EP2532046B1 - Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle - Google Patents

Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle Download PDF

Info

Publication number
EP2532046B1
EP2532046B1 EP11701218.7A EP11701218A EP2532046B1 EP 2532046 B1 EP2532046 B1 EP 2532046B1 EP 11701218 A EP11701218 A EP 11701218A EP 2532046 B1 EP2532046 B1 EP 2532046B1
Authority
EP
European Patent Office
Prior art keywords
antenna
waveguides
plane
slots
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11701218.7A
Other languages
German (de)
French (fr)
Other versions
EP2532046A1 (en
Inventor
Régis Lenormand
Jean-Michel Merour
Jean-Michel Mateus
Ronan Sauleau
Mauro Ettorre
Gérard Raguenet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2532046A1 publication Critical patent/EP2532046A1/en
Application granted granted Critical
Publication of EP2532046B1 publication Critical patent/EP2532046B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to a planar scanning antenna, a vehicle comprising such an antenna and a satellite telecommunications system comprising such a vehicle. It applies in particular to the field of satellite telecommunications and more particularly to telecommunications equipment installed on mobile vehicles such as land, sea or aeronautical means of transport to ensure a two-way connection between a mobile terminal and a land station by through a repeater installed on a satellite.
  • the specifications for transmission and reception of the mobile terminal capable of ensuring the required transmission qualities lead, in the Ku band, to antenna gains typically of the order of 34 to 35 dB on the covered area and the antenna must be able to ensure, in transmission and reception, pointing in an angular range between 0 ° and 360 ° in azimuth and between 20 ° and 60 ° on average in elevation.
  • the pointing of the antenna towards the satellite is carried out by a combination of two mechanical movements.
  • a first mechanical movement is obtained by means of a rotating platform arranged in an XY plane and ensuring the orientation of the antenna in elevation and in azimuth.
  • a second movement in elevation is carried out by an annex device, for example a plane mirror, integral with the platform.
  • the antenna conventionally comprises a parabolic reflector and a radiating source illuminating the reflector. To reduce the size of the reflector and reduce the height of the antenna, its periphery is elliptical instead of circular.
  • such an antenna currently deployed on high-speed trains has a height of the order of 45 cm. Although this height is compatible with current trains, it is too great for future high-speed trains with two bridges for which the height available for the installation of an antenna, between the roof of the train and the overhead lines, is much more low.
  • the height of the antenna has an influence on the drag generated by the aircraft as well as on the fuel consumption.
  • the current reflector antennas installed on aircraft have a height of the order of 30cm and lead to overconsumption of fuel equivalent to eight additional passengers.
  • the antenna is composed of two parallel plates between which circulate longitudinal current components and an array of one dimension of continuous transverse grooves which couple and radiate energy in space.
  • the two plates and the network of grooves are mounted on two coplanar plates mechanically rotating independently of one another, the two rotational movements being superimposed and produced in the same plane of the plates.
  • the orientation of the lower plate makes it possible to adjust the pointing direction in azimuth
  • the orientation of the upper plate makes it possible to obtain a variable inclination of the grooves and thus to modify the pointing direction in elevation of the beam generated by the antenna.
  • this antenna initially operating in linear polarization, it is necessary to add an additional orientable polarization grid mounted on the upper face of the antenna to control the plane of polarization of the antenna which increases the complexity of implementation. and the height of the antenna which is then not planar.
  • the antenna comprises several alternating planes of substrates and metal planes superimposed one above the other.
  • the antenna comprises a first lower metallic plane, then a first substrate plane comprising several sources, the first substrate plane comprising a lateral end forming a parabolic surface on which the waves emitted by the sources are reflected.
  • Above the first substrate plane is a second metallic plane having slots for coupling the reflected wave plane, each coupling slot opening into respective slot wave guides arranged side by side parallel to each other in the same second substrate plane.
  • the guided waves are then emitted in the form of a beam radiated through a plurality of radiating openings formed in a third upper metallic plane.
  • a sweep and a deflection of the beam in elevation, in a plane perpendicular to the plane of the antenna, is obtained by switching the different sources but no modification of pointing in azimuth is not possible.
  • this type of very compact antenna has the drawback of requiring high-power switching means, which is never easy to achieve.
  • the switching of the sources is discrete which does not make it possible to obtain a continuous pointing of the beam.
  • this very compact antenna is supplied by a single power source which requires the use of bulky power amplifiers which considerably increase the volume of the antenna which becomes too large for an application to means of transport.
  • This antenna is very elliptical, the dimension of the mirror in its region articulated on the platform being much greater than the dimension of the mirror in its region inclined above the platform, which makes it possible to reduce the height of the antenna to 20 or 30cm, but this height is still too large for an application to means of transport.
  • the object of the invention is to produce a planar scanning antenna which does not have the drawbacks of existing antennas and which can be installed on a mobile means of transport.
  • the purpose of the invention is to provide a directional planar antenna, operating in the Ku band, very compact in the direction of its height, simple to implement and low cost, capable of remaining pointed at a satellite continuously whatever the position of the means of transport and allowing control of the plane of polarization without adding an orientable grid.
  • the invention relates to a planar scanning antenna comprising at least one network of waveguides with radiating slits, the network of waveguides with radiating slits comprising two substrates of dielectric, respectively lower and upper, superimposed one above the other.
  • the two substrates Sub1, Sub2, lower and upper have identical waveguides which correspond and each waveguide of the upper substrate communicates with a single corresponding waveguide of the lower substrate by means of a coupling slot (13).
  • Each waveguide of the upper substrate Sub2 further comprises a plurality of radiating slots, all the radiating slots being parallel to each other and oriented in the same direction parallel to a longitudinal axis of the waveguides and each waveguide of the substrate Lower Sub1 has an internal individual supply circuit comprising an individual electronic phase shift and amplification circuit.
  • the waveguides are placed parallel next to each other and have lower and upper metal walls parallel to a plane of the antenna.
  • the upper and lower walls of all the waveguides can be formed by three flat metal plates, respectively lower, intermediate and upper, parallel to the plane of the antenna, the coupling slots passing through the metal plate intermediate, the radiating slots passing through the upper metal plate.
  • the waveguides are placed parallel to one another and have lower and upper metal walls inclined relative to a plane of the antenna,
  • the network of guides with radiating slits is mounted on a platform rotating in azimuth.
  • the antenna comprises two identical arrays of radiating slit waveguides dedicated respectively to transmission and to reception.
  • the angle of inclination of the radiating slots of the main network is between 20 ° and 70 °.
  • the invention also relates to a vehicle comprising at least one such antenna and to a satellite telecommunications system comprising at least one such vehicle.
  • the flat antenna shown on the Figures 1a, 1b , 1 C comprises a network 5 of radiating slit waveguides comprising two dielectric substrates Sub1, Sub2, respectively lower and upper, superimposed one above the other.
  • the upper dielectric substrate Sub2 supports waveguides with radiating slits 10
  • the lower substrate Sub1 supports waveguides 11 intended to supply each waveguide with radiating slits 10 by a microwave signal.
  • Three radiating slit waveguides are shown in the figure 1a and four radiating slit waveguides are shown on the Figures 1c and 1d , but these numbers are not limitative and can have any value greater than or equal to one.
  • the waveguides have a cross section of rectangular shape.
  • the planes of the different layers of the antenna are parallel to an XY plane and in each substrate layer, the waveguides are placed next to each other parallel to the XY plane.
  • the upper and lower walls of all the waveguides are then constituted by three metal plates M1, M2, M3 respectively lower, intermediate and upper, parallel to the plane XY and delimiting the two dielectric substrates equipped with the waveguides, the two dielectric substrates Sub1, Sub2 being interposed between two consecutive metal plates.
  • the height of the antenna is along an axis Z orthogonal to the plane XY.
  • each waveguide 11 of the lower substrate Sub1 has two metal walls, lower and upper, respectively formed by the lower metal plates M1 and intermediate M2 and lateral metal walls connecting the two lower metal plates M1 and intermediate M2.
  • Each waveguide 11 of the lower substrate Sub1 further comprises a coupling slot 13 passing through the intermediate metal plate M2 and opening into a single corresponding waveguide 10 of the upper substrate Sub2.
  • the coupling slots 13 which feed each waveguide 10 of the upper substrate Sub2 can open for example in the middle of each waveguide 10 or at one end 16 of these waveguides as on the Figures 1a and 1b or at another location of these waveguides 10.
  • Each waveguide 10 of the upper substrate Sub2 has two metallic walls, lower and upper, respectively formed by the intermediate metallic plates M2 and upper M3 and lateral metallic walls connecting the two intermediate metal plates M2 and upper M3.
  • the waveguides 10, 11 extend along a longitudinal axis parallel to the same direction, which can correspond, for example, to the axis X and have two opposite ends 15, 16 on this axis.
  • each waveguide 10 of the upper substrate Sub2 further comprises a plurality of radiating slots 20 passing through the upper metal plate M3, all the radiating slots 20 being parallel to each other and oriented in the same direction parallel to the longitudinal axis of the waveguides, for example the direction X, the direction Y orthogonal to the direction X in the XY plane of the corresponding slots to a linear polarization wave plane.
  • Each waveguide 11 of the lower substrate Sub1 comprises an internal individual supply circuit 25 capable of receiving an incoming microwave signal 19 applied to its open end, this internal individual supply circuit 25 comprising an internal individual electronic phase shift circuit and amplification comprising an internal phase shifter 21 for controlling the phase of the signal to be transmitted and an internal amplification device 22 of the incoming signal making it possible to control the radiation emitted by the antenna.
  • the incoming signal 19 can be emitted for example by an external source 24, for example unique, then divided by a divider 26 connected at the input of each of the waveguides 11 of the lower substrate Sub1.
  • the incoming signal 19 in one of the waveguides 11 of the lower substrate Sub1 is transmitted in a corresponding waveguide 10 of the upper substrate Sub2 via the coupling slots 13 in the intermediate metal plate M2 then radiated by the radiating slots 20.
  • a scanning and a deflection of the beam in elevation, in a plane YZ perpendicular to the plane XY of the antenna, is obtained by checking the law of phase and amplitude applied electronically by the internal supply circuits of each waveguide 11 of the lower substrate corresponding to each of the waveguides 10 with radiating slits.
  • the waveguides shown on the figure 1a all have an arrangement parallel to the metal plates M1, M2, M3.
  • each waveguide by a predetermined angle, for example between 10 ° and 20 °, relative to the XY plane of the antenna.
  • the lower and upper walls of the different waveguides are not formed by flat metal plates M1, M2, M3 but by metal walls inclined relative to the plane XY, the metal plates M1, M2, M3 being replaced by sawtooth metal walls.
  • Each waveguide 11 of the lower substrate Sub1 being supplied individually by an internal circuit 25 and comprising a circuit individual internal electronic phase shift 21 and amplification 22, the phase control is carried out continuously which allows to continuously control the direction of radiation of the antenna in elevation. Furthermore, the amplification is distributed in each waveguide 11 which allows the use of low power amplifiers and to overcome a complex and bulky external amplification circuit. In addition, no high energy source switching means is required to achieve continuous scanning of the beam.
  • the pointing of the beam in azimuth is achieved by rotation of the platform and the pointing of the beam in elevation is given by the phase law applied to the incoming signals 19
  • This phase law is obtained by controlling the internal phase shifters 21 and the internal amplifiers 22 integrated in each of the waveguides 11 of the lower substrate Sub1.
  • the waveguides 10 with radiating slits operating in a low bandwidth it is possible to split the transmission and reception functions and to use as shown in the figure 2 , a system of planar antennas 6, 8 comprising a first array of slot wave guides dedicated to transmission and a second array of slot wave guides, not shown, dedicated to reception, the two array of slotted waveguides being identical and mounted on the same platform 7 rotating in azimuth.
  • the pointing in elevation of each of the transmitting and receiving antennas of the planar antenna system mounted on the rotating platform is carried out by amplification and electronic control of the phases of each of the signals flowing in the slot guides forming the arrays of radiation from the two antennas.
  • the antenna thus obtained has dimensions of 840mm long and 242mm wide.
  • the height of the antenna without the rotating platform on which it is mounted is a few millimeters.
  • the total height of the antenna with the rotating platform is almost equal to the height of the rotating platform, ie of the order of 2 to 3 cm.
  • This antenna radiates a linearly polarized wave, the radiated wave plane being parallel to the slits.
  • the radiation diagram obtained with this antenna comprises a main lobe having a maximum amplitude at 36.2 dB corresponding to the maximum directivity of the antenna and a bandwidth at 3dB of angle Theta equal to 1.5 ° in the XZ plane and at 5 ° in the YZ plane.
  • This design example therefore shows that the flat antenna thus produced meets the height conditions imposed for installation on a means of transport and in particular on a future high-speed train.
  • an antenna transmits a linearly polarized wave plane in a given direction
  • the satellite receives this wave in a direction which depends on the relative position of the satellite with respect to the local vertical of the vehicle equipped with the antenna and the relative position of the vehicle in relation to the local vertical on the ground.
  • the satellite therefore sees a wave whose polarization has undergone a rotation of an angle Psi with respect to the plane of polarization of the wave emitted by the antenna. If the vehicle is traveling in a geographical area with slopes less than 10%, the Psi value remains at values less than 15 °.
  • this rotation has the effect of generating two crossed energy components at the satellite level.
  • the satellite then receives a main energy component parallel to the plane of polarization of the transmitted wave and an additional energy component in a direction perpendicular to the main polarization plane. Since this additional energy component can create interference for users using this other plane of polarization, it is necessary to compensate for the angle of rotation Psi so that the satellite receives only one wave whose polarization is perfectly aligned.
  • This angle of rotation Psi varies continuously when the vehicle equipped with the antenna moves, compensation must be carried out continuously. To limit interference, this compensation must be carried out both on transmission and on reception.
  • a planar auxiliary transmit antenna 9 and a planar auxiliary receive antenna 14, having the same structure as the main antennas 6 transmission and 8 reception are mounted on the rotating platform 7 as shown in the figure 4 .
  • Each auxiliary planar antenna 9, 14 comprises an auxiliary network 30 of slot guides supplied in an identical manner as that of the main transmission network, that is to say by a phase shift circuit 31 and internal amplification 32 installed in the guides wave of the lower substrate of the auxiliary network, the phase shift being set to the same value as that of the main network 5.
  • the orientation of the radiating slots 33 of the auxiliary network 30 makes a non-zero angle ⁇ , preferably between 20 ° and 70 °, with respect to the radiating slots 20 of the main transmission network 5 so as to emit a secondary wave having a plane of polarization 2 inclined with respect to the plane of polarization 1 of the main wave emitted by the main network 5.
  • the auxiliary network 30 makes it possible to obtain, in the direction of the beam emitted by the main network, a secondary beam having amplitude, phase and polarization characteristics independent of the main network.
  • the polarization components of the two wave planes 1, 2 emitted by the two main 5 and auxiliary 30 networks will combine vectorially into a global resulting wave having a polarization plane 3.
  • the plane wave emitted by the auxiliary antenna 9, 14 being polarized according to a wave plane perpendicular to the direction of orientation of the slots 33 of the auxiliary antenna 9, 14 it therefore comprises two polarization components parallel to the axes X and Y.
  • the auxiliary network 30 By adjusting the polarization, phase and amplitude parameters of the wave emitted by the auxiliary network 30, it is then possible to obtain, at satellite level, a global resulting wave whose polarization plane 3 is aligned with the plane of polarization 1 of the main wave emitted and of thus compensate for the angle of rotation Psi of the polarization of the main wave received by the satellite. For example, by applying a phase equal to 180 ° to the wave emitted by the auxiliary network 30, which corresponds to the plane of polarization 4, the overall resulting wave has a plane of polarization in direction 12.
  • a second phase shift circuit intended to compensate for a rotation of the plane of polarization of a wave emitted by the main network, is placed at the input of the auxiliary network 30.
  • the second phase shift circuit comprises a phase shifter 34 with variable phase between 0 ° and 180 ° and an amplifier 35 with variable gain.
  • the radiating slots 33 of the auxiliary network 30 can be chosen oriented at 45 ° relative to the radiating slots 20 of the main network 5.
  • the input phase shifter 34 with variable phase between 0 ° and 180 ° and the input amplifier 35 with variable gain make it possible to adjust the amplitude and the phase of the signal delivered by the source of emission and derivative, via a power divider 36, towards the auxiliary network 30 and thus to control the orientation of the plane of polarization 3 of the resulting emitted wave which results from the combination of the two waves radiated by the two main radiating networks 5 and auxiliary 30.
  • the secondary wave being only intended to compensate for the angle of rotation Psi, it does not has the sole purpose of creating a wave plane component perpendicular to the main wave plane and the amplitude of the wave it emits can therefore be much lower than the amplitude of the main wave.
  • the auxiliary antenna 9, 14 can therefore be of much smaller dimensions than those of the main antenna 6, 8 and therefore, the numbers of waveguides and slots of the secondary antenna can be much lower than those from the main antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Description

La présente invention concerne une antenne plane à balayage, un véhicule comportant une telle antenne et un système de télécommunication par satellite comportant un tel véhicule. Elle s'applique notamment au domaine des télécommunications par satellite et plus particulièrement aux équipements de télécommunication implantés sur des véhicules mobiles tels que des moyens de transport terrestres, maritimes ou aéronautiques pour assurer une connexion bi-directionnelle entre un terminal mobile et une station terrestre par l'intermédiaire d'un répéteur implanté sur un satellite.The present invention relates to a planar scanning antenna, a vehicle comprising such an antenna and a satellite telecommunications system comprising such a vehicle. It applies in particular to the field of satellite telecommunications and more particularly to telecommunications equipment installed on mobile vehicles such as land, sea or aeronautical means of transport to ensure a two-way connection between a mobile terminal and a land station by through a repeater installed on a satellite.

Dans les moyens de transport, tels que les trains et les bus, les besoins en connexions à un service Internet à large bande et les besoins en antennes à haute performance, bas coût et de faible dimension sont croissants.In means of transport, such as trains and buses, the need for connections to a broadband Internet service and the need for high-performance, low-cost and small antennae are increasing.

Actuellement, il est connu de réaliser un lien satellitaire entre un terminal mobile et une station terrestre pour, par exemple, assurer une connexion internet aux passagers d'un train ou d'un bus, en utilisant une antenne très peu directive fonctionnant en bande L. Le problème est qu'en bande L, il y a très peu de fréquences disponibles et que le débit de transmission des communications est donc très faible. Pour augmenter le débit, il est nécessaire d'établir des liens avec des satellites fonctionnant en bande Ku (10,5GHz à 14,5GHz) ou Ka (20 à 30 GHz) et de réaliser des antennes directives. Cependant, avec une antenne directive, il est nécessaire de pointer en continu le satellite quelle que soit la position du véhicule.Currently, it is known to make a satellite link between a mobile terminal and a land station to, for example, provide an internet connection to the passengers of a train or a bus, by using a very directive antenna operating in L-band The problem is that in L band, there are very few frequencies available and that the communication transmission rate is therefore very low. To increase the speed, it is necessary to establish links with satellites operating in the Ku band (10.5 GHz to 14.5 GHz) or Ka (20 to 30 GHz) and to provide directional antennas. However, with a directional antenna, it is necessary to continuously point the satellite regardless of the position of the vehicle.

Pour couvrir un territoire tel que l'Europe, les spécifications en émission et en réception du terminal mobile capable d'assurer les qualités de transmission requises conduisent, en bande Ku, à des gains d'antenne typiquement de l'ordre de 34 à 35 dB sur la zone couverte et l'antenne doit être en mesure d'assurer, en émission et en réception, un pointage dans un domaine angulaire compris entre 0° et 360° en azimut et entre 20° et 60° en moyenne en élévation.To cover a territory such as Europe, the specifications for transmission and reception of the mobile terminal capable of ensuring the required transmission qualities lead, in the Ku band, to antenna gains typically of the order of 34 to 35 dB on the covered area and the antenna must be able to ensure, in transmission and reception, pointing in an angular range between 0 ° and 360 ° in azimuth and between 20 ° and 60 ° on average in elevation.

Ces performances peuvent être obtenues en utilisant une antenne réseau comportant des éléments rayonnants élémentaires dont la phase est réglée pour obtenir un pointage précis dans une direction choisie. Ces antennes réseau ont l'avantage d'être planes et donc à faible encombrement dans le sens de leur hauteur, cependant le domaine angulaire à couvrir étant très important, pour obtenir de bonnes performances et éviter l'apparition de lobes de réseau dans le diagramme de rayonnement de l'antenne, il est nécessaire d'utiliser un réseau de formation de faisceaux comportant un très grand nombre de contrôles de phase, ce qui est prohibitif. Par exemple, pour une antenne en bande Ku ayant une surface de l'ordre de 1m2, le nombre d'éléments rayonnants de l'antenne doit être supérieur à 15000, ce qui est rédhibitoire en termes de coût et de complexité de l'antenne pour une application aux moyens de transport.These performances can be obtained by using an array antenna comprising elementary radiating elements whose phase is adjusted to obtain a precise pointing in a chosen direction. These array antennas have the advantage of being flat and therefore of small overall dimensions in the direction of their height, however the angular range to be covered is very large, in order to obtain good performance and avoid the appearance of array lobes in the diagram. radiation from the antenna, it is necessary to use a beam forming network comprising a very large number of phase controls, which is prohibitive. For example, for a Ku-band antenna having a surface area of the order of 1 m 2, the number of radiating elements of the antenna must be greater than 15,000, which is prohibitive in terms of cost and complexity of the antenna for application to means of transport.

Il est également possible de réaliser un pointage dans un large domaine angulaire en utilisant une antenne à pointage mécanique. Dans ce type d'antenne, le pointage de l'antenne en direction du satellite est réalisé par une combinaison de deux mouvements mécaniques. Un premier mouvement mécanique est obtenu par l'intermédiaire d'une plateforme tournante disposée dans un plan XY et assurant l'orientation de l'antenne en site et en azimut. Un deuxième mouvement en élévation est réalisé par un dispositif annexe, par exemple un miroir plan, solidaire de la plateforme. L'antenne comporte classiquement un réflecteur parabolique et une source rayonnante illuminant le réflecteur. Pour diminuer l'encombrement du réflecteur et réduire la hauteur de l'antenne, sa périphérie est elliptique au lieu de circulaire. Typiquement, une telle antenne actuellement déployée sur des trains à grande vitesse présente une hauteur de l'ordre de 45cm. Bien que cette hauteur soit compatible des trains actuels, elle est trop importante pour les futurs trains à grande vitesse à deux ponts pour lesquels la hauteur disponible pour l'implantation d'une antenne, entre le toit du train et les caténaires, est beaucoup plus faible.It is also possible to achieve pointing in a wide angular range using a mechanical pointing antenna. In this type of antenna, the pointing of the antenna towards the satellite is carried out by a combination of two mechanical movements. A first mechanical movement is obtained by means of a rotating platform arranged in an XY plane and ensuring the orientation of the antenna in elevation and in azimuth. A second movement in elevation is carried out by an annex device, for example a plane mirror, integral with the platform. The antenna conventionally comprises a parabolic reflector and a radiating source illuminating the reflector. To reduce the size of the reflector and reduce the height of the antenna, its periphery is elliptical instead of circular. Typically, such an antenna currently deployed on high-speed trains has a height of the order of 45 cm. Although this height is compatible with current trains, it is too great for future high-speed trains with two bridges for which the height available for the installation of an antenna, between the roof of the train and the overhead lines, is much more low.

De même, pour une application dans le domaine aéronautique, la hauteur de l'antenne a une influence sur la trainée engendrée par l'avion ainsi que sur la consommation du carburant. Par exemple, les antennes à réflecteur actuelles implantées sur les avions ont une hauteur de l'ordre de 30cm et entraînent une surconsommation de carburant équivalente à huit passagers supplémentaires.Similarly, for an application in the aeronautical field, the height of the antenna has an influence on the drag generated by the aircraft as well as on the fuel consumption. For example, the current reflector antennas installed on aircraft have a height of the order of 30cm and lead to overconsumption of fuel equivalent to eight additional passengers.

Il existe des architectures permettant de réduire la hauteur de l'antenne à pointage mécanique. Selon une première architecture, l'antenne est composée de deux plaques parallèles entre lesquelles circulent des composantes de courant longitudinales et d'un réseau à une dimension de rainures continues transversales qui couplent et rayonnent l'énergie dans l'espace. Les deux plaques et le réseau de rainures sont montés sur deux plateaux coplanaires tournant mécaniquement indépendamment l'un de l'autre, les deux mouvements de rotation étant superposés et réalisés dans le même plan des plateaux. L'orientation du plateau inférieur permet de régler la direction de pointage en azimut, l'orientation du plateau supérieur permet d'obtenir une inclinaison variable des rainures et de modifier ainsi la direction de pointage en élévation du faisceau engendré par l'antenne. Cependant, cette antenne fonctionnant initialement en polarisation linéaire, il est nécessaire d'ajouter une grille de polarisation orientable supplémentaire montée sur la face supérieure de l'antenne pour contrôler le plan de polarisation de l'antenne ce qui accroît la complexité de mise en œuvre et la hauteur de l'antenne qui n'est alors pas plane.There are architectures making it possible to reduce the height of the antenna with mechanical pointing. According to a first architecture, the antenna is composed of two parallel plates between which circulate longitudinal current components and an array of one dimension of continuous transverse grooves which couple and radiate energy in space. The two plates and the network of grooves are mounted on two coplanar plates mechanically rotating independently of one another, the two rotational movements being superimposed and produced in the same plane of the plates. The orientation of the lower plate makes it possible to adjust the pointing direction in azimuth, the orientation of the upper plate makes it possible to obtain a variable inclination of the grooves and thus to modify the pointing direction in elevation of the beam generated by the antenna. However, this antenna initially operating in linear polarization, it is necessary to add an additional orientable polarization grid mounted on the upper face of the antenna to control the plane of polarization of the antenna which increases the complexity of implementation. and the height of the antenna which is then not planar.

Selon une deuxième architecture d'antenne plane à hauteur réduite, l'antenne comporte plusieurs plans alternés de substrats et de plans métalliques superposés les uns au-dessus des autres. L'antenne comporte un premier plan métallique inférieur, puis un premier plan de substrat comportant plusieurs sources, le premier plan de substrat comportant une extrémité latérale formant une surface parabolique sur laquelle les ondes émises par les sources se réfléchissent. Au-dessus du premier plan de substrat se trouve un deuxième plan métallique comportant des fentes de couplage du plan d'onde réfléchi, chaque fente de couplage débouchant dans des guides d'onde à fentes respectifs disposés côte à côte parallèlement les uns aux autres dans un même deuxième plan de substrat. Les ondes guidées sont ensuite émises sous forme d'un faisceau rayonné au travers d'une pluralité d'ouvertures rayonnantes pratiquées dans un troisième plan métallique supérieur. Un balayage et un dépointage du faisceau en élévation, dans un plan perpendiculaire au plan de l'antenne, est obtenu par commutation des différentes sources mais aucune modification de pointage en azimut n'est possible. Par ailleurs, ce type d'antenne très compacte présente l'inconvénient de nécessiter des moyens de commutation à haute puissance, ce qui n'est jamais simple à réaliser. En outre, la commutation des sources est discrète ce qui ne permet pas d'obtenir un pointage continu du faisceau. Enfin, cette antenne très compacte est alimentée par une unique source de puissance ce qui nécessite d'utiliser des amplificateurs de puissance volumineux qui accroissent considérablement le volume de l'antenne qui devient trop important pour une application aux moyens de transport.According to a second planar antenna architecture at reduced height, the antenna comprises several alternating planes of substrates and metal planes superimposed one above the other. The antenna comprises a first lower metallic plane, then a first substrate plane comprising several sources, the first substrate plane comprising a lateral end forming a parabolic surface on which the waves emitted by the sources are reflected. Above the first substrate plane is a second metallic plane having slots for coupling the reflected wave plane, each coupling slot opening into respective slot wave guides arranged side by side parallel to each other in the same second substrate plane. The guided waves are then emitted in the form of a beam radiated through a plurality of radiating openings formed in a third upper metallic plane. A sweep and a deflection of the beam in elevation, in a plane perpendicular to the plane of the antenna, is obtained by switching the different sources but no modification of pointing in azimuth is not possible. Furthermore, this type of very compact antenna has the drawback of requiring high-power switching means, which is never easy to achieve. In addition, the switching of the sources is discrete which does not make it possible to obtain a continuous pointing of the beam. Finally, this very compact antenna is supplied by a single power source which requires the use of bulky power amplifiers which considerably increase the volume of the antenna which becomes too large for an application to means of transport.

Pour résoudre le problème de pointage discret de cette antenne plane, il a été proposé de n'utiliser qu'une seule source et de placer l'antenne plane sur une plateforme tournante permettant de régler le pointage en azimut, la plateforme comportant un miroir articulé sur la plateforme dont l'angle d'inclinaison par rapport au plan de la plateforme est variable par rotation. L'onde plane émise par la source illumine le miroir qui réfléchit cette onde suivant une direction de pointage choisie, l'angle d'inclinaison du miroir permettant de régler l'angle d'élévation du faisceau émis. Cette antenne est très elliptique, la dimension du miroir dans sa région articulée sur la plateforme étant très supérieure à la dimension du miroir dans sa région inclinée au-dessus de la plateforme, ce qui permet de réduire la hauteur de l'antenne à 20 ou 30cm, mais cette hauteur reste encore trop importante pour une application aux moyens de transport.To solve the problem of discreet pointing of this planar antenna, it has been proposed to use only one source and to place the planar antenna on a rotating platform making it possible to adjust the pointing in azimuth, the platform comprising an articulated mirror. on the platform whose angle of inclination relative to the plane of the platform is variable by rotation. The plane wave emitted by the source illuminates the mirror which reflects this wave in a chosen pointing direction, the angle of inclination of the mirror making it possible to adjust the elevation angle of the emitted beam. This antenna is very elliptical, the dimension of the mirror in its region articulated on the platform being much greater than the dimension of the mirror in its region inclined above the platform, which makes it possible to reduce the height of the antenna to 20 or 30cm, but this height is still too large for an application to means of transport.

On connaît du document WO 2009/144763 et du document US 6 873 301 des systèmes d'antenne comprenant une pluralité de guides d'ondes équipés de fentes rayonnantes, et du document WO 03/043124 un système d'antenne comprenant un mécanisme de pivotement d'une partie des éléments rayonnants. On connaît par ailleurs du document JP 2002 033612 une antenne plane équipée d'un réseau de guides d'onde à fentes rayonnantes comportant deux couches superposées de guides d'onde.We know the document WO 2009/144763 and document US 6,873,301 antenna systems comprising a plurality of waveguides equipped with radiating slots, and the document WO 03/043124 an antenna system comprising a pivoting mechanism for part of the radiating elements. We also know of the document JP 2002 033612 a planar antenna equipped with a network of radiating slit waveguides comprising two superimposed layers of waveguides.

Le but de l'invention est de réaliser une antenne plane à balayage ne comportant pas les inconvénients des antennes existantes et pouvant être implantée sur un moyen de transport mobile. En particulier, le but de l'invention est de réaliser une antenne plane directive, fonctionnant en bande Ku, très compacte dans le sens de sa hauteur, simple à mettre en œuvre et à faible coût, capable de rester pointée sur un satellite en continu quelle que soit la position du moyen de transport et permettant un contrôle du plan de polarisation sans ajout d'une grille orientable.The object of the invention is to produce a planar scanning antenna which does not have the drawbacks of existing antennas and which can be installed on a mobile means of transport. In particular, the purpose of the invention is to provide a directional planar antenna, operating in the Ku band, very compact in the direction of its height, simple to implement and low cost, capable of remaining pointed at a satellite continuously whatever the position of the means of transport and allowing control of the plane of polarization without adding an orientable grid.

Pour cela, l'invention concerne une antenne plane à balayage comportant au moins un réseau de guides d'onde à fentes rayonnantes, le réseau de guides d'onde à fentes rayonnantes comportant deux substrats de diélectrique, respectivement inférieur et supérieur, superposés l'un au-dessus de l'autre. Les deux substrats Sub1, Sub2, inférieur et supérieur, comportent des guides d'onde en nombre identique qui se correspondent et chaque guide d'onde du substrat supérieur communique avec un seul guide d'onde correspondant du substrat inférieur par l'intermédiaire d'une fente de couplage (13). Chaque guide d'onde du substrat supérieur Sub2 comporte en outre une pluralité de fentes rayonnantes, toutes les fentes rayonnantes étant parallèles entre elles et orientées dans une même direction parallèle à un axe longitudinal des guides d'onde et chaque guide d'onde du substrat inférieur Sub1 comporte un circuit d'alimentation individuel interne comportant un circuit électronique individuel de déphasage et d'amplification.For this, the invention relates to a planar scanning antenna comprising at least one network of waveguides with radiating slits, the network of waveguides with radiating slits comprising two substrates of dielectric, respectively lower and upper, superimposed one above the other. The two substrates Sub1, Sub2, lower and upper, have identical waveguides which correspond and each waveguide of the upper substrate communicates with a single corresponding waveguide of the lower substrate by means of a coupling slot (13). Each waveguide of the upper substrate Sub2 further comprises a plurality of radiating slots, all the radiating slots being parallel to each other and oriented in the same direction parallel to a longitudinal axis of the waveguides and each waveguide of the substrate Lower Sub1 has an internal individual supply circuit comprising an individual electronic phase shift and amplification circuit.

Selon un mode de réalisation, dans chaque substrat de diélectrique, les guides d'onde sont placés parallèlement les uns à côté des autres et comportent des parois métalliques inférieures et supérieures parallèles à un plan de l'antenne. Dans ce cas, avantageusement, les parois supérieures et inférieures de tous les guides d'onde peuvent être constituées par trois plaques métalliques planes, respectivement inférieure, intermédiaire et supérieure, parallèles au plan de l'antenne, les fentes de couplage traversant la plaque métallique intermédiaire, les fentes rayonnantes traversant la plaque métallique supérieure.According to one embodiment, in each dielectric substrate, the waveguides are placed parallel next to each other and have lower and upper metal walls parallel to a plane of the antenna. In this case, advantageously, the upper and lower walls of all the waveguides can be formed by three flat metal plates, respectively lower, intermediate and upper, parallel to the plane of the antenna, the coupling slots passing through the metal plate intermediate, the radiating slots passing through the upper metal plate.

Selon un autre mode de réalisation, dans chaque substrat de diélectrique, les guides d'onde sont placés parallèlement les uns à côté des autres et comportent des parois métalliques inférieures et supérieures inclinées par rapport à un plan de l'antenne,According to another embodiment, in each dielectric substrate, the waveguides are placed parallel to one another and have lower and upper metal walls inclined relative to a plane of the antenna,

Avantageusement, le réseau de guides à fentes rayonnantes est monté sur une plateforme tournante en azimut.Advantageously, the network of guides with radiating slits is mounted on a platform rotating in azimuth.

Préférentiellement, l'antenne comporte deux réseaux identiques de guides d'onde à fentes rayonnantes dédiés respectivement à l'émission et à la réception.Preferably, the antenna comprises two identical arrays of radiating slit waveguides dedicated respectively to transmission and to reception.

Selon l'invention, l'antenne comporte à l'émission et à la réception,

  • un réseau principal de guides d'onde à fentes rayonnantes et un réseau auxiliaire de guides à fentes rayonnantes, les deux réseaux comportant chacun un premier circuit de déphasage interne réglé à une même valeur de phase, le réseau auxiliaire comportant des fentes rayonnantes orientées avec un angle incliné non nul par rapport aux fentes du réseau principal,
  • un deuxième circuit de déphasage placé en entrée du réseau auxiliaire, le deuxième circuit de déphasage étant destiné à compenser une rotation du plan de polarisation d'une onde émise par le réseau principal et comportant un déphaseur à phase variable entre 0° et 180° et un amplificateur à gain variable.
According to the invention, the antenna comprises on transmission and on reception,
  • a main network of radiant slot waveguides and an auxiliary network of radiating slot guides, the two networks each comprising a first internal phase shift circuit adjusted to the same phase value, the auxiliary network comprising radiating slots oriented with a non-zero inclined angle relative to the slots of the main network,
  • a second phase shift circuit placed at the input of the auxiliary network, the second phase shift circuit being intended to compensate for a rotation of the plane of polarization of a wave emitted by the main network and comprising a phase shifter with variable phase between 0 ° and 180 ° and a variable gain amplifier.

Préférentiellement, l'angle d'inclinaison des fentes rayonnantes du réseau principal est compris entre 20° et 70°.Preferably, the angle of inclination of the radiating slots of the main network is between 20 ° and 70 °.

L'invention concerne aussi un véhicule comportant au moins une telle antenne et un système de télécommunication par satellite comportant au moins un tel véhicule.The invention also relates to a vehicle comprising at least one such antenna and to a satellite telecommunications system comprising at least one such vehicle.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figures 1a et 1b: deux schémas, respectivement en perspective et en coupe parallèle au plan XZ, d'un premier exemple d'antenne plane ;
  • figure 1c : une vue schématique en coupe transversale, d'un exemple d'implantation des guides d'onde dans lequel les parois des guides d'onde sont parallèles au plan XY de l'antenne;
  • figure 1d : une vue schématique en coupe transversale parallèle au plan YZ, d'un exemple d'implantation des guides d'onde dans lequel les parois des guides d'ondes sont inclinées par rapport au plan XY de l'antenne ;
  • figure 2 : un schéma d'un deuxième exemple d'antenne plane comportant des fonctions d'émission et de réception séparées ;
  • figures 3a, 3b : un exemple de dimensionnement d'un réseau de guides d'onde à fentes rayonnantes et un diagramme de rayonnement obtenu avec une antenne plane comportant ce réseau ;
  • figure 4 : un schéma d'un troisième exemple d'antenne plane comportant des fonctions d'émission et de réception séparées et un plan d'onde optimisé à l'émission, selon l'invention ;
Other features and advantages of the invention will appear clearly in the following description given by way of purely illustrative and nonlimiting example, with reference to the appended schematic drawings which represent:
  • Figures 1a and 1b : two diagrams, respectively in perspective and in section parallel to the XZ plane, of a first example of a planar antenna;
  • figure 1c : a schematic view in cross section, of an example of installation of the waveguides in which the walls of the waveguides are parallel to the plane XY of the antenna;
  • figure 1d : a schematic view in transverse section parallel to the YZ plane, of an example of installation of the guides wave in which the walls of the waveguides are inclined relative to the XY plane of the antenna;
  • figure 2 : a diagram of a second example of a planar antenna comprising separate transmission and reception functions;
  • Figures 3a, 3b : an example of sizing of a network of radiating slit waveguides and a radiation diagram obtained with a planar antenna comprising this network;
  • figure 4 : a diagram of a third example of a planar antenna comprising separate transmission and reception functions and a wave plane optimized for transmission, according to the invention;

L'antenne plane représentée sur les figures 1a, 1b, 1c comporte un réseau 5 de guides d'onde à fentes rayonnantes comportant deux substrats de diélectrique Sub1, Sub2, respectivement inférieur et supérieur, superposés l'un au-dessus de l'autre. Le substrat de diélectrique supérieur Sub2 supporte des guides d'onde à fentes rayonnantes 10, le substrat inférieur Sub1 supporte des guides d'onde 11 destinés à alimenter individuellement chaque guide d'ondes à fentes rayonnantes 10 par un signal hyperfréquence. Trois guides d'onde à fentes rayonnantes sont représentés sur la figure 1a et quatre guides d'onde à fentes rayonnantes sont représentés sur les figures 1c et 1d, mais ces nombres ne sont pas limitatifs et peuvent avoir n'importe quelle valeur supérieure ou égale à un. Préférentiellement, les guides d'onde ont une section transversale de forme rectangulaire. Dans l'exemple correspondant aux figures 1a, 1b, 1c, les plans des différentes couches de l'antenne sont parallèles à un plan XY et dans chaque couche de substrat, les guides d'onde sont placés les uns à côté des autres parallèlement au plan XY. Les parois supérieures et inférieures de tous les guides d'onde sont alors constituées par trois plaques métalliques M1, M2, M3 respectivement inférieure, intermédiaire et supérieure, parallèles au plan XY et délimitant les deux substrats de diélectrique équipés des guides d'onde, les deux substrats de diélectrique Sub1, Sub2 étant intercalés entre deux plaques métalliques consécutives. La hauteur de l'antenne est selon un axe Z orthogonal au plan XY. Les guides d'onde à fente rayonnantes 10 du substrat supérieur et les guides d'onde 11 du substrat inférieur sont en nombre identique, se correspondent deux à deux et communiquent entre eux deux à deux par l'intermédiaire de fentes de couplage pratiquées dans la plaque métallique intermédiaire M2. Ainsi, sur la figure 1a, chaque guide d'onde 11 du substrat inférieur Sub1 comporte deux parois métalliques, inférieure et supérieure, respectivement formées par les plaques métalliques inférieure M1 et intermédiaire M2 et des parois métalliques latérales reliant les deux plaques métalliques inférieure M1 et intermédiaire M2. Chaque guide d'onde 11 du substrat inférieur Sub1 comporte en outre une fente de couplage 13 traversant la plaque métallique intermédiaire M2 et débouchant dans un seul guide d'onde 10 correspondant du substrat supérieur Sub2. Les fentes de couplage 13 qui alimentent chaque guide d'onde 10 du substrat supérieur Sub2, peuvent déboucher par exemple au milieu de chaque guide d'onde 10 ou à une extrémité 16 de ces guides d'onde comme sur les figures 1a et 1b ou à un autre endroit de ces guides d'onde 10. Chaque guide d'onde 10 du substrat supérieur Sub2 comporte deux parois métalliques, inférieure et supérieure, respectivement formées par les plaques métalliques intermédiaire M2 et supérieure M3 et des parois métalliques latérales reliant les deux plaques métalliques intermédiaire M2 et supérieure M3. Les guides d'onde 10, 11 s'étendent selon un axe longitudinal parallèle à une même direction, pouvant correspondre, par exemple, à l'axe X et comportent deux extrémités opposées 15, 16 sur cet axe. Comme représenté sur la figure 1b, les guides d'onde du substrat supérieur Sub2 sont fermés à leurs deux extrémités 15, 16 par deux parois métalliques 17, 18 transversales reliant les trois plaques métalliques M1, M2, M3, alors que les guides d'onde du substrat inférieur ne sont fermés qu'à une seule extrémité 16 par la paroi transversale 17, leur extrémité ouverte 15 correspondant à une entrée de signal 19. Chaque guide d'onde 10 du substrat supérieur Sub2 comporte en outre une pluralité de fentes rayonnantes 20 traversant la plaque métallique supérieure M3, toutes les fentes rayonnantes 20 étant parallèles entre elles et orientées dans une même direction parallèle à l'axe longitudinal des guides d'onde, par exemple la direction X, la direction Y orthogonale à la direction X dans le plan XY des fentes correspondant à un plan d'onde de polarisation linéaire. Les fentes peuvent être alignées selon l'axe longitudinal X des guides d'onde ou décalées d'une distance ds par rapport à cet axe, comme représenté sur l'exemple de la figure 3a. Chaque guide d'onde 11 du substrat inférieur Sub1 comporte un circuit interne d'alimentation individuel 25 apte à recevoir un signal hyperfréquence entrant 19 appliqué à son extrémité ouverte, ce circuit interne d'alimentation individuel 25 comportant un circuit électronique individuel interne de déphasage et d'amplification comportant un déphaseur interne 21 pour contrôler la phase du signal à émettre et un dispositif d'amplification interne 22 du signal entrant permettant de maîtriser le rayonnement émis par l'antenne. Le signal entrant 19 peut être émis par exemple par une source externe 24, par exemple unique, puis divisé par un diviseur 26 relié en entrée de chacun des guides d'onde 11 du substrat inférieur Sub1. Après déphasage 21 et amplification 22, le signal entrant 19 dans l'un des guides d'onde 11 du substrat inférieur Sub1 est transmis dans un guide d'onde 10 correspondant du substrat supérieur Sub2 par l'intermédiaire des fentes de couplage 13 dans la plaque métallique intermédiaire M2 puis rayonné par les fentes rayonnantes 20. Un balayage et un dépointage du faisceau en élévation, dans un plan YZ perpendiculaire au plan XY de l'antenne, est obtenu par contrôle de la loi de phase et d'amplitude appliquée électroniquement par les circuits internes d'alimentation individuels de chaque guide d'onde 11 du substrat inférieur correspondant à chacun des guides d'onde 10 à fentes rayonnantes. Les guides d'onde représentés sur la figure 1a ont tous une disposition parallèle aux plaques métalliques M1, M2, M3. Selon un exemple particulier représenté schématiquement en coupe transversale selon un plan de coupe parallèle au plan YZ sur la figure 1d, pour réaliser des dépointages très importants, par exemple supérieurs à 50°, il est également possible d'incliner chaque guide d'onde d'un angle prédéterminé, par exemple entre 10° et 20°, par rapport au plan XY de l'antenne. Dans ce cas, les parois inférieures et supérieures des différents guides d'onde ne sont pas constituées par des plaques métalliques M1, M2, M3 planes mais par des parois métalliques inclinées par rapport au plan XY, les plaques métalliques M1, M2, M3 étant remplacées par des parois métalliques en dent de scie.The flat antenna shown on the Figures 1a, 1b , 1 C comprises a network 5 of radiating slit waveguides comprising two dielectric substrates Sub1, Sub2, respectively lower and upper, superimposed one above the other. The upper dielectric substrate Sub2 supports waveguides with radiating slits 10, the lower substrate Sub1 supports waveguides 11 intended to supply each waveguide with radiating slits 10 by a microwave signal. Three radiating slit waveguides are shown in the figure 1a and four radiating slit waveguides are shown on the Figures 1c and 1d , but these numbers are not limitative and can have any value greater than or equal to one. Preferably, the waveguides have a cross section of rectangular shape. In the example corresponding to Figures 1a, 1b , 1 C , the planes of the different layers of the antenna are parallel to an XY plane and in each substrate layer, the waveguides are placed next to each other parallel to the XY plane. The upper and lower walls of all the waveguides are then constituted by three metal plates M1, M2, M3 respectively lower, intermediate and upper, parallel to the plane XY and delimiting the two dielectric substrates equipped with the waveguides, the two dielectric substrates Sub1, Sub2 being interposed between two consecutive metal plates. The height of the antenna is along an axis Z orthogonal to the plane XY. The radiating slit waveguides 10 of the upper substrate and the waveguides 11 of the lower substrate are identical in number, correspond in pairs and communicate with each other in pairs by means of coupling slots in the M2 intermediate metal plate. So on the figure 1a , each waveguide 11 of the lower substrate Sub1 has two metal walls, lower and upper, respectively formed by the lower metal plates M1 and intermediate M2 and lateral metal walls connecting the two lower metal plates M1 and intermediate M2. Each waveguide 11 of the lower substrate Sub1 further comprises a coupling slot 13 passing through the intermediate metal plate M2 and opening into a single corresponding waveguide 10 of the upper substrate Sub2. The coupling slots 13 which feed each waveguide 10 of the upper substrate Sub2, can open for example in the middle of each waveguide 10 or at one end 16 of these waveguides as on the Figures 1a and 1b or at another location of these waveguides 10. Each waveguide 10 of the upper substrate Sub2 has two metallic walls, lower and upper, respectively formed by the intermediate metallic plates M2 and upper M3 and lateral metallic walls connecting the two intermediate metal plates M2 and upper M3. The waveguides 10, 11 extend along a longitudinal axis parallel to the same direction, which can correspond, for example, to the axis X and have two opposite ends 15, 16 on this axis. As shown in the figure 1b , the waveguides of the upper substrate Sub2 are closed at their two ends 15, 16 by two metal walls 17, 18 transverse connecting the three metal plates M1, M2, M3, while the waveguides of the lower substrate are not closed at only one end 16 by the transverse wall 17, their open end 15 corresponding to a signal input 19. Each waveguide 10 of the upper substrate Sub2 further comprises a plurality of radiating slots 20 passing through the upper metal plate M3, all the radiating slots 20 being parallel to each other and oriented in the same direction parallel to the longitudinal axis of the waveguides, for example the direction X, the direction Y orthogonal to the direction X in the XY plane of the corresponding slots to a linear polarization wave plane. The slots can be aligned along the longitudinal axis X of the waveguides or offset by a distance ds with respect to this axis, as shown in the example of the figure 3a . Each waveguide 11 of the lower substrate Sub1 comprises an internal individual supply circuit 25 capable of receiving an incoming microwave signal 19 applied to its open end, this internal individual supply circuit 25 comprising an internal individual electronic phase shift circuit and amplification comprising an internal phase shifter 21 for controlling the phase of the signal to be transmitted and an internal amplification device 22 of the incoming signal making it possible to control the radiation emitted by the antenna. The incoming signal 19 can be emitted for example by an external source 24, for example unique, then divided by a divider 26 connected at the input of each of the waveguides 11 of the lower substrate Sub1. After phase shift 21 and amplification 22, the incoming signal 19 in one of the waveguides 11 of the lower substrate Sub1 is transmitted in a corresponding waveguide 10 of the upper substrate Sub2 via the coupling slots 13 in the intermediate metal plate M2 then radiated by the radiating slots 20. A scanning and a deflection of the beam in elevation, in a plane YZ perpendicular to the plane XY of the antenna, is obtained by checking the law of phase and amplitude applied electronically by the internal supply circuits of each waveguide 11 of the lower substrate corresponding to each of the waveguides 10 with radiating slits. The waveguides shown on the figure 1a all have an arrangement parallel to the metal plates M1, M2, M3. According to a particular example shown schematically in cross section along a section plane parallel to the YZ plane on the figure 1d , to achieve very large deviations, for example greater than 50 °, it is also possible to tilt each waveguide by a predetermined angle, for example between 10 ° and 20 °, relative to the XY plane of the antenna. In this case, the lower and upper walls of the different waveguides are not formed by flat metal plates M1, M2, M3 but by metal walls inclined relative to the plane XY, the metal plates M1, M2, M3 being replaced by sawtooth metal walls.

Chaque guide d'onde 11 du substrat inférieur Sub1 étant alimenté individuellement par un circuit interne 25 et comportant un circuit électronique individuel interne de déphasage 21 et d'amplification 22, le contrôle de phase est réalisé de manière continue ce qui permet de maîtriser continûment la direction de rayonnement de l'antenne en élévation. Par ailleurs, l'amplification est répartie dans chaque guide d'onde 11 ce qui permet une utilisation d'amplificateurs à faible puissance et de s'affranchir d'un circuit d'amplification externe complexe et volumineux. En outre, aucun moyen de commutation de source à haute énergie n'est nécessaire pour réaliser un balayage continu du faisceau.Each waveguide 11 of the lower substrate Sub1 being supplied individually by an internal circuit 25 and comprising a circuit individual internal electronic phase shift 21 and amplification 22, the phase control is carried out continuously which allows to continuously control the direction of radiation of the antenna in elevation. Furthermore, the amplification is distributed in each waveguide 11 which allows the use of low power amplifiers and to overcome a complex and bulky external amplification circuit. In addition, no high energy source switching means is required to achieve continuous scanning of the beam.

En plaçant l'antenne plane 6 ainsi obtenue sur une plateforme 7 tournante en azimut, le pointage du faisceau en azimut est réalisé par rotation de la plateforme et le pointage du faisceau en élévation est donné par la loi de phase appliquée sur les signaux entrant 19. Cette loi de phase est obtenue par la commande des déphaseurs internes 21 et des amplificateurs internes 22 intégrés dans chacun des guides d'onde 11 du substrat inférieur Sub1. Avantageusement, les guides d'onde 10 à fentes rayonnantes fonctionnant dans une faible bande passante, il est possible de scinder les fonctions d'émission et de réception et d'utiliser comme représenté sur la figure 2, un système d'antennes planes 6, 8 comportant un premier réseau de guides d'onde à fentes dédié à l'émission et un deuxième réseau de guides d'onde à fentes, non représenté, dédié à la réception, les deux réseaux de guides d'onde à fentes étant identiques et montés sur la même plateforme 7 tournante en azimut. Le pointage en élévation de chacune des antennes d'émission et de réception du système d'antennes planes monté sur la plateforme tournante est réalisé par une amplification et un contrôle électronique des phases de chacun des signaux circulant dans les guides à fentes formant les réseaux de rayonnement des deux antennes.By placing the flat antenna 6 thus obtained on a platform 7 rotating in azimuth, the pointing of the beam in azimuth is achieved by rotation of the platform and the pointing of the beam in elevation is given by the phase law applied to the incoming signals 19 This phase law is obtained by controlling the internal phase shifters 21 and the internal amplifiers 22 integrated in each of the waveguides 11 of the lower substrate Sub1. Advantageously, the waveguides 10 with radiating slits operating in a low bandwidth, it is possible to split the transmission and reception functions and to use as shown in the figure 2 , a system of planar antennas 6, 8 comprising a first array of slot wave guides dedicated to transmission and a second array of slot wave guides, not shown, dedicated to reception, the two array of slotted waveguides being identical and mounted on the same platform 7 rotating in azimuth. The pointing in elevation of each of the transmitting and receiving antennas of the planar antenna system mounted on the rotating platform is carried out by amplification and electronic control of the phases of each of the signals flowing in the slot guides forming the arrays of radiation from the two antennas.

La figure 3b montre un exemple non limitatif de diagramme de rayonnement obtenu avec une antenne plane ayant une structure conforme aux figures 1a et 1b et comportant un réseau de Ny=21 guides d'onde à fentes et Nx=70 fentes par guide d'onde, les fentes étant réparties uniformément le long de chaque guide d'onde. Comme représenté sur la figure 3a, dans cet exemple, les guides d'onde ont une constante diélectrique ε r de 2,2 et une section rectangulaire de a=12mm de long et de b=1,575mm de haut. Les fentes sont rectangulaires et leurs dimensions sont de ls=15mm de long selon la direction X et de ws=1mm de large selon la direction Y. L'espacement entre deux fentes consécutives est de dx=11, 82mm dans le sens de la longueur selon la direction X. Deux fentes consécutives peuvent être décalées l'une par rapport à l'autre selon la direction Y. Sur la figure 3, le décalage est de ds=0,14mm par rapport à la médiane séparant deux fentes. L'antenne ainsi obtenue a des dimensions de 840mm de long et de 242mm de large. La hauteur de l'antenne sans la plateforme tournante sur laquelle elle est montée est de quelques millimètres. La hauteur totale de l'antenne avec la plateforme tournante est quasiment égale à la hauteur de la plateforme tournante soit de l'ordre de 2 à 3cm. Cette antenne rayonne une onde polarisée linéairement, le plan d'onde rayonné étant parallèle aux fentes. Le diagramme de rayonnement obtenu avec cette antenne comporte un lobe principal ayant une amplitude maximale à 36,2dB correspondant à la directivité maximale de l'antenne et une largeur de bande à 3dB d'angle Theta égal à 1,5° dans le plan XZ et à 5° dans le plan YZ.The figure 3b shows a nonlimiting example of a radiation diagram obtained with a planar antenna having a structure in accordance with Figures 1a and 1b and comprising an array of Ny = 21 slot wave guides and Nx = 70 slots per wave guide, the slots being distributed uniformly along each wave guide. As shown in the figure 3a , in this example, the waveguides have a dielectric constant ε r of 2.2 and a rectangular section of a = 12mm long and b = 1.575mm high. The slots are rectangular and their dimensions are ls = 15mm long in the X direction and ws = 1mm wide in the Y direction. The spacing between two consecutive slots is dx = 11.82mm lengthwise in the X direction. Two consecutive slots can be offset from each other in the Y direction. figure 3 , the offset is ds = 0.14mm compared to the median separating two slits. The antenna thus obtained has dimensions of 840mm long and 242mm wide. The height of the antenna without the rotating platform on which it is mounted is a few millimeters. The total height of the antenna with the rotating platform is almost equal to the height of the rotating platform, ie of the order of 2 to 3 cm. This antenna radiates a linearly polarized wave, the radiated wave plane being parallel to the slits. The radiation diagram obtained with this antenna comprises a main lobe having a maximum amplitude at 36.2 dB corresponding to the maximum directivity of the antenna and a bandwidth at 3dB of angle Theta equal to 1.5 ° in the XZ plane and at 5 ° in the YZ plane.

Cet exemple de dimensionnement montre donc que l'antenne plane ainsi réalisée répond aux conditions de hauteur imposées pour une implantation sur un moyen de transport et notamment sur un train à grande vitesse futur. Cependant lorsqu'une antenne émet un plan d'onde polarisée linéairement dans une direction donnée, le satellite reçoit cette onde selon une direction qui dépend de la position relative du satellite par rapport à la verticale locale du véhicule équipé de l'antenne et de la position relative du véhicule par rapport à la verticale locale au sol. Le satellite voit donc une onde dont la polarisation a subit une rotation d'un angle Psi par rapport au plan de polarisation de l'onde émise par l'antenne. Si le véhicule se déplace dans une zone géographique comportant des pentes inférieures à 10%, la valeur de Psi reste à des valeurs inférieures à 15°. Si cette rotation n'est pas compensée, elle a pour effet d'engendrer deux composantes d'énergie croisées au niveau du satellite. Le satellite reçoit alors une composante d'énergie principale parallèle au plan de polarisation de l'onde émise et une composante d'énergie additionnelle dans une direction perpendiculaire au plan de polarisation principal. Cette composante d'énergie additionnelle pouvant créer une interférence pour des utilisateurs utilisant cet autre plan de polarisation, il faut compenser l'angle de rotation Psi pour que le satellite ne reçoive qu'une onde dont la polarisation est parfaitement alignée. Cet angle de rotation Psi variant en permanence lorsque le véhicule équipé de l'antenne se déplace, la compensation doit être réalisée en permanence. Pour limiter les interférences, cette compensation doit être réalisée aussi bien à l'émission qu'à la réception.This design example therefore shows that the flat antenna thus produced meets the height conditions imposed for installation on a means of transport and in particular on a future high-speed train. However, when an antenna transmits a linearly polarized wave plane in a given direction, the satellite receives this wave in a direction which depends on the relative position of the satellite with respect to the local vertical of the vehicle equipped with the antenna and the relative position of the vehicle in relation to the local vertical on the ground. The satellite therefore sees a wave whose polarization has undergone a rotation of an angle Psi with respect to the plane of polarization of the wave emitted by the antenna. If the vehicle is traveling in a geographical area with slopes less than 10%, the Psi value remains at values less than 15 °. If this rotation is not compensated, it has the effect of generating two crossed energy components at the satellite level. The satellite then receives a main energy component parallel to the plane of polarization of the transmitted wave and an additional energy component in a direction perpendicular to the main polarization plane. Since this additional energy component can create interference for users using this other plane of polarization, it is necessary to compensate for the angle of rotation Psi so that the satellite receives only one wave whose polarization is perfectly aligned. This angle of rotation Psi varies continuously when the vehicle equipped with the antenna moves, compensation must be carried out continuously. To limit interference, this compensation must be carried out both on transmission and on reception.

Pour réaliser une compensation de la rotation du plan de polarisation à l'émission, selon une caractéristique additionnelle de l'invention, une antenne plane auxiliaire d'émission 9 et une antenne plane auxiliaire de réception 14, comportant la même structure que les antennes principales d'émission 6 et de réception 8 sont montées sur la plateforme 7 tournante comme représenté sur la figure 4.To compensate for the rotation of the polarization plane on transmission, according to an additional feature of the invention, a planar auxiliary transmit antenna 9 and a planar auxiliary receive antenna 14, having the same structure as the main antennas 6 transmission and 8 reception are mounted on the rotating platform 7 as shown in the figure 4 .

Chaque antenne plane auxiliaire 9, 14 comporte un réseau auxiliaire 30 de guides à fentes alimenté de manière identique que celle du réseau d'émission principal c'est-à dire par un circuit de déphasage 31 et d'amplification 32 interne implanté dans les guides d'onde du substrat inférieur du réseau auxiliaire, le déphasage étant réglé à la même valeur que celle du réseau principal 5. L'orientation des fentes rayonnantes 33 du réseau auxiliaire 30 fait un angle α non nul, de préférence compris entre 20° et 70°, par rapport aux fentes rayonnantes 20 du réseau d'émission principal 5 de façon à émettre une onde secondaire ayant un plan de polarisation 2 incliné par rapport au plan de polarisation 1 de l'onde principale émise par le réseau principal 5.Each auxiliary planar antenna 9, 14 comprises an auxiliary network 30 of slot guides supplied in an identical manner as that of the main transmission network, that is to say by a phase shift circuit 31 and internal amplification 32 installed in the guides wave of the lower substrate of the auxiliary network, the phase shift being set to the same value as that of the main network 5. The orientation of the radiating slots 33 of the auxiliary network 30 makes a non-zero angle α , preferably between 20 ° and 70 °, with respect to the radiating slots 20 of the main transmission network 5 so as to emit a secondary wave having a plane of polarization 2 inclined with respect to the plane of polarization 1 of the main wave emitted by the main network 5.

Le réseau auxiliaire 30 permet d'obtenir, dans la direction du faisceau émis par le réseau principal, un faisceau secondaire possédant des caractéristiques d'amplitude, de phase et de polarisation indépendantes du réseau principal. Les composantes de polarisation des deux plans d'ondes 1, 2 émis par les deux réseaux principal 5 et auxiliaire 30 vont se combiner vectoriellement en une onde résultante globale ayant un plan de polarisation 3.The auxiliary network 30 makes it possible to obtain, in the direction of the beam emitted by the main network, a secondary beam having amplitude, phase and polarization characteristics independent of the main network. The polarization components of the two wave planes 1, 2 emitted by the two main 5 and auxiliary 30 networks will combine vectorially into a global resulting wave having a polarization plane 3.

L'onde plane émise par l'antenne auxiliaire 9, 14 étant polarisée selon un plan d'onde perpendiculaire à la direction d'orientation des fentes 33 de l'antenne auxiliaire 9, 14 elle comporte donc deux composantes de polarisation parallèles aux axes X et Y.The plane wave emitted by the auxiliary antenna 9, 14 being polarized according to a wave plane perpendicular to the direction of orientation of the slots 33 of the auxiliary antenna 9, 14 it therefore comprises two polarization components parallel to the axes X and Y.

En ajustant les paramètres de polarisation, de phase et d'amplitude de l'onde émise par le réseau auxiliaire 30, il est alors possible d'obtenir, au niveau du satellite, une onde résultante globale dont le plan de polarisation 3 est aligné avec le plan de polarisation 1 de l'onde principale émise et de compenser ainsi l'angle de rotation Psi de la polarisation de l'onde principale reçue par le satellite. Par exemple, en appliquant une phase égale à 180° à l'onde émise par le réseau auxiliaire 30, ce qui correspond au plan de polarisation 4, l'onde résultante globale a un plan de polarisation selon la direction 12.By adjusting the polarization, phase and amplitude parameters of the wave emitted by the auxiliary network 30, it is then possible to obtain, at satellite level, a global resulting wave whose polarization plane 3 is aligned with the plane of polarization 1 of the main wave emitted and of thus compensate for the angle of rotation Psi of the polarization of the main wave received by the satellite. For example, by applying a phase equal to 180 ° to the wave emitted by the auxiliary network 30, which corresponds to the plane of polarization 4, the overall resulting wave has a plane of polarization in direction 12.

Pour cela, un deuxième circuit de déphasage destiné à compenser une rotation du plan de polarisation d'une onde émise par le réseau principal, est placé en entrée du réseau auxiliaire 30. Le deuxième circuit de déphasage comporte un déphaseur 34 à phase variable entre 0° et 180° et un amplificateur 35 à gain variable.For this, a second phase shift circuit intended to compensate for a rotation of the plane of polarization of a wave emitted by the main network, is placed at the input of the auxiliary network 30. The second phase shift circuit comprises a phase shifter 34 with variable phase between 0 ° and 180 ° and an amplifier 35 with variable gain.

A titre d'exemple non limitatif, comme représenté sur la figure 4, les fentes rayonnantes 33 du réseau auxiliaire 30 peuvent être choisies orientées à 45° par rapport aux fentes rayonnantes 20 du réseau principal 5. Le déphaseur d'entrée 34 à phase variable entre 0° et 180° et l'amplificateur d'entrée 35 à gain variable permettent d'ajuster l'amplitude et la phase du signal délivré par la source d'émission et dérivé, par l'intermédiaire d'un diviseur de puissance 36, vers le réseau auxiliaire 30 et de contrôler ainsi l'orientation du plan de polarisation 3 de l'onde résultante émise qui est issue de la combinaison des deux ondes rayonnées par les deux réseaux rayonnants principal 5 et auxiliaire 30. L'onde secondaire étant uniquement destinée à compenser l'angle de rotation Psi, elle n'a pour seule utilité que de créer une composante de plan d'onde perpendiculaire au plan d'onde principal et l'amplitude de l'onde qu'elle émet peut donc être beaucoup plus faible que l'amplitude de l'onde principale. L'antenne auxiliaire 9, 14 peut donc être de dimensions beaucoup plus faibles que celles de l'antenne principale 6, 8 et par conséquent, les nombres de guides d'ondes et de fentes de l'antenne secondaire peuvent être très inférieurs à ceux de l'antenne principale.By way of nonlimiting example, as shown in the figure 4 , the radiating slots 33 of the auxiliary network 30 can be chosen oriented at 45 ° relative to the radiating slots 20 of the main network 5. The input phase shifter 34 with variable phase between 0 ° and 180 ° and the input amplifier 35 with variable gain make it possible to adjust the amplitude and the phase of the signal delivered by the source of emission and derivative, via a power divider 36, towards the auxiliary network 30 and thus to control the orientation of the plane of polarization 3 of the resulting emitted wave which results from the combination of the two waves radiated by the two main radiating networks 5 and auxiliary 30. The secondary wave being only intended to compensate for the angle of rotation Psi, it does not has the sole purpose of creating a wave plane component perpendicular to the main wave plane and the amplitude of the wave it emits can therefore be much lower than the amplitude of the main wave. The auxiliary antenna 9, 14 can therefore be of much smaller dimensions than those of the main antenna 6, 8 and therefore, the numbers of waveguides and slots of the secondary antenna can be much lower than those from the main antenna.

Bien que l'invention ait été décrite en liaison avec des exemples et des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention, qui est définie par les revendications.Although the invention has been described in connection with specific examples and embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described as well as their combinations if these are within the scope of the invention, which is defined by the claims.

Claims (9)

  1. Flat scanning antenna comprising, at transmission and at reception, at least one main array (5) having waveguides with radiating slots, wherein the main array (5) having waveguides with radiating slots comprises two dielectric substrates, namely the lower substrate (Sub1) and the upper substrate (Sub2) respectively, one superposed above the other, the two, lower (Sub1) and upper (Sub2) substrates comprising the same number of waveguides (10, 11) corresponding thereto, each waveguide (10) of the upper substrate (Sub1) communicating with a corresponding single waveguide (11) of the lower substrate (Sub2) via a coupling slot (13), characterized in that:
    - each waveguide (10) of the upper substrate (Sub2) further includes a plurality of radiating slots (20), all the radiating slots (20) being mutually parallel and oriented in the same direction parallel to a longitudinal axis (X) of the waveguides;
    - each waveguide (11) of the lower substrate (Sub1) includes an individual internal supply circuit (25) comprising an individual internal phase-shift (21)/amplification (22) electronic circuit,
    - the antenna further includes, at transmission and at reception:
    ∘ an auxiliary array (30) having waveguides with radiating slots, the main array (5) and the auxiliary array (30) each comprising a first internal phase-shift circuit (21, 22), (31, 32) set to the same phase value, the auxiliary array (30) having radiating slots (33) oriented at a non-zero angle (α) inclined to the slots (20) of the main array (5);
    ∘ a second phase-shift circuit placed at the input of the auxiliary array (30), the second phase-shift circuit being intended to compensate for a rotation of the plane of polarization of a wave transmitted by the main array (5) and comprising a phase shifter (34) having a variable phase between 0° and 180°, and a variable-gain amplifier (35).
  2. Flat antenna according to claim 1, characterized in that, in each dielectric substrate, the waveguides are placed so as to be mutually parallel, one beside another, and comprise upper and lower metal walls parallel to a plane (XY) of the antenna.
  3. Flat antenna according to claim 2, characterized in that the upper and lower walls of all the waveguides are formed by three flat metal plates, a lower metal plate (M1), an intermediate metal plate (M2) and an upper metal plate (M3) respectively, which are parallel to the plane (XY) of the antenna, the coupling slots (13) passing through the intermediate metal plate (M2) and the radiating slots (20) passing through the upper metal plate (M3).
  4. Flat antenna according to claim 1, characterized in that, in each dielectric substrate, the waveguides are placed so as to be parallel, one beside another, and comprise upper and lower metal walls inclined to a plane (XY) of the antenna.
  5. Flat antenna according to one of the preceding claims, characterized in that the main array (5) and the auxiliary array (30) are mounted on a platform (7) rotating azimuthally.
  6. Flat antenna according to claim 1, characterized in that the two arrays (5, 30), having waveguides with radiating slots which are dedicated to transmission and to reception respectively, are identical,
  7. Antenna according to one of the preceding claims, characterized in that the angle (α) of inclination of the radiating slots (33) of the auxiliary array (30) is between 20° and 70°.
  8. Vehicle having at least one antenna according to one of the preceding claims.
  9. Satellite telecommunication system comprising at least one antenna mounted on a vehicle according to claim 8.
EP11701218.7A 2010-02-05 2011-01-17 Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle Active EP2532046B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000473A FR2956249B1 (en) 2010-02-05 2010-02-05 SCANNING PLANAR ANTENNA FOR GROUND MOBILE APPLICATION, VEHICLE COMPRISING SUCH ANTENNA AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH A VEHICLE
PCT/EP2011/050513 WO2011095384A1 (en) 2010-02-05 2011-01-17 Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle

Publications (2)

Publication Number Publication Date
EP2532046A1 EP2532046A1 (en) 2012-12-12
EP2532046B1 true EP2532046B1 (en) 2020-03-18

Family

ID=42748684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11701218.7A Active EP2532046B1 (en) 2010-02-05 2011-01-17 Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle

Country Status (5)

Country Link
US (1) US8976072B2 (en)
EP (1) EP2532046B1 (en)
JP (1) JP5771877B2 (en)
FR (1) FR2956249B1 (en)
WO (1) WO2011095384A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103445B1 (en) * 2012-06-05 2018-10-16 Hrl Laboratories, Llc Cavity-backed slot antenna with an active artificial magnetic conductor
US9806431B1 (en) 2013-04-02 2017-10-31 Waymo Llc Slotted waveguide array antenna using printed waveguide transmission lines
CN104716426A (en) * 2013-12-13 2015-06-17 华为技术有限公司 Array antenna
US9705201B2 (en) 2014-02-24 2017-07-11 Hrl Laboratories, Llc Cavity-backed artificial magnetic conductor
CN104051821B (en) 2014-05-23 2019-03-01 京信通信技术(广州)有限公司 Dielectric phase shifter
US9819082B2 (en) * 2014-11-03 2017-11-14 Northrop Grumman Systems Corporation Hybrid electronic/mechanical scanning array antenna
US10031191B1 (en) 2015-01-16 2018-07-24 Hrl Laboratories, Llc Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors
US10033082B1 (en) * 2015-08-05 2018-07-24 Waymo Llc PCB integrated waveguide terminations and load
US11038263B2 (en) * 2015-11-12 2021-06-15 Duke University Printed cavities for computational microwave imaging and methods of use
CN107369905B (en) * 2017-07-19 2020-07-21 电子科技大学 Broadband high-efficiency high-gain circularly polarized array antenna
KR102561222B1 (en) * 2018-07-11 2023-07-28 주식회사 케이엠더블유 Phase shifter
US11024952B1 (en) 2019-01-25 2021-06-01 Hrl Laboratories, Llc Broadband dual polarization active artificial magnetic conductor
US11515624B2 (en) * 2019-03-29 2022-11-29 GM Global Technology Operations LLC Integrated cavity backed slot array antenna system
CA3190876A1 (en) 2020-08-28 2022-03-03 Amr Abdelmonem Method and system for mitigating interference by rotating antenna structures
CN114142217B (en) * 2021-11-08 2024-04-30 西安电子工程研究所 Compact high-power broadband waveguide slot array antenna
US11476574B1 (en) 2022-03-31 2022-10-18 Isco International, Llc Method and system for driving polarization shifting to mitigate interference
US11476585B1 (en) * 2022-03-31 2022-10-18 Isco International, Llc Polarization shifting devices and systems for interference mitigation
US11502404B1 (en) 2022-03-31 2022-11-15 Isco International, Llc Method and system for detecting interference and controlling polarization shifting to mitigate the interference
US11509071B1 (en) 2022-05-26 2022-11-22 Isco International, Llc Multi-band polarization rotation for interference mitigation
US11509072B1 (en) 2022-05-26 2022-11-22 Isco International, Llc Radio frequency (RF) polarization rotation devices and systems for interference mitigation
US11515652B1 (en) 2022-05-26 2022-11-29 Isco International, Llc Dual shifter devices and systems for polarization rotation to mitigate interference
US11949489B1 (en) 2022-10-17 2024-04-02 Isco International, Llc Method and system for improving multiple-input-multiple-output (MIMO) beam isolation via alternating polarization
US11990976B2 (en) 2022-10-17 2024-05-21 Isco International, Llc Method and system for polarization adaptation to reduce propagation loss for a multiple-input-multiple-output (MIMO) antenna
US11985692B2 (en) 2022-10-17 2024-05-14 Isco International, Llc Method and system for antenna integrated radio (AIR) downlink and uplink beam polarization adaptation
US11956058B1 (en) 2022-10-17 2024-04-09 Isco International, Llc Method and system for mobile device signal to interference plus noise ratio (SINR) improvement via polarization adjusting/optimization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033612A (en) * 2000-07-14 2002-01-31 Mitsubishi Electric Corp Beam scanning antenna
US6873301B1 (en) * 2003-10-07 2005-03-29 Bae Systems Information And Electronic Systems Integration Inc. Diamond array low-sidelobes flat-plate antenna systems for satellite communication

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132153A (en) * 1974-09-11 1976-03-18 Mitsubishi Electric Corp SOSA AREIANTENA
JPS5585109A (en) * 1978-12-22 1980-06-26 Tokyo Keiki Co Ltd Antenna mechanism for production of arbitrary polarized wave
JPS63157505A (en) * 1986-12-22 1988-06-30 Arimura Giken Kk Circular waveguide line
JPH056921A (en) 1991-06-28 1993-01-14 Toshiba Corp Semiconductor device
JPH056921U (en) * 1991-07-01 1993-01-29 旭化成工業株式会社 High rigidity antenna
JPH06326510A (en) * 1992-11-18 1994-11-25 Toshiba Corp Beam scanning antenna and array antenna
JPH09214241A (en) * 1996-01-31 1997-08-15 Nippon Hoso Kyokai <Nhk> Plane antenna for mobile sng
JP3364829B2 (en) * 1997-09-05 2003-01-08 三菱電機株式会社 Antenna device
JP2003066134A (en) * 2001-08-21 2003-03-05 Furuno Electric Co Ltd Radar antenna
DE60228123D1 (en) * 2001-11-09 2008-09-18 Ems Technologies Inc ANTENNA ARRAY FOR MOVING VEHICLES
JP2007228542A (en) * 2006-02-23 2007-09-06 Seiko Npc Corp Radar device
ITRM20080282A1 (en) * 2008-05-29 2009-11-30 Rf Microtech S R L SCANNED FLAT ANTENNA.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033612A (en) * 2000-07-14 2002-01-31 Mitsubishi Electric Corp Beam scanning antenna
US6873301B1 (en) * 2003-10-07 2005-03-29 Bae Systems Information And Electronic Systems Integration Inc. Diamond array low-sidelobes flat-plate antenna systems for satellite communication

Also Published As

Publication number Publication date
FR2956249B1 (en) 2012-12-14
US8976072B2 (en) 2015-03-10
EP2532046A1 (en) 2012-12-12
WO2011095384A1 (en) 2011-08-11
US20120287006A1 (en) 2012-11-15
JP2013519280A (en) 2013-05-23
FR2956249A1 (en) 2011-08-12
JP5771877B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
EP2532046B1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP2532050B1 (en) On-board directional flat-plate antenna, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
FR3065329B1 (en) ELEMENTARY CELL OF A TRANSMITTER NETWORK FOR A RECONFIGURABLE ANTENNA
EP1016161A1 (en) Telecommunication system antenna and method for transmitting and receiving using said antenna
WO2014202498A1 (en) Source for parabolic antenna
EP2673842A1 (en) Waveguide antenna having annular slots
EP0992128B1 (en) Telecommunication system
EP1291962A1 (en) Array beamformer for spacecraft
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP0520908B1 (en) Linear antenna array
EP4046241B1 (en) Antenna array
EP3840115A1 (en) Antenna with compact resonant cavity
EP3155689B1 (en) Flat antenna for satellite communication
EP1339177B1 (en) Antenna system for link between vehicle and air platform, corresponding method and use of the system
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
WO2021130072A1 (en) Multilobe parabolic antenna for troposhperic microwave communications
EP3506426A1 (en) Beam pointing device for antenna system, associated antenna system and platform
EP2889955A1 (en) Compact antenna structure for satellite telecommunication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170412

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011065655

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1247008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1247008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011065655

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201222

Year of fee payment: 11

26N No opposition filed

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210106

Year of fee payment: 11

Ref country code: DE

Payment date: 20210105

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011065655

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220117

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318