EP2042402A1 - Radio communication device in a guided transport means - Google Patents

Radio communication device in a guided transport means Download PDF

Info

Publication number
EP2042402A1
EP2042402A1 EP08105428A EP08105428A EP2042402A1 EP 2042402 A1 EP2042402 A1 EP 2042402A1 EP 08105428 A EP08105428 A EP 08105428A EP 08105428 A EP08105428 A EP 08105428A EP 2042402 A1 EP2042402 A1 EP 2042402A1
Authority
EP
European Patent Office
Prior art keywords
slots
communication device
series
section
radio communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08105428A
Other languages
German (de)
French (fr)
Inventor
Marc Heddebaut
Denis Duhot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut Francais des Sciences et Technologirs des Transports de lAmenagement et des Reseaux
Alstom Transport Technologies SAS
Original Assignee
Alstom Transport SA
Institut National de Recherche sur les Transports et leur Securite INRETS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport SA, Institut National de Recherche sur les Transports et leur Securite INRETS filed Critical Alstom Transport SA
Publication of EP2042402A1 publication Critical patent/EP2042402A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3225Cooperation with the rails or the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/125Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using short-range radio transmission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna

Definitions

  • the invention relates to a radio communication device comprising a continuous radiating structure, a directional antenna and an energy transition means between the continuous radiating structure and the directional antenna.
  • Such a continuous radiating structure - described for example in the document FR 2,608,119 - is used on certain urban guided transport sites to maintain continuous radio coverage between a ground control station and trains, as much as possible from the specific propagation conditions related to the track environment (in tunnels in particular). Its operation is very different from that of a traditional antenna since it allows, via a continuous network of slots made in a waveguide, to bring a small part of the radiofrequency energy propagated inside the structure. radiating outwards in the immediate vicinity (a few tens of cm) of the antenna of the moving train along the track, almost completely free of local propagation conditions.
  • This type of structure is called “continuous” because it typically extends over several hundred meters long.
  • the known continuous radiating structure thus effectively covers an area that can be described as "one-dimensional" concentrating radiofrequency energy in the immediate vicinity of the track, along it.
  • This structure is however not able to effectively cover a large volume such as that presented by a stop station, a garage or workshop area.
  • the radio coverage of the station, garage or workshop has a necessary and even vital character.
  • the current technical solution represented on the figure 1 is implemented: at the end 3 of the continuous radiating structure 1 (here a waveguide), a significant radiofrequency energy remains, since the attenuation related to the propagation and to the radiation from the waveguide amounts to a value less than 20 dB per kilometer and that waveguide lengths generally used are limited to a few hundred meters, the inter-station distance generally encountered in urban guided transport.
  • This energy is taken up by a "guide / coaxial" transition 4, is transported by a coaxial cable 5, then feeds a directional antenna 6 - for example of the Yagi type - providing radio coverage in free propagation in the volume of the zone to be cover and relayed, if necessary, by other similar antennas arranged judiciously further and far and away.
  • Prior art is known from slit waveguide directional antennas.
  • This type of traditional antenna is generally arranged on towers high in order to have a good radio clearance and, in particular, to clear the first Fresnel communication area to mobiles.
  • This type of antenna is intended to radiate in a directive manner with a minimum footprint all the energy communicated by a transmitter.
  • its large dimension, developed along the axis of propagation does not exceed a few wavelengths, a large dimension less than 1 meter at 2.5 GHz. Beyond a size of a few wavelengths, the gain of such an antenna and its directivity no longer grow significantly and therefore no longer practical use.
  • the communication device of the present invention aims to solve the problems of the radio coverage devices of several zones whose propagation conditions are different from each other by proposing an economical solution, effective, simple to manufacture and flexible to implement.
  • the communication device comprises a continuous radiating waveguide structure pierced by a first series of slots forming a first section of radiating structure, inside which a microwave signal is injected, an antenna directive and an energy transition means between the radiating continuous structure and the directional antenna and such that the transition means and the directional antenna are constituted respectively of a second and a third section of radiating structure respectively pierced by a second and third series of slots, the first, second and third sections of radiating structure being adjacent and consecutive.
  • the figure 1 is a schematic view of the radio communication device continuous radiating support along the path and free propagation by directional antenna, and has been described above.
  • the figure 2 schematically shows a radio communication device 10 according to a first embodiment.
  • the communication device 10 is composed of a radiating structure formed by a waveguide of rectangular section having three radiating structure sections a, b, c respectively pierced with slots 12, 14 and 16.
  • the communication device 10 is arranged in elevation above the ground or, where appropriate, installed in a tunnel vault.
  • the first radiating section extends into a traffic zone of a train over a distance of up to several hundred meters.
  • the second and third sections b and c extend in an area allowing a gradual rise in the radiated power, over a distance of several meters in length compatible with the characteristics of resistance to sudden variations of the signals incident of train and ground radio equipment, and also making it possible to construct a marked directivity of the signals towards the zone to be covered in free propagation, after the mechanical end of the structure 10 (station, workshop, garage or mixed radio coverage by continuous radiating structure then discrete antennas).
  • the section c makes it particularly possible to exploit and radiate all the residual energy at the end of the structure towards the volume to be covered.
  • the communication device 10 performs two functions: the first function, maintained by the first section a of continuous radiating structure, makes it possible to communicate in a space dimension with an antenna of a train traveling above and close to the structure.
  • the second function maintained by the third section c of the directional antenna, makes it possible to communicate in free propagation in a volume with an antenna arranged at a distance from the end of the communication device 10, for example on a train leaving the section c.
  • the intermediate radiating structure b makes it possible to progressively and efficiently switch from one mode of operation to another by allowing the transition of radiofrequency energy between the continuous radiating structure a and the directional antenna c.
  • the slots 12 of the first section a are arranged transversely to the longitudinal direction of the waveguide and their large size is much smaller than the wavelength of the microwave signal propagating in the waveguide.
  • the large dimension is understood to be the dimension of the slot in the transverse direction (also called “major axis”), this dimension being significantly larger than the dimension of the slot in the longitudinal direction (also called “minor axis”).
  • major axis the dimension of the slot in the transverse direction
  • minor axis also called “minor axis”
  • This characteristic allows to take very little energy along the guide and thus to obtain a radiating structure with a very low linear attenuation.
  • the radiated signal is weak but continuous along the structure and of sufficient power to ensure radio communication via the antenna train moving in the immediate vicinity. This stretch is called “continuous radiating”. Depending on the configuration of the transport network, it can extend over several hundred meters.
  • the slots 14 of the second section b (which corresponds to the energy transition means) are arranged transversely to the longitudinal direction of the waveguide. Their large size varies from the large dimension of the slots 12 of the first section a (large dimension much smaller than the wavelength) to a dimension which remains smaller than that of the slots 16 of the third section c (which corresponds to the directional antenna).
  • the slots 16 of the third section c are all identical and also transverse to the longitudinal direction of the waveguide, and their large dimension is close to the half-wavelength of the signal propagated in the guide. For the sake of simplicity, only a few slots 12, 14 and 16 are shown on the figure 2 .
  • each slot 14 The energy taken, and therefore the power radiated from each slot 14 increases rapidly when the size thereof increases, the size of each slot 14 remains less than half the wavelength. This energy is transferred from inside the waveguide to the outside.
  • a directivity, in the axis of the guide towards its end and therefore in the direction of the volume to be covered after the end of the guide is born from the composition of the radiation of the different slots 12, 14, 16 successive regularly spaced and out of phase according to the calculation principle inter-slot distance explained below.
  • the radiation of a small aperture here an elementary slit 12
  • the radiation of a small aperture can be expressed in the form of the radiation of equivalent magnetic dipoles noted m and in the form of a relationship between the magnetic field propagated within the waveguide, noted H 0 , and a coefficient called "magnetic polarizability of the opening", noted ⁇ m .
  • the magnetic polarizability of a slot of rectangular geometry 12 is correctly approximated by that of a slot of elliptical geometry of the same large and small axis.
  • the polarizability of the openings is increased very progressively by regularly modifying this parameter 1 of the slots 14 so that, from the initial -60 dB, the level of radiated power extracted from the guide and received by the antenna of the train in translation nearby.
  • the evolution of this dimension l is calculated so that the evolution of the power transmitted by each slot, which varies in l 3 , produces the linear variation ramp up required along this section b, as long as Bethe's assumption of small openings remains valid.
  • the power of the radiated signal has increased strongly.
  • the objective is to make the best use of all the residual energy in order to radiate rapidly and efficiently the entire residual energy at the end of the guide.
  • a half-wave resonant slot in the air properly powered, has a high radiation efficiency and has the property of radiating virtually all the energy that is communicated to it. Therefore, if we have in this third section c a resonant slot 16 half wave at the working frequency, it radiates on both sides of its plane most of the incident energy. This energy is radiated for half in the half-center of the waveguide (it is reinjected into it) and radiated halfway outwards.
  • the pitch between two consecutive slots 12, 14 and 16 is a function of the section of the waveguide and the wavelength of the signals used. It is calculated so as to obtain a signal of constant amplitude all along the communication device in the vicinity of the continuous radiating structure, in particular above a slot, or between two slots. It is obtained by taking into account the phase shift of the signals feeding the slots of the waveguide, from the guided wavelength - itself a function of the internal geometrical dimensions of the guide and its propagation mode - as well as the phase shift experienced in the air, outside of the waveguide, by all the radiation of the slots contributing to the total field received at all points of reception near the guide. This inter-slot distance is constant and identical along sections a, b and c to ensure a continuously increasing level of signal above the waveguide.
  • the radiating waveguide is installed along the transport path in the form of unitary sections electrically and mechanically connected to each other.
  • the length of each of these unitary sections is limited in practice to a value not exceeding 20 m.
  • a terminal section is formed of sections b and c represented in figure 2 .
  • the directional antenna formed by the third section c has a short length, limited to less than ten slots, of length well below one meter.
  • the second transition section b may advantageously have a dimension at most equal to the length of a unit section less the length of the section c.
  • the first continuous radiating section is very long and is produced by all the other unitary sections situated upstream, but may alternatively be part of the terminal section, depending on the signal variation dynamics tolerable by the radio equipment and therefore the effective transition distance necessary to ensure sections b and c.
  • the downstream radio coverage is carried out in free propagation, that is to say with characteristics depending on the radio environment specific to the propagation environment. station, workshop, garage or, track in the case of mixed solution operating by continuous radiating structure and discrete antennas.
  • the above explanation was given by considering a train moving above the communication device and leaving this radio coverage area.
  • the radiating terminal section formed of the second and third sections b and c ensures the gradual increase in power of the signals received by the train.
  • the problem is reversible when a train approaches from a non-equipped area by the communication device according to the invention to an equipped area, ensuring a continuous decay of the power of the signals received since this time the directional antenna (third section c) to the continuous radiating structure (first section a).
  • This reversible arrangement is particularly useful in the scenario where two sections of complex radio coverage track require the use of a radiating waveguide and frame a simpler environment whose radio coverage is provided by one or more antenna (s) discrete (s) consecutive.
  • the power of the transmitted signals will gradually increase, in accordance with the dynamic tolerable by the radio equipment used.
  • the free propagation conditions then apply in the intermediate free propagation environment for which a maximum of radiofrequency energy has however been communicated by the very low loss transition terminal section, thus making it possible to ensure efficient free propagation.
  • the signal Near the second installation zone of the waveguide again covered by a radiating waveguide according to the invention, the signal will increase because of the proximity of the radiation source and then past the beginning of the third section. c and along the second section b, the signal will gradually decrease over a few meters, until it returns to the basic level received all along the first section a.
  • the first, second and third sections of the communication device are adjacent and consecutive, the second section b making it possible to progressively change from a continuous low-radiation mode of operation to a local mode of intense radiation operation.
  • the invention thus makes it possible to realize very simply and economically a radio communication device which provides two types of communication in two different propagation environments. This device allows a continuous rise in power, over an adjustable length, up to several meters and allowing the radio equipment on board the train to "follow" this rise in power gradually, without risk of loss of signal synchronization.
  • first series of slots 14 intermediate radiating zone b
  • second series of slots 14 ' intermediate radiating zone b'
  • the evolution profile of the length of the major axes of the slots in these intermediate sections b and b ' is theoretically determined as previously described for the second section b.
  • the upper limit of the major axis of the slots of the sections b, c ', b' is calculated from the previous expression of the magnetic polarizability ⁇ m of the slot in order to obtain the radiated power necessary to compensate the attenuation further related to the distance gap increased locally then allow a return to a type of operation after this local enhancement zone c 'signal, via the section b'.
  • the energy of the signal propagated after this type of zone is attenuated with respect to a waveguide structure which does not include the sections b, c 'and b', which implies that it is necessary, with equal length of waveguide, to provide repeaters in greater numbers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

The device has a continuous radiating structure (10) formed by waveguides of a rectangular section presenting three sections (a, b, c) pierced with a series of slots (12, 14, 16) respectively. A microwave signal is injected into the slots. An energy transition unit transmits energy between the structure and a Yagi type directive antenna, where the sections are adjacent and consecutive to each other. Large dimension of the slots (14) progressively extends on length of the section (b).

Description

L'invention concerne un dispositif de communication radioélectrique comportant une structure rayonnante continue, une antenne directive et un moyen de transition d'énergie entre la structure rayonnante continue et l'antenne directive.The invention relates to a radio communication device comprising a continuous radiating structure, a directional antenna and an energy transition means between the continuous radiating structure and the directional antenna.

Une telle structure rayonnante continue - décrite par exemple dans le document FR 2 608 119 - est utilisée sur certains sites de transports guidés urbains afin de maintenir une couverture radio continue entre un poste de supervision au sol et les trains, en s'affranchissant le plus possible des conditions de propagation particulières liées à l'environnement de la voie (dans les tunnels en particulier). Son fonctionnement est très différent de celui d'une antenne traditionnelle puisqu'il permet, via un réseau continu de fentes pratiquées dans un guide d'ondes, d'apporter une petite partie de l'énergie radiofréquence propagée à l'intérieur de la structure rayonnante vers l'extérieur à proximité immédiate (quelques dizaines de cm) de l'antenne du train mobile le long de la voie, en s'affranchissant presque totalement des conditions locales de propagation. Ce type de structure est dit « continu » car il s'étend typiquement sur plusieurs centaines de mètres de long.Such a continuous radiating structure - described for example in the document FR 2,608,119 - is used on certain urban guided transport sites to maintain continuous radio coverage between a ground control station and trains, as much as possible from the specific propagation conditions related to the track environment (in tunnels in particular). Its operation is very different from that of a traditional antenna since it allows, via a continuous network of slots made in a waveguide, to bring a small part of the radiofrequency energy propagated inside the structure. radiating outwards in the immediate vicinity (a few tens of cm) of the antenna of the moving train along the track, almost completely free of local propagation conditions. This type of structure is called "continuous" because it typically extends over several hundred meters long.

La structure rayonnante continue connue couvre ainsi efficacement une zone que l'on peut qualifier de « à une dimension » concentrant l'énergie radiofréquence à proximité immédiate de la voie, le long de celle-ci. Cette structure n'est cependant pas en mesure de couvrir efficacement un volume important tel que celui présenté par une station d'arrêt, une zone de garage ou d'atelier. Il faudrait dans ce cas disposer le guide d'ondes sous la forme d'un réseau de guides parallèles, régulièrement espacés, ce qui s'avère économiquement irréaliste. La couverture radioélectrique de la station, du garage ou de l'atelier possède cependant un caractère nécessaire, voire vital.The known continuous radiating structure thus effectively covers an area that can be described as "one-dimensional" concentrating radiofrequency energy in the immediate vicinity of the track, along it. This structure is however not able to effectively cover a large volume such as that presented by a stop station, a garage or workshop area. In this case it would be necessary to arrange the waveguide in the form of a network of parallel guides, regularly spaced, which proves to be economically unrealistic. The radio coverage of the station, garage or workshop, however, has a necessary and even vital character.

Ces zones s'avèrent cependant moins contraintes du point de vue de la propagation radioélectrique et sont couvertes efficacement par une propagation radio libre, c'est-à-dire employant des antennes discrètes, directives, disposées de loin en loin, toutes les quelques centaines de mètres à la voie. Une solution mixte exploitant dans les zones à couverture radioélectrique complexe un support rayonnant continu s'affranchissant de ces contraintes d'environnement de propagation et, dans les zones de couverture radioélectrique plus aisée des antennes discrètes s'avère donc une configuration efficace.These zones, however, are less constrained from the point of view of radio propagation and are effectively covered by free radio propagation, that is to say using discrete, directive antennas arranged at intervals, every few hundred from meters to the track. A mixed solution exploiting in complex radio coverage areas a continuous radiating support freeing itself from these constraints of propagation environment and, in Areas of easier radio coverage of discrete antennas thus proves to be an efficient configuration.

Afin de satisfaire ces contraintes, la solution technique actuelle représentée sur la figure 1 est mise en oeuvre : en extrémité 3 de la structure rayonnante continue 1 (ici un guide d'ondes) subsiste une énergie radiofréquence significative puisque l'atténuation liée à la propagation et au rayonnement depuis le guide d'ondes s'élève à une valeur inférieure à 20 dB par kilomètre et que les longueurs de guide d'ondes généralement mises en oeuvre sont limitées à quelques centaines de mètres, soit la distance inter-stations généralement rencontrée en transports guidés urbains. Cette énergie est prélevée par une transition 4 « guide / coaxial », est transportée par un câble coaxial 5, puis alimente une antenne directive 6 - par exemple de type Yagi -, assurant une couverture radio en propagation libre dans le volume de la zone à couvrir et relayée, le cas échéant, par d'autres antennes similaires disposées judicieusement plus loin et de loin en loin.In order to meet these constraints, the current technical solution represented on the figure 1 is implemented: at the end 3 of the continuous radiating structure 1 (here a waveguide), a significant radiofrequency energy remains, since the attenuation related to the propagation and to the radiation from the waveguide amounts to a value less than 20 dB per kilometer and that waveguide lengths generally used are limited to a few hundred meters, the inter-station distance generally encountered in urban guided transport. This energy is taken up by a "guide / coaxial" transition 4, is transported by a coaxial cable 5, then feeds a directional antenna 6 - for example of the Yagi type - providing radio coverage in free propagation in the volume of the zone to be cover and relayed, if necessary, by other similar antennas arranged judiciously further and far and away.

Cependant, une telle solution présente plusieurs inconvénients : elle est relativement chère du fait des transitions 4 « guide / coaxial », du câble 5 et de l'antenne directive 6 à rajouter à chaque volume à couvrir, elle est compliquée à mettre en oeuvre et le signal hyperfréquence disponible en extrémité de guide d'ondes est rapidement atténué en passant au travers des transitions et du câble coaxial 5 vers l'antenne directive 6. De plus, des variations brutales des signaux transmis sont enregistrées au passage entre le guide et l'antenne directive.However, such a solution has several disadvantages: it is relatively expensive because of the transitions 4 "guide / coaxial", cable 5 and the directive antenna 6 to be added to each volume to cover, it is complicated to implement and the microwave signal available at the end of the waveguide is rapidly attenuated by passing through the transitions and the coaxial cable 5 towards the directional antenna 6. In addition, sudden variations of the transmitted signals are recorded at the passage between the guide and the directional antenna.

Il n'est pas connu actuellement de solution optimale permettant d'accoler la technologie d'antenne directive de type Yagi à la technologie de structure rayonnante continue pour réduire notamment le problème d'atténuation du signal.It is not currently known optimal solution for joining Yagi type antenna technology to the continuous radiating structure technology to reduce the problem of signal attenuation.

Il est connu de l'art antérieur des antennes directives à guides d'ondes à fentes. Ce type d'antenne traditionnelle est en général disposé sur des pylônes en hauteur afin de disposer d'un bon dégagement radio-électrique et, en particulier, de dégager la première zone de communication de Fresnel vers des mobiles. Ce type d'antenne est destiné à rayonner de façon directive avec un encombrement minimum toute l'énergie communiquée par un émetteur. Typiquement, selon le gain attendu d'une telle antenne, sa grande dimension, développée selon l'axe de propagation, ne dépasse pas quelques longueurs d'ondes, soit une grande dimension inférieure à 1 mètre à 2,5 GHz. Au-delà d'une taille de quelques longueurs d'ondes, le gain d'une telle antenne et sa directivité ne croissent plus significativement et n'ont plus de ce fait d'emploi pratique.Prior art is known from slit waveguide directional antennas. This type of traditional antenna is generally arranged on towers high in order to have a good radio clearance and, in particular, to clear the first Fresnel communication area to mobiles. This type of antenna is intended to radiate in a directive manner with a minimum footprint all the energy communicated by a transmitter. Typically, according to the expected gain of such an antenna, its large dimension, developed along the axis of propagation, does not exceed a few wavelengths, a large dimension less than 1 meter at 2.5 GHz. Beyond a size of a few wavelengths, the gain of such an antenna and its directivity no longer grow significantly and therefore no longer practical use.

Il n'est pas possible cependant d'accoler directement une telle antenne directive en guide d'ondes à une structure continue rayonnante à guide d'ondes - en utilisant par exemple des guides de section identique - car l'antenne du train passant brutalement au droit de la zone de rayonnement de la section antenne directive serait « éblouie » par la transition très brutale d'un signal de puissance réduite, celui rayonné par la structure rayonnante continue, vers un signal identique mais de puissance beaucoup plus importante (typiquement 60 décibels de plus), due au rayonnement local intense de cette antenne directive. La transition s'effectuant en une distance très réduite, inférieure au mètre (longueur de l'antenne directive) et parcourue à la vitesse du train, les équipements radio train ou sol pourraient dès lors perdre leur synchronisation et ne seraient de ce fait plus temporairement en état de communiquer efficacement entre eux.It is not possible, however, to directly attach such a waveguide directive antenna to a continuous radiating waveguide structure - using, for example, guides of identical section - because the antenna of the train passing suddenly to right of the radiation zone of the directive antenna section would be "dazzled" by the very brutal transition of a signal of reduced power, that radiated by the radiating structure continues, towards an identical signal but of much greater power (typically 60 decibels moreover), due to intense local radiation from this directional antenna. Since the transition takes place at a very small distance, less than one meter (length of the directional antenna) and traveled at the speed of the train, the train or ground radio equipment could therefore lose their synchronization and would thus not be more temporarily able to communicate effectively with each other.

Le dispositif de communication de la présente invention vise à résoudre les problèmes des dispositifs de couverture radioélectrique de plusieurs zones dont les conditions de propagation sont différentes les unes des autres en proposant une solution économique, efficace, simple à fabriquer et souple à mettre en oeuvre.The communication device of the present invention aims to solve the problems of the radio coverage devices of several zones whose propagation conditions are different from each other by proposing an economical solution, effective, simple to manufacture and flexible to implement.

Conformément à l'invention, le dispositif de communication comporte une structure continue rayonnante à guide d'ondes percé d'une première série de fentes formant un premier tronçon de structure rayonnante, à l'intérieur de laquelle un signal hyperfréquence est injecté, une antenne directive et un moyen de transition d'énergie entre la structure continue rayonnante et l'antenne directive et tel que le moyen de transition et l'antenne directive sont constitués respectivement d'un deuxième et d'un troisième tronçon de structure rayonnante respectivement percés d'une deuxième et troisième séries de fentes, les premier, deuxième et troisième tronçons de structure rayonnante étant adjacents et consécutifs.According to the invention, the communication device comprises a continuous radiating waveguide structure pierced by a first series of slots forming a first section of radiating structure, inside which a microwave signal is injected, an antenna directive and an energy transition means between the radiating continuous structure and the directional antenna and such that the transition means and the directional antenna are constituted respectively of a second and a third section of radiating structure respectively pierced by a second and third series of slots, the first, second and third sections of radiating structure being adjacent and consecutive.

Le dispositif de communication de l'invention satisfait également à l'une des caractéristiques suivantes :

  • la grande dimension de la première série de fentes est très inférieure à la longueur d'onde du signal hyperfréquence se propageant dans la structure rayonnante,
  • la grande dimension de la deuxième série de fentes s'étend progressivement sur la longueur du deuxième tronçon, depuis la grande dimension de la première série de fentes jusqu'à une dimension qui reste inférieure à celle de la troisième série de fentes,
  • la grande dimension de la troisième série de fentes est identique sur la longueur du troisième tronçon et proche mais inférieure à la demi longueur d'onde du signal propagé dans la structure rayonnante;
  • le pas entre deux fentes consécutives est constant et identique le long des trois tronçons de structure rayonnante ;
  • les fentes sont disposées transversalement à la direction longitudinale de la structure rayonnante,
  • la longueur du deuxième tronçon est comprise entre 1 et 20 mètres.
  • la troisième série de fentes comprend jusque dix fentes ;
  • la troisième série de fentes est formée par la jonction de la deuxième série de fentes avec la même série de fentes inversée en ce que la grande dimension diminue progressivement de la demi-longueur d'onde du signal propagé à une dimension très inférieure à la longueur d'onde du signal propagé,
The communication device of the invention also satisfies one of the following characteristics:
  • the large dimension of the first series of slots is much smaller than the wavelength of the microwave signal propagating in the radiating structure,
  • the large dimension of the second series of slots progressively extends over the length of the second section, from the large dimension of the first series of slots to a dimension which remains smaller than that of the third series of slots,
  • the large dimension of the third series of slots is identical over the length of the third section and close to but less than half the wavelength of the signal propagated in the radiating structure;
  • the pitch between two consecutive slots is constant and identical along the three sections of radiating structure;
  • the slots are arranged transversely to the longitudinal direction of the radiating structure,
  • the length of the second section is between 1 and 20 meters.
  • the third series of slits comprises up to ten slits;
  • the third series of slots is formed by the junction of the second series of slots with the same series of inverted slots in that the large dimension decreases progressively from the half-wavelength of the propagated signal to a dimension much smaller than the length waveform of the propagated signal,

D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description des modes de réalisation du dispositif de communication, description faite en liaison avec les dessins dans lesquels :

  • la figure 1 est une vue schématique du dispositif de communication radioélectrique par support rayonnant continu le long de la voie puis en propagation libre par antenne directive de l'art antérieur,
  • la figure 2 représente schématiquement un dispositif de communication radioélectrique par support rayonnant le long de la voie puis en propagation libre conforme à un premier mode de réalisation,
  • la figure 3 représente schématiquement un dispositif de communication radioélectrique par support rayonnant le long de la voie permettant localement d'augmenter la portée de la liaison sol-train conforme à un second mode de réalisation.
Other objects, features and advantages of the invention will appear on reading the description of the embodiments of the communication device, a description given in connection with the drawings in which:
  • the figure 1 is a schematic view of the radio communication device continuous radiating support along the path and free propagation by directive antenna of the prior art,
  • the figure 2 schematically represents a radio communication device by support radiating along the path and then in free propagation according to a first embodiment,
  • the figure 3 schematically represents a radio communication device by support radiating along the path allowing locally to increase the range of the ground-train link according to a second embodiment.

La figure 1 est une vue schématique du dispositif de communication radioélectrique par support rayonnant continu le long de la voie puis en propagation libre par antenne directive, et a été décrite précédemment.The figure 1 is a schematic view of the radio communication device continuous radiating support along the path and free propagation by directional antenna, and has been described above.

La figure 2 représente schématiquement un dispositif de communication radioélectrique 10 conforme à un premier mode de réalisation. Le dispositif de communication 10 est composé d'une structure rayonnante formée par un guide d'ondes de section rectangulaire présentant trois tronçons de structure rayonnante a, b, c percés respectivement de fentes 12, 14 et 16. Le dispositif de communication 10 est disposé en surélévation au-dessus du sol ou, le cas échéant, installé en voûte de tunnel. Le premier tronçon rayonnant a s'étend dans une zone de circulation d'un train sur une distance pouvant atteindre plusieurs centaines de mètres. Les deuxième et troisième tronçons b et c s'étendent dans une zone permettant une montée progressive de la puissance rayonnée, sur une distance de plusieurs mètres de long compatible avec les caractéristiques de résistance au variations brutales des signaux incidents des équipements radio train et sol, et permettant également de construire une directivité marquée des signaux vers la zone à couvrir en propagation libre, après l'extrémité mécanique de la structure 10 (station, atelier, garage ou couverture radioélectrique mixte par structure rayonnante continue puis antennes discrètes). Le tronçon c permet tout particulièrement d'exploiter et de rayonner toute l'énergie résiduelle en extrémité de structure vers le volume à couvrir.The figure 2 schematically shows a radio communication device 10 according to a first embodiment. The communication device 10 is composed of a radiating structure formed by a waveguide of rectangular section having three radiating structure sections a, b, c respectively pierced with slots 12, 14 and 16. The communication device 10 is arranged in elevation above the ground or, where appropriate, installed in a tunnel vault. The first radiating section extends into a traffic zone of a train over a distance of up to several hundred meters. The second and third sections b and c extend in an area allowing a gradual rise in the radiated power, over a distance of several meters in length compatible with the characteristics of resistance to sudden variations of the signals incident of train and ground radio equipment, and also making it possible to construct a marked directivity of the signals towards the zone to be covered in free propagation, after the mechanical end of the structure 10 (station, workshop, garage or mixed radio coverage by continuous radiating structure then discrete antennas). The section c makes it particularly possible to exploit and radiate all the residual energy at the end of the structure towards the volume to be covered.

Le dispositif de communication 10 assure deux fonctions : la première fonction, maintenue par le premier tronçon a de structure rayonnante continue, permet de communiquer dans une dimension de l'espace avec une antenne d'un train circulant au-dessus et à proximité de la structure. La deuxième fonction, maintenue par le troisième tronçon c d'antenne directive, permet de communiquer en propagation libre dans un volume avec une antenne disposée à distance de l'extrémité du dispositif de communication 10, par exemple sur un train quittant le tronçon c. La structure rayonnante intermédiaire b permet de passer progressivement et efficacement d'un mode de fonctionnement à l'autre en permettant la transition d'énergie radiofréquence entre la structure rayonnante continue a et l'antenne directive c.The communication device 10 performs two functions: the first function, maintained by the first section a of continuous radiating structure, makes it possible to communicate in a space dimension with an antenna of a train traveling above and close to the structure. The second function, maintained by the third section c of the directional antenna, makes it possible to communicate in free propagation in a volume with an antenna arranged at a distance from the end of the communication device 10, for example on a train leaving the section c. The intermediate radiating structure b makes it possible to progressively and efficiently switch from one mode of operation to another by allowing the transition of radiofrequency energy between the continuous radiating structure a and the directional antenna c.

Les fentes 12 du premier tronçon a sont disposées transversalement à la direction longitudinale du guide d'ondes et leur grande dimension est très inférieure à la longueur d'onde du signal hyperfréquence se propageant dans le guide d'ondes. La grande dimension est entendue comme étant la dimension de la fente dans le sens transversal (aussi appelé « grand axe »), cette dimension étant nettement plus grande que la dimension de la fente dans le sens longitudinal (aussi appelée « petit axe »). Cette caractéristique permet de ne prélever que très peu d'énergie le long du guide et donc d'obtenir une structure rayonnante avec une très faible atténuation linéique. Le signal rayonné est faible mais continu le long de la structure et de puissance suffisante afin d'assurer une communication radio via l'antenne train se déplaçant à proximité immédiate. Ce tronçon a est appelé « rayonnant continu ». Selon la configuration du réseau de transport, il peut s'étendre sur plusieurs centaines de mètres.
Les fentes 14 du deuxième tronçon b (qui correspond au moyen de transition d'énergie) sont disposées transversalement à la direction longitudinale du guide d'ondes. Leur grande dimension varie depuis la grande dimension des fentes 12 du premier tronçon a (grande dimension très inférieure à la longueur d'onde) jusqu'à une dimension qui reste inférieure à celle des fentes 16 du troisième tronçon c (qui correspond à l'antenne directive). Les fentes 16 du troisième tronçon c sont toutes identiques et également transversales à la direction longitudinale du guide d'ondes, et leur grande dimension est proche de la demi-longueur d'onde du signal propagé dans le guide. Pour des raisons de simplicité, seules quelques fentes 12, 14 et 16 sont représentées sur la figure 2. Le prélèvement d'énergie effectué, et par conséquent la puissance rayonnée depuis chaque fente 14 croît rapidement lorsque la taille de celle-ci augmente, la taille de chaque fente 14 restant toutefois inférieure à la demi-longueur d'onde. Cette énergie est transférée depuis l'intérieur du guide d'ondes vers l'extérieur. Une directivité, dans l'axe du guide vers son extrémité et donc en direction du volume à couvrir après la fin du guide naît de la composition des rayonnements des différentes fentes 12, 14, 16 successives, régulièrement espacées et déphasées selon le principe de calcul de distance inter-fentes expliqué ci-dessous.
The slots 12 of the first section a are arranged transversely to the longitudinal direction of the waveguide and their large size is much smaller than the wavelength of the microwave signal propagating in the waveguide. The large dimension is understood to be the dimension of the slot in the transverse direction (also called "major axis"), this dimension being significantly larger than the dimension of the slot in the longitudinal direction (also called "minor axis"). This characteristic allows to take very little energy along the guide and thus to obtain a radiating structure with a very low linear attenuation. The radiated signal is weak but continuous along the structure and of sufficient power to ensure radio communication via the antenna train moving in the immediate vicinity. This stretch is called "continuous radiating". Depending on the configuration of the transport network, it can extend over several hundred meters.
The slots 14 of the second section b (which corresponds to the energy transition means) are arranged transversely to the longitudinal direction of the waveguide. Their large size varies from the large dimension of the slots 12 of the first section a (large dimension much smaller than the wavelength) to a dimension which remains smaller than that of the slots 16 of the third section c (which corresponds to the directional antenna). The slots 16 of the third section c are all identical and also transverse to the longitudinal direction of the waveguide, and their large dimension is close to the half-wavelength of the signal propagated in the guide. For the sake of simplicity, only a few slots 12, 14 and 16 are shown on the figure 2 . The energy taken, and therefore the power radiated from each slot 14 increases rapidly when the size thereof increases, the size of each slot 14 remains less than half the wavelength. This energy is transferred from inside the waveguide to the outside. A directivity, in the axis of the guide towards its end and therefore in the direction of the volume to be covered after the end of the guide is born from the composition of the radiation of the different slots 12, 14, 16 successive regularly spaced and out of phase according to the calculation principle inter-slot distance explained below.

Dans le tronçon a, la théorie du rayonnement de petites ouvertures due à H. A. Bethe, « Theory of diffraction by small holes, Phys. Rev., vol. 66, pp. 1263, 1944 » s'applique. Dès lors, le rayonnement d'une petite ouverture, ici une fente élémentaire 12, peut s'exprimer sous la forme du rayonnement de dipôles magnétiques équivalents notés m et s'écrivant sous la forme d'une relation entre le champ magnétique propagé à l'intérieur du guide d'ondes, noté H 0, et d'un coefficient appelé « polarisabilité magnétique de l'ouverture », noté α m . A distance suffisante de l'ouverture, le moment magnétique du dipôle magnétique équivalent au rayonnement de cette ouverture s'écrit sous la forme de la dyade m = α m : H 0. La polarisabilité magnétique d'une fente en forme d'ellipse très allongée possède une solution analytique. Elle s'écrit selon le grand axe de dimension « 2l » de l'ouverture sous la forme α m = 2 π 3 l 3 e 2 E e - K e

Figure imgb0001
, expression ou « e » est l'excentricité de l'ouverture en forme d'ellipse, « K(e) » et « E(e) » sont respectivement les intégrales elliptiques complètes de première et de seconde espèce. La polarisabilité magnétique d'une fente de géométrie rectangulaire 12 s'avère correctement approchée par celle d'une fente de géométrie elliptique de même grand et petit axe. Dès lors, le long du tronçon rayonnant continu a, on dispose des fentes 12 de grand axe calculées telles que la polarisabilité de ces fentes permette un couplage réduit d'environ 60 décibels entre la puissance propagée à l'intérieur du guide et celle rayonnée à l'extérieur, permettant le passage d'une puissance suffisante à entretenir la communication sol-train. L'expression précédente de la polarisabilité magnétique de l'ouverture montre également que α m croit en fonction de l 3.In section a, the radiation theory of small apertures due to HA Bethe, "Theory of diffraction by small holes, Phys. Rev., vol. 66, pp. 1263, 1944 » apply. Therefore, the radiation of a small aperture, here an elementary slit 12, can be expressed in the form of the radiation of equivalent magnetic dipoles noted m and in the form of a relationship between the magnetic field propagated within the waveguide, noted H 0 , and a coefficient called "magnetic polarizability of the opening", noted α m . At a sufficient distance from the opening, the magnetic moment of the magnetic dipole equivalent to the radiation of this opening is written in the form of the dyad m = α m : H 0 . The magnetic polarizability of a very elongated ellipse-shaped slot has an analytical solution. It is written along the large axis of dimension "2 l " of the opening in the form α m = 2 π 3 l 3 e 2 E e - K e
Figure imgb0001
, expression or "e" is the eccentricity of the elliptical opening, "K (e)" and "E (e)" are respectively the complete elliptic integrals of first and second kinds. The magnetic polarizability of a slot of rectangular geometry 12 is correctly approximated by that of a slot of elliptical geometry of the same large and small axis. Therefore, along the continuous radiating section a, there are slots of calculated long axis such that the polarizability of these slots allows a reduced coupling of about 60 decibels between the power propagated inside the guide and that radiated at the outside, allowing the passage of a sufficient power to maintain the ground-train communication. The previous expression of the magnetic polarizability of the aperture also shows that α m increases as a function of l 3 .

Le long du tronçon b de transition, on augmente très progressivement la polarisabilité des ouvertures en modifiant régulièrement ce paramètre l des fentes 14 afin que, depuis les -60 dB initiaux, on monte progressivement le niveau de puissance rayonnée extrait du guide et reçu par l'antenne du train en translation à proximité. L'évolution de cette dimension l est calculée afin que l'évolution de la puissance transmise par chaque fente, qui varie en l 3 , produise la variation linéaire de montée en puissance requise le long de ce tronçon b, tant que l'hypothèse de Bethe des petites ouvertures reste valide. En fin de tronçon b, la puissance du signal rayonné a augmenté fortement.Along the transition section b, the polarizability of the openings is increased very progressively by regularly modifying this parameter 1 of the slots 14 so that, from the initial -60 dB, the level of radiated power extracted from the guide and received by the antenna of the train in translation nearby. The evolution of this dimension l is calculated so that the evolution of the power transmitted by each slot, which varies in l 3 , produces the linear variation ramp up required along this section b, as long as Bethe's assumption of small openings remains valid. At the end of section b, the power of the radiated signal has increased strongly.

Dans l'antenne directive formée par le tronçon c, partant de ce niveau de rayonnement déjà important obtenu progressivement le long du deuxième tronçon b, l'objectif est d'utiliser au mieux toute l'énergie résiduelle afin de rayonner rapidement et efficacement toute l'énergie résiduelle en extrémité de guide. Une fente résonante en demi-onde dans l'air, correctement alimentée, possède une efficacité de rayonnement importante et présente la propriété de rayonner pratiquement toute l'énergie qui lui est communiquée. Dès lors, si l'on dispose dans ce troisième tronçon c une fente résonante 16 en demi-onde à la fréquence de travail, celle-ci rayonne de part et d'autre de son plan l'essentiel de l'énergie incidente. Cette énergie est donc rayonnée pour moitié dans le demi-milieu interne au guide d'ondes (elle est réinjectée dans celui-ci) et rayonnée pour moitié vers l'extérieur. En pratique, Il subsiste donc dans le guide d'ondes, dans le tronçon c, après une première fente 16 résonante en demi-onde, environ la moitié de la puissance initiale. On dispose dès lors un nombre réduit n de fentes résonantes 16 en demi-onde successives (n < 10) dans cette partie c terminale afin que l'on puisse considérer que toute l'énergie résiduelle est effectivement rayonnée, fente 16 après fente 16. Ce processus conduit à une atténuation rapide, proche de ( 1 2 ) n

Figure imgb0002
, de la puissance transmise en interne au guide et au rayonnement efficace de toute l'énergie résiduelle, sans pertes additionnelles (transitions, connecteurs, câble) et dans la direction de propagation commune aux trois tronçons a, b et c. L'extrémité du guide ne transportant plus d'énergie radiofréquence pourra être laissée ouverte, simplement protégée par un capuchon diélectrique assurant l'étanchéité mécanique.In the directional antenna formed by the section c, starting from this already important level of radiation obtained progressively along the second section b, the objective is to make the best use of all the residual energy in order to radiate rapidly and efficiently the entire residual energy at the end of the guide. A half-wave resonant slot in the air, properly powered, has a high radiation efficiency and has the property of radiating virtually all the energy that is communicated to it. Therefore, if we have in this third section c a resonant slot 16 half wave at the working frequency, it radiates on both sides of its plane most of the incident energy. This energy is radiated for half in the half-center of the waveguide (it is reinjected into it) and radiated halfway outwards. In practice, there remains therefore in the waveguide, in the section c, after a first half-wave resonant slot 16, about half of the initial power. There is therefore a reduced number n of successive half-wave resonant slots 16 (n <10) in this c-terminal part so that it can be considered that all the residual energy is effectively radiated, slot 16 after slot 16. This process leads to a rapid attenuation, close to ( 1 2 ) not
Figure imgb0002
, the power transmitted internally to the guide and the effective radiation of all the residual energy, without additional losses (transitions, connectors, cable) and in the direction of propagation common to the three sections a, b and c. The end of the guide no longer carrying radiofrequency energy can be left open, simply protected by a dielectric cap ensuring the mechanical seal.

Le pas entre deux fentes 12, 14 et 16 consécutives est fonction de la section du guide d'ondes et de la longueur d'onde des signaux utilisés. Il est calculé de manière à obtenir un signal d'amplitude constante tout le long du dispositif de communication à proximité de la structure rayonnante continue, en particulier au-dessus d'une fente, ou entre deux fentes. Il est obtenu en prenant en compte le déphasage de signaux alimentant les fentes du guide d'ondes, à partir de la longueur d'onde guidée - elle-même fonction des dimensions géométriques internes du guide et de son mode de propagation - ainsi que du déphasage subi dans l'air, hors du guide d'ondes, par l'ensemble des rayonnements des fentes contribuant au champ total reçu en tous points de réception à proximité du guide. Cette distance inter-fentes est constante et identique le long des tronçons a, b et c afin d'assurer un niveau croissant continûment de signal au-dessus du guide d'ondes.The pitch between two consecutive slots 12, 14 and 16 is a function of the section of the waveguide and the wavelength of the signals used. It is calculated so as to obtain a signal of constant amplitude all along the communication device in the vicinity of the continuous radiating structure, in particular above a slot, or between two slots. It is obtained by taking into account the phase shift of the signals feeding the slots of the waveguide, from the guided wavelength - itself a function of the internal geometrical dimensions of the guide and its propagation mode - as well as the phase shift experienced in the air, outside of the waveguide, by all the radiation of the slots contributing to the total field received at all points of reception near the guide. This inter-slot distance is constant and identical along sections a, b and c to ensure a continuously increasing level of signal above the waveguide.

Le guide d'ondes rayonnant est installé le long de la voie de transport sous la forme de tronçons unitaires raccordés électriquement et mécaniquement entre eux. Afin d'assurer le transport et le montage/démontage aisé de ces tronçons, la longueur de chacun de ces tronçons unitaire est limitée en pratique à une valeur n'excédant pas 20 m. Un tronçon terminal est formé des tronçons b et c représentés en figure 2. L'antenne directive formée par le troisième tronçon c présente une longueur courte, limitée à moins de dix fentes, de longueur nettement inférieure à un mètre. Le deuxième tronçon de transition b pourra avantageusement avoir une dimension au plus égale à la longueur d'un tronçon unitaire moins la longueur du tronçon c. Le premier tronçon rayonnant continu a, très long, est réalisé par tous les autres tronçons unitaires situés en amont mais peut en variante, faire partie du tronçon terminal, en fonction de la dynamique de variation des signaux tolérable par les équipements radio et donc de la distance de transition effective nécessaire à assurer les tronçons b et c.The radiating waveguide is installed along the transport path in the form of unitary sections electrically and mechanically connected to each other. In order to ensure the transport and easy assembly / disassembly of these sections, the length of each of these unitary sections is limited in practice to a value not exceeding 20 m. A terminal section is formed of sections b and c represented in figure 2 . The directional antenna formed by the third section c has a short length, limited to less than ten slots, of length well below one meter. The second transition section b may advantageously have a dimension at most equal to the length of a unit section less the length of the section c. The first continuous radiating section is very long and is produced by all the other unitary sections situated upstream, but may alternatively be part of the terminal section, depending on the signal variation dynamics tolerable by the radio equipment and therefore the effective transition distance necessary to ensure sections b and c.

Au-delà de l'antenne directive formée par le troisième tronçon c, la couverture radioélectrique aval s'effectue en propagation libre, c'est-à-dire avec des caractéristiques fonction de l'environnement radioélectrique propres à l'environnement de propagation de station, d'atelier, de garage ou, de voie dans le cas de la solution mixte d'exploitation par structure rayonnante continue et antennes discrètes.Beyond the directional antenna formed by the third section c, the downstream radio coverage is carried out in free propagation, that is to say with characteristics depending on the radio environment specific to the propagation environment. station, workshop, garage or, track in the case of mixed solution operating by continuous radiating structure and discrete antennas.

L'explication ci-dessus a été donnée en considérant un train évoluant au-dessus du dispositif de communication et quittant cette zone de couverture radioélectrique. Le tronçon terminal rayonnant formé des deuxième et troisième tronçons b et c assure la montée en puissance progressive des signaux reçus par le train. Le problème est réversible lorsqu'un train approche depuis une zone non-équipée par le dispositif de communication selon l'invention vers une zone équipée, en assurant une décroissance continue de la puissance des signaux reçus depuis cette fois l'antenne directive (troisième tronçon c) jusqu'à la structure rayonnante continue (premier tronçon a). Cette disposition réversible est particulièrement utile dans le scénario où deux tronçons de voie à couverture radioélectrique complexe requièrent l'emploi d'un guide d'ondes rayonnant et encadrent un environnement plus simple dont la couverture radioélectrique est assurée par une ou des antenne(s) discrète(s) consécutives. En extrémité de première zone à guide d'ondes équipée d'un tronçon terminal de transition conforme à l'invention, la puissance des signaux transmis augmentera progressivement, en accord avec la dynamique tolérable par les équipements radio utilisés. Les conditions de propagation libre s'appliquent ensuite dans l'environnement de propagation libre intermédiaire pour lequel un maximum d'énergie radiofréquence a cependant été communiqué par le tronçon terminal de transition à pertes très réduites, permettant ainsi d'assurer une propagation libre efficace. A proximité de la seconde zone d'installation du guide d'ondes à nouveau couverte par un guide d'ondes rayonnant selon l'invention, le signal augmentera du fait de la proximité de la source de rayonnement puis, passé le début du troisième tronçon c et le long du deuxième tronçon b, le signal décroîtra progressivement sur quelques mètres, jusqu'à revenir au niveau de base reçu tout le long du premier tronçon a.The above explanation was given by considering a train moving above the communication device and leaving this radio coverage area. The radiating terminal section formed of the second and third sections b and c ensures the gradual increase in power of the signals received by the train. The problem is reversible when a train approaches from a non-equipped area by the communication device according to the invention to an equipped area, ensuring a continuous decay of the power of the signals received since this time the directional antenna (third section c) to the continuous radiating structure (first section a). This reversible arrangement is particularly useful in the scenario where two sections of complex radio coverage track require the use of a radiating waveguide and frame a simpler environment whose radio coverage is provided by one or more antenna (s) discrete (s) consecutive. At the end of the first waveguide zone equipped with a transition terminal section in accordance with the invention, the power of the transmitted signals will gradually increase, in accordance with the dynamic tolerable by the radio equipment used. The free propagation conditions then apply in the intermediate free propagation environment for which a maximum of radiofrequency energy has however been communicated by the very low loss transition terminal section, thus making it possible to ensure efficient free propagation. Near the second installation zone of the waveguide again covered by a radiating waveguide according to the invention, the signal will increase because of the proximity of the radiation source and then past the beginning of the third section. c and along the second section b, the signal will gradually decrease over a few meters, until it returns to the basic level received all along the first section a.

Dans ce premier mode de réalisation, les premier, deuxième et troisième tronçons du dispositif de communication sont adjacents et consécutifs, le second tronçon b permettant de passer progressivement d'un mode de fonctionnement continu de faible rayonnement à un mode de fonctionnement local de rayonnement intense.
L'invention permet donc de réaliser très simplement et économiquement un dispositif de communication radioélectrique qui assure deux types de communication dans deux environnements de propagation différents.
Ce dispositif autorise une montée continue en puissance, sur une longueur ajustable, pouvant atteindre plusieurs mètres et permettant aux équipements radio embarqués sur le train de « suivre » cette montée en puissance progressivement, sans risque de perte de synchronisation des signaux.
In this first embodiment, the first, second and third sections of the communication device are adjacent and consecutive, the second section b making it possible to progressively change from a continuous low-radiation mode of operation to a local mode of intense radiation operation. .
The invention thus makes it possible to realize very simply and economically a radio communication device which provides two types of communication in two different propagation environments.
This device allows a continuous rise in power, over an adjustable length, up to several meters and allowing the radio equipment on board the train to "follow" this rise in power gradually, without risk of loss of signal synchronization.

En variante, il est possible de renforcer localement le rayonnement en pratiquant localement des fentes de taille plus importantes sur quelques mètres, par exemple dans le cas où le guide d'ondes est physiquement et localement éloigné de l'antenne du train pour contourner un appareil de voie. L'énergie supplémentaire rayonnée localement sur ces quelques mètres permet de pallier l'atténuation supplémentaire liée à cet écart de distance accru localement. Une telle variante est représentée par la figure 3.Alternatively, it is possible to reinforce the radiation locally by practicing larger slots size over a few meters, for example in the case where the waveguide is physically and locally remote from the antenna of the train to bypass a device of way. The additional energy radiated locally over these few meters makes it possible to mitigate the additional attenuation related to this distance gap increased locally. Such a variant is represented by the figure 3 .

Sur une région de la structure rayonnante 20 où l'on souhaite accroître localement le rayonnement du signal, il est pratiqué entre deux tronçons rayonnants continus a une première série de fentes 14 (zone rayonnante intermédiaire b) dont la grande dimension croît depuis une longueur très inférieure à la longueur d'onde du signal propagé dans le guide à une longueur inférieure à la demi-longueur d'onde. Il est ensuite pratiqué une deuxième série de fentes 14' (zone rayonnante intermédiaire b') dont la grande dimension décroît depuis une longueur inférieure à la demi-longueur d'onde à une longueur très inférieure à la longueur d'onde du signal propagé dans le guide. Le profil d'évolution de la longueur des grands axes des fentes dans ces tronçons intermédiaires b et b' est déterminé théoriquement comme cela a été décrit précédemment pour le deuxième tronçon b. La série de fentes du tronçon b, suivie de la série de fentes du tronçon b' crée localement un tronçon c' rayonnant plus intense. Afin d'obtenir le renforcement du signal nécessaire sur la longueur souhaitée, le tronçon c' peut être développé sur la longueur souhaitée en ajoutant des fentes dont les grandes dimensions sont toutes égales à celle de la dernière fente 14 du tronçon b ou à la première fente 14' du tronçon b'. Cette dimension, limite supérieure du grand axe des fentes des tronçons b, c', b' est calculée à partir de l'expression précédente de la polarisabilité magnétique α m de la fente afin d'obtenir la puissance rayonnée nécessaire à compenser l'atténuation supplémentaire liée à l'écart de distance accru localement puis, à autoriser un retour à un fonctionnement de type a après cette zone de renforcement local c' de signal, via le tronçon b'. Bien entendu, l'énergie du signal propagé après ce type de zone est atténuée par rapport à une structure à guide d'ondes ne comprenant pas les tronçons b, c' et b', ce qui sous-entend qu'il faut, à longueur égale de guide d'ondes, prévoir des répéteurs en plus grand nombre.On a region of the radiating structure 20 where it is desired to locally increase the signal radiation, it is practiced between two radiating sections continuous to a first series of slots 14 (intermediate radiating zone b) whose large dimension grows from a very long length. less than the wavelength of the signal propagated in the guide to a length less than half the wavelength. A second series of slots 14 '(intermediate radiating zone b') is then produced, the large dimension of which decreases from a length less than half the wavelength to a length much shorter than the wavelength of the signal propagated in guide. The evolution profile of the length of the major axes of the slots in these intermediate sections b and b 'is theoretically determined as previously described for the second section b. The series of slots of the section b, followed by the series of slots of the section b 'locally creates a more intense section c' radiating. In order to obtain the reinforcement of the necessary signal over the desired length, the section c 'can be developed to the desired length by adding slots whose large dimensions are all equal to that of the last slot 14 of the section b or to the first slot 14 'of the section b'. This dimension, the upper limit of the major axis of the slots of the sections b, c ', b' is calculated from the previous expression of the magnetic polarizability α m of the slot in order to obtain the radiated power necessary to compensate the attenuation further related to the distance gap increased locally then allow a return to a type of operation after this local enhancement zone c 'signal, via the section b'. Of course, the energy of the signal propagated after this type of zone is attenuated with respect to a waveguide structure which does not include the sections b, c 'and b', which implies that it is necessary, with equal length of waveguide, to provide repeaters in greater numbers.

Le fonctionnement d'un tel dispositif a été décrit en considérant le cas de figure d'une communication sol vers trains, où l'énergie radiofréquence est communiquée à la structure rayonnante à destination des trains. Le principe général de réversibilité émission-réception des antennes s'applique à l'invention, c'est-à-dire dans le cas d'une communication trains vers sol pour laquelle de l'énergie radiofréquence est émise par l'antenne train, captée par la structure rayonnante et propagée en interne à cette structure jusqu'à un équipement de réception distant.The operation of such a device has been described by considering the case of a ground-to-train communication, where the radiofrequency energy is communicated to the radiating structure for trains. The general principle of reversibility transmitting-receiving antennas applies to the invention, that is to say in the case of a train-to-ground communication for which radiofrequency energy is emitted by the train antenna, captured by the radiating structure and propagated internally to this structure to a remote receiving equipment.

Claims (9)

Dispositif de communication radioélectrique (10, 20) comportant une structure continue rayonnante (a) à guide d'ondes percé d'une première série de fentes (12) formant un premier tronçon de structure rayonnante, à l'intérieur de laquelle un signal hyperfréquence est injecté, une antenne directive (c) et un moyen de transition (b) d'énergie entre la structure continue rayonnante (a) et l'antenne directive (c) caractérisée en ce que ledit moyen de transition (b) et ladite antenne directive (c) sont constitués respectivement d'un deuxième et d'un troisième tronçon de structure rayonnante respectivement percés d'une deuxième et troisième séries de fentes (14, 16), lesdits premier, deuxième et troisième tronçons de structure rayonnante (a, b, c) étant adjacents et consécutifs.Radio communication device (10, 20) comprising a continuous radiating structure (a) with a waveguide pierced by a first series of slots (12) forming a first section of radiating structure, inside which a microwave signal is injected, a directional antenna (c) and a transition means (b) of energy between the continuous radiating structure (a) and the directional antenna (c) characterized in that said transition means (b) and said antenna (c) are constituted respectively of a second and a third section of radiating structure respectively drilled with a second and third series of slots (14, 16), said first, second and third sections of radiating structure (a, b, c) being adjacent and consecutive. Dispositif de communication radioélectrique (10, 20) selon la revendication 1 caractérisé en ce que la grande dimension de la première série de fentes (12) est très inférieure à la longueur d'onde du signal hyperfréquence se propageant dans la structure rayonnante.Radio communication device (10, 20) according to claim 1 characterized in that the large dimension of the first series of slots (12) is much smaller than the wavelength of the microwave signal propagating in the radiating structure. Dispositif de communication radioélectrique (10, 20) selon la revendication 1 caractérisé en ce que la grande dimension de la troisième série de fentes (16) est identique sur la longueur du troisième tronçon (c) et proche mais inférieure à la demi longueur d'onde du signal propagé dans la structure rayonnante.Radio communication device (10, 20) according to claim 1 characterized in that the large dimension of the third series of slots (16) is identical over the length of the third section (c) and close to but less than half the length of signal wave propagated in the radiating structure. Dispositif de communication radioélectrique (10, 20) selon l'une quelconque des revendications précédentes caractérisé en ce que la grande dimension de la deuxième série de fentes (14) s'étend progressivement sur la longueur du deuxième tronçon (b), depuis la grande dimension de la première série de fentes (12) jusqu'à une dimension qui reste inférieure à celle de la troisième série de fentes (16).Radio communication device (10, 20) according to any one of the preceding claims, characterized in that the large dimension of the second series of slots (14) progressively extends over the length of the second section (b), from the large dimension of the first series of slots (12) to a dimension which remains smaller than that of the third series of slots (16). Dispositif de communication radioélectrique (10, 20) selon l'une quelconque des revendications précédentes caractérisé en ce que le pas entre deux fentes (12, 14, 16) consécutives est constant et identique le long des trois tronçons de structure rayonnante (a, b, c).Radio communication device (10, 20) according to one of the preceding claims, characterized in that the pitch between two consecutive slots (12, 14, 16) is constant and identical along the three sections of radiating structure (a, b, c). Dispositif de communication radioélectrique (10, 20) selon l'une quelconque des revendications précédentes caractérisé en ce que les fentes (12, 14, 16) sont disposées transversalement à la direction longitudinale de la structure rayonnante.Radio communication device (10, 20) according to any one of the preceding claims, characterized in that the slots (12, 14, 16) are arranged transversely to the longitudinal direction of the radiating structure. Dispositif de communication radioélectrique (10, 20) selon l'une quelconque des revendications précédentes caractérisée en ce que la longueur du deuxième tronçon (b) est comprise entre 1 et 20 mètres.Radio communication device (10, 20) according to any one of the preceding claims, characterized in that the length of the second section (b) is between 1 and 20 meters. Dispositif de communication radioélectrique (10, 20) selon l'une quelconque des revendications précédentes caractérisée en ce que la troisième série de fentes (16) comprend jusque dix fentes.Radio communication device (10, 20) according to one of the preceding claims, characterized in that the third series of slots (16) comprises up to ten slots. Dispositif de communication radioélectrique (10, 20) selon l'une quelconque des revendications précédentes caractérisée en ce que la troisième série de fentes (16) est formée par la jonction de la deuxième série de fentes (14) avec la même série de fentes (14') inversée en ce que la grande dimension diminue progressivement de la demi-longueur d'onde du signal propagé à une dimension très inférieure à la longueur d'onde du signal propagé.Radio communication device (10, 20) according to one of the preceding claims, characterized in that the third series of slots (16) is formed by the junction of the second series of slots (14) with the same series of slots ( 14 ') in that the large dimension decreases progressively from the half-wavelength of the propagated signal to a dimension much smaller than the wavelength of the propagated signal.
EP08105428A 2007-09-25 2008-09-25 Radio communication device in a guided transport means Withdrawn EP2042402A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0706722A FR2921505B1 (en) 2007-09-25 2007-09-25 RADIO COMMUNICATION DEVICE

Publications (1)

Publication Number Publication Date
EP2042402A1 true EP2042402A1 (en) 2009-04-01

Family

ID=39543338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08105428A Withdrawn EP2042402A1 (en) 2007-09-25 2008-09-25 Radio communication device in a guided transport means

Country Status (4)

Country Link
EP (1) EP2042402A1 (en)
CN (1) CN101397019B (en)
FR (1) FR2921505B1 (en)
SG (1) SG151222A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701636A (en) * 2015-03-13 2015-06-10 西安电子科技大学 Miniaturized Yagi-Uda antenna array for mobile communication
US10251882B2 (en) 2013-09-12 2019-04-09 Alios Biopharma, Inc. Aza-pyridone compounds and uses thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664311B (en) * 2012-05-16 2015-04-29 中电科微波通信(上海)有限公司 Crack wave guide antenna
GB201411342D0 (en) * 2014-06-26 2014-08-13 Rolls Royce Plc Wireless communication system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981949A (en) * 1956-09-04 1961-04-25 Hughes Aircraft Co Flush-mounted plural waveguide slot antenna
FR1531311A (en) * 1961-05-16 1968-07-05 Tokyo Shibaura Electric Co Wireless induction communication system
US4313120A (en) * 1979-07-30 1982-01-26 Ford Aerospace & Communications Corp. Non-dissipative load termination for travelling wave array antenna
US4518967A (en) * 1982-03-05 1985-05-21 Ford Aerospace & Communications Corporation Tapered-width leaky-waveguide antenna
FR2608119A1 (en) 1986-12-12 1988-06-17 Alsthom Device for wide passband transmission of information and/or instructions between a rail vehicle and a traffic control station
EP0274055A2 (en) * 1986-12-12 1988-07-13 Gec Alsthom Sa Large passband information and/or instruction transmission device between a mobile unit and a supervision station
EP0529581A1 (en) * 1991-08-30 1993-03-03 Gec Alsthom Sa Locating system by ultrahigh frequency electromagnetic waves

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981949A (en) * 1956-09-04 1961-04-25 Hughes Aircraft Co Flush-mounted plural waveguide slot antenna
FR1531311A (en) * 1961-05-16 1968-07-05 Tokyo Shibaura Electric Co Wireless induction communication system
US4313120A (en) * 1979-07-30 1982-01-26 Ford Aerospace & Communications Corp. Non-dissipative load termination for travelling wave array antenna
US4518967A (en) * 1982-03-05 1985-05-21 Ford Aerospace & Communications Corporation Tapered-width leaky-waveguide antenna
FR2608119A1 (en) 1986-12-12 1988-06-17 Alsthom Device for wide passband transmission of information and/or instructions between a rail vehicle and a traffic control station
EP0274055A2 (en) * 1986-12-12 1988-07-13 Gec Alsthom Sa Large passband information and/or instruction transmission device between a mobile unit and a supervision station
EP0529581A1 (en) * 1991-08-30 1993-03-03 Gec Alsthom Sa Locating system by ultrahigh frequency electromagnetic waves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. A. BETHE: "Theory of diffraction by small holes", PHYS. REV., vol. 66, 1944, pages 1263

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10251882B2 (en) 2013-09-12 2019-04-09 Alios Biopharma, Inc. Aza-pyridone compounds and uses thereof
US10702523B2 (en) 2013-09-12 2020-07-07 Janssen Biopharma, Inc. AZA-pyridone compounds and uses thereof
US10980805B2 (en) 2013-09-12 2021-04-20 Janssen Biopharma, Inc. Aza-pyridone compounds and uses thereof
CN104701636A (en) * 2015-03-13 2015-06-10 西安电子科技大学 Miniaturized Yagi-Uda antenna array for mobile communication

Also Published As

Publication number Publication date
CN101397019A (en) 2009-04-01
FR2921505B1 (en) 2014-01-31
FR2921505A1 (en) 2009-03-27
CN101397019B (en) 2013-01-09
SG151222A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP1998403B1 (en) Waveguide antenna embedded on a railway vehicle
CA2991426C (en) Apparatus and methods for transmitting wireless signals
KR102008137B1 (en) Guided wave transmission device with non-basic mode propagation and method of using same
CA3040693A1 (en) Apparatus and methods for launching guided waves via circuits
CA3040671A1 (en) Apparatus and methods for launching guided waves via an antenna
CA2991738A1 (en) Method and apparatus for launching a hybrid wave mode that mitigates interference
CA2991483A1 (en) Method and apparatus for launching a wave mode that mitigates interference
EP3298651B1 (en) Surface wave antenna system
EP2042402A1 (en) Radio communication device in a guided transport means
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP2422403B9 (en) Multiple wide band antenna with low profile
CA2812722A1 (en) Large-area broadband surface-wave antenna
WO2009106776A1 (en) Device for point-to-point wireless and high rate transmission of data between a parked vehicle and a fixed infrastructure
EP2006954B1 (en) Communication device for a railway vehicle
EP0467818B1 (en) Transition element between electromagnetic waveguides, especially between a circular waveguide and a coaxial waveguide
EP2365584A1 (en) Antenna device with a planar antenna and a wide band reflector and method of realizing of the reflector
FR2814614A1 (en) DIVERGENT DOME LENS FOR MICROWAVE WAVES AND ANTENNA COMPRISING SUCH A LENS
EP2950457B1 (en) Data communication system, railway system comprising such a communication system and related communication method
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
FR3083923A1 (en) Adjustable resonance antenna
EP3155689B1 (en) Flat antenna for satellite communication
EP2772985A1 (en) System for attaching a planar radome to the concave reflector of an antenna
FR2958458A1 (en) Antenna i.e. meandered planar inverted F-type reversible antenna, for use in e.g. portable telephone, has radiating plane including slot whose dimensions are different from than that of other plane to operate in one of frequency ranges
EP2092592B1 (en) Orthogonal-mode junction coupler with an ultrabroad operating bandwidth
Dudley et al. 1.6 Gb/s hybrid wireless-optical leaky feeder system for tunnel applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091001

17Q First examination report despatched

Effective date: 20091028

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES

Owner name: ALSTOM TRANSPORT SA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TRANSPORT TECHNOLOGIES

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190605

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191016