EP1998403B1 - Waveguide antenna embedded on a railway vehicle - Google Patents

Waveguide antenna embedded on a railway vehicle Download PDF

Info

Publication number
EP1998403B1
EP1998403B1 EP08104087A EP08104087A EP1998403B1 EP 1998403 B1 EP1998403 B1 EP 1998403B1 EP 08104087 A EP08104087 A EP 08104087A EP 08104087 A EP08104087 A EP 08104087A EP 1998403 B1 EP1998403 B1 EP 1998403B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
communication device
antenna
vehicle
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08104087A
Other languages
German (de)
French (fr)
Other versions
EP1998403A1 (en
Inventor
Marc Heddebaut
Denis Duhot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport SA
Institut Francais des Sciences et Technologirs des Transports de lAmenagement et des Reseaux
Original Assignee
Alstom Transport SA
Institut National de Recherche sur les Transports et leur Securite INRETS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport SA, Institut National de Recherche sur les Transports et leur Securite INRETS filed Critical Alstom Transport SA
Publication of EP1998403A1 publication Critical patent/EP1998403A1/en
Application granted granted Critical
Publication of EP1998403B1 publication Critical patent/EP1998403B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3225Cooperation with the rails or the road
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line

Definitions

  • the invention relates to a waveguide directional transmission / reception device in general, and more particularly to a bidirectional and symmetrical waveguide antenna.
  • a transmitting / receiving antenna having a bi-directional radiation pattern makes it possible to communicate with transmitters / receivers in two preferred directions of space.
  • Such an antenna finds its application for example along a road transport axis, railway, etc.
  • the radio coverage is ensured by a network of transmitters disposed on the ground from time to time and raised by the use of pylons. A mobile moves between these transmitters on the ground.
  • this mobile During its movement along the transport axis, this mobile is in communication with the transmitter which is immediately upstream. By moving away from this upstream transmitter, the signal received from this transmitter gradually decreases until it becomes unusable. However, simultaneously, the signal received from the downstream transmitter increases since its distance to the mobile decreases. A transfer of communication must be established so that the mobile transfers its communication, become inoperative, from the downstream transmitter to the upstream transmitter. This step is called a "handover" in a cellular communication network.
  • the receiver In order to ensure this communication with the upstream station and at the same time this monitoring of the reception level of the signal emitted by the downstream transmitter, the receiver must use two antennas pointing respectively towards the front and the rear pointing above the antenna. horizon towards antennas on pylons.
  • the fixed communication device is disposed on the ground or in a tunnel vault along this path.
  • the fixed communication device may be omnidirectional, that is, which radiates or receives an electromagnetic signal in all directions of space.
  • the communication device may also be directional, i.e., the signals have a high gain in one direction of space: the radiation pattern shows a given main lobe.
  • a directional antenna having the same radiation pattern greatly optimizes communication with the latter device.
  • the ground communication device In “open" propagation medium, the ground communication device will for example consist of directional transmitters / receivers. In the “closed" propagation medium, for example in a metropolitan network, the ground communication device will for example be a waveguide.
  • a ground waveguide device must operate at very high frequencies, higher than gigahertz (GHz), in order to lead to a mechanical construction of space compatible with its use at the track.
  • GHz gigahertz
  • the use of these microwaves makes it possible to ensure all the envisaged ground-train communications.
  • These high frequencies correspond to wavelengths in the air of the order of 5 to 20 cm (1.5 GHz to 6 GHz and beyond).
  • the waveguide at the track is often far in terms of number of wavelengths of this antenna embedded on the train. This leads to far-field electromagnetic radiation for which radiation patterns can be calculated theoretically and measured experimentally.
  • the transmit / receive antenna must be able to communicate with the communication device at the lane in both directions.
  • a coupling between transmission lines favorably oriented relative to each other is clearly more important than coupling in opposite orientation. To receive a maximum signal and according to the orientation of the train relative to the track, it is therefore necessary to reverse by a manual switch the relative terminal positions of the generator / receiver and loads on the radiating cable embedded on the train.
  • a disadvantage of this device is the length of the propagation lines necessary for this type of coupling, ie a train antenna a few meters long. Another disadvantage is the need to switch the orientation of the transmission lines according to the direction of traffic of the vehicles to increase the coupling and improve the communication between the vehicle and the device to the track.
  • the device of the present invention relates to a receiving antenna and / or directional transmission on board a vehicle that can communicate reliably and stably with a fixed directional communication device disposed to the track, this antenna being simple design, compact and independent of the direction of traffic of the vehicle.
  • a communication device is defined by the features of claim 1.
  • each slot of the antenna radiates a signal having two main lobes in two directions symmetrical with respect to a plane perpendicular to the plane of this slot.
  • the waveguide is easy to manufacture, simple to use and reliable, and the dual directivity makes it possible to overcome the direction of traffic of the vehicle without special intervention.
  • the propagation environment of the ground-train communication being characterized by intense reflections on the various surrounding obstacles (trains, walls, etc.), a directional antenna, focusing its radiation towards the waveguide at the track, limits the the impact of these multiple reflections on the quality of the link and thus makes it possible to increase the distance "antenna embedded on the train waveguide to the track" exploitable in practice.
  • the amplitude of the signals is remarkably constant and does not require any particular "smoothing" of the signals.
  • a particular focus, symmetrical in two particular orientations of the space, and only in these directions corresponding to the maximum radiation of the waveguide to the track is particularly favorable in order to optimize the ground-train transmission balances.
  • the figure 1 is a schematic view of the communication device of a railway network, for example a metropolitan line.
  • a directional communication device 1 allowing the control station of the line to communicate with the vehicles A, B traveling on the tracks 2, 3 (and vice versa, allowing the vehicle to communicate with the control station) is arranged for example between the two channels 2, 3.
  • This information can be for example automatic control information of vehicles, information concerning the signaling of the line or video or audio information from the vehicle to the control station. They are contained in microwave signals symbolized by the full arrows S1 and S2.
  • the directional communication device may be disposed on each side of the track.
  • the microwave signals are injected into the communication device 1, consisting of at least one waveguide.
  • the waveguide is in the form of a hollow tube of rectangular section with four faces. It is arranged on the ground or tunnel vault on a non-emissive side.
  • Each waveguide has two vertical and opposite emitting faces 1a and 1b, each face being pierced with a network of slots perpendicular to the axis of the guide, arranged on the large faces of the guide, the large dimension of which is much greater. small as the wavelength of the signals propagating in the waveguide. This characteristic makes it possible to take at each slot only a very small part of the energy of the propagated signal. Consequently, since the signal is only slightly attenuated by the emissions towards the outside of the guide through the slots, the waveguide at the track can have a length of several hundred meters.
  • the communication device is bi-directional in the sense that the slots of the two faces can also receive the microwave signals from the antennas 4 mounted on board vehicles A, B.
  • the figure 2 shows the radiation pattern measured in azimuth of the waveguide 1 of the communication device, placed on the ground on a small non-emissive face.
  • the double grating waveguide 1 has a far-field directional radiation pattern which has two main lobes L 1 and L 2 symmetrical about the axis of the guide (0 ° axis). The orientation of each lobe is at an angle alpha with the waveguide axis of about 30 °.
  • the transmitting / receiving antenna on board the vehicle must, in order to communicate with such a waveguide, also be directional. It must thus have a radiation pattern having a directivity allowing the best possible transfer of energy between the waveguide to the track and this antenna.
  • the radiation pattern of the antenna must have at least one main lobe of radiation whose orientation is identical to that of one of the main lobes of the waveguide radiation pattern.
  • the antenna on the vehicle must also have a starting angle of 30 ° in order to to receive and transmit signals efficiently in this privileged direction of space.
  • each emitting slot must radiate symmetrically with respect to a plane passing in its center and perpendicular to the longitudinal axis of the guide.
  • each slot must have a lobe whose orientation is at 30 ° and a lobe whose orientation is at 150 ° (180 ° minus 30 °).
  • An antenna comprising these two characteristics is the transmitting and / or receiving antenna 4 according to the invention represented by the figure 3 .
  • It consists of a waveguide of rectangular section, one of the large faces of length b is pierced by seven slots 5, arranged perpendicularly to the longitudinal axis of the guide.
  • the waveguide is closed at one end by a 50 ohm coaxial impedance load 7, and its other end is connected via a coaxial link 6 to a receiver (not shown).
  • the large dimension D of the slots 5 is close to the half-wavelength of the microwave signal propagated in the waveguide but lower, so as not to take too much energy from the signal that propagates in the guide.
  • the distance E separating the center from two successive slots 5 is close to half a wavelength of the signal propagated in the guide.
  • ⁇ g the wavelength of the signal propagated in this guide
  • ⁇ c the cutoff wavelength of the waveguide (above which the waveguide no longer propagates energy)
  • the cut-off wavelength ⁇ c is equal to twice the large internal transverse dimension of the guide.
  • ⁇ vs 20 cm still a low cutoff frequency of 1.5 GHz.
  • no signal propagates in the guide one obtains with the preceding formula that ⁇ g tends towards infinity.
  • the signals begin to propagate in the guide with low attenuation.
  • the wavelength ⁇ g of the signals propagated in the guide calculated from the above formula, will be 22.6 cm.
  • the energy communicated at this end propagates from one slot to another with a phase shift proportional to this guided wavelength ⁇ g .
  • Part of this energy is radiated outside the guide and is propagated this time in the air with a wavelength ⁇ .
  • the combination of the radiation in the air of these slots fed and out of phase by the propagation of the signals in the metal waveguide provides a radiation pattern having the required radiation departure angle, the phase shift of half a length of guided wave ⁇ boy Wut 2 provides the necessary double lobe of radiation and having identical starting angles for 0 ° and 180 ° orientations. This phase shift is physically achieved by a spacing E between two successive slots 5 adjacent to the guided half-wavelength.
  • the radiated electric field has a main component oriented along the longitudinal axis of the antenna or the support guide.
  • Each slot 5 formed in the waveguide has a small side sufficiently large so that the metal thickness of the waveguide is small vis-à-vis this dimension (if we consider a thickness of the guide metal 1 mm, we will take slits of 3-4 mm short side in order to neglect another waveguide effect introduced by the propagation of signals through a very thin slot, in the thickness of metal ).
  • the antenna gain increases with the number of slots that combine the radiation. Under a minimum of five slots the gain is suboptimal but may be sufficient if there is a problem of severe antenna-train congestion. Above ten slots gain still slightly increases but the radiation lobe becomes narrow, concentrates the energy into a thin beam and there is a risk of getting out of the appropriate coverage area in case of vehicle suspension travel too much important (pitch, roll).
  • the figure 4 represents the proper diagram of the antenna according to the invention.
  • the longitudinal axis of the waveguide of the antenna is the axis at 0 °.
  • Two lobes LA and L B appear clearly at about 30 ° and about 150 °, indicating that the wave is emitted with an equivalent gain in these two favored directions.
  • the emitting face of the waveguide of the antenna is disposed vertically and is arranged parallel to an emitting face of the fixed continuous communication device arranged along the path.
  • the waveguide of the communication device is arranged on a non-emissive face, the emitting faces being arranged vertically.
  • the polarization of the radiation from the waveguide to the channel is identical to that of the receiving / transmitting antenna.
  • the antenna is thus disposed on the vehicle so that the longitudinal axis of the waveguide of the antenna is parallel to the longitudinal axis of the waveguide at the track so that a lobe of the Antenna radiation and a lobe of the radiation pattern from the waveguide 1 to the channel should have an identical orientation.
  • the antenna is mounted either under the vehicle body if the communication device 1 is placed on the ground between the two tracks 2, 3, or on the roof of the vehicle if the communication device 1 is arranged in a tunnel vault between the two channels 2, 3.
  • the distance between the receiving and / or transmitting antenna and the communication device 1 is at least four wavelengths of the microwave signal propagated in the air because the radiation of the communication device to the antenna-and vice versa-is in the far field.
  • the train antenna can be installed laterally, its waveguide volume integrated in the box, the plane of the slots covered with a radome flush with the surface of the box.
  • the antenna is arranged on one side of the vehicle or on both sides of the vehicle. Indeed, when the vehicle arrives at one of the terminals of the one-way line, it moves on the parallel return line either by a wide-radius loop which links the ends of the two lanes, or by making a round-trip on a siding located upstream of the return lane.
  • the figure 5 illustrates the first case: the vehicle A is on the return lane 3 in the same configuration as the outbound lane 2, that is to say the head-to-head cabin.
  • the arrow on the vehicle symbolizes the path of the vehicle on the track.
  • the waveguide 1 disposed at the channel emits the signals along two directions represented by triangles L 1 and L 2 .
  • a signal provided by the energy radiated from a few slits of the waveguide 1 only is represented on the figure 5 but physically, this signal exists all along the waveguide 1.
  • the antenna 4 mounted on the vehicle has two lobes L A and L B.
  • the antenna 4 communicates with the waveguide 1 to the channel because the signal transmitted (or received) by the waveguide 1 in the region of the lobe L 1 has the same orientation as the zone the lobe L B receiving (or transmitting) the antenna 4.
  • the antenna 4 communicates with the waveguide 1 to the channel because the signal transmitted (or received) by the guide 1 in the region of the lobe L 2 has the same orientation as the zone of the lobe LA receiving (or transmitting) the antenna 4.
  • a single antenna 4 is required on the side of the vehicle closest to the waveguide 1 to the track.
  • the figure 6 illustrates the second case: the vehicle A passes from the lane 2 to the return lane 3 via a siding 20. It is therefore in the opposite configuration to that of the forward lane 2, that is to say the head cabin at the tail of the vehicle (in this case, the vehicle usually has a cabin at each end which is not shown here).
  • Two antennas must be mounted on both sides of the vehicle, because the antenna 4, mounted on the vehicle so as to be closest to the waveguide 1 to the track when moving the vehicle on the outbound lane 2, is then on the furthest side of the waveguide 1 to the lane when the vehicle moves on the return lane 3 by making a return trip on the siding 20.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

The antenna (4) has a fixed direction communication device arranged along channels of desired wavelength microwave signal. A rectangular section waveguide is provided with a large face that is drilled by a set of rectangular slits (5), whose large dimension (D) is lower than half-length of waves of the microwave signal, where spacing (E) between center of successive slits is near to the half-length of waves of the microwave signal propagated in the waveguide.

Description

L'invention concerne un dispositif d'émission / réception directionnel à guide d'ondes en général, et plus particulièrement une antenne à guide d'ondes bidirectionnelle et symétrique.The invention relates to a waveguide directional transmission / reception device in general, and more particularly to a bidirectional and symmetrical waveguide antenna.

Une antenne d'émission / réception présentant un diagramme de rayonnement bi-directionnel permet de communiquer avec des émetteurs / récepteurs dans deux directions privilégiées de l'espace.A transmitting / receiving antenna having a bi-directional radiation pattern makes it possible to communicate with transmitters / receivers in two preferred directions of space.

Une telle antenne trouve par exemple son application le long d'un axe de transport routier, ferroviaire, etc. Classiquement, la couverture radioélectrique est assurée par un réseau d'émetteurs disposés au sol de loin en loin et surélevés par l'emploi de pylônes. Un mobile se déplace entre ces émetteurs au sol.Such an antenna finds its application for example along a road transport axis, railway, etc. Conventionally, the radio coverage is ensured by a network of transmitters disposed on the ground from time to time and raised by the use of pylons. A mobile moves between these transmitters on the ground.

Lors de son déplacement le long de l'axe de transport, ce mobile est en communication avec l'émetteur qui se trouve immédiatement en amont. En s'éloignant de cet émetteur amont, le signal reçu depuis cet émetteur diminue progressivement jusqu'à devenir inexploitable. Cependant, simultanément, le signal reçu en provenance de l'émetteur aval augmente puisque sa distance au mobile décroît. Un transfert de communication doit s'établir afin que le mobile transfère sa communication, devenue inopérante, depuis l'émetteur aval vers l'émetteur amont. Cette étape s'appelle un « handover » dans un réseau cellulaire de communication.During its movement along the transport axis, this mobile is in communication with the transmitter which is immediately upstream. By moving away from this upstream transmitter, the signal received from this transmitter gradually decreases until it becomes unusable. However, simultaneously, the signal received from the downstream transmitter increases since its distance to the mobile decreases. A transfer of communication must be established so that the mobile transfers its communication, become inoperative, from the downstream transmitter to the upstream transmitter. This step is called a "handover" in a cellular communication network.

Afin d'assurer cette communication avec la station amont et, simultanément cette surveillance du niveau de réception du signal émis par l'émetteur aval, le récepteur doit utiliser deux antennes pointées respectivement vers l'avant et l'arrière pointant au-dessus de l'horizon en direction des antennes sur pylônes.In order to ensure this communication with the upstream station and at the same time this monitoring of the reception level of the signal emitted by the downstream transmitter, the receiver must use two antennas pointing respectively towards the front and the rear pointing above the antenna. horizon towards antennas on pylons.

Dans le cas d'un système de communication ferroviaire, le dispositif de communication fixe est disposé au sol ou en voûte de tunnel le long de cette voie. Le dispositif de communication fixe peut être omnidirectionnel, c'est-à-dire qui rayonne ou reçoit un signal électromagnétique dans toutes les directions de l'espace. Le dispositif de communication peut être également directionnel, c'est-à-dire que les signaux ont un gain élevé dans une direction de l'espace : le diagramme de rayonnement montre un lobe principal d'orientation donnée. Une antenne directionnelle possédant le même diagramme de rayonnement optimise fortement la communication avec ce dernier dispositif.In the case of a rail communication system, the fixed communication device is disposed on the ground or in a tunnel vault along this path. The fixed communication device may be omnidirectional, that is, which radiates or receives an electromagnetic signal in all directions of space. The communication device may also be directional, i.e., the signals have a high gain in one direction of space: the radiation pattern shows a given main lobe. A directional antenna having the same radiation pattern greatly optimizes communication with the latter device.

En milieu de propagation « ouvert », le dispositif de communication au sol sera par exemple constitué d'émetteurs / récepteurs directifs. En milieu de propagation « fermé » comme par exemple dans un réseau métropolitain, le dispositif de communication au sol sera par exemple un guide d'ondes.In "open" propagation medium, the ground communication device will for example consist of directional transmitters / receivers. In the "closed" propagation medium, for example in a metropolitan network, the ground communication device will for example be a waveguide.

Un dispositif à guide d'ondes au sol doit fonctionner à des fréquences très élevées, supérieures au gigahertz (GHz), afin de conduire à une réalisation mécanique d'encombrement compatible avec son utilisation à la voie. L'utilisation de ces hyperfréquences permet d'assurer toutes les communications sol-trains envisagées. Ces fréquences élevées correspondent à des longueurs d'ondes dans l'air de l'ordre de 5 à 20 cm (1,5 GHz à 6 GHz et au-delà). De ce fait, le guide d'ondes à la voie s'avère souvent loin -en termes de nombre de longueurs d'ondes- de cette antenne embarquée sur le train. Ceci conduit à un rayonnement électromagnétique de type champ lointain pour lequel des diagrammes de rayonnement peuvent être calculés théoriquement et mesurés expérimentalement.A ground waveguide device must operate at very high frequencies, higher than gigahertz (GHz), in order to lead to a mechanical construction of space compatible with its use at the track. The use of these microwaves makes it possible to ensure all the envisaged ground-train communications. These high frequencies correspond to wavelengths in the air of the order of 5 to 20 cm (1.5 GHz to 6 GHz and beyond). As a result, the waveguide at the track is often far in terms of number of wavelengths of this antenna embedded on the train. This leads to far-field electromagnetic radiation for which radiation patterns can be calculated theoretically and measured experimentally.

Comme le véhicule se déplace dans deux sens opposés le long de l'axe de transport (à 0° et à 180°, en supposant que l'axe de la voie est disposé à 0°), l'antenne d'émission / réception doit pouvoir communiquer avec le dispositif de communication à la voie dans les deux sens.As the vehicle moves in two opposite directions along the transport axis (at 0 ° and 180 °, assuming that the track axis is at 0 °), the transmit / receive antenna must be able to communicate with the communication device at the lane in both directions.

Il est connu du document US 6,091,372 un système de communication entre une ligne de transmission à la voie et une ligne de transmission embarquée sur un véhicule ferroviaire, de types câbles rayonnants. Le principe développé dans ce document s'apparente à un couplage entre lignes de propagation rayonnantes, la ligne de transmission embarquée sur le véhicule faisant office d'antenne étant longue de plusieurs mètres. Aux fréquences exploitées par les câbles rayonnants (généralement vers 500 MHz) et pour les distances « câble rayonnant embarqué - câble rayonnant au sol » (ou en voûte de tunnel) de l'ordre du mètre, la communication s'effectue essentiellement en champ électromagnétique proche, soit à un faible nombre de longueurs d'ondes.It is known from the document US 6,091,372 a communication system between a line transmission line and a transmission line embedded on a railway vehicle, radiating cable types. The principle developed in this document is similar to a coupling between radiating propagation lines, the transmission line embedded on the vehicle acting as an antenna being several meters long. At the frequencies used by radiating cables (generally around 500 MHz) and for distances of "on-board radiating cable - ground-radiating cable" (or tunnel vault) of the order of one meter, communication is essentially effected in the electromagnetic field close, or at a low number of wavelengths.

Un couplage entre lignes de transmission orientées favorablement l'une par rapport à l'autre s'avère nettement plus important qu'un couplage en orientation opposée. Pour recevoir un signal maximum et selon l'orientation du train par rapport à la voie, il s'avère donc nécessaire d'inverser par un commutateur manuel les positions terminales relatives des générateur / récepteur et charges sur ce câble rayonnant embarqué sur le train.A coupling between transmission lines favorably oriented relative to each other is clearly more important than coupling in opposite orientation. To receive a maximum signal and according to the orientation of the train relative to the track, it is therefore necessary to reverse by a manual switch the relative terminal positions of the generator / receiver and loads on the radiating cable embedded on the train.

Un inconvénient de ce dispositif est la longueur des lignes de propagation nécessaires à ce type de couplage, soit une antenne-train de quelques mètres de long. Un autre inconvénient réside dans la nécessité de commuter l'orientation des lignes de transmission selon le sens de circulation des véhicules pour augmenter le couplage et améliorer la communication entre le véhicule et le dispositif à la voie.A disadvantage of this device is the length of the propagation lines necessary for this type of coupling, ie a train antenna a few meters long. Another disadvantage is the need to switch the orientation of the transmission lines according to the direction of traffic of the vehicles to increase the coupling and improve the communication between the vehicle and the device to the track.

Le dispositif de la présente invention a pour objet une antenne de réception et/ou d'émission directionnelle embarquée à bord d'un véhicule qui puisse communiquer de manière fiable et stable avec un dispositif de communication directionnel fixe disposé à la voie, cette antenne étant de conception simple, peu encombrante et indépendante du sens de circulation du véhicule.The device of the present invention relates to a receiving antenna and / or directional transmission on board a vehicle that can communicate reliably and stably with a fixed directional communication device disposed to the track, this antenna being simple design, compact and independent of the direction of traffic of the vehicle.

Conformément à l'invention, un dispositif de communication est défini par les caractéristiques de la revendication 1.According to the invention, a communication device is defined by the features of claim 1.

L'antenne de réception et/ou d'émission peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :

  • le nombre de fentes est compris entre cinq et dix,
  • la face émissive du guide d'ondes de ladite antenne est verticale et est disposée parallèlement à une face émissive du dispositif de communication fixe disposé le long de la voie,
  • l'axe du guide d'ondes de l'antenne est parallèle à l'axe du dispositif de communication fixe,
  • l'antenne est distante du dispositif de communication continu fixe d'au moins quatre longueurs d'ondes dudit signal hyperfréquence propagé dans l'air,
  • l'antenne est disposée d'un seul côté du véhicule,
  • l'antenne est disposée de chaque côté du véhicule,
  • l'antenne est recouverte d'un radôme.
The receiving and / or transmitting antenna may also have one or more of the following characteristics considered individually or in any technically feasible combination:
  • the number of slots is between five and ten,
  • the emitting face of the waveguide of said antenna is vertical and is arranged parallel to an emitting face of the fixed communication device arranged along the track,
  • the axis of the waveguide of the antenna is parallel to the axis of the fixed communication device,
  • the antenna is distant from the fixed continuous communication device of at least four wavelengths of said microwave signal propagated in the air,
  • the antenna is on one side of the vehicle,
  • the antenna is arranged on each side of the vehicle,
  • the antenna is covered with a radome.

Grâce à l'invention, chaque fente de l'antenne rayonne un signal présentant deux lobes principaux dans deux directions symétriques par rapport à un plan perpendiculaire au plan de cette fente. Le guide d'ondes est facile à fabriquer, simple à utiliser et fiable, et la double directivité permet de s'affranchir du sens de circulation du véhicule sans intervention particulière. L'environnement de propagation de la communication sol-trains étant caractérisé par des réflexions intenses sur les différents obstacles environnants (trains, parois...), une antenne directive, focalisant son rayonnement vers le guide d'ondes à la voie, limite l'impact de ces réflexions multiples sur la qualité de la liaison et permet ainsi d'augmenter la distance « antenne embarquée sur le train - guide d'ondes à la voie » exploitable en pratique.Thanks to the invention, each slot of the antenna radiates a signal having two main lobes in two directions symmetrical with respect to a plane perpendicular to the plane of this slot. The waveguide is easy to manufacture, simple to use and reliable, and the dual directivity makes it possible to overcome the direction of traffic of the vehicle without special intervention. The propagation environment of the ground-train communication being characterized by intense reflections on the various surrounding obstacles (trains, walls, etc.), a directional antenna, focusing its radiation towards the waveguide at the track, limits the the impact of these multiple reflections on the quality of the link and thus makes it possible to increase the distance "antenna embedded on the train waveguide to the track" exploitable in practice.

De plus, depuis le guide d'ondes à la voie et au regard de l'antenne conforme à l'invention, l'amplitude des signaux s'avère remarquablement constante et ne nécessite pas de « lissage » particulier des signaux. Une focalisation particulière, symétrique dans deux orientations particulières de l'espace, et uniquement dans ces directions correspondantes au rayonnement maximum du guide d'ondes à la voie s'avère particulièrement favorable afin d'optimiser les bilans de transmission sol-trains.In addition, from the waveguide to the track and in view of the antenna according to the invention, the amplitude of the signals is remarkably constant and does not require any particular "smoothing" of the signals. A particular focus, symmetrical in two particular orientations of the space, and only in these directions corresponding to the maximum radiation of the waveguide to the track is particularly favorable in order to optimize the ground-train transmission balances.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit, description faite en liaison avec les dessins dans lesquels:

  • La figure 1 est une vue schématique du dispositif de communication d'un réseau ferroviaire,
  • la figure 2 représente le diagramme de rayonnement mesuré en azimut du dispositif de communication, associé à une représentation physique du guide d'ondes,
  • la figure 3 représente une vue en perspective de l'antenne à guide d'ondes conforme à l'invention,
  • la figure 4 représente le diagramme de rayonnement propre de l'antenne conforme à l'invention,
  • la figure 5 représente un véhicule équipé d'une antenne conforme à l'invention, changeant de sens et de voie au moyen d'une boucle entre les deux voies,
  • la figure 6 représente un véhicule équipé de deux antennes conformes à l'invention, changeant de sens et de voie au moyen d'une voie de garage.
Other objects, features and advantages of the invention will become apparent on reading the description which follows, a description given in connection with the drawings in which:
  • The figure 1 is a schematic view of the communication device of a rail network,
  • the figure 2 represents the radiation pattern measured in azimuth of the communication device, associated with a physical representation of the waveguide,
  • the figure 3 represents a perspective view of the waveguide antenna according to the invention,
  • the figure 4 represents the own radiation pattern of the antenna according to the invention,
  • the figure 5 represents a vehicle equipped with an antenna according to the invention, changing direction and lane by means of a loop between the two lanes,
  • the figure 6 represents a vehicle equipped with two antennas according to the invention, changing direction and way by means of a siding.

La figure 1 est une vue schématique du dispositif de communication d'un réseau ferroviaire, par exemple une ligne de métropolitain.
Un dispositif de communication directionnel 1 permettant au poste de contrôle de la ligne de communiquer avec les véhicules A, B circulant sur les voies 2, 3 (et vice-versa, permettant au véhicule de communiquer avec le poste de contrôle) est disposé par exemple entre les deux voies 2, 3. Ces informations peuvent être par exemple des informations de commande automatique des véhicules, des informations concernant la signalisation de la ligne ou encore des informations vidéos ou audio du véhicule vers le poste de contrôle. Elles sont contenues dans des signaux hyperfréquences symbolisés par les flèches pleines S1 et S2. Alternativement, le dispositif de communication directionnel peut être disposé de chaque côté de la voie.
The figure 1 is a schematic view of the communication device of a railway network, for example a metropolitan line.
A directional communication device 1 allowing the control station of the line to communicate with the vehicles A, B traveling on the tracks 2, 3 (and vice versa, allowing the vehicle to communicate with the control station) is arranged for example between the two channels 2, 3. This information can be for example automatic control information of vehicles, information concerning the signaling of the line or video or audio information from the vehicle to the control station. They are contained in microwave signals symbolized by the full arrows S1 and S2. Alternatively, the directional communication device may be disposed on each side of the track.

Les signaux hyperfréquences sont injectés dans le dispositif de communication 1, constitué d'au moins un guide d'ondes. Le guide d'ondes se présente sous la forme d'un tube creux de section rectangulaire comportant quatre faces. Il est disposé au sol ou en voûte de tunnel sur une face non émissive.The microwave signals are injected into the communication device 1, consisting of at least one waveguide. The waveguide is in the form of a hollow tube of rectangular section with four faces. It is arranged on the ground or tunnel vault on a non-emissive side.

Chaque guide d'ondes possède deux faces émissives verticales et opposées 1a et 1 b, chaque face étant percée d'un réseau de fentes perpendiculaires à l'axe du guide, disposées sur les grandes faces du guide, dont la grande dimension est bien plus petite que la longueur d'onde des signaux qui se propagent dans le guide d'ondes. Cette caractéristique permet de ne prélever à chaque fente qu'une très faible partie de l'énergie du signal propagé. Par conséquent, le signal n'étant que très peu atténué par les émissions vers l'extérieur du guide à travers les fentes, le guide d'onde à la voie peut avoir une longueur de plusieurs centaines de mètres.Each waveguide has two vertical and opposite emitting faces 1a and 1b, each face being pierced with a network of slots perpendicular to the axis of the guide, arranged on the large faces of the guide, the large dimension of which is much greater. small as the wavelength of the signals propagating in the waveguide. This characteristic makes it possible to take at each slot only a very small part of the energy of the propagated signal. Consequently, since the signal is only slightly attenuated by the emissions towards the outside of the guide through the slots, the waveguide at the track can have a length of several hundred meters.

Le dispositif de communication est bi-directionnel dans le sens où les fentes des deux faces peuvent également réceptionner les signaux hyperfréquences provenant des antennes 4 montées à bord des véhicules A, B.The communication device is bi-directional in the sense that the slots of the two faces can also receive the microwave signals from the antennas 4 mounted on board vehicles A, B.

La figure 2 montre le diagramme de rayonnement mesuré en azimut du guide d'ondes 1 du dispositif de communication, disposé sur le sol sur une petite face non-émissive. Le guide d'ondes 1 à double réseau de fentes possède un diagramme de rayonnement directif en champ lointain qui présente deux lobes principaux L1 et L2 symétriques par rapport à l'axe du guide (axe 0°). L'orientation de chaque lobe fait un angle alpha avec l'axe du guide d'ondes d'environ 30°. L'antenne d'émission / réception embarquée à bord du véhicule doit, pour communiquer avec un tel guide d'ondes, être également directionnelle. Elle doit ainsi présenter un diagramme de rayonnement présentant une directivité permettant le meilleur transfert possible d'énergie entre le guide d'ondes à la voie et cette antenne. En d'autres termes, le diagramme de rayonnement de l'antenne doit présenter au moins un lobe principal de rayonnement dont l'orientation est identique à celle d'un des lobes principaux du diagramme de rayonnement du guide d'ondes.The figure 2 shows the radiation pattern measured in azimuth of the waveguide 1 of the communication device, placed on the ground on a small non-emissive face. The double grating waveguide 1 has a far-field directional radiation pattern which has two main lobes L 1 and L 2 symmetrical about the axis of the guide (0 ° axis). The orientation of each lobe is at an angle alpha with the waveguide axis of about 30 °. The transmitting / receiving antenna on board the vehicle must, in order to communicate with such a waveguide, also be directional. It must thus have a radiation pattern having a directivity allowing the best possible transfer of energy between the waveguide to the track and this antenna. In other words, the radiation pattern of the antenna must have at least one main lobe of radiation whose orientation is identical to that of one of the main lobes of the waveguide radiation pattern.

Par exemple, pour communiquer efficacement avec le guide d'ondes présentant un lobe principal dirigé à 30° par rapport à l'axe du guide d'ondes, l'antenne embarquée sur le véhicule doit également présenter un angle de départ de 30° afin de recevoir et d'émettre efficacement des signaux dans cette direction privilégiée de l'espace.For example, to effectively communicate with the waveguide having a main lobe directed at 30 ° with respect to the axis of the waveguide, the antenna on the vehicle must also have a starting angle of 30 ° in order to to receive and transmit signals efficiently in this privileged direction of space.

Pour s'affranchir du sens de circulation du véhicule sur l'une ou l'autre des deux voies encadrant le guide d'ondes 1 à la voie, l'antenne embarquée 4 doit être « symétrique », c'est-à-dire que chaque fente émissive doit rayonner de façon symétrique par rapport à un plan passant en son centre et perpendiculaire à l'axe longitudinal du guide. En d'autres termes, et pour reprendre l'exemple ci-dessus, chaque fente doit présenter un lobe dont l'orientation est à 30° et un lobe dont l'orientation est à 150° (180° moins 30°).To overcome the direction of vehicle traffic on one or the other of the two channels flanking the waveguide 1 to the track, the embedded antenna 4 must be "symmetrical", that is to say that each emitting slot must radiate symmetrically with respect to a plane passing in its center and perpendicular to the longitudinal axis of the guide. In other words, and to use the example above, each slot must have a lobe whose orientation is at 30 ° and a lobe whose orientation is at 150 ° (180 ° minus 30 °).

Une antenne comportant ces deux caractéristiques (directionnelle et symétrique) est l'antenne 4 d'émission et / ou de réception conforme à l'invention représentée par la figure 3. Elle est constituée d'un guide d'ondes de section rectangulaire dont l'une des grandes faces de longueur b est percée de sept fentes 5, disposées perpendiculairement à l'axe longitudinal du guide. Le guide d'ondes est fermé à une extrémité par une charge 7 coaxiale d'impédance de 50 ohms, et son autre extrémité est reliée via une liaison coaxiale 6 à un récepteur (non représenté). La grande dimension D des fentes 5 est proche de la demi-longueur d'onde du signal hyperfréquence propagé dans le guide d'ondes mais inférieure, de manière à ne pas prélever trop d'énergie depuis le signal qui se propage dans le guide.An antenna comprising these two characteristics (directional and symmetrical) is the transmitting and / or receiving antenna 4 according to the invention represented by the figure 3 . It consists of a waveguide of rectangular section, one of the large faces of length b is pierced by seven slots 5, arranged perpendicularly to the longitudinal axis of the guide. The waveguide is closed at one end by a 50 ohm coaxial impedance load 7, and its other end is connected via a coaxial link 6 to a receiver (not shown). The large dimension D of the slots 5 is close to the half-wavelength of the microwave signal propagated in the waveguide but lower, so as not to take too much energy from the signal that propagates in the guide.

La distance E séparant le centre de deux fentes 5 successives est voisine d'une demi-longueur d'onde du signal propagé dans le guide. Dans un guide d'ondes de section rectangulaire, la relation reliant la longueur d'onde du signal propagé dans ce guide notée λ g, la longueur d'onde du signal propagé dans l'air notée λ et la longueur d'onde de coupure du guide d'ondes (au-dessus de laquelle le guide d'ondes ne propage plus d'énergie) notée λc s'écrit : 1 λ 2 = 1 λ c 2 + 1 λ g 2 .

Figure imgb0001
The distance E separating the center from two successive slots 5 is close to half a wavelength of the signal propagated in the guide. In a waveguide of rectangular section, the relation connecting the wavelength of the signal propagated in this guide denoted λ g , the wavelength of the signal propagated in the air noted λ and the cutoff wavelength of the waveguide (above which the waveguide no longer propagates energy) denoted λ c is written: 1 λ 2 = 1 λ vs 2 + 1 λ boy Wut 2 .
Figure imgb0001

Dans ce guide d'ondes de section rectangulaire, la longueur d'onde de coupure λc est égale à deux fois la grande dimension transversale interne du guide. A titre d'exemple, pour un guide de 10 cm de grand côté interne, on obtient λ c = 20 cm

Figure imgb0002

soit encore une fréquence de coupure basse de 1,5 GHz. Sous cette fréquence, aucun signal ne se propage dans le guide : on obtient avec la formule précédente que λ g tend vers l'infini. Au-dessus de cette fréquence, les signaux commencent à se propager dans le guide avec une faible atténuation.
Dans les mêmes conditions, à 2 GHz, soit une longueur d'onde dans l'air λ de 15 cm, la longueur d'onde λ g des signaux propagés dans le guide, calculée à partir de la formule précédente sera de 22,6 cm. Considérons un réseau de quelques fentes régulièrement espacées et alimentées à une extrémité. L'énergie communiquée à cette extrémité se propage d'une fente à l'autre avec un déphasage proportionnel à cette longueur d'onde guidée λ g. Une partie de cette énergie est rayonnée à l'extérieur du guide et se propage cette fois dans l'air avec une longueur d'onde λ. La combinaison des rayonnements dans l'air de ces fentes alimentées et déphasées par la propagation des signaux dans le guide d'ondes métallique fournit un diagramme de rayonnement possédant l'angle de départ de rayonnement requis, le déphasage d'une demi-longueur d'onde guidée λ g 2
Figure imgb0003
fournit le double lobe de rayonnement nécessaire et présentant des angles de départ identiques pour les orientations 0° et 180°. Ce déphasage est réalisé physiquement par un espacement E entre deux fentes 5 successives voisin de la demi-longueur d'onde guidée.
Pour un espacement E entre fentes 5 plus réduit, un seul lobe de rayonnement est présent, similaire à celui que l'on obtient sur le guide d'ondes 1 à la voie utilisé.
La polarisation du champ électromagnétique obtenue est linéaire, le champ électrique rayonné possède une composante principale orientée selon l'axe longitudinal de l'antenne ou du guide support.In this waveguide of rectangular section, the cut-off wavelength λ c is equal to twice the large internal transverse dimension of the guide. For example, for a guide 10 cm long on the inner side, we obtain λ vs = 20 cm
Figure imgb0002

still a low cutoff frequency of 1.5 GHz. Under this frequency, no signal propagates in the guide: one obtains with the preceding formula that λ g tends towards infinity. Above this frequency, the signals begin to propagate in the guide with low attenuation.
Under the same conditions, at 2 GHz, ie an air wavelength λ of 15 cm, the wavelength λ g of the signals propagated in the guide, calculated from the above formula, will be 22.6 cm. Consider a network of a few regularly spaced slots and fed at one end. The energy communicated at this end propagates from one slot to another with a phase shift proportional to this guided wavelength λ g . Part of this energy is radiated outside the guide and is propagated this time in the air with a wavelength λ. The combination of the radiation in the air of these slots fed and out of phase by the propagation of the signals in the metal waveguide provides a radiation pattern having the required radiation departure angle, the phase shift of half a length of guided wave λ boy Wut 2
Figure imgb0003
provides the necessary double lobe of radiation and having identical starting angles for 0 ° and 180 ° orientations. This phase shift is physically achieved by a spacing E between two successive slots 5 adjacent to the guided half-wavelength.
For a smaller gap spacing E between slots, only one radiation lobe is present, similar to that obtained on waveguide 1 at the channel used.
The polarization of the electromagnetic field obtained is linear, the radiated electric field has a main component oriented along the longitudinal axis of the antenna or the support guide.

Chaque fente 5 pratiquée dans le guide d'ondes possède un petit côté suffisamment grand afin que l'épaisseur de métal du guide d'ondes soit faible vis-à-vis de cette dimension (si l'on considère une épaisseur de métal du guide de 1 mm, on prendra des fentes de 3-4 mm de petit côté afin de pouvoir négliger un autre effet de guide d'ondes introduit par la propagation des signaux au-travers d'une fente très mince, dans l'épaisseur de métal).Each slot 5 formed in the waveguide has a small side sufficiently large so that the metal thickness of the waveguide is small vis-à-vis this dimension (if we consider a thickness of the guide metal 1 mm, we will take slits of 3-4 mm short side in order to neglect another waveguide effect introduced by the propagation of signals through a very thin slot, in the thickness of metal ).

Le gain de l'antenne croît avec le nombre de fentes dont on combine le rayonnement. Sous un nombre minimum de cinq fentes le gain est sous optimal mais peut être suffisant si l'on a un problème d'encombrement d'antenne-train sévère. Au-dessus de dix fentes le gain croit encore un peu mais le lobe de rayonnement devient étroit, concentre l'énergie en un fin faisceau et l'on risque de sortir de la zone adéquate de couverture en cas de débattement de suspension du véhicule trop important (tangage, roulis).The antenna gain increases with the number of slots that combine the radiation. Under a minimum of five slots the gain is suboptimal but may be sufficient if there is a problem of severe antenna-train congestion. Above ten slots gain still slightly increases but the radiation lobe becomes narrow, concentrates the energy into a thin beam and there is a risk of getting out of the appropriate coverage area in case of vehicle suspension travel too much important (pitch, roll).

La figure 4 représente le diagramme propre de l'antenne conforme à l'invention. L'axe longitudinal du guide d'ondes de l'antenne est l'axe à 0°. Deux lobes LA et LB apparaissent clairement à 30° environ et 150° environ, indiquant que l'onde est émise avec un gain équivalent dans ces deux directions favorisées.The figure 4 represents the proper diagram of the antenna according to the invention. The longitudinal axis of the waveguide of the antenna is the axis at 0 °. Two lobes LA and L B appear clearly at about 30 ° and about 150 °, indicating that the wave is emitted with an equivalent gain in these two favored directions.

La face émissive du guide d'ondes de l'antenne est disposée à la verticale et est disposée parallèlement à une face émissive du dispositif de communication continu fixe disposé le long de la voie. En effet, le guide d'ondes du dispositif de communication est disposé sur une face non-émissive, les faces émissives étant disposées à la verticale. La polarisation du rayonnement du guide d'ondes à la voie est identique à celle de l'antenne de réception / émission.The emitting face of the waveguide of the antenna is disposed vertically and is arranged parallel to an emitting face of the fixed continuous communication device arranged along the path. Indeed, the waveguide of the communication device is arranged on a non-emissive face, the emitting faces being arranged vertically. The polarization of the radiation from the waveguide to the channel is identical to that of the receiving / transmitting antenna.

L'antenne est donc disposée sur le véhicule de manière à ce que l'axe longitudinal du guide d'ondes de l'antenne soit parallèle à l'axe longitudinal du guide d'ondes à la voie pour qu'un lobe du diagramme de rayonnement de l'antenne et un lobe du diagramme de rayonnement du guide d'ondes 1 à la voie soient aient une orientation identique.The antenna is thus disposed on the vehicle so that the longitudinal axis of the waveguide of the antenna is parallel to the longitudinal axis of the waveguide at the track so that a lobe of the Antenna radiation and a lobe of the radiation pattern from the waveguide 1 to the channel should have an identical orientation.

L'antenne est montée soit sous la caisse du véhicule si le dispositif de communication 1 est disposé au sol entre les deux voies 2, 3, soit en toiture du véhicule si le dispositif de communication 1 est disposé en voûte de tunnel entre les deux voies 2, 3. La distance entre l'antenne de réception et / ou d'émission et le dispositif de communication 1 est d'au moins quatre longueurs d'ondes du signal hyperfréquence propagé dans l'air car le rayonnement du dispositif de communication vers l'antenne -et vice-versa- s'effectue en champ lointain. L'antenne train peut être installée latéralement, son volume de guide d'ondes intégré dans la caisse, le plan des fentes recouvert d'un radôme affleurant à la surface de la caisse.The antenna is mounted either under the vehicle body if the communication device 1 is placed on the ground between the two tracks 2, 3, or on the roof of the vehicle if the communication device 1 is arranged in a tunnel vault between the two channels 2, 3. The distance between the receiving and / or transmitting antenna and the communication device 1 is at least four wavelengths of the microwave signal propagated in the air because the radiation of the communication device to the antenna-and vice versa-is in the far field. The train antenna can be installed laterally, its waveguide volume integrated in the box, the plane of the slots covered with a radome flush with the surface of the box.

L'antenne est disposée soit d'un seul côté du véhicule, soit des deux côtés du véhicule. En effet, lorsque le véhicule arrive à l'un des terminus de la ligne aller, il se déplace sur la ligne retour parallèle soit par une boucle de rayon large qui lie les extrémités des deux voies, soit en effectuant un aller-retour sur une voie de garage située en amont de la voie retour.The antenna is arranged on one side of the vehicle or on both sides of the vehicle. Indeed, when the vehicle arrives at one of the terminals of the one-way line, it moves on the parallel return line either by a wide-radius loop which links the ends of the two lanes, or by making a round-trip on a siding located upstream of the return lane.

La figure 5 illustre le premier cas de figure : le véhicule A se présente sur la voie retour 3 dans la même configuration que sur la voie aller 2, c'est à dire la cabine de tête en tête. La flèche sur le véhicule symbolise le trajet du véhicule sur la voie. Le guide d'onde 1 disposé à la voie émet les signaux selon deux directions représentées par des triangles L1 et L2. Par simplification, un signal fourni par l'énergie rayonnée de quelques fentes du guide d'ondes 1 seulement est représenté sur la figure 5 mais physiquement, ce signal existe tout le long du guide d'ondes 1. L'antenne 4 montée sur le véhicule présente quant à elle deux lobes LA et LB.The figure 5 illustrates the first case: the vehicle A is on the return lane 3 in the same configuration as the outbound lane 2, that is to say the head-to-head cabin. The arrow on the vehicle symbolizes the path of the vehicle on the track. The waveguide 1 disposed at the channel emits the signals along two directions represented by triangles L 1 and L 2 . For simplicity, a signal provided by the energy radiated from a few slits of the waveguide 1 only is represented on the figure 5 but physically, this signal exists all along the waveguide 1. The antenna 4 mounted on the vehicle has two lobes L A and L B.

Sur la voie aller 2, l'antenne 4 communique avec le guide d'ondes 1 à la voie car le signal émis (ou reçu) par le guide d'ondes 1 dans la zone du lobe L1 a la même orientation que la zone du lobe LB de réception (ou d'émission) de l'antenne 4. Sur la voie retour 3, l'antenne 4 communique avec le guide d'ondes 1 à la voie car le signal émis (ou reçu) par le guide d'ondes 1 dans la zone du lobe L2 a la même orientation que la zone du lobe LA de réception (ou d'émission) de l'antenne 4. Dans cette configuration de fin de ligne, une seule antenne 4 est nécessaire sur le côté du véhicule le plus proche du guide d'onde 1 à la voie.On the forward path 2, the antenna 4 communicates with the waveguide 1 to the channel because the signal transmitted (or received) by the waveguide 1 in the region of the lobe L 1 has the same orientation as the zone the lobe L B receiving (or transmitting) the antenna 4. On the return path 3, the antenna 4 communicates with the waveguide 1 to the channel because the signal transmitted (or received) by the guide 1 in the region of the lobe L 2 has the same orientation as the zone of the lobe LA receiving (or transmitting) the antenna 4. In this end of line configuration, a single antenna 4 is required on the side of the vehicle closest to the waveguide 1 to the track.

La figure 6 illustre le second cas de figure : le véhicule A passe de la voie aller 2 à la voie retour 3 via une voie de garage 20. Il se présente donc dans la configuration inverse de celle de la voie aller 2, c'est à dire la cabine de tête en queue du véhicule (dans ce cas, le véhicule possède généralement une cabine à chaque extrémité qui n'est pas ici figurée). Deux antennes doivent être montées sur les deux côtés du véhicule, car l'antenne 4, montée sur le véhicule de manière à se trouver la plus proche du guide d'ondes 1 à la voie lors du déplacement du véhicule sur la voie aller 2, se retrouve alors du côté le plus éloigné du guide d'ondes 1 à la voie lorsque le véhicule se déplace sur la voie retour 3 en effectuant un aller-retour sur la voie de garage 20.The figure 6 illustrates the second case: the vehicle A passes from the lane 2 to the return lane 3 via a siding 20. It is therefore in the opposite configuration to that of the forward lane 2, that is to say the head cabin at the tail of the vehicle (in this case, the vehicle usually has a cabin at each end which is not shown here). Two antennas must be mounted on both sides of the vehicle, because the antenna 4, mounted on the vehicle so as to be closest to the waveguide 1 to the track when moving the vehicle on the outbound lane 2, is then on the furthest side of the waveguide 1 to the lane when the vehicle moves on the return lane 3 by making a return trip on the siding 20.

Claims (8)

  1. Communication device of a railway network comprising a receive and/or transmit antenna (4) mounted on a vehicle (A, B) moving along at least one track (2, 3) and communicating with a fixed communication device (1) disposed along at least one track (2, 3) by means of microwave signals of given wavelength, characterized in that that the antenna (4) consists of a waveguide of rectangular cross-section of which a large face is drilled with rectangular slots (5) whose large dimension is close to and less than half the wavelength of the said microwave signal (λg) propagated in the waveguide, and in that the spacing between the centre of two successive slots (5) is equal to half the wavelength of the microwave signal (λg) propagated in the waveguide so that the combination of radiations of each slot (5) provides a radiation pattern exhibiting two main lobes in two directions that are symmetric with respect to the plane perpendicular to the longitudinal axis of the waveguide, and in that the fixed communication device (1) consists of at least one waveguide of rectangular cross-section, possessing two vertical and opposite emissive faces (1a, 1b), each face (1a, 1b) being drilled with a network of slots whose large dimension is much smaller than the wavelength of the signal propagated in the waveguide (1).
  2. Communication device according to Claim 1, characterized in that the number of slots (5) is between five and ten.
  3. Communication device according to Claim 1, characterized in that the emissive face of the waveguide (1) of the said antenna (4) is vertical and is disposed parallel to an emissive face of the fixed communication device (1) disposed along the track (2, 3).
  4. Communication device according to Claim 1, characterized in that the axis of the waveguide of the antenna (4) is parallel to the axis of the fixed communication device (1).
  5. Communication device according to Claim 1, characterized in that the antenna (4) is a distance away from the fixed communication device (1) of at least four wavelengths of the microwave signal propagated in air.
  6. Communication device according to Claim 1, characterized in that the antenna (4) is disposed on just one side of the vehicle (A, B).
  7. Communication device according to Claim 1, characterized in that the antenna (4) is disposed on each side of the vehicle (A, B).
  8. Communication device according to Claim 1, characterized in that antenna (4) is covered with a radome.
EP08104087A 2007-05-31 2008-05-26 Waveguide antenna embedded on a railway vehicle Active EP1998403B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0703878A FR2916908B1 (en) 2007-05-31 2007-05-31 WAVEGUIDE ANTENNA TRAINED ON A RAILWAY VEHICLE

Publications (2)

Publication Number Publication Date
EP1998403A1 EP1998403A1 (en) 2008-12-03
EP1998403B1 true EP1998403B1 (en) 2011-05-04

Family

ID=38477265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08104087A Active EP1998403B1 (en) 2007-05-31 2008-05-26 Waveguide antenna embedded on a railway vehicle

Country Status (7)

Country Link
EP (1) EP1998403B1 (en)
CN (1) CN101373860B (en)
AT (1) ATE508492T1 (en)
DE (1) DE602008006627D1 (en)
ES (1) ES2366345T3 (en)
FR (1) FR2916908B1 (en)
SG (1) SG148136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546496A (en) * 2016-06-24 2018-01-05 福特全球技术公司 A kind of more orientation antennas for vehicle communication

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045090B (en) * 2009-10-15 2013-08-21 北京瑞安时代科技有限责任公司 Method and device for realizing seamless coverage of waveguide tube signals
FR2965979B1 (en) * 2010-10-12 2013-06-28 Tech D Ingenierie Et De Cooperation S T I C Soc HIGH-PERFORMANCE SELF-PORTABLE ANTENNA FOR TRANSMITTING AND / OR RECEIVING RADIO WAVES OF IDENTIFICATION
CN102082713B (en) * 2010-12-22 2012-09-26 深圳市华讯方舟科技有限公司 High-speed rail mobile communication system and working method thereof
CN102104410A (en) * 2011-01-18 2011-06-22 京信通信系统(中国)有限公司 High-speed railway microwave communication network
CN102664311B (en) * 2012-05-16 2015-04-29 中电科微波通信(上海)有限公司 Crack wave guide antenna
FR2996401B1 (en) * 2012-10-01 2016-05-06 Jean-Claude Ducasse MOBILE COMMUNICATION INSTALLATION, RADIANT CABLE OF THE SAME, AND METHOD OF EXCHANGING DATA RELATING THERETO
DE102012222471A1 (en) 2012-12-06 2014-06-12 Siemens Aktiengesellschaft vehicle tracking
AT515562B1 (en) * 2014-03-20 2016-01-15 Peter Ing Kuntschitsch Vehicle position-dependent high energy-electromagnetic energy supply between the road and the vehicle
EP3214699B1 (en) * 2016-03-04 2018-06-20 Kabelwerk Eupen AG Improvements in or relating to communications links
AU2017272234B2 (en) 2016-12-20 2021-12-02 Licensys Australasia Pty Ltd An antenna
CN110429375A (en) * 2019-07-05 2019-11-08 惠州市德赛西威智能交通技术研究院有限公司 A kind of broad-band chip integrated waveguide double-slit antenna
DE102019118532A1 (en) 2019-07-09 2021-01-14 Conductix-Wampfler Gmbh Communication system
DE102019118533A1 (en) 2019-07-09 2021-01-14 Conductix-Wampfler Gmbh Communication system
DE102019118531A1 (en) 2019-07-09 2021-01-14 Conductix-Wampfler Gmbh Communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL134603C (en) * 1961-05-16
US3648172A (en) * 1968-10-02 1972-03-07 Sumitomo Electric Industries Circular leaky waveguide train communication system
US4313120A (en) * 1979-07-30 1982-01-26 Ford Aerospace & Communications Corp. Non-dissipative load termination for travelling wave array antenna
CA2239642C (en) * 1997-06-26 2001-05-29 Geza Dienes Antenna for radiating cable-to-vehicle communication systems
CN2746567Y (en) * 2004-11-12 2005-12-14 中国电子科技集团公司第五十研究所 Horizontal polarizing wave guide omnidirectional antenna structure
CN2762372Y (en) * 2004-12-24 2006-03-01 佛山市健博通电讯实业有限公司 Horizontally-polarized waveguide omnidirectional antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546496A (en) * 2016-06-24 2018-01-05 福特全球技术公司 A kind of more orientation antennas for vehicle communication

Also Published As

Publication number Publication date
ES2366345T3 (en) 2011-10-19
DE602008006627D1 (en) 2011-06-16
FR2916908B1 (en) 2011-09-30
CN101373860B (en) 2014-06-04
FR2916908A1 (en) 2008-12-05
EP1998403A1 (en) 2008-12-03
CN101373860A (en) 2009-02-25
SG148136A1 (en) 2008-12-31
ATE508492T1 (en) 2011-05-15

Similar Documents

Publication Publication Date Title
EP1998403B1 (en) Waveguide antenna embedded on a railway vehicle
EP2625741B1 (en) Large-area broadband surface-wave antenna
US20140253403A1 (en) Low Profile Double-Ridged Horn Antenna For Mobile Communications
EP3267528B1 (en) Chip-to-chip interface using microstrip circuit and dielectric waveguide
EP2195877B1 (en) Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas
FR2709833A1 (en) Broadband and low band listening instrument for space applications.
EP2006954B1 (en) Communication device for a railway vehicle
EP2610966B1 (en) Very-thin broadband compact antenna with dual orthogonal linear polarisations operating in the V/UHF bands
EP0467818B1 (en) Transition element between electromagnetic waveguides, especially between a circular waveguide and a coaxial waveguide
EP2042402A1 (en) Radio communication device in a guided transport means
EP1152483B1 (en) Dual-band microwave radiating element
EP2076937A2 (en) Antenna using a pfb (photonic forbidden band) material, and system and method using this antenna
FR3003700A1 (en) ANTENNA RADAR SIGNATURE REDUCTION DEVICE AND ASSOCIATED ANTENNA SYSTEM
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
EP2950457A1 (en) Data communication system, railway system comprising such a communication system and related communication method
FR2801730A1 (en) Broad band aerial for radar use includes scissors configuration limbs with resistive elements at remote ends
EP3155689B1 (en) Flat antenna for satellite communication
CN104919650A (en) A dual antenna
FR2615038A1 (en) Duplexer with waveguide in particular for antennas for transmission and/or reception of electromagnetic waves
EP1287715B1 (en) Radio system in closed environment between mobile telephone system terminals
EP2595239A1 (en) Lead-through antenna with a single- or double-ridge waveguide
Dudley et al. 1.6 Gb/s hybrid wireless-optical leaky feeder system for tunnel applications
WO2010070019A1 (en) Very wideband multidirectional antenna
FR2793364A1 (en) RADIANT CABLE COMMUNICATION SYSTEM FOR PROVIDING CONTROLLED RADIO COVERAGE OF A DETERMINED VOLUME
FR2949166A1 (en) Electronic device for marking e.g. struts of metallic tube during construction of building, has folded dipole type antenna that is realized in manner to generate maximum electric field along longitudinal axis of tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEDDEBAUT, MARC

Inventor name: DUHOT, DENIS

RTI1 Title (correction)

Free format text: WAVEGUIDE ANTENNA EMBEDDED ON A RAILWAY VEHICLE

17P Request for examination filed

Effective date: 20090603

17Q First examination report despatched

Effective date: 20090626

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008006627

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008006627

Country of ref document: DE

Effective date: 20110616

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TRANSPORT SA

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2366345

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110905

BERE Be: lapsed

Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS

Effective date: 20110531

Owner name: ALSTOM TRANSPORT SA

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110805

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

26N No opposition filed

Effective date: 20120207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008006627

Country of ref document: DE

Effective date: 20120207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT SA, LEVALLOIS-PERRET, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPO, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT SA, LEVALLOIS-PERRET, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT SA, LEVALLOIS-PERRET, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Effective date: 20170824

Ref country code: FR

Ref legal event code: TQ

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR

Effective date: 20170824

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ALSTOM TRANSPORT TECHNOLOGIES

Effective date: 20171020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008006627

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008006627

Country of ref document: DE

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Free format text: FORMER OWNERS: ALSTOM TRANSPORT TECHNOLOGIES, SAINT-OUEN, FR; INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE (INRETS), ARCUEIL, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231027

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231212

P06 Withdrawal of the competence of the unified patent court (upc) deleted
P03 Opt-out of the competence of the unified patent court (upc) deleted
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240529

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240524

Year of fee payment: 17