly limit the radiation of the structure so as to take only very little energy from inside the guide.
  • the waveguide 1 is therefore pierced with very small slots 8a, 8b which individually take only a very limited amount of energy from inside the guide, as previously described.
  • each slot 8a, 8b of the waveguide 1 according to the invention radiates, unlike the waveguide antennas pierced with four previously described slot gratings, independently without significant interaction. with the energy propagated in the guide or with other slits 8a, 8b close.
  • the radiation of different slot networks 8a, 8b disposed on opposite emissive faces 6a, 6b of the waveguide 1 are effected in substantially independent ways, without significant coupling between the two emissive faces 6a, 6b. This effect therefore makes it possible to transmit and receive signals continuously and over great distances by n waveguides 1 arranged in the channel, each waveguide 1 radiating through two networks of slots 8a, 8b whose radiation characteristics are independent of each other.
  • the theory of polarizabilities demonstrates that the radiation of a slot whose transverse dimensions are very small in front of the wavelength is, if it is practiced in a thin conductive plane, and under far-field condition, comparable to that of an elementary magnetic dipole oriented along the axis of the large dimension of this slot which radiates an electric field component oriented in the direction of the guide.
  • This elementary magnetic dipole is born due to the interruption of current lines on the surface of the metal related to the presence of the opening.
  • This magnetic dipole equivalent radiation is oriented perpendicular to the plane of the slot.
  • the waveguide 1 according to the invention therefore operates in a far-field and its radiation pattern is directional. However, it does not function as a waveguide of the prior art since the waveguide 1 according to the invention operates in a far field and not in a near field. It also does not function as a waveguide antenna of the prior art since the waveguide 1 according to the invention radiates only a tiny portion of the signal energy which passes through it on a very high frequency. long guide distance, while an antenna of the prior art radiates all the energy of the signal which passes through it over a very short guide distance.
  • the calculation of the inter-slot spacing is effected in a known manner taking into account, on the one hand, the phase shift introduced by the propagation of the microwave signals in the waveguide 1, and on the other hand the phase shift of these signals introduced by the propagation of the signals in the air on either side of the waveguide 1, after passage of the energy through the slots 8a, 8b.
  • a critical inter-slot spacing that is to say allowing a constructive summation of radiation of different consecutive slots, the order of magnitude is a few centimeters in the 2.4 - 5.8 GHz - an order of magnitude a little less than the half-wavelength of the signals emitted in the air- thus provides a signal of constant amplitude above the guide, regardless of the position of the antenna: above a slot, between two slots, etc .... Beyond this critical spacing , the signal transmitted by the network of slots fluctuates strongly from one opening to another and is therefore not very exploitable to maintain the communication ground-trains.
  • the figure 5 represents the radiation pattern of the waveguide 1 according to the invention, the slots 8a, 8b of the two emissive faces being of identical dimensions.
  • the axis of the waveguide 1 corresponds to an angle of 0 °. Due to the symmetrical realization of the two slot gratings, a radiation pattern symmetrical with respect to the axis of the waveguide 1 consisting of two main lobes 9 and 10 appears. These two main lobes 9 and 10, transposed to the transport environment of the figure 3 , allow the electromagnetic energy to be concentrated simultaneously towards the two transport paths 2 and 3, by means of a single radiating waveguide 1 disposed in a central position on the ground or in a tunnel vault.
  • the radiating waveguide 1 is installed continuously between stations, over distances of several hundred meters. It has several thousands of slots.
  • these radiation lobes 9 and 10 have maxima that depend on the height of the waveguide above the ground.
  • the presence of the soil and its physical characteristics influence the radiation pattern in elevation of the radiating waveguide.
  • a compatible vehicle antenna height will be selected to locate the vehicle antenna in the main lobe of the vehicle.
  • the distance between the on-board antenna 5 and the waveguide 1 must be at least four wavelengths to operate in far-field conditions. Below four wavelengths, the antenna is placed in near field condition. However, in a near field condition, the radiation pattern is not formed and therefore does not allow the waveguide 1 to effectively focus the microwave energy to the antennas 5, and thus communicate between trains and ground with a optimized link budget.
  • the distance between the waveguide 1 and each antenna 5 of the vehicle A, B is in practice increased relative to the waveguide of the prior art, the gain brought by this summation and this energy concentration compensates. for a large part the additional attenuation of the signals which travel a greater distance in the air, from the waveguide 1 to the on-board antenna 5.
  • the antenna 5 of the vehicle A or B is arranged so as to be permanently close to a network of slots 8a or 8b having the radiation pattern of the figure 4 and progressively and continuously sweeps all the thousands of slots 8a or 8b of the waveguide 1 during the movement of the vehicle A or B ( Fig. 4 ).
  • the radiation pattern continuously accompanies the movement of the vehicle and provides continuously to the two transport paths 2 and 3 a maximum of electromagnetic energy in a preferred direction of space.
  • An omnidirectional antenna that is to say an antenna which highlights an electromagnetic field irrespective of the direction of arrival of a signal emitted or alternately which radiates in the same way an electromagnetic signal in all directions of the space may be suitable.
  • This antenna will be able to capture the signals emitted by the waveguide 1 in its preferred directions of radiation and to emit signals in the direction of the waveguide, in the same way as the signals received or emitted in other directions of space .
  • Such an antenna has no particular gain related to the focusing of energy in one or more preferred directions of space.
  • the signals highlighted by this antenna will be weak or will not to inject a high power into the waveguide, through the slots. This means that such an antenna will not achieve significant communication rates except increase the power emitted by the train or ground transmitter.
  • a directional antenna having a radiation pattern having radiation directivities allows the best possible transfer of energy between the waveguide 1 to the channel and this antenna.
  • the radiation pattern of the antenna must have at least one main lobe of radiation whose orientation is identical to that of one of the main lobes of the waveguide radiation pattern 1.
  • orientation is defined by the angle ⁇ that forms the axis of the main lobe with the axis of the antenna or the waveguide.
  • a collinear antenna 5 to the train must also have a starting angle of 30 ° in order to receive and transmit signals efficiently in this preferred direction from space. Such an antenna makes it possible to obtain high communication rates.
  • the total linear attenuation in the waveguide 1 is only slightly increased since, via a double number of identical slots, only the energy sampling loss from the waveguide is doubled.
  • the total linear loss thus goes from 18 dB to 21 dB in the case of an aluminum waveguide and the reduction in range would therefore be 3: 18 or about 17 %.
  • This range reduction can be mitigated by slightly reducing the size of the slots, which would however have the effect of reducing the energy emitted and received via the waveguide.
  • the behavior of the double slot network and its far-field radiation pattern are stable over a wide frequency band and in practice depends only on the proper propagation mode. inside the waveguide 1.

Description

La présente invention concerne un dispositif de communication entre un ou plusieurs véhicules ferroviaires et un poste de contrôle en général, et porte, plus particulièrement, sur un dispositif de communication continu à guide d'ondes rayonnant.The present invention relates to a communication device between one or more rail vehicles and a control station in general, and relates, more particularly, to a continuous radiating waveguide communication device.

II est connu du document FR 2 608 119 de la demanderesse un dispositif de communication continu à guide d'ondes rayonnant en mode fondamental, encore appelé mode TE01, entre un véhicule ferroviaire et un poste de contrôle. Ce dispositif comporte un tube creux parallèle à une voie de transport et déposé le long de cette voie de manière continue, formant guide d'ondes, dont une seule face émissive est percée d'un réseau d'ouvertures géométriquement dissymétriques de passage d'un rayonnement électromagnétique en hyperfréquences. Ce réseau d'ouvertures (appelées « fentes » dans le reste de la description du fait de leur géométrie étroite et allongée) est lui-même ensuite disposé afin de diriger sa face émissive à faible distance de l'antenne solidaire du véhicule, mobile le long du guide d'ondes rayonnant. La géométrie, les dimensions des fentes ainsi que l'espacement entre ces fentes sont dimensionnées en fonction des gammes de fréquences utilisées. La section du guide est de l'ordre de la longueur d'onde et la grande dimension des fentes est petite devant la longueur d'onde. La gamme de fréquences qu'il est permis d'utiliser varie en fonction des pays. En France et dans de nombreuses régions du monde, elle peut avantageusement s'effectuer dans la gamme des 2,4 GHz où se situent les canaux exploitables selon les normes IEEE 802.11 b et g, normes dites Wi-Fi pour Wireless Fidelity ou encore dans la bande des 5,8 GHz selon la norme IEEE 802.11 a. La théorie électromagnétique considère, que pour des distances entre antennes de l'ordre de grandeur de la longueur d'onde ou d'un faible nombre de longueurs d'onde, ces antennes sont dites fonctionner en champ proche et nécessitent une approche particulière afin d'étudier leur couplage. A titre d'exemple, à 2,4 GHz, c'est-à-dire pour une longueur d'onde dans l'air de 12,5 cm, la condition de champ proche telle qu'exprimée classiquement en électromagnétisme est valable jusqu'à une distance de l'ordre de grandeur de trois à quatre longueurs d'ondes, soit 40 à 50 centimètres. Au-delà de cette distance, l'antenne commence à fonctionner en champ lointain.It is known from the document FR 2,608,119 of the Applicant a fundamental mode radiant waveguide communication device, also called TE 01 mode, between a railway vehicle and a control station. This device comprises a hollow tube parallel to a transport path and deposited along this path in a continuous manner, forming a waveguide, of which a single emitting face is pierced with a network of geometrically asymmetrical openings for the passage of a electromagnetic radiation at microwave frequencies. This network of openings (called "slots" in the remainder of the description because of their narrow and elongated geometry) is itself then arranged to direct its emissive face at a small distance from the integral antenna of the vehicle, movable on along the radiating waveguide. The geometry, the dimensions of the slots as well as the spacing between these slots are dimensioned according to the frequency ranges used. The section of the guide is of the order of the wavelength and the large dimension of the slits is small in front of the wavelength. The frequency range that can be used varies by country. In France and in many parts of the world, it can advantageously be carried out in the range of 2.4 GHz where are the exploitable channels according to IEEE 802.11 b and g standards called Wi-Fi for Wireless Fidelity or in the 5.8 GHz band according to IEEE 802.11 a. The electromagnetic theory considers that for distances between antennas of the order of magnitude of the wavelength or of a small number of wavelengths, these antennas are said to operate in the near field and require a particular approach in order to study their coupling. For example, at 2.4 GHz, that is to say for a wavelength in air of 12.5 cm, the near field condition as conventionally expressed in electromagnetism is valid until at a distance of the order of magnitude of three to four wavelengths, or 40 to 50 centimeters. Beyond this distance, the antenna starts to operate in the far field.

Le long du guide, et à des distances inférieures à quatre longueurs d'ondes, le signal global rayonné par le guide d'ondes peut être assimilé à la somme de chacun des rayonnements en champ proche des quelques fentes situées en amont et en aval du point courant où se trouve l'antenne du véhicule. L'énergie est rayonnée de façon perpendiculaire au plan des fentes. Il n'est pas possible de mettre en évidence, pour ces courtes portées, une direction privilégiée du rayonnement telle qu'on l'obtiendrait en considérant la combinaison de rayonnements en champ lointain des fentes lorsque celles-ci présentent, entre elles, des relations de phase et de puissance appropriées. De ce fait, le véhicule est muni d'une antenne d'émission et/ou de réception d'ondes hyperfréquences favorisant ce couplage champ proche entre la partie émissive du guide d'ondes et l'antenne du véhicule, sans orientation particulière favorable.Along the guide, and at distances of less than four wavelengths, the global signal radiated by the waveguide can be likened to the sum of each of the near field radiation of the few slots located upstream and downstream of the waveguide. current point where the antenna of the vehicle is. The energy is radiated perpendicular to the plane of the slots. It is not possible to demonstrate, for these short spans, a preferred direction of radiation such as would be obtained by considering the combination of far-field radiation of the slits when they have, between them, relations of appropriate phase and power. As a result, the vehicle is provided with an antenna for transmitting and / or receiving microwave waves, promoting this close-field coupling between the emitting portion of the waveguide and the antenna of the vehicle, without any particular favorable orientation.

Le poste de contrôle de trafic est muni d'un organe d'alimentation du guide d'ondes en ondes hyperfréquences et/ou d'au moins un organe de réception d'ondes hyperfréquences provenant du guide d'ondes. Ce dispositif permet de maintenir de manière continue une liaison à grande bande passante (> 100 MHz) entre le poste de contrôle au sol et les véhicules. En champ proche, le dispositif autorise également et de manière simultanée la mesure de vitesse des véhicules sans contact matériel avec le sol ainsi que la localisation des véhicules par lecture d'une séquence pseudo-aléatoire gravée dans la structure du guide d'ondes. Le dispositif est opérationnel quel que soit l'environnement de la voie (tunnel, viaduc, tranchée...). L'utilisation de fréquences élevées dans la gamme des 2 - 6 GHz permet de s'affranchir de l'essentiel des problèmes de compatibilité électromagnétique contraignants en environnement ferroviaire.The traffic control station is provided with a power supply member of the microwave waveguide and / or at least one microwave wave reception member from the waveguide. This device makes it possible to continuously maintain a high bandwidth link (> 100 MHz) between the ground control station and the vehicles. In the near field, the device also simultaneously authorizes the speed measurement of the vehicles without material contact with the ground and the location of the vehicles by reading a pseudo-random sequence etched in the structure of the waveguide. The device is operational whatever the environment of the track (tunnel, viaduct, trench ...). The use of high frequencies in the range of 2 - 6 GHz makes it possible to overcome most of the problems of electromagnetic compatibility that are binding in the railway environment.

Le guide d'ondes est réalisé en métal. Le choix de ce métal constitue un compromis entre des contraintes de coût et des contraintes de conductivité inhérentes du métal, affectant les performances de conduction de l'onde dans le guide d'onde. Ainsi, selon le métal choisi, l'affaiblissement longitudinal sera plus ou moins élevé et le nombre d'émetteurs / récepteurs au kilomètre de guide d'ondes nécessaires sera proportionnellement plus ou moins élevé. L'affaiblissement longitudinal total est la somme de la perte par effet Joule et de la perte due au prélèvement de l'énergie de l'onde qui est rayonnée par les fentes du guide d'onde. Par exemple, dans une réalisation particulière à 2,4 GHz, un guide d'ondes en aluminium présente une perte linéaire par effet Joule de 15-16 dB / km et une perte linéaire par prélèvement limitée par construction à 2-3 dB / km.The waveguide is made of metal. The choice of this metal is a compromise between cost constraints and inherent conductivity constraints of the metal, affecting the conduction performance of the wave in the waveguide. Thus, depending on the metal chosen, the longitudinal attenuation will be higher or lower and the number of transmitters / receivers per kilometer of waveguide required will be proportionally higher or lower. The total longitudinal loss is the sum of the Joule loss and the loss due to the removal of energy from the wave that is radiated by the waveguide slots. For example, in a particular 2.4 GHz embodiment, an aluminum waveguide exhibits a Joule linear loss of 15-16 dB / km and a linear loss by constraint limited by construction to 2-3 dB / km .

II est également connu du document US 3 648 172 un guide d'ondes circulaire à deux réseaux longitudinaux d'ouvertures circulaires disposées dans la partie supérieure du guide d'ondes. Aux fréquences très élevées mentionnées (7,5-10 GHz), ce guide d'ondes exploite des modes de propagation d'ordre supérieur notés généralement TEmn (m, n >1) pour obtenir une atténuation longitudinale limitée en rapport avec son exploitation le long d'un réseau de transport. Afin de permettre la propagation de ces modes, le diamètre du guide d'ondes est au moins trois fois supérieur à la longueur d'ondes des ondes propagées dans le guide. Les ouvertures circulaires percées sur le guide d'ondes émettent simultanément plusieurs composantes de rayonnement électromagnétique. Elles émettent donc de l'énergie électromagnétique dans différentes directions de l'espace. Cependant, l'antenne-train reçoit généralement une seule composante de champ électrique orientée dans une direction privilégiée de l'espace et ne met donc en évidence qu'une fraction de l'énergie émise depuis le guide, l'autre partie s'avère rayonnée sans utilisation. Ceci réduit de ce fait le rapport signal à bruit de la liaison, qui limite à son tour le débit utile de la communication sol-trains qui doit cependant être élevé dans un système moderne de communication sol-trains. En outre, la propagation possible dans ce guide d'ondes de plusieurs modes simultanés de propagation génère entre ces différents modes de propagation des battements et des atténuations locales de signal nécessitant l'emploi d'une structure de guide en sandwich agissant tel un filtre de modes, complexe à réaliser avec des matériaux acceptables dans l'environnement ferroviaire, en matière de tenue mécanique ou d'émission de fumées toxiques en cas de feu...It is also known from the document US 3,648,172 a circular waveguide with two longitudinal networks of circular openings arranged in the upper part of the waveguide. At the very high frequencies mentioned (7.5-10 GHz), this waveguide exploits higher order propagation modes generally noted TE mn (m, n> 1) to obtain a limited longitudinal attenuation in relation to its exploitation. along a transport network. In order to allow the propagation of these modes, the diameter of the waveguide is at least three times greater than the wavelength of the waves propagated in the guide. The circular openings pierced on the waveguide simultaneously emit several components of electromagnetic radiation. They emit electromagnetic energy in different directions of space. However, the antenna-train generally receives a single electric field component oriented in a privileged direction of the space and thus shows only a fraction of the energy emitted from the guide, the other part proves radiated without use. This in turn reduces the signal-to-noise ratio of the link, which in turn limits the effective throughput of the ground-to-train communication which must, however, be high in a modern ground-train communication system. Furthermore, the possible propagation in this waveguide of several simultaneous propagation modes generates between these different modes of propagation beats and local signal attenuations requiring the use of a sandwich guide structure acting as a filter. modes, complex to achieve with acceptable materials in the railway environment, in terms of mechanical strength or emission of toxic fumes in case of fire ...

Lorsque le réseau ferroviaire à équiper de dispositifs de communication est à doubles voies, des guides d'ondes sont disposés parallèlement à chaque voie, avec autant d'émetteurs / récepteurs que nécessaires de chaque côté. Le poste de contrôle de trafic communique ainsi avec chaque train circulant sur chacune des voies en envoyant les ondes hyperfréquences dans les deux dispositifs de communication.When the rail network to be equipped with communication devices is dual-channel, waveguides are arranged parallel to each channel, with as many transmitters / receivers as necessary on each side. The traffic control station thus communicates with each train running on each of the channels by sending the microwave waves in the two communication devices.

Le problème que l'invention vise à résoudre est de diminuer le nombre d'émetteurs / récepteurs installés au sol et de limiter la longueur de guides à installer le long des doubles voies ferroviaires afin de limiter la quantité de matière et la quantité de composants nécessaires sans générer de contrainte mécanique particulière, de limiter le temps d'installation ou de maintenance du dispositif tout en permettant à un poste de contrôle de communiquer à haut débit d'information avec les trains circulant sur les deux voies parallèles avec la même sécurité et la même disponibilité que le dispositif de communication de l'art antérieur. Ces deux voies parallèles sont espacées d'une distance significative, telle qu'exprimée en longueurs d'ondes des signaux hyperfréquences de communication utilisés.The problem that the invention aims to solve is to reduce the number of transmitters / receivers installed on the ground and to limit the length of guides to be installed along the double rail tracks in order to limit the quantity of material and the quantity of components required. without generating any particular mechanical constraint, to limit the time of installation or maintenance of the device while allowing a control station to communicate at high speed of information with the trains running on the two parallel tracks with the same security and the same availability as the communication device of the prior art. These two parallel paths are spaced a significant distance, as expressed in wavelengths of the microwave communication signals used.

Le dispositif de communication continu conforme à l'invention entre au moins un véhicule ferroviaire et un poste de contrôle, comporte au moins un guide d'ondes disposé entre deux voies parallèles reposant sur une face non émissive, comprenant deux faces émissives percées chacune d'un réseau d'ouvertures de passage d'un rayonnement électromagnétique en hyperfréquences de longueur d'onde donnée constituées de fentes, au moins un véhicule muni d'au moins une antenne d'émission et de réception d'ondes hyperfréquences, le poste de contrôle étant muni d'au moins un organe d'alimentation du guide d'ondes en ondes hyperfréquences et d'au moins un organe de réception d'ondes hyperfréquences provenant du guide d'ondes, et est tel que le guide d'ondes est de forme parallélépipédique, dont les faces émissives sont disposées verticalement.The continuous communication device according to the invention between at least one railway vehicle and a control station, comprises at least one waveguide disposed between two parallel tracks resting on a non-emissive face, comprising two emissive faces each pierced by a network of openings for the passage of electromagnetic radiation in microwaves of given wavelength constituted by slots, at least one vehicle provided with at least one microwave transmission and reception antenna, the control station being provided with at least one microwave waveguide supply member and at least one microwave wave receiving member from the waveguide, and is such that the waveguide is parallelepipedic shape, whose emitting faces are arranged vertically.

Le dispositif de communication comporte également l'une ou plusieurs des caractéristiques suivantes :

  • la grande dimension des faces émissives du guide d'ondes est de l'ordre de grandeur de la longueur d'onde du rayonnement électromagnétique propagé dans le guide d'ondes,
  • la grande dimension des fentes est inférieure à au moins cinq fois la longueur d'ondes du rayonnement électromagnétique propagé dans le guide d'ondes,
  • l'espacement inter-fentes est inférieur à la demi-longueur d'onde des signaux émis dans l'air,
  • les deux réseaux de fentes sont identiques,
  • l'un des réseaux de fentes est de plus grande dimension que l'autre,
  • les fentes sont disposées verticalement,
  • la distance entre l'antenne disposée à bord d'un véhicule et le dispositif de communication est d'au moins quatre longueurs d'onde,
  • l'antenne disposée à bord d'un véhicule présente une directivité de rayonnement identique à celle du dispositif de communication.
The communication device also includes one or more of the following features:
  • the large dimension of the emitting faces of the waveguide is of the order of magnitude of the wavelength of the electromagnetic radiation propagated in the waveguide,
  • the large dimension of the slots is less than at least five times the wavelength of the electromagnetic radiation propagated in the waveguide,
  • inter-slot spacing is less than the half-wavelength of the signals emitted into the air,
  • the two networks of slots are identical,
  • one of the slot networks is larger than the other,
  • the slots are arranged vertically,
  • the distance between the antenna disposed on board a vehicle and the communication device is at least four wavelengths,
  • the antenna disposed on board a vehicle has a radiation directivity identical to that of the communication device.

Un premier avantage du dispositif de communication à guide d'ondes à double réseau de fentes est donc de diviser par deux la quantité de matière nécessaire pour réaliser le guides d'ondes tout en n'augmentant que faiblement le nombre d'émetteurs / récepteurs.A first advantage of the double grating slotted waveguide communication device is thus to halve the amount of material required to make the waveguides while only slightly increasing the number of emitters / receivers.

Un second avantage du dispositif de communication à guide d'ondes à double réseau de fentes est d'imposer moins de contraintes d'installation à la voie en déportant le guide d'ondes hors de la voie à proprement parler, facilitant en cela les opérations de maintenance de celle-ci.A second advantage of the dual-slot grating waveguide communication device is to impose fewer installation constraints on the track by deporting the waveguide out of the way itself, thereby facilitating operations. maintenance of it.

Un troisième avantage est qu'avec cette disposition, le guide d'ondes, bien que robuste s'avère moins exposé à des dommages matériels liés à des objets tombant ou traînant des véhicules notamment d'entretien de la voie.A third advantage is that with this arrangement, the waveguide, although robust is less exposed to material damage related to falling objects or trailing vehicles including track maintenance.

Un quatrième avantage est que la disposition verticale du double réseau de fentes le rend moins sensible à l'accumulation de salissures, eau, neige, glace... sur ses surfaces émissives.A fourth advantage is that the vertical arrangement of the double network of slots makes it less sensitive to the accumulation of dirt, water, snow, ice ... on its emitting surfaces.

De plus, les dimensions du guide d'ondes sont telles que seul le mode de propagation fondamental TE01 est exploité, ce qui conduit à une simplification mécanique du guide puisque les différents modes de propagation ne doivent plus être filtrés.In addition, the dimensions of the waveguide are such that only the basic propagation mode TE 01 is used, which leads to a mechanical simplification of the guide since the different propagation modes must no longer be filtered.

L'invention sera mieux comprise à la lecture de la description qui suit, en référence aux dessins annexés dans lesquels :

  • La figure 1 est une vue schématique du dispositif de communication pour un réseau ferroviaire,
  • la figure 2 représente une vue en coupe du guide d'ondes conforme à l'invention,
  • la figure 3 représente une vue en coupe du guide d'ondes conforme à l'invention selon un second mode de réalisation,
  • La figure 4 représente un mode de réalisation du dispositif de communication conforme à l'invention,
  • la figure 5 représente le diagramme de rayonnement mesuré en azimut du dispositif de communication conforme à l'invention, associé à une représentation physique du guide d'ondes.
The invention will be better understood on reading the description which follows, with reference to the appended drawings in which:
  • The figure 1 is a schematic view of the communication device for a railway network,
  • the figure 2 represents a sectional view of the waveguide according to the invention,
  • the figure 3 represents a sectional view of the waveguide according to the invention according to a second embodiment,
  • The figure 4 represents an embodiment of the communication device according to the invention,
  • the figure 5 represents the radiation pattern measured in azimuth of the communication device according to the invention, associated with a physical representation of the waveguide.

La figure 1 représente un dispositif de communication entre un poste de contrôle P et au moins un véhicule A circulant sur une voie, comprenant plusieurs guides d'ondes fixes 1, 1', 1n, etc., disposés continûment et bout à bout le long de la voie. La longueur du dispositif de communication dépend du type de réseau. Un guide d'ondes fait plusieurs centaines de mètres de long et le dispositif de communication comprend n guides d'ondes couvrant tout le réseau ferroviaire.The figure 1 represents a communication device between a control station P and at least one vehicle A traveling on a track, comprising a plurality of fixed waveguides 1, 1 ', 1 n , etc., arranged continuously and end to end along the way. The length of the communication device depends on the type of network. A waveguide is several hundred meters long and the communication device comprises n waveguides covering the entire railway network.

Tous les guides étant identiques, seul le guide d'ondes 1 va être décrit. Le guide d'ondes 1 est constitué de deux tronçons séparés 1a et 1 b, dans lesquels les ondes sont injectées, par exemple à l'aide d'une transition coaxial vers guide d'ondes, aux extrémités 2a et 2b des tronçons 1a et 1 b. Les extrémités 3a et 3b du guide d'ondes 1 sont chargées afin d'éviter l'établissement d'un régime d'ondes stationnaires dans le guide d'ondes, par exemple grâce à une transition guide d'ondes vers coaxial et une charge résistive adaptée ou par la disposition d'un matériau absorbant en hyperfréquence disposé avant un plan de court-circuit métallique du guide. Les extrémités 3a, 3b ne transmettent aucune onde aux guides d'ondes adjacents 1' et 1n.All the guides being identical, only the waveguide 1 will be described. The waveguide 1 consists of two separate sections 1a and 1b, in which the waves are injected, for example by means of a coaxial transition towards a waveguide, at the ends 2a and 2b of the sections 1a and 1b. 1 b. The ends 3a and 3b of the waveguide 1 are charged in order to avoid the establishment of a standing wave regime in the waveguide, for example by means of a waveguide to coaxial transition and a charge. resistive adapted or by the provision of a microwave absorbent material disposed before a metal short circuit plane of the guide. The ends 3a, 3b do not transmit any wave to the adjacent waveguides 1 'and 1 n .

Les ondes sont émises ou reçues par un émetteur / récepteur 4 qui est relié à un réseau de communication R reliant tous les émetteurs / récepteurs 4, 4', 4n... ; au poste de contrôle P. Les informations circulent ainsi du poste de contrôle P au véhicule A -ou inversement- par le réseau de communication R, les émetteurs / récepteurs 4, 4', 4n et les guides d'ondes 1, 1 1n.The waves are transmitted or received by a transmitter / receiver 4 which is connected to a communication network R connecting all the emitters / receivers 4, 4 ', 4 n ...; at the control point P. The information flows from checkpoint P to vehicle A -or conversely- by the communication network R, the transceivers 4, 4 ', 4 n and the waveguides 1, 1 1 n .

Comme la figure 2 l'indique, dans cette réalisation particulière, le guide d'ondes 1 est de forme parallélépipédique, les grandes faces 6a, 6b étant percées de fentes 8a, 8b (ici représentées verticales) qui rayonnent ou reçoivent les ondes. Les faces 6a, 6b sont dites « grandes » parce que leur côté b est plus grand que le côté a des « petites » faces 7a, 7b. La grande dimension b des faces émissives 6a, 6b est de l'ordre de grandeur de la longueur d'onde. Grâce à cette caractéristique seul le mode fondamental TE01 est exploité, c'est-à-dire que seul le premier mode peut se propager dans le guide à l'exclusion de toute autre mode.As the figure 2 indicates, in this particular embodiment, the waveguide 1 is of parallelepiped shape, the large faces 6a, 6b being pierced with slots 8a, 8b (here shown vertical) which radiate or receive the waves. The faces 6a, 6b are said to be "large" because their side b is larger than the side a of the "small" faces 7a, 7b. The large dimension b of the emissive faces 6a, 6b is of the order of magnitude of the wavelength. With this characteristic only the fundamental mode TE 01 is operated, that is to say that only the first mode can propagate in the guide to the exclusion of any other mode.

La grande dimension D des fentes est bien plus petite que la longueur du côté b : elle est au moins cinq fois inférieure à la longueur d'onde propagée dans le guide. Ceci permet de limiter les pertes de rayonnement linéiques à 2-3 dB/km tout en maintenant une puissance rayonnée par le guide suffisante pour assurer une communication à haut débit avec le véhicule.
Autrement dit, b λ

Figure imgb0001

Et D λ / 5
Figure imgb0002

λ étant la longueur d'onde du rayonnement électromagnétique se propageant dans le guide.The large dimension D of the slots is much smaller than the length of the side b : it is at least five times smaller than the wavelength propagated in the guide. This makes it possible to limit the linear radiation losses to 2-3 dB / km while maintaining a power radiated by the guide sufficient to ensure high-speed communication with the vehicle.
In other words, b λ
Figure imgb0001

And D λ / 5
Figure imgb0002

λ being the wavelength of the electromagnetic radiation propagating in the guide.

Préférentiellement, la grande dimension D des fentes est disposée selon la direction verticale, perpendiculairement à la direction du guide d'ondes. Cette disposition et la forme très dissymétrique des fentes (D est supérieur d'au moins 6 fois à la petite dimension des fentes) permettent de rayonner essentiellement une composante de champ électrique unique, orientée selon la direction du guide. Cette composante de champ électrique est exploitée par l'antenne du véhicule. Ceci limite ainsi l'énergie prélevée depuis le guide et rayonnée vers l'extérieur au minimum nécessaire à la communication sol-véhicules.Preferably, the large dimension D of the slots is arranged in the vertical direction perpendicular to the direction of the waveguide. This arrangement and the very dissymmetrical shape of the slots (D is at least 6 times greater than the small size of the slots) allow to radiate essentially a single electric field component, oriented in the direction of the guide. This electric field component is exploited by the antenna of the vehicle. This limits the energy taken from the guide and radiated outward to the minimum required for ground-vehicle communication.

En pratique, un guide d'ondes fonctionnant à une fréquence basse de 2,4 GHz en mode fondamental présente une grande face b d'environ 12,5 cm, soit la longueur d'onde λ du rayonnement électromagnétique se propageant dans le guide. La grande dimension des fentes D est de 19 mm, la petite dimension des fentes est de 3 mm et le pas inter-fentes est de 61 mm.In practice, a waveguide operating at a low frequency of 2.4 GHz in fundamental mode has a large face b of about 12.5 cm, the wavelength λ of the electromagnetic radiation propagating in the guide. The large dimension of the slots D is 19 mm, the small dimension of the slots is 3 mm and the inter-slot pitch is 61 mm.

En variante, comme représenté sur la figure 3, la grande dimension D1 de toutes les fentes 8a d'une face émissive -par exemple la face émissive 6a- peut être uniformément augmentée par rapport à la grande dimension D2 des fentes 8b de l'autre face émissive 6b. Cette disposition permet de renforcer le rayonnement électromagnétique vers une voie parmi les deux voies. Ceci permet à titre d'exemple de compenser une absence de symétrie de pose du guide d'ondes entre les voies telle que liée à la configuration imposée par le site, une voie pouvant se trouver plus distante du guide d'ondes 1 que l'autre.Alternatively, as shown on the figure 3 , the large dimension D 1 of all the slots 8a of an emissive face-for example the emitting face 6a- can be uniformly increased with respect to the large dimension D 2 of the slots 8b of the other emissive face 6b. This arrangement makes it possible to reinforce the electromagnetic radiation towards one of the two paths. This allows, by way of example, to compensate for a lack of symmetry in laying the waveguide between the channels as related to the configuration imposed by the site, a channel that may be further distant from the waveguide 1 than the other.

En variante (non représentée), le guide pourrait être de section circulaire ou ovale et présenterait un comportement similaire de son rayonnement électromagnétique dans l'air.Alternatively (not shown), the guide could be of circular or oval section and have a similar behavior of its electromagnetic radiation in the air.

La figure 4 est une vue du dispositif de communication continue entre le poste de contrôle de trafic P (non représenté) et deux trains A et B circulant dans deux sens opposés sur deux voies parallèles, 2 et 3. La description qui suit est donnée lorsque deux trains sont présents sur les voies 2 et 3 mais il est entendu que le fonctionnement du dispositif est exactement identique même lorsqu'il n'y a qu'un seul train circulant sur une seule voie.The figure 4 is a view of the continuous communication device between the traffic control station P (not shown) and two trains A and B traveling in two opposite directions on two parallel tracks, 2 and 3. The following description is given when two trains are present on the channels 2 and 3 but it is understood that the operation of the device is exactly the same even when there is only one train running on a single lane.

Le guide d'ondes 1 est disposé entre les deux voies 2 et 3, sa petite face 7b étant posée au sol, ou sur un support à une certaine distance du sol, les grandes faces 6a, 6b, qui sont émissives, étant à la verticale. Alternativement, ce guide d'ondes 1 pourrait être suspendu en voûte de tunnel, entre deux voies (2, 3).The waveguide 1 is disposed between the two channels 2 and 3, its small face 7b being placed on the ground, or on a support at a distance from the ground, the large faces 6a, 6b, which are emissive, being at the vertical. Alternatively, this waveguide 1 could be suspended in a tunnel vault, between two channels (2, 3).

Le poste de contrôle de trafic P communique avec les trains A et B en injectant dans les guides d'ondes 1, 1', 1n des signaux S1, S2 sous la forme d'un ensemble d'ondes hyperfréquences, qui se propagent selon un mode de propagation « aller » à l'intérieur du guide d'ondes 1a, 1 b et qui sont toutes rayonnées par les faces émissives du guide d'ondes 1 a, 1 b en direction des antennes 5 des trains A et B (les ondes émises sont symbolisées sur la fig. 4 par des doubles flèches bidirectionnelles). Chaque antenne embarquée reçoit donc toutes les ondes injectées dans le guide d'ondes 1a, 1b (fig. 1), le récepteur de chaque antenne traitant de manière connue les signaux S1, S2 reçus de manière à identifier quel signal lui est adressé. Une ou plusieurs antennes peuvent être disposées à bord, du même côté ou de chaque côté du train.The traffic control station P communicates with the trains A and B by injecting into the waveguides 1, 1 ', 1 n of the signals S1, S2 in the form of a set of microwave waves, which propagate according to a mode of propagation "Go" inside the waveguide 1a, 1b and which are all radiated by the emitting faces of the waveguide 1a, 1b towards the antennas 5 of the trains A and B (the waves emitted are symbolized on the Fig. 4 by two-way double arrows). Each onboard antenna thus receives all the waves injected into the waveguide 1a, 1b ( Fig. 1 ), the receiver of each antenna processing in a known manner the received signals S1, S2 so as to identify which signal is addressed to it. One or more antennas may be provided on board, on the same side or on each side of the train.

Compte-tenu de la perte d'énergie due à la perte par effet Joule et des pertes dues aux prélèvements de l'énergie des fentes 8a, 8b, la puissance des ondes est maximale près des extrémités 2a, 2b (fig. 2) lorsqu'elle est injectée par l'émetteur / récepteur 4. Par contre, aux extrémités 3a, 3b, la puissance des ondes est minimale puisque l'onde a perdu de l'énergie en se propageant le long du guide et en rayonnant par les fentes 8a, 8b.Considering the energy loss due to the Joule loss and the losses due to the energy withdrawals of the slits 8a, 8b, the power of the waves is maximum near the ends 2a, 2b ( Fig. 2 ) on the other hand, at the ends 3a, 3b, the power of the waves is minimal since the wave has lost energy by propagating along the guide and radiating by slots 8a, 8b.

Les antennes embarquées 5 (fig. 4) sont émettrices et réceptrices. Ainsi, les trains A et B communiquent avec le poste de contrôle P en émettant des signaux en ondes hyperfréquences via les antennes embarquées 5 vers le guide d'ondes 1, ces signaux étant ensuite propagés depuis les fentes 8a, 8b des faces émissives 6a, 6b vers les extrémités 2a, 2b (fig. 1) du guide d'ondes 1 avec un mode de propagation « retour » identique à celui de l' « aller ».The embedded antennas 5 ( Fig. 4 ) are transmitters and receivers. Thus, the trains A and B communicate with the control station P by transmitting microwave signals via the on-board antennas 5 to the waveguide 1, these signals then being propagated from the slots 8a, 8b of the emitting faces 6a, 6b towards the ends 2a, 2b ( Fig. 1 ) of the waveguide 1 with a propagation mode "return" identical to that of the "go".

Dans ce cas, compte-tenu de la perte d'énergie, la puissance de l'onde injectée dans le guide d'ondes 1 diminue en direction des extrémités 2a, 2b pour atteindre l'émetteur / récepteur 4 (fig. 1).In this case, given the loss of energy, the power of the wave injected into the waveguide 1 decreases towards the ends 2a, 2b to reach the transmitter / receiver 4 (FIG. Fig. 1 ).

II est connu que le diagramme de rayonnement d'un guide d'ondes de l'art antérieur de grande longueur et percé de fentes sur une seule surface, ces fentes étant de dimensions très inférieures à la longueur d'onde, présente en champ proche un rayonnement dirigé, dans un plan perpendiculaire à celui des ouvertures, vers l'extérieur du guide, sans qu'il soit possible d'obtenir une focalisation de l'énergie dans une direction privilégiée de l'espace.It is known that the radiation pattern of a waveguide of the prior art of great length and pierced with slots on a single surface, these slots being of much smaller dimensions than the wavelength, present in the near field directed radiation, in a plane perpendicular to that of the openings, towards the outside of the guide, without it being possible to obtain a focusing of the energy in a preferred direction of the space.

II est également connu que des antennes peuvent être réalisées à partir d'une ligne de transmission de type guide d'ondes. Ainsi le « Antenna Engineering Handbook » de Richard C. Johnson et Henry Jasik publie, dans sa seconde édition éditée par McGraw-Hill Book Company (chapitre 10 page 11 ), une description d'antenne dite « Leaky wave antenna ». Cette antenne est construite à partir d'un guide d'ondes de section rectangulaire de faible longueur. Elle utilise des fentes dont la grande dimension est de l'ordre de grandeur de la demi-longueur d'onde. Ces antennes sont développées afin d'obtenir d'une part une efficacité importante, c'est à dire en particulier avoir la capacité de rayonner au moyen d'une antenne de taille réduite (de l'ordre de quelques longueurs d'ondes) toute l'énergie qui leur est communiquée et, d'autre part de focaliser à grande distance l'énergie rayonnée dans la direction privilégiée de l'espace souhaitée. Une telle antenne fonctionne donc en champ lointain et son diagramme de rayonnement est directionnel.It is also known that antennas can be made from a waveguide type transmission line. So the "Antenna Engineering Handbook" by Richard C. Johnson and Henry Jasik publishes, in his second edition edited by McGraw-Hill Book Company (chapter 10 page 11 ), an antenna description called "Leaky wave antenna". This antenna is constructed from a waveguide of rectangular section of short length. It uses slots whose large size is of the order of magnitude of the half-wavelength. These antennas are developed in order to obtain on the one hand a significant efficiency, that is to say in particular having the ability to radiate by means of a reduced antenna (of the order of a few wavelengths) all the energy that is communicated to them and, on the other hand, to focus at a great distance the energy radiated in the preferred direction of the desired space. Such an antenna thus operates in far field and its radiation pattern is directional.

Dans ce même chapitre les auteurs décrivent une autre antenne réalisée à l'aide de fentes percées sur les quatre faces du guide afin d'obtenir une polarisation circulaire des signaux émis dans une direction privilégiée de l'espace. Dans ces cas de figure, les rayonnements des différentes ouvertures interfèrent fortement et se composent afin de produire la directivité et la polarisation requises. Un couplage fort entre ces ouvertures et le champ présent dans le guide est donc réalisé et exploité.In the same chapter, the authors describe another antenna made using slots pierced on the four faces of the guide in order to obtain a circular polarization of the signals emitted in a privileged direction of space. In these cases, the radiations of the different apertures interfere strongly and are composed in order to produce the required directivity and polarization. A strong coupling between these openings and the field present in the guide is thus realized and exploited.

Le but de l'invention est au contraire de limiter fortement le rayonnement de la structure afin de ne prélever que très peu d'énergie depuis l'intérieur du guide. Le guide d'ondes 1 est donc percé de très petites fentes 8a, 8b qui ne prélèvent individuellement qu'une quantité d'énergie extrêmement limitée depuis l'intérieur du guide, comme précédemment décrit.The object of the invention is on the contrary to strongly limit the radiation of the structure so as to take only very little energy from inside the guide. The waveguide 1 is therefore pierced with very small slots 8a, 8b which individually take only a very limited amount of energy from inside the guide, as previously described.

Or la demanderesse a mis en évidence que chaque fente 8a, 8b du guide d'ondes 1 conforme à l'invention rayonne, au contraire des antennes à guide d'ondes percées de quatre réseaux de fentes décrites précédemment, de façon indépendante sans interaction notable avec l'énergie propagée dans le guide ou avec d'autres fentes 8a, 8b proches. Les rayonnements de différents réseaux de fentes 8a, 8b disposés sur des faces émissives opposées 6a, 6b du guide d'ondes 1 s'effectuent en effet de façons essentiellement indépendantes, sans couplage significatif entre les deux faces émissives 6a, 6b. Cet effet permet donc d'émettre et de recevoir des signaux continument et sur de grandes distances par n guides d'ondes 1 disposés à la voie, chaque guide d'ondes 1 rayonnant par deux réseaux de fentes 8a, 8b dont les caractéristiques de rayonnement sont indépendantes l'une de l'autre.However, the applicant has demonstrated that each slot 8a, 8b of the waveguide 1 according to the invention radiates, unlike the waveguide antennas pierced with four previously described slot gratings, independently without significant interaction. with the energy propagated in the guide or with other slits 8a, 8b close. The radiation of different slot networks 8a, 8b disposed on opposite emissive faces 6a, 6b of the waveguide 1 are effected in substantially independent ways, without significant coupling between the two emissive faces 6a, 6b. This effect therefore makes it possible to transmit and receive signals continuously and over great distances by n waveguides 1 arranged in the channel, each waveguide 1 radiating through two networks of slots 8a, 8b whose radiation characteristics are independent of each other.

En effet, dans le cas de fentes de très petites dimensions pratiquées dans un plan conducteur, la théorie des polarisabilités démontre que le rayonnement d'une fente dont les dimensions transversales sont très petites devant la longueur d'onde est, si elle est pratiquée dans un plan conducteur mince, et sous condition de champ lointain, assimilable à celui d'un dipôle magnétique élémentaire orienté selon l'axe de la grande dimension de cette fente qui rayonne une composante de champ électrique orientée selon la direction du guide. Ce dipôle magnétique élémentaire prend naissance du fait de l'interruption de lignes de courant à la surface du métal liée à la présence de l'ouverture. Ce dipôle magnétique de rayonnement équivalent est orienté de façon perpendiculaire au plan de la fente.Indeed, in the case of very small slots made in a conductive plane, the theory of polarizabilities demonstrates that the radiation of a slot whose transverse dimensions are very small in front of the wavelength is, if it is practiced in a thin conductive plane, and under far-field condition, comparable to that of an elementary magnetic dipole oriented along the axis of the large dimension of this slot which radiates an electric field component oriented in the direction of the guide. This elementary magnetic dipole is born due to the interruption of current lines on the surface of the metal related to the presence of the opening. This magnetic dipole equivalent radiation is oriented perpendicular to the plane of the slot.

En calculant la contribution globale des rayonnements d'un grand nombre de ces fentes correctement espacées et déphasées, on obtient en champ lointain la formation d'un diagramme de rayonnement particulier. Le guide d'ondes 1 conforme à l'invention fonctionne donc en champ lointain et son diagramme de rayonnement est directionnel. Il ne fonctionne cependant pas comme un guide d'ondes de l'art antérieur puisque le guide d'ondes 1 conforme à l'invention fonctionne en champ lointain et non en champ proche. Il ne fonctionne pas non plus comme une antenne à guide d'ondes de l'art antérieur puisque le guide d'ondes 1 conforme à l'invention ne rayonne qu'une infime partie de l'énergie du signal qui le traverse sur une très longue distance de guide, alors qu'une antenne de l'art antérieur rayonne toute l'énergie du signal qui la traverse sur une très courte distance de guide.By calculating the overall radiation contribution of a large number of these correctly spaced and out-of-phase slots, the formation of a particular radiation pattern is obtained in the far field. The waveguide 1 according to the invention therefore operates in a far-field and its radiation pattern is directional. However, it does not function as a waveguide of the prior art since the waveguide 1 according to the invention operates in a far field and not in a near field. It also does not function as a waveguide antenna of the prior art since the waveguide 1 according to the invention radiates only a tiny portion of the signal energy which passes through it on a very high frequency. long guide distance, while an antenna of the prior art radiates all the energy of the signal which passes through it over a very short guide distance.

Le calcul de l'espacement inter-fentes s'effectue de manière connue en prenant en compte, d'une part le déphasage introduit par la propagation des signaux hyperfréquences dans le guide d'ondes 1, et d'autre part le déphasage de ces signaux introduit par la propagation des signaux dans l'air de part et d'autre du guide d'ondes 1, après passage de l'énergie au travers des fentes 8a, 8b. Un espacement inter-fentes critique, c'est-à-dire permettant une sommation constructive des rayonnements des différentes fentes consécutives, dont l'ordre de grandeur est de quelques centimètres dans la bande 2,4 - 5,8 GHz - soit un ordre de grandeur un peu inférieur à la demi-longueur d'onde des signaux émis dans l'air- fournit ainsi un signal d'amplitude constante au-dessus du guide, quelle que soit la position de l'antenne : au-dessus d'une fente, entre deux fentes, etc.... Au-delà de cet espacement critique, le signal transmis par le réseau de fentes fluctue fortement d'une ouverture à l'autre et s'avère dès lors peu exploitable afin de maintenir la communication sol-trains.The calculation of the inter-slot spacing is effected in a known manner taking into account, on the one hand, the phase shift introduced by the propagation of the microwave signals in the waveguide 1, and on the other hand the phase shift of these signals introduced by the propagation of the signals in the air on either side of the waveguide 1, after passage of the energy through the slots 8a, 8b. A critical inter-slot spacing, that is to say allowing a constructive summation of radiation of different consecutive slots, the order of magnitude is a few centimeters in the 2.4 - 5.8 GHz - an order of magnitude a little less than the half-wavelength of the signals emitted in the air- thus provides a signal of constant amplitude above the guide, regardless of the position of the antenna: above a slot, between two slots, etc .... Beyond this critical spacing , the signal transmitted by the network of slots fluctuates strongly from one opening to another and is therefore not very exploitable to maintain the communication ground-trains.

La figure 5 représente le diagramme de rayonnement du guide d'ondes 1 conforme à l'invention, les fentes 8a, 8b des deux faces émissives étant de dimensions identiques. L'axe du guide d'ondes 1 correspond à un angle de 0°. Du fait de la réalisation symétrique des deux réseaux de fentes, un diagramme de rayonnement symétrique par rapport à l'axe du guide d'ondes 1 constitué de deux lobes principaux 9 et 10 apparait. Ces deux lobes principaux 9 et 10, transposés à l'environnement transport de la figure 3, permettent de concentrer l'énergie électromagnétique simultanément en direction des deux voies de transport 2 et 3, au moyen d'un seul guide d'ondes 1 rayonnant disposé en position centrale au sol ou en voûte de tunnel.The figure 5 represents the radiation pattern of the waveguide 1 according to the invention, the slots 8a, 8b of the two emissive faces being of identical dimensions. The axis of the waveguide 1 corresponds to an angle of 0 °. Due to the symmetrical realization of the two slot gratings, a radiation pattern symmetrical with respect to the axis of the waveguide 1 consisting of two main lobes 9 and 10 appears. These two main lobes 9 and 10, transposed to the transport environment of the figure 3 , allow the electromagnetic energy to be concentrated simultaneously towards the two transport paths 2 and 3, by means of a single radiating waveguide 1 disposed in a central position on the ground or in a tunnel vault.

Ce diagramme de rayonnement est obtenu dès lors qu'un nombre suffisant de rayonnements de fentes est intégré. Une centaine de fentes permet en pratique d'obtenir une limite haute au-delà de laquelle l'effet de sommation des contributions des fentes tend vers une asymptote. Ainsi qu'indiqué précédemment, le guide d'ondes 1 rayonnant est installé en continu entre stations, sur des distances de plusieurs centaines de mètres. Il comporte de ce fait plusieurs milliers de fentes.This radiation pattern is obtained when a sufficient number of slot radiation is integrated. A hundred slits in practice make it possible to obtain a high limit beyond which the summation effect of the contributions of the slits tends towards an asymptote. As indicated above, the radiating waveguide 1 is installed continuously between stations, over distances of several hundred meters. It has several thousands of slots.

Dans un plan vertical, ces lobes de rayonnement 9 et 10 présentent des maximas qui dépendent de la hauteur du guide d'ondes au-dessus du sol. La présence du sol et ses caractéristiques physiques influent sur le diagramme de rayonnement en élévation du guide d'ondes rayonnant. En fonction de sa hauteur effective au-dessus du sol, telle que définie par les contraintes mécaniques d'installation sur site, une hauteur compatible d'antenne du véhicule sera sélectionnée afin de situer l'antenne du véhicule dans le lobe principal de rayonnement 9 ou 19 du guide d'ondes 1 à la voie. En pratique, la distance entre l'antenne embarquée 5 et le guide d'ondes 1 doit être d'au moins quatre longueurs d'ondes pour fonctionner en condition de champ lointain. En deçà de quatre longueurs d'ondes, l'antenne est placée en condition de champ proche. Or, en condition de champ proche, le diagramme de rayonnement n'est pas formé et ne permet donc pas au guide d'ondes 1 de focaliser efficacement l'énergie hyperfréquence vers les antennes 5, et ainsi de communiquer entre trains et sol avec un bilan de liaison optimisé.In a vertical plane, these radiation lobes 9 and 10 have maxima that depend on the height of the waveguide above the ground. The presence of the soil and its physical characteristics influence the radiation pattern in elevation of the radiating waveguide. Depending on its effective height above the ground, as defined by the on-site mechanical installation constraints, a compatible vehicle antenna height will be selected to locate the vehicle antenna in the main lobe of the vehicle. radiation 9 or 19 from the waveguide 1 to the track. In practice, the distance between the on-board antenna 5 and the waveguide 1 must be at least four wavelengths to operate in far-field conditions. Below four wavelengths, the antenna is placed in near field condition. However, in a near field condition, the radiation pattern is not formed and therefore does not allow the waveguide 1 to effectively focus the microwave energy to the antennas 5, and thus communicate between trains and ground with a optimized link budget.

Bien que la distance entre le guide d'ondes 1 et chaque antenne 5 du véhicule A, B soit en pratique augmentée par rapport au guide d'ondes de l'art antérieur, le gain apportée par cette sommation et cette concentration d'énergie compense pour une grande part l'atténuation supplémentaire des signaux qui parcourent une distance plus importante dans l'air, du guide d'ondes 1 à l'antenne embarquée 5.Although the distance between the waveguide 1 and each antenna 5 of the vehicle A, B is in practice increased relative to the waveguide of the prior art, the gain brought by this summation and this energy concentration compensates. for a large part the additional attenuation of the signals which travel a greater distance in the air, from the waveguide 1 to the on-board antenna 5.

L'antenne 5 du véhicule A ou B est disposée de manière à se trouver en permanence à proximité d'un réseau de fentes 8a ou 8b présentant le diagramme de rayonnement de la figure 4 et balaye progressivement et continument l'ensemble des milliers de fentes 8a ou 8b du guide d'ondes 1 lors du déplacement du véhicule A ou B (fig. 4). Le diagramme de rayonnement accompagne en permanence le déplacement du véhicule et fournit continument aux deux voies de transport 2 et 3 un maximum d'énergie électromagnétique dans une direction privilégiée de l'espace.The antenna 5 of the vehicle A or B is arranged so as to be permanently close to a network of slots 8a or 8b having the radiation pattern of the figure 4 and progressively and continuously sweeps all the thousands of slots 8a or 8b of the waveguide 1 during the movement of the vehicle A or B ( Fig. 4 ). The radiation pattern continuously accompanies the movement of the vehicle and provides continuously to the two transport paths 2 and 3 a maximum of electromagnetic energy in a preferred direction of space.

Une antenne dite omnidirectionnelle, c'est-à-dire une antenne qui met en évidence un champ électromagnétique quelle que soit la direction d'arrivée d'un signal émis ou alternativement qui rayonne de la même façon un signal électromagnétique dans toutes les directions de l'espace peut convenir. Cette antenne pourra capter les signaux émis par le guide d'ondes 1 dans ses directions privilégiées de rayonnement et émettre des signaux en direction du guide d'ondes, au même titre que les signaux reçus ou émis dans d'autres directions de l'espace.An omnidirectional antenna, that is to say an antenna which highlights an electromagnetic field irrespective of the direction of arrival of a signal emitted or alternately which radiates in the same way an electromagnetic signal in all directions of the space may be suitable. This antenna will be able to capture the signals emitted by the waveguide 1 in its preferred directions of radiation and to emit signals in the direction of the waveguide, in the same way as the signals received or emitted in other directions of space .

Cependant, une telle antenne ne présente pas de gain particulier lié à la focalisation de l'énergie dans une ou des directions privilégiées de l'espace. De ce fait, les signaux mis en évidence par cette antenne seront faibles ou ne permettront pas d'injecter une puissance élevée dans le guide d'ondes, au-travers des fentes. Cela signifie qu'une telle antenne ne permettra pas d'obtenir des débits de communication importants sauf à augmenter la puissance émise par l'émetteur train ou sol.However, such an antenna has no particular gain related to the focusing of energy in one or more preferred directions of space. As a result, the signals highlighted by this antenna will be weak or will not to inject a high power into the waveguide, through the slots. This means that such an antenna will not achieve significant communication rates except increase the power emitted by the train or ground transmitter.

Une antenne directive possédant un diagramme de rayonnement présentant des directivités de rayonnement permet le meilleur transfert possible d'énergie entre le guide d'ondes 1 à la voie et cette antenne. En d'autres termes, le diagramme de rayonnement de l'antenne doit présenter au moins un lobe principal de rayonnement dont l'orientation est identique à celle d'un des lobes principaux du diagramme de rayonnement du guide d'ondes 1. L'orientation est définie par l'angle α que forme l'axe du lobe principal avec l'axe de l'antenne ou du guide d'ondes. Par exemple, comme le guide d'ondes 1 conforme à l'invention présente figure 4 un lobe principal dirigé à environ 30° par rapport à l'axe du guide d'ondes, une antenne 5 colinéaire au train doit également présenter un angle de départ de 30° afin de recevoir et d'émettre efficacement des signaux dans cette direction privilégiée de l'espace. Une telle antenne permet d'obtenir des débits de communication importants.A directional antenna having a radiation pattern having radiation directivities allows the best possible transfer of energy between the waveguide 1 to the channel and this antenna. In other words, the radiation pattern of the antenna must have at least one main lobe of radiation whose orientation is identical to that of one of the main lobes of the waveguide radiation pattern 1. orientation is defined by the angle α that forms the axis of the main lobe with the axis of the antenna or the waveguide. For example, as the waveguide 1 according to the present invention figure 4 a main lobe directed at approximately 30 ° with respect to the axis of the waveguide, a collinear antenna 5 to the train must also have a starting angle of 30 ° in order to receive and transmit signals efficiently in this preferred direction from space. Such an antenna makes it possible to obtain high communication rates.

L'affaiblissement linéique total dans le guide d'onde 1 n'est que faiblement augmenté puisque, via un double nombre de fentes toutes identiques, on ne double que la perte par prélèvement d'énergie depuis le guide d'ondes. Dans la réalisation particulière présentée à 2,4 GHz, l'affaiblissement linéique total passe ainsi de 18 dB à 21 dB dans le cas d'un guide d'ondes en aluminium et la réduction de portée serait donc de 3 :18 soit environ 17%. Cette réduction de portée peut être palliée en réduisant légèrement la taille des fentes, ce qui aurait cependant pour conséquence de réduire l'énergie émise et reçue via le guide d'ondes.The total linear attenuation in the waveguide 1 is only slightly increased since, via a double number of identical slots, only the energy sampling loss from the waveguide is doubled. In the particular embodiment presented at 2.4 GHz, the total linear loss thus goes from 18 dB to 21 dB in the case of an aluminum waveguide and the reduction in range would therefore be 3: 18 or about 17 %. This range reduction can be mitigated by slightly reducing the size of the slots, which would however have the effect of reducing the energy emitted and received via the waveguide.

Du fait notamment du faible couplage électromagnétique entre réseaux de fentes adjacents, le comportement du double réseau de fentes et son diagramme de rayonnement en champ lointain s'avèrent stables dans une large bande de fréquences et ne dépend en pratique que du mode de propagation propre régnant à l'intérieur du guide d'ondes 1.In particular, due to the weak electromagnetic coupling between adjacent slot gratings, the behavior of the double slot network and its far-field radiation pattern are stable over a wide frequency band and in practice depends only on the proper propagation mode. inside the waveguide 1.

Claims (9)

  1. A continuous communication device between at least one rail vehicle (A, B) and a control post (P), including at least one waveguide (1, 1', 1 n) positioned between two parallel tracks and resting on a non-emissive face (7b), comprising two emissive faces (6a, 6b) each pierced with an array of openings (8a, 8b) for the passage of hyperfrequency electromagnetic radiation with a given wavelength made up of slits, at least one vehicle (A, B) being provided with at least one antenna (5) emitting and receiving hyperfrequency waves, the control post (P) being provided with at least one unit for supplying the waveguide (1, 1', 1 n) with hyperfrequency waves and at least one unit for receiving hyperfrequency waves coming from the waveguide (1, 1', 1n), characterized in that the waveguide (1, 1', 1n) is parallelepiped and in that the emissive faces (6a, 6b) are vertical faces of said waveguide.
  2. The device according to claim 1, characterized in that the large dimension of the emissive faces (6a, 6b) of the waveguide (1, 1', 1n) is of the approximate size of the wavelength of the electromagnet radiation propagated in the waveguide.
  3. The device according to claim 1 or 2, characterized in that the large dimension (D) of the slits (8a, 8b) is smaller than at least five times the wavelength of the electromagnetic radiation propagated in the waveguide (1, 1', 1n).
  4. The device according to one of claims 1 to 3, characterized in that the inter-slit spacing is smaller than the half-wavelength of the signals emitted in the air.
  5. The device according to one of claims 1 to 4, characterized in that the two arrays of slits (8a, 8b) are identical.
  6. The device according to one of claims 1 to 4, characterized in that one of the arrays of slits (8a, 8b) is larger than the other (8a, 8b).
  7. The device according to one of claims 1 to 6, characterized in that the slits (8a, 8b) are positioned vertically.
  8. The device according to claim 1 to 7, characterized in that the distance between the antenna (5) positioned onboard a vehicle (A, B) and the communication device is equal to at least four wavelengths.
  9. The device according to claim 8, characterized in that the antenna (5) positioned onboard a vehicle (A, B) has a radiation directivity identical to that of the communication device.
EP08104085.9A 2007-05-31 2008-05-26 Communication device for a railway vehicle Active EP2006954B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0703876A FR2916907B1 (en) 2007-05-31 2007-05-31 COMMUNICATION DEVICE FOR RAILWAY VEHICLE

Publications (2)

Publication Number Publication Date
EP2006954A1 EP2006954A1 (en) 2008-12-24
EP2006954B1 true EP2006954B1 (en) 2013-10-09

Family

ID=38896277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08104085.9A Active EP2006954B1 (en) 2007-05-31 2008-05-26 Communication device for a railway vehicle

Country Status (4)

Country Link
EP (1) EP2006954B1 (en)
CN (1) CN101353046B (en)
FR (1) FR2916907B1 (en)
SG (1) SG148137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873119A (en) * 2014-03-27 2014-06-18 西南交通大学 Vehicle-mounted double-antenna communication method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104410A (en) * 2011-01-18 2011-06-22 京信通信系统(中国)有限公司 High-speed railway microwave communication network
CN104810604B (en) * 2015-04-20 2018-03-09 北京中城通咨询有限公司 A kind of subway train-ground communication system and the means of communication
US10908254B2 (en) * 2018-12-20 2021-02-02 GM Global Technology Operations LLC Traveling-wave imaging manifold for high resolution radar system
WO2020239264A1 (en) * 2019-05-29 2020-12-03 Sew-Eurodrive Gmbh & Co. Kg Rail system with a rail and mobile parts movable along the rail

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470474A (en) * 1966-12-23 1969-09-30 Donald E Bilger Underground radio communication system for highways
US3648172A (en) * 1968-10-02 1972-03-07 Sumitomo Electric Industries Circular leaky waveguide train communication system
US3766378A (en) * 1971-06-03 1973-10-16 Japan National Railway Moving object automatic operation system
FR2608119B1 (en) * 1986-12-12 1989-02-10 Alsthom DEVICE FOR TRANSMITTING BROADBAND BROADBAND INFORMATION AND / OR INSTRUCTIONS BETWEEN A RAIL VEHICLE AND A TRAFFIC CONTROL STATION
ES2039412T3 (en) * 1986-12-12 1993-10-01 Gec Alsthom Sa DEVICE FOR THE TRANSMISSION OF INFORMATION AND / OR INSTRUCTIONS WITH A BROAD SLIDING BAND BETWEEN A MOBILE ELEMENT AND A CONTROL STATION.
FR2744865B1 (en) * 1996-02-09 1998-03-20 Gec Alsthom Transport Sa INFORMATION TRANSMISSION DEVICE AND METHOD FOR RADIANT WAVEGUIDE SYSTEM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873119A (en) * 2014-03-27 2014-06-18 西南交通大学 Vehicle-mounted double-antenna communication method
CN103873119B (en) * 2014-03-27 2017-02-01 西南交通大学 Vehicle-mounted double-antenna communication method

Also Published As

Publication number Publication date
FR2916907B1 (en) 2010-09-10
SG148137A1 (en) 2008-12-31
CN101353046B (en) 2013-04-24
EP2006954A1 (en) 2008-12-24
FR2916907A1 (en) 2008-12-05
CN101353046A (en) 2009-01-28

Similar Documents

Publication Publication Date Title
EP1998403B1 (en) Waveguide antenna embedded on a railway vehicle
EP2532046B1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP1723693B1 (en) Antenna with variable misalignment comprising at least one phase-changing element
EP2006954B1 (en) Communication device for a railway vehicle
EP2625741B1 (en) Large-area broadband surface-wave antenna
FR2498336A1 (en) LINEAR POLARIZATION ELECTROMAGNETIC WAVE TRANSMISSION DEVICE
EP3680982B1 (en) Rf radiofrequency rotary joint for rotary device for guiding rf waves and rf rotary device including such a joint
FR2732820A1 (en) Radiating high-frequency line for radio communication with axially moving object in tunnel, underground railway and building
EP3175509B1 (en) Log-periodic antenna with wide frequency band
EP1191630A1 (en) High frequency diverging dome shaped lens and antenna incorporating such lens
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP1949496B1 (en) Flat antenna system with a direct waveguide access
EP2042402A1 (en) Radio communication device in a guided transport means
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
WO2008037887A2 (en) Antenna using a pfb (photonic forbidden band) material and system
EP1152483B1 (en) Dual-band microwave radiating element
EP2950457B1 (en) Data communication system, railway system comprising such a communication system and related communication method
WO2015189134A1 (en) Flat antenna for satellite communication
FR2507825A1 (en) Thin structure HF directional aerial for guided missile - has two conducting plates separated by dielectric layer of width determined by dielectric constant and cone angle of radiation
EP3506426A1 (en) Beam pointing device for antenna system, associated antenna system and platform
FR2929762A1 (en) Mobile coupler i.e. branch line type coupler, for Luneberg lens antenna in e.g. train and satellite communication, has printed circuit board including strips penetrated in wave guide by slot to form plungers between wave guide and line
EP2736118A1 (en) Nested-loop antenna system and vehicle including such an antenna system
WO2010070019A1 (en) Very wideband multidirectional antenna
FR2719162A1 (en) Microwave antenna with at least two directions of reflection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090624

17Q First examination report despatched

Effective date: 20090723

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TRANSPORT SA

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 635882

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008027970

Country of ref document: DE

Effective date: 20131205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 635882

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131009

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008027970

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

26N No opposition filed

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008027970

Country of ref document: DE

Effective date: 20140710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008027970

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008027970

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20171020

Ref country code: FR

Ref legal event code: TQ

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR

Effective date: 20171020

Ref country code: FR

Ref legal event code: TQ

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Effective date: 20171020

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230525

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231025