EP1998403B1 - Waveguide antenna embedded on a railway vehicle - Google Patents
Waveguide antenna embedded on a railway vehicle Download PDFInfo
- Publication number
- EP1998403B1 EP1998403B1 EP08104087A EP08104087A EP1998403B1 EP 1998403 B1 EP1998403 B1 EP 1998403B1 EP 08104087 A EP08104087 A EP 08104087A EP 08104087 A EP08104087 A EP 08104087A EP 1998403 B1 EP1998403 B1 EP 1998403B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- communication device
- antenna
- vehicle
- slots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims abstract description 55
- 230000000644 propagated effect Effects 0.000 claims abstract description 14
- 230000005855 radiation Effects 0.000 claims description 27
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/3208—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
- H01Q1/3225—Cooperation with the rails or the road
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/22—Longitudinal slot in boundary wall of waveguide or transmission line
Definitions
- the invention relates to a waveguide directional transmission / reception device in general, and more particularly to a bidirectional and symmetrical waveguide antenna.
- a transmitting / receiving antenna having a bi-directional radiation pattern makes it possible to communicate with transmitters / receivers in two preferred directions of space.
- Such an antenna finds its application for example along a road transport axis, railway, etc.
- the radio coverage is ensured by a network of transmitters disposed on the ground from time to time and raised by the use of pylons. A mobile moves between these transmitters on the ground.
- this mobile During its movement along the transport axis, this mobile is in communication with the transmitter which is immediately upstream. By moving away from this upstream transmitter, the signal received from this transmitter gradually decreases until it becomes unusable. However, simultaneously, the signal received from the downstream transmitter increases since its distance to the mobile decreases. A transfer of communication must be established so that the mobile transfers its communication, become inoperative, from the downstream transmitter to the upstream transmitter. This step is called a "handover" in a cellular communication network.
- the receiver In order to ensure this communication with the upstream station and at the same time this monitoring of the reception level of the signal emitted by the downstream transmitter, the receiver must use two antennas pointing respectively towards the front and the rear pointing above the antenna. horizon towards antennas on pylons.
- the fixed communication device is disposed on the ground or in a tunnel vault along this path.
- the fixed communication device may be omnidirectional, that is, which radiates or receives an electromagnetic signal in all directions of space.
- the communication device may also be directional, i.e., the signals have a high gain in one direction of space: the radiation pattern shows a given main lobe.
- a directional antenna having the same radiation pattern greatly optimizes communication with the latter device.
- the ground communication device In “open" propagation medium, the ground communication device will for example consist of directional transmitters / receivers. In the “closed" propagation medium, for example in a metropolitan network, the ground communication device will for example be a waveguide.
- a ground waveguide device must operate at very high frequencies, higher than gigahertz (GHz), in order to lead to a mechanical construction of space compatible with its use at the track.
- GHz gigahertz
- the use of these microwaves makes it possible to ensure all the envisaged ground-train communications.
- These high frequencies correspond to wavelengths in the air of the order of 5 to 20 cm (1.5 GHz to 6 GHz and beyond).
- the waveguide at the track is often far in terms of number of wavelengths of this antenna embedded on the train. This leads to far-field electromagnetic radiation for which radiation patterns can be calculated theoretically and measured experimentally.
- the transmit / receive antenna must be able to communicate with the communication device at the lane in both directions.
- a coupling between transmission lines favorably oriented relative to each other is clearly more important than coupling in opposite orientation. To receive a maximum signal and according to the orientation of the train relative to the track, it is therefore necessary to reverse by a manual switch the relative terminal positions of the generator / receiver and loads on the radiating cable embedded on the train.
- a disadvantage of this device is the length of the propagation lines necessary for this type of coupling, ie a train antenna a few meters long. Another disadvantage is the need to switch the orientation of the transmission lines according to the direction of traffic of the vehicles to increase the coupling and improve the communication between the vehicle and the device to the track.
- the device of the present invention relates to a receiving antenna and / or directional transmission on board a vehicle that can communicate reliably and stably with a fixed directional communication device disposed to the track, this antenna being simple design, compact and independent of the direction of traffic of the vehicle.
- a communication device is defined by the features of claim 1.
- each slot of the antenna radiates a signal having two main lobes in two directions symmetrical with respect to a plane perpendicular to the plane of this slot.
- the waveguide is easy to manufacture, simple to use and reliable, and the dual directivity makes it possible to overcome the direction of traffic of the vehicle without special intervention.
- the propagation environment of the ground-train communication being characterized by intense reflections on the various surrounding obstacles (trains, walls, etc.), a directional antenna, focusing its radiation towards the waveguide at the track, limits the the impact of these multiple reflections on the quality of the link and thus makes it possible to increase the distance "antenna embedded on the train waveguide to the track" exploitable in practice.
- the amplitude of the signals is remarkably constant and does not require any particular "smoothing" of the signals.
- a particular focus, symmetrical in two particular orientations of the space, and only in these directions corresponding to the maximum radiation of the waveguide to the track is particularly favorable in order to optimize the ground-train transmission balances.
- the figure 1 is a schematic view of the communication device of a railway network, for example a metropolitan line.
- a directional communication device 1 allowing the control station of the line to communicate with the vehicles A, B traveling on the tracks 2, 3 (and vice versa, allowing the vehicle to communicate with the control station) is arranged for example between the two channels 2, 3.
- This information can be for example automatic control information of vehicles, information concerning the signaling of the line or video or audio information from the vehicle to the control station. They are contained in microwave signals symbolized by the full arrows S1 and S2.
- the directional communication device may be disposed on each side of the track.
- the microwave signals are injected into the communication device 1, consisting of at least one waveguide.
- the waveguide is in the form of a hollow tube of rectangular section with four faces. It is arranged on the ground or tunnel vault on a non-emissive side.
- Each waveguide has two vertical and opposite emitting faces 1a and 1b, each face being pierced with a network of slots perpendicular to the axis of the guide, arranged on the large faces of the guide, the large dimension of which is much greater. small as the wavelength of the signals propagating in the waveguide. This characteristic makes it possible to take at each slot only a very small part of the energy of the propagated signal. Consequently, since the signal is only slightly attenuated by the emissions towards the outside of the guide through the slots, the waveguide at the track can have a length of several hundred meters.
- the communication device is bi-directional in the sense that the slots of the two faces can also receive the microwave signals from the antennas 4 mounted on board vehicles A, B.
- the figure 2 shows the radiation pattern measured in azimuth of the waveguide 1 of the communication device, placed on the ground on a small non-emissive face.
- the double grating waveguide 1 has a far-field directional radiation pattern which has two main lobes L 1 and L 2 symmetrical about the axis of the guide (0 ° axis). The orientation of each lobe is at an angle alpha with the waveguide axis of about 30 °.
- the transmitting / receiving antenna on board the vehicle must, in order to communicate with such a waveguide, also be directional. It must thus have a radiation pattern having a directivity allowing the best possible transfer of energy between the waveguide to the track and this antenna.
- the radiation pattern of the antenna must have at least one main lobe of radiation whose orientation is identical to that of one of the main lobes of the waveguide radiation pattern.
- the antenna on the vehicle must also have a starting angle of 30 ° in order to to receive and transmit signals efficiently in this privileged direction of space.
- each emitting slot must radiate symmetrically with respect to a plane passing in its center and perpendicular to the longitudinal axis of the guide.
- each slot must have a lobe whose orientation is at 30 ° and a lobe whose orientation is at 150 ° (180 ° minus 30 °).
- An antenna comprising these two characteristics is the transmitting and / or receiving antenna 4 according to the invention represented by the figure 3 .
- It consists of a waveguide of rectangular section, one of the large faces of length b is pierced by seven slots 5, arranged perpendicularly to the longitudinal axis of the guide.
- the waveguide is closed at one end by a 50 ohm coaxial impedance load 7, and its other end is connected via a coaxial link 6 to a receiver (not shown).
- the large dimension D of the slots 5 is close to the half-wavelength of the microwave signal propagated in the waveguide but lower, so as not to take too much energy from the signal that propagates in the guide.
- the distance E separating the center from two successive slots 5 is close to half a wavelength of the signal propagated in the guide.
- ⁇ g the wavelength of the signal propagated in this guide
- ⁇ c the cutoff wavelength of the waveguide (above which the waveguide no longer propagates energy)
- the cut-off wavelength ⁇ c is equal to twice the large internal transverse dimension of the guide.
- ⁇ vs 20 cm still a low cutoff frequency of 1.5 GHz.
- no signal propagates in the guide one obtains with the preceding formula that ⁇ g tends towards infinity.
- the signals begin to propagate in the guide with low attenuation.
- the wavelength ⁇ g of the signals propagated in the guide calculated from the above formula, will be 22.6 cm.
- the energy communicated at this end propagates from one slot to another with a phase shift proportional to this guided wavelength ⁇ g .
- Part of this energy is radiated outside the guide and is propagated this time in the air with a wavelength ⁇ .
- the combination of the radiation in the air of these slots fed and out of phase by the propagation of the signals in the metal waveguide provides a radiation pattern having the required radiation departure angle, the phase shift of half a length of guided wave ⁇ boy Wut 2 provides the necessary double lobe of radiation and having identical starting angles for 0 ° and 180 ° orientations. This phase shift is physically achieved by a spacing E between two successive slots 5 adjacent to the guided half-wavelength.
- the radiated electric field has a main component oriented along the longitudinal axis of the antenna or the support guide.
- Each slot 5 formed in the waveguide has a small side sufficiently large so that the metal thickness of the waveguide is small vis-à-vis this dimension (if we consider a thickness of the guide metal 1 mm, we will take slits of 3-4 mm short side in order to neglect another waveguide effect introduced by the propagation of signals through a very thin slot, in the thickness of metal ).
- the antenna gain increases with the number of slots that combine the radiation. Under a minimum of five slots the gain is suboptimal but may be sufficient if there is a problem of severe antenna-train congestion. Above ten slots gain still slightly increases but the radiation lobe becomes narrow, concentrates the energy into a thin beam and there is a risk of getting out of the appropriate coverage area in case of vehicle suspension travel too much important (pitch, roll).
- the figure 4 represents the proper diagram of the antenna according to the invention.
- the longitudinal axis of the waveguide of the antenna is the axis at 0 °.
- Two lobes LA and L B appear clearly at about 30 ° and about 150 °, indicating that the wave is emitted with an equivalent gain in these two favored directions.
- the emitting face of the waveguide of the antenna is disposed vertically and is arranged parallel to an emitting face of the fixed continuous communication device arranged along the path.
- the waveguide of the communication device is arranged on a non-emissive face, the emitting faces being arranged vertically.
- the polarization of the radiation from the waveguide to the channel is identical to that of the receiving / transmitting antenna.
- the antenna is thus disposed on the vehicle so that the longitudinal axis of the waveguide of the antenna is parallel to the longitudinal axis of the waveguide at the track so that a lobe of the Antenna radiation and a lobe of the radiation pattern from the waveguide 1 to the channel should have an identical orientation.
- the antenna is mounted either under the vehicle body if the communication device 1 is placed on the ground between the two tracks 2, 3, or on the roof of the vehicle if the communication device 1 is arranged in a tunnel vault between the two channels 2, 3.
- the distance between the receiving and / or transmitting antenna and the communication device 1 is at least four wavelengths of the microwave signal propagated in the air because the radiation of the communication device to the antenna-and vice versa-is in the far field.
- the train antenna can be installed laterally, its waveguide volume integrated in the box, the plane of the slots covered with a radome flush with the surface of the box.
- the antenna is arranged on one side of the vehicle or on both sides of the vehicle. Indeed, when the vehicle arrives at one of the terminals of the one-way line, it moves on the parallel return line either by a wide-radius loop which links the ends of the two lanes, or by making a round-trip on a siding located upstream of the return lane.
- the figure 5 illustrates the first case: the vehicle A is on the return lane 3 in the same configuration as the outbound lane 2, that is to say the head-to-head cabin.
- the arrow on the vehicle symbolizes the path of the vehicle on the track.
- the waveguide 1 disposed at the channel emits the signals along two directions represented by triangles L 1 and L 2 .
- a signal provided by the energy radiated from a few slits of the waveguide 1 only is represented on the figure 5 but physically, this signal exists all along the waveguide 1.
- the antenna 4 mounted on the vehicle has two lobes L A and L B.
- the antenna 4 communicates with the waveguide 1 to the channel because the signal transmitted (or received) by the waveguide 1 in the region of the lobe L 1 has the same orientation as the zone the lobe L B receiving (or transmitting) the antenna 4.
- the antenna 4 communicates with the waveguide 1 to the channel because the signal transmitted (or received) by the guide 1 in the region of the lobe L 2 has the same orientation as the zone of the lobe LA receiving (or transmitting) the antenna 4.
- a single antenna 4 is required on the side of the vehicle closest to the waveguide 1 to the track.
- the figure 6 illustrates the second case: the vehicle A passes from the lane 2 to the return lane 3 via a siding 20. It is therefore in the opposite configuration to that of the forward lane 2, that is to say the head cabin at the tail of the vehicle (in this case, the vehicle usually has a cabin at each end which is not shown here).
- Two antennas must be mounted on both sides of the vehicle, because the antenna 4, mounted on the vehicle so as to be closest to the waveguide 1 to the track when moving the vehicle on the outbound lane 2, is then on the furthest side of the waveguide 1 to the lane when the vehicle moves on the return lane 3 by making a return trip on the siding 20.
Landscapes
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
Description
L'invention concerne un dispositif d'émission / réception directionnel à guide d'ondes en général, et plus particulièrement une antenne à guide d'ondes bidirectionnelle et symétrique.The invention relates to a waveguide directional transmission / reception device in general, and more particularly to a bidirectional and symmetrical waveguide antenna.
Une antenne d'émission / réception présentant un diagramme de rayonnement bi-directionnel permet de communiquer avec des émetteurs / récepteurs dans deux directions privilégiées de l'espace.A transmitting / receiving antenna having a bi-directional radiation pattern makes it possible to communicate with transmitters / receivers in two preferred directions of space.
Une telle antenne trouve par exemple son application le long d'un axe de transport routier, ferroviaire, etc. Classiquement, la couverture radioélectrique est assurée par un réseau d'émetteurs disposés au sol de loin en loin et surélevés par l'emploi de pylônes. Un mobile se déplace entre ces émetteurs au sol.Such an antenna finds its application for example along a road transport axis, railway, etc. Conventionally, the radio coverage is ensured by a network of transmitters disposed on the ground from time to time and raised by the use of pylons. A mobile moves between these transmitters on the ground.
Lors de son déplacement le long de l'axe de transport, ce mobile est en communication avec l'émetteur qui se trouve immédiatement en amont. En s'éloignant de cet émetteur amont, le signal reçu depuis cet émetteur diminue progressivement jusqu'à devenir inexploitable. Cependant, simultanément, le signal reçu en provenance de l'émetteur aval augmente puisque sa distance au mobile décroît. Un transfert de communication doit s'établir afin que le mobile transfère sa communication, devenue inopérante, depuis l'émetteur aval vers l'émetteur amont. Cette étape s'appelle un « handover » dans un réseau cellulaire de communication.During its movement along the transport axis, this mobile is in communication with the transmitter which is immediately upstream. By moving away from this upstream transmitter, the signal received from this transmitter gradually decreases until it becomes unusable. However, simultaneously, the signal received from the downstream transmitter increases since its distance to the mobile decreases. A transfer of communication must be established so that the mobile transfers its communication, become inoperative, from the downstream transmitter to the upstream transmitter. This step is called a "handover" in a cellular communication network.
Afin d'assurer cette communication avec la station amont et, simultanément cette surveillance du niveau de réception du signal émis par l'émetteur aval, le récepteur doit utiliser deux antennes pointées respectivement vers l'avant et l'arrière pointant au-dessus de l'horizon en direction des antennes sur pylônes.In order to ensure this communication with the upstream station and at the same time this monitoring of the reception level of the signal emitted by the downstream transmitter, the receiver must use two antennas pointing respectively towards the front and the rear pointing above the antenna. horizon towards antennas on pylons.
Dans le cas d'un système de communication ferroviaire, le dispositif de communication fixe est disposé au sol ou en voûte de tunnel le long de cette voie. Le dispositif de communication fixe peut être omnidirectionnel, c'est-à-dire qui rayonne ou reçoit un signal électromagnétique dans toutes les directions de l'espace. Le dispositif de communication peut être également directionnel, c'est-à-dire que les signaux ont un gain élevé dans une direction de l'espace : le diagramme de rayonnement montre un lobe principal d'orientation donnée. Une antenne directionnelle possédant le même diagramme de rayonnement optimise fortement la communication avec ce dernier dispositif.In the case of a rail communication system, the fixed communication device is disposed on the ground or in a tunnel vault along this path. The fixed communication device may be omnidirectional, that is, which radiates or receives an electromagnetic signal in all directions of space. The communication device may also be directional, i.e., the signals have a high gain in one direction of space: the radiation pattern shows a given main lobe. A directional antenna having the same radiation pattern greatly optimizes communication with the latter device.
En milieu de propagation « ouvert », le dispositif de communication au sol sera par exemple constitué d'émetteurs / récepteurs directifs. En milieu de propagation « fermé » comme par exemple dans un réseau métropolitain, le dispositif de communication au sol sera par exemple un guide d'ondes.In "open" propagation medium, the ground communication device will for example consist of directional transmitters / receivers. In the "closed" propagation medium, for example in a metropolitan network, the ground communication device will for example be a waveguide.
Un dispositif à guide d'ondes au sol doit fonctionner à des fréquences très élevées, supérieures au gigahertz (GHz), afin de conduire à une réalisation mécanique d'encombrement compatible avec son utilisation à la voie. L'utilisation de ces hyperfréquences permet d'assurer toutes les communications sol-trains envisagées. Ces fréquences élevées correspondent à des longueurs d'ondes dans l'air de l'ordre de 5 à 20 cm (1,5 GHz à 6 GHz et au-delà). De ce fait, le guide d'ondes à la voie s'avère souvent loin -en termes de nombre de longueurs d'ondes- de cette antenne embarquée sur le train. Ceci conduit à un rayonnement électromagnétique de type champ lointain pour lequel des diagrammes de rayonnement peuvent être calculés théoriquement et mesurés expérimentalement.A ground waveguide device must operate at very high frequencies, higher than gigahertz (GHz), in order to lead to a mechanical construction of space compatible with its use at the track. The use of these microwaves makes it possible to ensure all the envisaged ground-train communications. These high frequencies correspond to wavelengths in the air of the order of 5 to 20 cm (1.5 GHz to 6 GHz and beyond). As a result, the waveguide at the track is often far in terms of number of wavelengths of this antenna embedded on the train. This leads to far-field electromagnetic radiation for which radiation patterns can be calculated theoretically and measured experimentally.
Comme le véhicule se déplace dans deux sens opposés le long de l'axe de transport (à 0° et à 180°, en supposant que l'axe de la voie est disposé à 0°), l'antenne d'émission / réception doit pouvoir communiquer avec le dispositif de communication à la voie dans les deux sens.As the vehicle moves in two opposite directions along the transport axis (at 0 ° and 180 °, assuming that the track axis is at 0 °), the transmit / receive antenna must be able to communicate with the communication device at the lane in both directions.
Il est connu du document
Un couplage entre lignes de transmission orientées favorablement l'une par rapport à l'autre s'avère nettement plus important qu'un couplage en orientation opposée. Pour recevoir un signal maximum et selon l'orientation du train par rapport à la voie, il s'avère donc nécessaire d'inverser par un commutateur manuel les positions terminales relatives des générateur / récepteur et charges sur ce câble rayonnant embarqué sur le train.A coupling between transmission lines favorably oriented relative to each other is clearly more important than coupling in opposite orientation. To receive a maximum signal and according to the orientation of the train relative to the track, it is therefore necessary to reverse by a manual switch the relative terminal positions of the generator / receiver and loads on the radiating cable embedded on the train.
Un inconvénient de ce dispositif est la longueur des lignes de propagation nécessaires à ce type de couplage, soit une antenne-train de quelques mètres de long. Un autre inconvénient réside dans la nécessité de commuter l'orientation des lignes de transmission selon le sens de circulation des véhicules pour augmenter le couplage et améliorer la communication entre le véhicule et le dispositif à la voie.A disadvantage of this device is the length of the propagation lines necessary for this type of coupling, ie a train antenna a few meters long. Another disadvantage is the need to switch the orientation of the transmission lines according to the direction of traffic of the vehicles to increase the coupling and improve the communication between the vehicle and the device to the track.
Le dispositif de la présente invention a pour objet une antenne de réception et/ou d'émission directionnelle embarquée à bord d'un véhicule qui puisse communiquer de manière fiable et stable avec un dispositif de communication directionnel fixe disposé à la voie, cette antenne étant de conception simple, peu encombrante et indépendante du sens de circulation du véhicule.The device of the present invention relates to a receiving antenna and / or directional transmission on board a vehicle that can communicate reliably and stably with a fixed directional communication device disposed to the track, this antenna being simple design, compact and independent of the direction of traffic of the vehicle.
Conformément à l'invention, un dispositif de communication est défini par les caractéristiques de la revendication 1.According to the invention, a communication device is defined by the features of
L'antenne de réception et/ou d'émission peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- le nombre de fentes est compris entre cinq et dix,
- la face émissive du guide d'ondes de ladite antenne est verticale et est disposée parallèlement à une face émissive du dispositif de communication fixe disposé le long de la voie,
- l'axe du guide d'ondes de l'antenne est parallèle à l'axe du dispositif de communication fixe,
- l'antenne est distante du dispositif de communication continu fixe d'au moins quatre longueurs d'ondes dudit signal hyperfréquence propagé dans l'air,
- l'antenne est disposée d'un seul côté du véhicule,
- l'antenne est disposée de chaque côté du véhicule,
- l'antenne est recouverte d'un radôme.
- the number of slots is between five and ten,
- the emitting face of the waveguide of said antenna is vertical and is arranged parallel to an emitting face of the fixed communication device arranged along the track,
- the axis of the waveguide of the antenna is parallel to the axis of the fixed communication device,
- the antenna is distant from the fixed continuous communication device of at least four wavelengths of said microwave signal propagated in the air,
- the antenna is on one side of the vehicle,
- the antenna is arranged on each side of the vehicle,
- the antenna is covered with a radome.
Grâce à l'invention, chaque fente de l'antenne rayonne un signal présentant deux lobes principaux dans deux directions symétriques par rapport à un plan perpendiculaire au plan de cette fente. Le guide d'ondes est facile à fabriquer, simple à utiliser et fiable, et la double directivité permet de s'affranchir du sens de circulation du véhicule sans intervention particulière. L'environnement de propagation de la communication sol-trains étant caractérisé par des réflexions intenses sur les différents obstacles environnants (trains, parois...), une antenne directive, focalisant son rayonnement vers le guide d'ondes à la voie, limite l'impact de ces réflexions multiples sur la qualité de la liaison et permet ainsi d'augmenter la distance « antenne embarquée sur le train - guide d'ondes à la voie » exploitable en pratique.Thanks to the invention, each slot of the antenna radiates a signal having two main lobes in two directions symmetrical with respect to a plane perpendicular to the plane of this slot. The waveguide is easy to manufacture, simple to use and reliable, and the dual directivity makes it possible to overcome the direction of traffic of the vehicle without special intervention. The propagation environment of the ground-train communication being characterized by intense reflections on the various surrounding obstacles (trains, walls, etc.), a directional antenna, focusing its radiation towards the waveguide at the track, limits the the impact of these multiple reflections on the quality of the link and thus makes it possible to increase the distance "antenna embedded on the train waveguide to the track" exploitable in practice.
De plus, depuis le guide d'ondes à la voie et au regard de l'antenne conforme à l'invention, l'amplitude des signaux s'avère remarquablement constante et ne nécessite pas de « lissage » particulier des signaux. Une focalisation particulière, symétrique dans deux orientations particulières de l'espace, et uniquement dans ces directions correspondantes au rayonnement maximum du guide d'ondes à la voie s'avère particulièrement favorable afin d'optimiser les bilans de transmission sol-trains.In addition, from the waveguide to the track and in view of the antenna according to the invention, the amplitude of the signals is remarkably constant and does not require any particular "smoothing" of the signals. A particular focus, symmetrical in two particular orientations of the space, and only in these directions corresponding to the maximum radiation of the waveguide to the track is particularly favorable in order to optimize the ground-train transmission balances.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit, description faite en liaison avec les dessins dans lesquels:
- La
figure 1 est une vue schématique du dispositif de communication d'un réseau ferroviaire, - la
figure 2 représente le diagramme de rayonnement mesuré en azimut du dispositif de communication, associé à une représentation physique du guide d'ondes, - la
figure 3 représente une vue en perspective de l'antenne à guide d'ondes conforme à l'invention, - la
figure 4 représente le diagramme de rayonnement propre de l'antenne conforme à l'invention, - la
figure 5 représente un véhicule équipé d'une antenne conforme à l'invention, changeant de sens et de voie au moyen d'une boucle entre les deux voies, - la
figure 6 représente un véhicule équipé de deux antennes conformes à l'invention, changeant de sens et de voie au moyen d'une voie de garage.
- The
figure 1 is a schematic view of the communication device of a rail network, - the
figure 2 represents the radiation pattern measured in azimuth of the communication device, associated with a physical representation of the waveguide, - the
figure 3 represents a perspective view of the waveguide antenna according to the invention, - the
figure 4 represents the own radiation pattern of the antenna according to the invention, - the
figure 5 represents a vehicle equipped with an antenna according to the invention, changing direction and lane by means of a loop between the two lanes, - the
figure 6 represents a vehicle equipped with two antennas according to the invention, changing direction and way by means of a siding.
La
Un dispositif de communication directionnel 1 permettant au poste de contrôle de la ligne de communiquer avec les véhicules A, B circulant sur les voies 2, 3 (et vice-versa, permettant au véhicule de communiquer avec le poste de contrôle) est disposé par exemple entre les deux voies 2, 3. Ces informations peuvent être par exemple des informations de commande automatique des véhicules, des informations concernant la signalisation de la ligne ou encore des informations vidéos ou audio du véhicule vers le poste de contrôle. Elles sont contenues dans des signaux hyperfréquences symbolisés par les flèches pleines S1 et S2. Alternativement, le dispositif de communication directionnel peut être disposé de chaque côté de la voie.The
A
Les signaux hyperfréquences sont injectés dans le dispositif de communication 1, constitué d'au moins un guide d'ondes. Le guide d'ondes se présente sous la forme d'un tube creux de section rectangulaire comportant quatre faces. Il est disposé au sol ou en voûte de tunnel sur une face non émissive.The microwave signals are injected into the
Chaque guide d'ondes possède deux faces émissives verticales et opposées 1a et 1 b, chaque face étant percée d'un réseau de fentes perpendiculaires à l'axe du guide, disposées sur les grandes faces du guide, dont la grande dimension est bien plus petite que la longueur d'onde des signaux qui se propagent dans le guide d'ondes. Cette caractéristique permet de ne prélever à chaque fente qu'une très faible partie de l'énergie du signal propagé. Par conséquent, le signal n'étant que très peu atténué par les émissions vers l'extérieur du guide à travers les fentes, le guide d'onde à la voie peut avoir une longueur de plusieurs centaines de mètres.Each waveguide has two vertical and opposite emitting
Le dispositif de communication est bi-directionnel dans le sens où les fentes des deux faces peuvent également réceptionner les signaux hyperfréquences provenant des antennes 4 montées à bord des véhicules A, B.The communication device is bi-directional in the sense that the slots of the two faces can also receive the microwave signals from the
La
Par exemple, pour communiquer efficacement avec le guide d'ondes présentant un lobe principal dirigé à 30° par rapport à l'axe du guide d'ondes, l'antenne embarquée sur le véhicule doit également présenter un angle de départ de 30° afin de recevoir et d'émettre efficacement des signaux dans cette direction privilégiée de l'espace.For example, to effectively communicate with the waveguide having a main lobe directed at 30 ° with respect to the axis of the waveguide, the antenna on the vehicle must also have a starting angle of 30 ° in order to to receive and transmit signals efficiently in this privileged direction of space.
Pour s'affranchir du sens de circulation du véhicule sur l'une ou l'autre des deux voies encadrant le guide d'ondes 1 à la voie, l'antenne embarquée 4 doit être « symétrique », c'est-à-dire que chaque fente émissive doit rayonner de façon symétrique par rapport à un plan passant en son centre et perpendiculaire à l'axe longitudinal du guide. En d'autres termes, et pour reprendre l'exemple ci-dessus, chaque fente doit présenter un lobe dont l'orientation est à 30° et un lobe dont l'orientation est à 150° (180° moins 30°).To overcome the direction of vehicle traffic on one or the other of the two channels flanking the
Une antenne comportant ces deux caractéristiques (directionnelle et symétrique) est l'antenne 4 d'émission et / ou de réception conforme à l'invention représentée par la
La distance E séparant le centre de deux fentes 5 successives est voisine d'une demi-longueur d'onde du signal propagé dans le guide. Dans un guide d'ondes de section rectangulaire, la relation reliant la longueur d'onde du signal propagé dans ce guide notée λ g, la longueur d'onde du signal propagé dans l'air notée λ et la longueur d'onde de coupure du guide d'ondes (au-dessus de laquelle le guide d'ondes ne propage plus d'énergie) notée λc s'écrit :
Dans ce guide d'ondes de section rectangulaire, la longueur d'onde de coupure λc est égale à deux fois la grande dimension transversale interne du guide. A titre d'exemple, pour un guide de 10 cm de grand côté interne, on obtient
soit encore une fréquence de coupure basse de 1,5 GHz. Sous cette fréquence, aucun signal ne se propage dans le guide : on obtient avec la formule précédente que λ g tend vers l'infini. Au-dessus de cette fréquence, les signaux commencent à se propager dans le guide avec une faible atténuation.
Dans les mêmes conditions, à 2 GHz, soit une longueur d'onde dans l'air λ de 15 cm, la longueur d'onde λ g des signaux propagés dans le guide, calculée à partir de la formule précédente sera de 22,6 cm. Considérons un réseau de quelques fentes régulièrement espacées et alimentées à une extrémité. L'énergie communiquée à cette extrémité se propage d'une fente à l'autre avec un déphasage proportionnel à cette longueur d'onde guidée λ g. Une partie de cette énergie est rayonnée à l'extérieur du guide et se propage cette fois dans l'air avec une longueur d'onde λ. La combinaison des rayonnements dans l'air de ces fentes alimentées et déphasées par la propagation des signaux dans le guide d'ondes métallique fournit un diagramme de rayonnement possédant l'angle de départ de rayonnement requis, le déphasage d'une demi-longueur d'onde guidée
Pour un espacement E entre fentes 5 plus réduit, un seul lobe de rayonnement est présent, similaire à celui que l'on obtient sur le guide d'ondes 1 à la voie utilisé.
La polarisation du champ électromagnétique obtenue est linéaire, le champ électrique rayonné possède une composante principale orientée selon l'axe longitudinal de l'antenne ou du guide support.In this waveguide of rectangular section, the cut-off wavelength λ c is equal to twice the large internal transverse dimension of the guide. For example, for a
still a low cutoff frequency of 1.5 GHz. Under this frequency, no signal propagates in the guide: one obtains with the preceding formula that λ g tends towards infinity. Above this frequency, the signals begin to propagate in the guide with low attenuation.
Under the same conditions, at 2 GHz, ie an air wavelength λ of 15 cm, the wavelength λ g of the signals propagated in the guide, calculated from the above formula, will be 22.6 cm. Consider a network of a few regularly spaced slots and fed at one end. The energy communicated at this end propagates from one slot to another with a phase shift proportional to this guided wavelength λ g . Part of this energy is radiated outside the guide and is propagated this time in the air with a wavelength λ. The combination of the radiation in the air of these slots fed and out of phase by the propagation of the signals in the metal waveguide provides a radiation pattern having the required radiation departure angle, the phase shift of half a length of guided wave
For a smaller gap spacing E between slots, only one radiation lobe is present, similar to that obtained on
The polarization of the electromagnetic field obtained is linear, the radiated electric field has a main component oriented along the longitudinal axis of the antenna or the support guide.
Chaque fente 5 pratiquée dans le guide d'ondes possède un petit côté suffisamment grand afin que l'épaisseur de métal du guide d'ondes soit faible vis-à-vis de cette dimension (si l'on considère une épaisseur de métal du guide de 1 mm, on prendra des fentes de 3-4 mm de petit côté afin de pouvoir négliger un autre effet de guide d'ondes introduit par la propagation des signaux au-travers d'une fente très mince, dans l'épaisseur de métal).Each
Le gain de l'antenne croît avec le nombre de fentes dont on combine le rayonnement. Sous un nombre minimum de cinq fentes le gain est sous optimal mais peut être suffisant si l'on a un problème d'encombrement d'antenne-train sévère. Au-dessus de dix fentes le gain croit encore un peu mais le lobe de rayonnement devient étroit, concentre l'énergie en un fin faisceau et l'on risque de sortir de la zone adéquate de couverture en cas de débattement de suspension du véhicule trop important (tangage, roulis).The antenna gain increases with the number of slots that combine the radiation. Under a minimum of five slots the gain is suboptimal but may be sufficient if there is a problem of severe antenna-train congestion. Above ten slots gain still slightly increases but the radiation lobe becomes narrow, concentrates the energy into a thin beam and there is a risk of getting out of the appropriate coverage area in case of vehicle suspension travel too much important (pitch, roll).
La
La face émissive du guide d'ondes de l'antenne est disposée à la verticale et est disposée parallèlement à une face émissive du dispositif de communication continu fixe disposé le long de la voie. En effet, le guide d'ondes du dispositif de communication est disposé sur une face non-émissive, les faces émissives étant disposées à la verticale. La polarisation du rayonnement du guide d'ondes à la voie est identique à celle de l'antenne de réception / émission.The emitting face of the waveguide of the antenna is disposed vertically and is arranged parallel to an emitting face of the fixed continuous communication device arranged along the path. Indeed, the waveguide of the communication device is arranged on a non-emissive face, the emitting faces being arranged vertically. The polarization of the radiation from the waveguide to the channel is identical to that of the receiving / transmitting antenna.
L'antenne est donc disposée sur le véhicule de manière à ce que l'axe longitudinal du guide d'ondes de l'antenne soit parallèle à l'axe longitudinal du guide d'ondes à la voie pour qu'un lobe du diagramme de rayonnement de l'antenne et un lobe du diagramme de rayonnement du guide d'ondes 1 à la voie soient aient une orientation identique.The antenna is thus disposed on the vehicle so that the longitudinal axis of the waveguide of the antenna is parallel to the longitudinal axis of the waveguide at the track so that a lobe of the Antenna radiation and a lobe of the radiation pattern from the
L'antenne est montée soit sous la caisse du véhicule si le dispositif de communication 1 est disposé au sol entre les deux voies 2, 3, soit en toiture du véhicule si le dispositif de communication 1 est disposé en voûte de tunnel entre les deux voies 2, 3. La distance entre l'antenne de réception et / ou d'émission et le dispositif de communication 1 est d'au moins quatre longueurs d'ondes du signal hyperfréquence propagé dans l'air car le rayonnement du dispositif de communication vers l'antenne -et vice-versa- s'effectue en champ lointain. L'antenne train peut être installée latéralement, son volume de guide d'ondes intégré dans la caisse, le plan des fentes recouvert d'un radôme affleurant à la surface de la caisse.The antenna is mounted either under the vehicle body if the
L'antenne est disposée soit d'un seul côté du véhicule, soit des deux côtés du véhicule. En effet, lorsque le véhicule arrive à l'un des terminus de la ligne aller, il se déplace sur la ligne retour parallèle soit par une boucle de rayon large qui lie les extrémités des deux voies, soit en effectuant un aller-retour sur une voie de garage située en amont de la voie retour.The antenna is arranged on one side of the vehicle or on both sides of the vehicle. Indeed, when the vehicle arrives at one of the terminals of the one-way line, it moves on the parallel return line either by a wide-radius loop which links the ends of the two lanes, or by making a round-trip on a siding located upstream of the return lane.
La
Sur la voie aller 2, l'antenne 4 communique avec le guide d'ondes 1 à la voie car le signal émis (ou reçu) par le guide d'ondes 1 dans la zone du lobe L1 a la même orientation que la zone du lobe LB de réception (ou d'émission) de l'antenne 4. Sur la voie retour 3, l'antenne 4 communique avec le guide d'ondes 1 à la voie car le signal émis (ou reçu) par le guide d'ondes 1 dans la zone du lobe L2 a la même orientation que la zone du lobe LA de réception (ou d'émission) de l'antenne 4. Dans cette configuration de fin de ligne, une seule antenne 4 est nécessaire sur le côté du véhicule le plus proche du guide d'onde 1 à la voie.On the
La
Claims (8)
- Communication device of a railway network comprising a receive and/or transmit antenna (4) mounted on a vehicle (A, B) moving along at least one track (2, 3) and communicating with a fixed communication device (1) disposed along at least one track (2, 3) by means of microwave signals of given wavelength, characterized in that that the antenna (4) consists of a waveguide of rectangular cross-section of which a large face is drilled with rectangular slots (5) whose large dimension is close to and less than half the wavelength of the said microwave signal (λg) propagated in the waveguide, and in that the spacing between the centre of two successive slots (5) is equal to half the wavelength of the microwave signal (λg) propagated in the waveguide so that the combination of radiations of each slot (5) provides a radiation pattern exhibiting two main lobes in two directions that are symmetric with respect to the plane perpendicular to the longitudinal axis of the waveguide, and in that the fixed communication device (1) consists of at least one waveguide of rectangular cross-section, possessing two vertical and opposite emissive faces (1a, 1b), each face (1a, 1b) being drilled with a network of slots whose large dimension is much smaller than the wavelength of the signal propagated in the waveguide (1).
- Communication device according to Claim 1, characterized in that the number of slots (5) is between five and ten.
- Communication device according to Claim 1, characterized in that the emissive face of the waveguide (1) of the said antenna (4) is vertical and is disposed parallel to an emissive face of the fixed communication device (1) disposed along the track (2, 3).
- Communication device according to Claim 1, characterized in that the axis of the waveguide of the antenna (4) is parallel to the axis of the fixed communication device (1).
- Communication device according to Claim 1, characterized in that the antenna (4) is a distance away from the fixed communication device (1) of at least four wavelengths of the microwave signal propagated in air.
- Communication device according to Claim 1, characterized in that the antenna (4) is disposed on just one side of the vehicle (A, B).
- Communication device according to Claim 1, characterized in that the antenna (4) is disposed on each side of the vehicle (A, B).
- Communication device according to Claim 1, characterized in that antenna (4) is covered with a radome.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0703878A FR2916908B1 (en) | 2007-05-31 | 2007-05-31 | WAVEGUIDE ANTENNA TRAINED ON A RAILWAY VEHICLE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1998403A1 EP1998403A1 (en) | 2008-12-03 |
EP1998403B1 true EP1998403B1 (en) | 2011-05-04 |
Family
ID=38477265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08104087A Active EP1998403B1 (en) | 2007-05-31 | 2008-05-26 | Waveguide antenna embedded on a railway vehicle |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1998403B1 (en) |
CN (1) | CN101373860B (en) |
AT (1) | ATE508492T1 (en) |
DE (1) | DE602008006627D1 (en) |
ES (1) | ES2366345T3 (en) |
FR (1) | FR2916908B1 (en) |
SG (1) | SG148136A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107546496A (en) * | 2016-06-24 | 2018-01-05 | 福特全球技术公司 | A kind of more orientation antennas for vehicle communication |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102045090B (en) * | 2009-10-15 | 2013-08-21 | 北京瑞安时代科技有限责任公司 | Method and device for realizing seamless coverage of waveguide tube signals |
FR2965979B1 (en) * | 2010-10-12 | 2013-06-28 | Tech D Ingenierie Et De Cooperation S T I C Soc | HIGH-PERFORMANCE SELF-PORTABLE ANTENNA FOR TRANSMITTING AND / OR RECEIVING RADIO WAVES OF IDENTIFICATION |
CN102082713B (en) * | 2010-12-22 | 2012-09-26 | 深圳市华讯方舟科技有限公司 | High-speed rail mobile communication system and working method thereof |
CN102104410A (en) * | 2011-01-18 | 2011-06-22 | 京信通信系统(中国)有限公司 | High-speed railway microwave communication network |
CN102664311B (en) * | 2012-05-16 | 2015-04-29 | 中电科微波通信(上海)有限公司 | Crack wave guide antenna |
FR2996401B1 (en) * | 2012-10-01 | 2016-05-06 | Jean-Claude Ducasse | MOBILE COMMUNICATION INSTALLATION, RADIANT CABLE OF THE SAME, AND METHOD OF EXCHANGING DATA RELATING THERETO |
DE102012222471A1 (en) | 2012-12-06 | 2014-06-12 | Siemens Aktiengesellschaft | vehicle tracking |
AT515562B1 (en) * | 2014-03-20 | 2016-01-15 | Peter Ing Kuntschitsch | Vehicle position-dependent high energy-electromagnetic energy supply between the road and the vehicle |
EP3214699B1 (en) * | 2016-03-04 | 2018-06-20 | Kabelwerk Eupen AG | Improvements in or relating to communications links |
AU2017272234B2 (en) | 2016-12-20 | 2021-12-02 | Licensys Australasia Pty Ltd | An antenna |
CN110429375A (en) * | 2019-07-05 | 2019-11-08 | 惠州市德赛西威智能交通技术研究院有限公司 | A kind of broad-band chip integrated waveguide double-slit antenna |
DE102019118532A1 (en) | 2019-07-09 | 2021-01-14 | Conductix-Wampfler Gmbh | Communication system |
DE102019118533A1 (en) | 2019-07-09 | 2021-01-14 | Conductix-Wampfler Gmbh | Communication system |
DE102019118531A1 (en) | 2019-07-09 | 2021-01-14 | Conductix-Wampfler Gmbh | Communication system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL134603C (en) * | 1961-05-16 | |||
US3648172A (en) * | 1968-10-02 | 1972-03-07 | Sumitomo Electric Industries | Circular leaky waveguide train communication system |
US4313120A (en) * | 1979-07-30 | 1982-01-26 | Ford Aerospace & Communications Corp. | Non-dissipative load termination for travelling wave array antenna |
CA2239642C (en) * | 1997-06-26 | 2001-05-29 | Geza Dienes | Antenna for radiating cable-to-vehicle communication systems |
CN2746567Y (en) * | 2004-11-12 | 2005-12-14 | 中国电子科技集团公司第五十研究所 | Horizontal polarizing wave guide omnidirectional antenna structure |
CN2762372Y (en) * | 2004-12-24 | 2006-03-01 | 佛山市健博通电讯实业有限公司 | Horizontally-polarized waveguide omnidirectional antenna |
-
2007
- 2007-05-31 FR FR0703878A patent/FR2916908B1/en active Active
-
2008
- 2008-05-26 AT AT08104087T patent/ATE508492T1/en not_active IP Right Cessation
- 2008-05-26 ES ES08104087T patent/ES2366345T3/en active Active
- 2008-05-26 DE DE602008006627T patent/DE602008006627D1/en active Active
- 2008-05-26 EP EP08104087A patent/EP1998403B1/en active Active
- 2008-05-28 SG SG200804050-3A patent/SG148136A1/en unknown
- 2008-05-30 CN CN200810173702.4A patent/CN101373860B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107546496A (en) * | 2016-06-24 | 2018-01-05 | 福特全球技术公司 | A kind of more orientation antennas for vehicle communication |
Also Published As
Publication number | Publication date |
---|---|
ES2366345T3 (en) | 2011-10-19 |
DE602008006627D1 (en) | 2011-06-16 |
FR2916908B1 (en) | 2011-09-30 |
CN101373860B (en) | 2014-06-04 |
FR2916908A1 (en) | 2008-12-05 |
EP1998403A1 (en) | 2008-12-03 |
CN101373860A (en) | 2009-02-25 |
SG148136A1 (en) | 2008-12-31 |
ATE508492T1 (en) | 2011-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1998403B1 (en) | Waveguide antenna embedded on a railway vehicle | |
EP2625741B1 (en) | Large-area broadband surface-wave antenna | |
US20140253403A1 (en) | Low Profile Double-Ridged Horn Antenna For Mobile Communications | |
EP3267528B1 (en) | Chip-to-chip interface using microstrip circuit and dielectric waveguide | |
EP2195877B1 (en) | Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas | |
FR2709833A1 (en) | Broadband and low band listening instrument for space applications. | |
EP2006954B1 (en) | Communication device for a railway vehicle | |
EP2610966B1 (en) | Very-thin broadband compact antenna with dual orthogonal linear polarisations operating in the V/UHF bands | |
EP0467818B1 (en) | Transition element between electromagnetic waveguides, especially between a circular waveguide and a coaxial waveguide | |
EP2042402A1 (en) | Radio communication device in a guided transport means | |
EP1152483B1 (en) | Dual-band microwave radiating element | |
EP2076937A2 (en) | Antenna using a pfb (photonic forbidden band) material, and system and method using this antenna | |
FR3003700A1 (en) | ANTENNA RADAR SIGNATURE REDUCTION DEVICE AND ASSOCIATED ANTENNA SYSTEM | |
EP0337841A1 (en) | Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops | |
EP2950457A1 (en) | Data communication system, railway system comprising such a communication system and related communication method | |
FR2801730A1 (en) | Broad band aerial for radar use includes scissors configuration limbs with resistive elements at remote ends | |
EP3155689B1 (en) | Flat antenna for satellite communication | |
CN104919650A (en) | A dual antenna | |
FR2615038A1 (en) | Duplexer with waveguide in particular for antennas for transmission and/or reception of electromagnetic waves | |
EP1287715B1 (en) | Radio system in closed environment between mobile telephone system terminals | |
EP2595239A1 (en) | Lead-through antenna with a single- or double-ridge waveguide | |
Dudley et al. | 1.6 Gb/s hybrid wireless-optical leaky feeder system for tunnel applications | |
WO2010070019A1 (en) | Very wideband multidirectional antenna | |
FR2793364A1 (en) | RADIANT CABLE COMMUNICATION SYSTEM FOR PROVIDING CONTROLLED RADIO COVERAGE OF A DETERMINED VOLUME | |
FR2949166A1 (en) | Electronic device for marking e.g. struts of metallic tube during construction of building, has folded dipole type antenna that is realized in manner to generate maximum electric field along longitudinal axis of tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HEDDEBAUT, MARC Inventor name: DUHOT, DENIS |
|
RTI1 | Title (correction) |
Free format text: WAVEGUIDE ANTENNA EMBEDDED ON A RAILWAY VEHICLE |
|
17P | Request for examination filed |
Effective date: 20090603 |
|
17Q | First examination report despatched |
Effective date: 20090626 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602008006627 Country of ref document: DE Date of ref document: 20110616 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008006627 Country of ref document: DE Effective date: 20110616 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALSTOM TRANSPORT SA Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2366345 Country of ref document: ES Kind code of ref document: T3 Effective date: 20111019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110804 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110629 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110905 |
|
BERE | Be: lapsed |
Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS Effective date: 20110531 Owner name: ALSTOM TRANSPORT SA Effective date: 20110531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110904 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110805 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
26N | No opposition filed |
Effective date: 20120207 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008006627 Country of ref document: DE Effective date: 20120207 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT SA, LEVALLOIS-PERRET, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPO, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT SA, LEVALLOIS-PERRET, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT SA, LEVALLOIS-PERRET, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TQ Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR Effective date: 20170824 Ref country code: FR Ref legal event code: TQ Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR Effective date: 20170824 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: ALSTOM TRANSPORT TECHNOLOGIES Effective date: 20171020 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008006627 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602008006627 Country of ref document: DE Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231027 |
|
P04 | Withdrawal of opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231212 |
|
P06 | Withdrawal of the competence of the unified patent court (upc) deleted | ||
P03 | Opt-out of the competence of the unified patent court (upc) deleted | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240626 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240529 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240524 Year of fee payment: 17 |