EP1949496B1 - Flat antenna system with a direct waveguide access - Google Patents
Flat antenna system with a direct waveguide access Download PDFInfo
- Publication number
- EP1949496B1 EP1949496B1 EP06819455A EP06819455A EP1949496B1 EP 1949496 B1 EP1949496 B1 EP 1949496B1 EP 06819455 A EP06819455 A EP 06819455A EP 06819455 A EP06819455 A EP 06819455A EP 1949496 B1 EP1949496 B1 EP 1949496B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- line
- sub
- network
- slots
- radiating elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0037—Particular feeding systems linear waveguide fed arrays
- H01Q21/0043—Slotted waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
- H01Q21/0081—Stripline fed arrays using suspended striplines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
Definitions
- the field of the invention is that of telecommunication antennas, and more particularly that of antennas for radio-relay systems (FH antennas).
- FH antennas radio-relay systems
- the invention more specifically relates to a flat antenna for microwave radio systems fed by a waveguide.
- Satellite dishes are commonly used for radio-relay systems.
- a rectangular waveguide is usually connected to a remote cabinet at the rear of the satellite dish to provide radio access to the antenna. It is shown schematically on the figure 1a a satellite dish 1 connected to a waveguide G.
- flat antennas are known to be generally as effective as parabolic antennas.
- Flat antennas are also characterized by their compactness and low wind resistance (especially because of a small thickness) and thus tend to be preferred to satellite dishes.
- An advantage of the printed technology exploited in the context of the flat antenna is its good ability to adapt to coaxial connections, for example those of the SMA-3.5 mm type.
- a flat antenna 2 having a coaxial connector to a waveguide G via a guide-coaxial transition TGC.
- the flat antenna 2 comprises an array of radiating elements integrated in the dielectric substrate of the antenna.
- the antenna 2 more precisely comprises a set of linear subarrays 1 to 4 parallel to each other, each linear subarray a 1 -a 4 consisting of a set of radiating elements 3.
- the radiating elements typically each consist of a conductive square surface having a corner connected to a sub-array feed line b 1 -b 4 (typically in the form of a micro-ribbon line).
- the figure 2 represents more precisely an embodiment of the supply of a flat antenna 2 via a guide-coaxial transition TGC.
- a supply line L (typically a micro-ribbon line) fed by the waveguide via the guide-coaxial transition TGC is arranged transversely to the linear subarray a 1 -a 4 .
- This supply line L thus makes it possible to supply the power supply lines of sub-networks and consequently the radiating elements of all the sub-networks.
- the coaxial connection is effectively fragile and sensitive to galvanic cuts.
- the micro-ribbon feed line L has significant linear losses, generally greater than the losses of the waveguide.
- the subarrays are energized in phase opposition (every 180 °). And it is then necessary to provide means to compensate for +/- 180 ° phase shift.
- the document US 6,509,874 thus shows (see in particular FIG. 3b) a supply of the sub-networks by slots in opposition of phase, and a phase correction carried out by moving the rows of elements. radiating along the power line with an electrical length of +/- 180 °.
- the object of the invention is to propose a flat antenna FH which does not have the drawbacks associated with the use of a coaxial guide transition, while allowing an equiphase supply of all the radiating elements of the same sub-network.
- the invention proposes a flat antenna system comprising at least one sub-array of radiating elements disposed on a face of a substrate superimposed on a ground plane, each sub-network consisting of a plurality radiating elements adapted to be fed by a sub-network supply line to which they are connected, a slot being formed in the ground plane opposite each sub-network supply line, the system comprising in addition to a power transmission line arranged with respect to the ground plane so as to effect electromagnetic coupling by slot between said power transmission line and each of the sub-network supply lines, the system being characterized in that that the power transmission line is arranged to extend obliquely with respect to the subnetwork supply lines.
- a flat antenna 20 having a direct waveguide access G is particularly schematically represented.
- figure 3 there is shown a possible embodiment of a flat antenna system. On this figure 3 , we have taken over, for the common elements with the figure 2 , the same references.
- the system 10 comprises a flat antenna 20 as well as a waveguide G.
- the flat antenna 20 conventionally comprises in itself a flat metal conductive plate constituting a ground plane 5 (at the rear on the figure 3 ), and a substrate in the form of a superimposed dielectric plate and substantially parallel to the ground plate
- a circuit is printed on the face of the substrate opposite the ground plane 5 and has radiating elements 3.
- the antenna 20 comprises a set of linear subarrays a 1 -a 4 disposed on the face of the substrate opposite to the ground plane, parallel to each other, each linear subarray a 1 -a 4 consisting of a set of radiating elements 3 adapted to be powered by a sub-network supply line b 1 -b 4 to which they are connected.
- the supply line is typically a microstrip line ("microstrip" according to the English terminology) printed on the same substrate or on another layer.
- the radiating elements typically consist of a conductive square surface whose apex is connected to the corresponding sub-network supply line b 1 -b 4 , the diagonal of the square starting from this vertex being perpendicular to the supply line b 1 -b 4 corresponding.
- the invention is not limited to a particular form of the radiating elements, nor to a particular connection to the corresponding supply line.
- the radiating elements may thus consist of a conductive surface having the shape of a polygon (for example a triangle or a rectangle) or even a circle.
- the radiating elements may also be supplied at other points of the conductive surface at one of the peaks of said surface, for example along one of the sides or inside the conductive surface.
- a slot F 1 -F 4 is formed in the ground plane 5 next to each sub-network supply line b 1 -b 4 .
- the slots are preferentially identical. Each slot F 1 -F 4 is thus placed transversely to the corresponding supply line.
- the system 10 also comprises a power transmission line G arranged with respect to the ground plane 5 so as to achieve an electromagnetic coupling by slot between said transmission line and each of the subnetwork supply lines.
- the energy transmission line may be a waveguide, or any other type of transmission line, in particular a triplate line.
- the waveguide has for example a waveguide having a rectangular sectional shape. It may also be a waveguide having a U-shape in section.
- Electromagnetic fields propagate in the rectangular cavity of the waveguide from bottom to top in the example of the figure 3 .
- a terminal resistor (not shown) may be provided at an upper plate 11 of the waveguide G.
- wave radiation slots identical to the slits of the ground plane, are made, for example by machining, in the body of the waveguide, in particular on the one of the faces of the waveguide intended to be pressed against the ground plane 5 so that the slits of the ground plane and the slots of the waveguide are superimposed (for these reasons, the same references have been used. to designate all the slots).
- the electromagnetic fields propagating in the space of the guide then radiate, via the superimposed slots made in the ground plane of the antenna and in the face of the waveguide pressed against the ground plane, and come to excite the power lines of the subnetworks.
- the waveguide When the waveguide has a U-shaped section, the waveguide is arranged so that the ground plane 5 closes the waveguide space. The electromagnetic fields propagating in the space of the guide then radiate through the slots in the ground plane of the antenna.
- the antenna structure further comprises a power supply means of the transmission line (not shown), so as to supply electrical energy to said line, this energy propagating inside that and radiating through the slots F 1 -F 4 .
- slots are made on the same face of the waveguide (when a rectangular waveguide is used), and said face is arranged opposite the ground plane of the antenna 20, on the side opposite to the dielectric substrate of the antenna.
- the guide access is secured to the ground plane of the antenna. Access is bein also understood solidarity with the ground plane when it comes close the space of the waveguide.
- a power supply line in the form of a triplate line comprising a conductive line sandwiched between two plane planes triplate line.
- one of the triplate line ground planes coincides with the ground plane of the antenna (in which the slots are made).
- wave radiation slots are formed in one of the triplate line ground planes which is pressed against the ground plane of the antenna so that the slits of the ground plane 5 and those of the ground plane of the triplate line are superimposed.
- the transmission line (here in the form of a waveguide, but this also applies to the triplate embodiment) is arranged so that it extends globally perpendicular to subnetwork supply lines.
- the slots are made in the length of the transmission line (for example in the form of rectangular notches) so as to be positioned perpendicular to the supply lines.
- each sub-network supply line is then excited by the energy radiated by the slots, and then supplies all the radiation elements connected to this line.
- the antenna structure of the figure 2 provides the supply of sub-networks of radiating elements by a transverse feed line L
- the antenna structure according to the invention thus proposes to use a plurality of slots made so as to achieve an electromagnetic coupling between each sub -Network and a section of the power transmission line, the opposite side to the dielectric substrate of the antenna.
- this document does not relate to the supply of an antenna having a circuit on which radiating elements are printed, and therefore does not deal with the supply of such elements.
- this document does not envisage exploiting the radiation of slots to form a coupling between two power transmission lines, and in particular a coupling of the waveguide with radiating element supply lines.
- the flat antenna is a network of radiating elements. In the absence of a weighting of amplitudes of the radiating elements, the level of the side lobes is likely to be about -13 dB.
- the following description relates to two possible embodiments of a weighting of amplitudes of the radiating elements of the flat antenna, in particular for containing the level of secondary lobes, for example at about -20 dB. It will be appreciated that these embodiments are not limited to the scope of the present invention for direct waveguide access by electromagnetic slot coupling between the waveguide and the subnetwork feed lines. It will also be appreciated that these embodiments may be implemented separately or together.
- impedance transformers T are inserted between the radiating elements 3 of the same sub-network in the sub-network supply line b i .
- Transformers T are more precisely provided with transformation ratios corresponding to the progressive attenuations that one wishes to obtain.
- Transformers T are typically quarter-wave or half-wave transformers; they may also be transformers with so-called progressive laws (eg exponential or logarithmic laws).
- the weighting is "integrated" with the radiating elements 3 by varying the surface of said elements.
- the reduction of the surface of a radiating element is accompanied by a reduction in the energy transfer capacity from the radiating element towards the outside, while nevertheless maintaining the same signal level.
- This second embodiment is advantageous in that it allows not to use transformers. These actually produce discontinuities on the subnetwork supply line b i . And these discontinuities generate in their turn a parasitic radiation in responsible for significant cross-component levels in the H-plane of the flat antenna radiation pattern (at approximately -10 dB).
- the subnetwork supply line b i no longer has the discontinuities associated with the use of transformers.
- the different radiating elements 3 of the sub-network are then equalized in that they are all fed in the same way by the supply line b i .
- the radiating elements generally have the form of square conductive plates, on the side / 2, where represents the wavelength guided on the substrate of the printed circuit on which the radiating elements are formed and which corresponds to the main radiation frequency of the antenna.
- a radiating element in the form of a rectangular conductive plate having a length of / 2 and a width of / n, where n is greater than 2.
- the "integrated" weighting is preferably implemented by promoting the radiating elements 3 1 by subnet from the center (with respect to excitation point P in the sub-network power line in the center of the line), and gradually reducing the size of the radiating elements 3 2 , 3 3 as one moves away from the excitation point P, symmetrically with respect to the point P.
- the antenna structure controls the transfer of energy between the two transmission lines (between the waveguide or the line triplate and a subnetwork supply line), i.e., the coupling rate is controlled, by varying the offset of the subnetwork supply line from the center of the subnetwork. slot.
- the slots are identical to each other (for example identical rectangular notches made both in the ground plane and in the body of the rectangular waveguide) and it will be noted that the control of the coupling ratio is performed in the context of the invention without playing on the dimensions of the slots (that is to say, in particular without providing different sizes of slots).
- This control of the coupling ratio is advantageous in that it makes it possible to compensate for the decrease in the power of the electromagnetic fields propagating inside the waveguide (progressive decay towards a terminal end - upper plate 11 of the guide waveform G - of the propagation of energy in the waveguide space) by progressively increasing the coupling rate waveguide / subnetwork supply line in the incoming direction (from the bottom to the top on the figure 3 ).
- a slot F i of length L (actually two superimposed slots when using a rectangular section waveguide, or a triplate line whose ground plane is pressed against the ground plane of the antenna) coming to excite a subnetwork supply line b i . It is known that the distribution of currents along a half-wavelength slot has a maximum value at the center and decreasing towards the ends.
- FIG. 5a On the figure 5a three possible positions of the line b i with respect to the slot F i are represented.
- the point b illustrates the case where the line b i is placed perpendicular to the slot F i at the center of the slot.
- the points a and c illustrate cases where the b i is placed perpendicular to the slot F i being offset with respect to the center of the slot. In particular the point c is more offset from the center of the slot than is the point a.
- the figure 6 illustrates the advantageous embodiment of a flat antenna system according to the invention according to which a control of the coupling ratio between the power transmission line and the various supply lines is carried out.
- the transmission line here waveguide G
- the transmission line has a series of oblique slots F 1 -F 4 , and is here arranged slightly obliquely with respect to the supply lines of the sub-networks so that the slots of the waveguide are superimposed on the slits of the ground plane and thus positioned perpendicularly to the supply lines, while gradually varying, from one subnetwork supply line to the other, the coupling ratio between the waveguide and power line.
- the coupling ratio increases from one feed line to the other in the incoming direction (from bottom to top on the figure 6 ).
- crosses are shown the positioning of each feed line relative to the corresponding slot. Initially, for the first slot from entering the waveguide in the incoming direction, the cross is moved away from the center of the slot. A weak coupling therefore takes place.
- the cross progressively approaches the center of the corresponding slot, and the coupling ratio thus increases progressively.
- the cross coincides with the center of the corresponding slot, the coupling rate is then maximum.
- the arrangement according to the invention of the waveguide oblique with respect to the supply lines of the sub-networks, as illustrated by the figure 6 , is further adapted to allow a supply of all the radiating elements of the same sub-network with the same phase (equiphase power supply).
- the two types of transmission lines have different dielectric media.
- the wavelength in the substrate of low losses of the antenna is of the order of 0.7 to 0.8 times the wavelength in the free space.
- the wavelength in the free space is close to the wavelength in the waveguide.
- the gap between the radiating elements does not exceed about 0.8 length. wave in free space.
- said line which is 0.8 wavelength in the vacuum between two radiating elements, has an electric length of one wavelength in the dielectric between two radiating elements, allowing the supply of all elements with the same phase.
- the positioning of the waveguide obliquely with respect to the power supply lines of the sub-networks makes it possible to achieve at a gap of one wavelength in the vacuum, and therefore an equi-phase power supply between the sub-networks, while leaving a Vertical spacing between sub-array lines of approximately 0.8 wavelengths.
- the oblique positioning is further advantageous in that it allows to machine the body of the waveguide so as to practice oblique slots (the feed lines will then be perpendicular to the slots, as is schematically illustrated on the figure 5a ), which allows to obtain an optimal distribution of the currents on the slots, resulting from the propagation modes of the electromagnetic fields inside the waveguide.
- An application that will be made of the antenna system according to the invention relates to transmissions in the band of 22.1 to 23.1 GHz, but the invention is of course in no way limited to this particular range of frequencies.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
Le domaine de l'invention est celui des antennes de télécommunication, et plus particulièrement celui des antennes pour faisceaux hertziens (antennes FH).The field of the invention is that of telecommunication antennas, and more particularly that of antennas for radio-relay systems (FH antennas).
L'invention concerne plus précisément une antenne plate pour faisceaux hertziens alimentée par un guide d'ondes.The invention more specifically relates to a flat antenna for microwave radio systems fed by a waveguide.
Les antennes paraboliques sont couramment utilisées pour les faisceaux hertziens. Un guide d'ondes rectangulaire est généralement connecté à un coffret déporté à l'arrière de l'antenne parabolique pour réaliser l'accès radio électrique de l'antenne. On a représenté de manière schématique sur la
A surface équivalente, les antennes plates sont connues pour être globalement aussi efficaces que les antennes paraboliques. Les antennes plates sont en outre caractérisées par leur compacité et leur faible prise au vent (notamment du fait d'une faible épaisseur) et tendent ainsi à être préférées aux antennes paraboliques.At equivalent surface, flat antennas are known to be generally as effective as parabolic antennas. Flat antennas are also characterized by their compactness and low wind resistance (especially because of a small thickness) and thus tend to be preferred to satellite dishes.
Un avantage de la technologie imprimée exploitée dans le cadre de l'antenne plate est sa bonne capacité d'adaptation aux connexions coaxiales, par exemple celles du type SMA - 3,5 mm. Comme cela est schématiquement représenté sur la
De manière classiquement connue en soi, et comme cela est représenté sur la
L'antenne 2 comprend plus précisément un ensemble de sous-réseaux linéaires a1-a4 parallèles entre eux, chaque sous-réseau linéaire a1-a4 étant constitué d'un ensemble d'éléments rayonnants 3. Les éléments rayonnants sont typiquement chacun constitués d'une surface carrée conductrice dont un coin est relié à une ligne d'alimentation de sous-réseau b1-b4 (typiquement sous la forme d'une ligne micro-ruban).The
La
La solution de la
La connectique coaxiale est effectivement fragile et sensible aux coupes galvaniques. En outre, la ligne d'alimentation micro-ruban L présente des pertes linéiques importantes, généralement supérieures aux pertes du guide d'ondes.The coaxial connection is effectively fragile and sensitive to galvanic cuts. In addition, the micro-ribbon feed line L has significant linear losses, generally greater than the losses of the waveguide.
Il est connu, par exemple du document
Toutefois, avec un tel agencement orthogonal, les sous-réseaux sont alimentés en opposition de phase (tous les 180°). Et il s'avère alors nécessaire de prévoir des moyens pour compenser les +/- 180° de déphasage.However, with such an orthogonal arrangement, the subarrays are energized in phase opposition (every 180 °). And it is then necessary to provide means to compensate for +/- 180 ° phase shift.
Le document
Une autre solution pour la correction de phase est présentée dans le document
L'invention a pour objectif de proposer une antenne plate FH qui ne présente pas les inconvénients liés à l'utilisation d'une transition guide coaxial, tout en permettant une alimentation equiphase de tous les éléments rayonnants d'un même sous-réseau.The object of the invention is to propose a flat antenna FH which does not have the drawbacks associated with the use of a coaxial guide transition, while allowing an equiphase supply of all the radiating elements of the same sub-network.
A cet effet, l'invention propose un système d'antenne plate comportant au moins un sous-réseau d'éléments rayonnants disposé sur une face d'un substrat superposé à un plan de masse, chaque sous-réseau étant constitué d'une pluralité d'éléments rayonnants aptes à être alimentés par une ligne d'alimentation de sous-réseau à laquelle ils sont reliés, une fente étant pratiquée dans le plan de masse en regard de chaque ligne d'alimentation de sous-réseau, le système comportant en outre une ligne de transmission d'énergie agencée par rapport au plan de masse de manière à réaliser un couplage électromagnétique par fente entre ladite ligne de transmission d'énergie et chacune des lignes d'alimentation de sous-réseau, le système étant caractérisé en ce que la ligne de transmission d'énergie est agencée pour s'étendre en oblique par rapport aux lignes d'alimentation de sous-réseaux.For this purpose, the invention proposes a flat antenna system comprising at least one sub-array of radiating elements disposed on a face of a substrate superimposed on a ground plane, each sub-network consisting of a plurality radiating elements adapted to be fed by a sub-network supply line to which they are connected, a slot being formed in the ground plane opposite each sub-network supply line, the system comprising in addition to a power transmission line arranged with respect to the ground plane so as to effect electromagnetic coupling by slot between said power transmission line and each of the sub-network supply lines, the system being characterized in that that the power transmission line is arranged to extend obliquely with respect to the subnetwork supply lines.
Certains aspects préférés, mais non limitatifs, de ce système sont les suivants :
- la ligne de transmission d'énergie est un guide d'ondes rectangulaire dont une face est plaquée contre le plan de masse, et des fentes de rayonnement d'onde sont pratiquées dans ladite face du guide d'ondes de manière à ce que les fentes du plan de masse et les fentes du guide d'ondes soient superposées ;
- la ligne de transmission d'énergie est un guide d'ondes ayant une forme de U en section, et ledit guide d'ondes est agencé de manière à ce que le plan de masse ferme l'espace du guide d'ondes ;
- la ligne de transmission d'énergie est une ligne triplaque comprenant une ligne conductrice prise en sandwich entre deux plans de masse de ligne triplaque, des fentes de rayonnement d'onde étant pratiquées dans celui des plans de masse de ligne triplaque qui est plaqué contre ledit plan de masse de manière à ce que les fentes du plan de masse et les fentes de la ligne triplaque soient superposées ;
- la ligne de transmission d'énergie est une ligne triplaque comprenant une ligne conductrice prise en sandwich entre deux plans de masse de ligne triplaque, et en ce que l'un des plans de masse de la ligne triplaque est confondue avec ledit plan de masse ;
- le système comprend une pluralité de sous-réseaux linéaires parallèles entre eux et en ce que les fentes pratiquées dans le plan de masse sont positionnées verticalement aux lignes d'alimentation ;
- les fentes pratiquées dans la ligne de transmission sont des entailles pratiquées en oblique dans la longueur de la ligne de transmission ;
- dans le système, le positionnement de chaque ligne d'alimentation par rapport à la fente correspondante est réalisé de manière à contrôler le taux de couplage entre la ligne de transmission d'énergie et ladite ligne d'alimentation ;
- chaque ligne d'alimentation de sous-réseau comporte des moyens de pondération des amplitudes de rayonnement des éléments rayonnants du sous-réseau ;
- les moyens de pondération comprennent des transformateurs d'impédance intercalés entre les éléments rayonnants ;
- la taille des éléments rayonnants d'un sous-réseau est pondérée de manière à réaliser une pondération des amplitudes de rayonnement desdits éléments rayonnants ;
- la pondération de la taille d'un élément rayonnant sous la forme d'une surface conductrice consiste à réduire l'une des dimensions caractéristiques de ladite surface ; et
- la ligne d'alimentation d'un sous-réseau d'éléments rayonnants est une ligne micro-ruban.
- the energy transmission line is a rectangular waveguide, one side of which is pressed against the ground plane, and wave radiation slots are formed in said waveguide face so that the slots the ground plane and the waveguide slots are superimposed;
- the energy transmission line is a U-shaped waveguide in section, and said waveguide is arranged so that the ground plane closes the waveguide space;
- the energy transmission line is a triplate line comprising a conductive line sandwiched between two ground planes of the strip line, wave radiation slots being made in the plane of the triplate line ground planes which is pressed against said ground plane so that the slits of the ground plane and the slots of the triplate line are superimposed;
- the energy transmission line is a triplate line comprising a conductive line sandwiched between two plane planes of triplate line, and in that one of the ground planes of the triplate line coincides with said ground plane;
- the system comprises a plurality of linear subarrays parallel to each other and in that the slots in the ground plane are vertically positioned at the power lines;
- the slots in the transmission line are notches cut obliquely along the length of the transmission line;
- in the system, the positioning of each supply line relative to the corresponding slot is performed to control the coupling ratio between the power transmission line and said power line;
- each subnetwork supply line comprises means for weighting the radiation amplitudes of the radiating elements of the sub-network;
- the weighting means comprise impedance transformers interposed between the radiating elements;
- the size of the radiating elements of a sub-network is weighted so as to weight the radiation amplitudes of said radiating elements;
- weighting the size of a radiating element in the form of a conductive surface comprises reducing one of the characteristic dimensions of said surface; and
- the supply line of a sub-array of radiating elements is a micro-ribbon line.
D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels, outre les
- la
figure 1c représente de manière schématique une antenne plate disposant d'un accès direct en guide d'ondes ; - la
figure 3 représente un mode de réalisation possible d'un système d'antenne plate ; - les
figures 4a et 4b illustrent différentes manières de réaliser une pondération d'amplitudes des éléments rayonnants ; - les
figures 5a et 5b illustrent le couplage par fente entre un guide d'ondes et une ligne d'alimentation en fonction de la position de la ligne par rapport au centre de la fente ; - la
figure 6 représente un mode de réalisation avantageux d'un système d'antenne plate selon l'invention.
- the
figure 1c schematically represents a flat antenna having a direct waveguide access; - the
figure 3 represents a possible embodiment of a flat antenna system; - the
Figures 4a and 4b illustrate different ways of weighting amplitudes of the radiating elements; - the
Figures 5a and 5b illustrate the slit coupling between a waveguide and a feed line as a function of the position of the line relative to the center of the slot; - the
figure 6 represents an advantageous embodiment of a flat antenna system according to the invention.
En référence à la
Le système 10 comporte une antenne plate 20 ainsi qu'un guide d'ondes G.The
L'antenne plate 20 comprend de manière classique en soi une plaque conductrice métallique plane constituant un plan de masse 5 (à l'arrière sur la
Un circuit est imprimé sur la face du substrat opposée au plan de masse 5 et comporte des éléments rayonnants 3.A circuit is printed on the face of the substrate opposite the
L'antenne 20 comprend un ensemble de sous-réseaux linéaires a1-a4 disposés sur la face du substrat opposée au plan de masse, parallèles entre eux, chaque sous-réseau linéaire a1-a4 étant constitué d'un ensemble d'éléments rayonnants 3 aptes à être alimentés par une ligne d'alimentation de sous-réseau b1-b4 à laquelle ils sont reliés. La ligne d'alimentation est typiquement une ligne micro-ruban (« microstrip » selon la terminologie anglo-saxonne) imprimée sur le même substrat ou sur une autre couche.The
Les éléments rayonnants sont typiquement constitués d'une surface carrée conductrice dont un sommet est relié à la ligne d'alimentation de sous-réseau b1-b4 correspondante, la diagonale du carré partant de ce sommet étant perpendiculaire à la ligne d'alimentation b1-b4 correspondante.The radiating elements typically consist of a conductive square surface whose apex is connected to the corresponding sub-network supply line b 1 -b 4 , the diagonal of the square starting from this vertex being perpendicular to the supply line b 1 -b 4 corresponding.
Bien entendu l'invention n'est pas limitée à une forme particulière des éléments rayonnants, ni à une liaison particulière à la ligne d'alimentation correspondante.Of course, the invention is not limited to a particular form of the radiating elements, nor to a particular connection to the corresponding supply line.
Les éléments rayonnants peuvent ainsi être constituées d'une surface conductrice ayant la forme d'un polygone (par exemple un triangle ou un rectangle) voire d'un cercle.The radiating elements may thus consist of a conductive surface having the shape of a polygon (for example a triangle or a rectangle) or even a circle.
Les éléments rayonnants peuvent en outre être alimentés en d'autres points de la surface conductrice qu'en l'un des sommets de ladite surface, par exemple le long de l'une des côtés ou encore à l'intérieur de la surface conductrice. Dans ce dernier exemple, on peut notamment ouvrir une "route" dans la surface conductrice en faisant pénétrer la ligne d'alimentation dans la surface conductrice tout en laissant de chaque côté de la ligne des segments absents de métallisation.The radiating elements may also be supplied at other points of the conductive surface at one of the peaks of said surface, for example along one of the sides or inside the conductive surface. In this last example, it is possible in particular to open a "road" in the conductive surface by penetrating the supply line into the conductive surface while leaving on each side of the line segments missing metallization.
Une fente F1-F4 est pratiquée dans le plan de masse 5 en regard de chaque ligne d'alimentation de sous-réseau b1-b4. Les fentes sont préférentiellement identiques. Chaque fente F1-F4 est ainsi placée transversalement à la ligne d'alimentation correspondante.A slot F 1 -F 4 is formed in the
Lorsque les sous-réseaux sont des sous-réseaux linéaires parallèles entre eux, on choisira préférentiellement des fentes rectangulaires positionnées verticalement aux lignes d'alimentation.When the sub-networks are linear sub-networks parallel to each other, it will preferentially choose rectangular slots positioned vertically to the supply lines.
Le système 10 comprend également une ligne de transmission d'énergie G agencée par rapport au plan de masse 5 de manière à réaliser un couplage électromagnétique par fente entre ladite ligne de transmission et chacune des lignes d'alimentation de sous-réseau.The
La ligne de transmission d'énergie peut être un guide d'ondes, ou tout autre type de lignes de transmission, en particulier une ligne triplaque.The energy transmission line may be a waveguide, or any other type of transmission line, in particular a triplate line.
Le guide d'ondes a par exemple un guide d'ondes ayant une forme rectangulaire en section. Il peut également s'agir d'un guide d'ondes ayant une forme de U en section.The waveguide has for example a waveguide having a rectangular sectional shape. It may also be a waveguide having a U-shape in section.
Les champs électromagnétiques se propagent dans la cavité rectangulaire du guide d'ondes du bas vers le haut dans l'exemple de la
Une résistance terminale (non représentée) peut être prévue au niveau d'une plaque supérieure 11 du guidé d'ondes G.A terminal resistor (not shown) may be provided at an
Lorsque le guide d'ondes a une forme rectangulaire en section, des fentes de rayonnement d'onde, identiques aux fentes du plan de masse sont pratiquées, par exemple par usinage, dans le corps du guide d'ondes, en particulier sur l'une des faces du guide d'ondes destinée à être plaquée contre le plan de masse 5 de manière à ce que les fentes du plan de masse et les fentes du guide d'ondes soient superposées (pour ces raisons, on a pris les mêmes références pour désigner l'ensemble des fentes). Les champs électromagnétiques se propageant dans l'espace du guide rayonnent alors, par l'intermédiaire des fentes superposées pratiquées dans le plan de masse de l'antenne et dans la face du guide d'ondes plaquée contre le plan de masse, et viennent exciter les lignes d'alimentation des sous-réseaux.When the waveguide has a rectangular sectional shape, wave radiation slots, identical to the slits of the ground plane, are made, for example by machining, in the body of the waveguide, in particular on the one of the faces of the waveguide intended to be pressed against the
Lorsque le guide d'ondes a une forme de U en section, le guide d'ondes est agencé de manière à ce que le plan de masse 5 ferme l'espace du guide d'ondes. Les champs électromagnétiques se propageant dans l'espace du guide rayonnent alors par l'intermédiaire des fentes pratiquées dans le plan de masse de l'antenne.When the waveguide has a U-shaped section, the waveguide is arranged so that the
Bien entendu la structure d'antennes comporte en outre un moyen d'alimentation en énergie de la ligne de transmission (non représenté), de manière à fournir de l'énergie électrique à ladite ligne, cette énergie se propageant à l'intérieur de celle-ci et rayonnant par les fentes F1-F4.Of course the antenna structure further comprises a power supply means of the transmission line (not shown), so as to supply electrical energy to said line, this energy propagating inside that and radiating through the slots F 1 -F 4 .
Comme déjà mentionné, des fentes sont pratiquées sur une même face du guide d'ondes (lorsque qu'un guide d'ondes rectangulaire est utilisé), et ladite face est agencée en regard du plan de masse de l'antenne 20, du côté opposé au substrat diélectrique de l'antenne. De telle manière, l'accès en guide est solidaire du plan de masse de l'antenne. L'accès est beine entendu également solidaire du plan de masse lorsque celui-ci vient fermer l'espace du guide d'ondes.As already mentioned, slots are made on the same face of the waveguide (when a rectangular waveguide is used), and said face is arranged opposite the ground plane of the
On peut également prévoir une ligne d'alimentation en énergie sous la forme d'une ligne triplaque comprenant une ligne conductrice en sandwich entre deux plans de masse de ligne triplaque.It is also possible to provide a power supply line in the form of a triplate line comprising a conductive line sandwiched between two plane planes triplate line.
Selon une première variante, l'un des plans de masse de ligne triplaque est confondu avec le plan de masse de l'antenne (dans lequel les fentes sont pratiquées).According to a first variant, one of the triplate line ground planes coincides with the ground plane of the antenna (in which the slots are made).
Selon une autre variante, des fentes de rayonnement d'onde sont pratiquées dans l'un des plans de masse de ligne triplaque qui est plaqué contre le plan de masse de l'antenne de manière à ce que les fentes du plan de masse 5 et celles du plan de masse de la ligne triplaque soient superposées.According to another variant, wave radiation slots are formed in one of the triplate line ground planes which is pressed against the ground plane of the antenna so that the slits of the
Dans l'exemple non représentatif de l'invention de la
Du fait de ce couplage, un transfert d'énergie s'opère entre lignes de transmission d'énergie, c'est-à-dire entre le guide d'ondes ou la ligne triplaque d'une part et chacune des lignes d'alimentations de sous-réseau d'autre part. De telle sorte, chaque ligne d'alimentation de sous-réseau est alors excitée par l'énergie rayonnée par les fentes, et alimente alors l'ensemble des éléments de rayonnement reliés à cette ligne.Due to this coupling, a transfer of energy takes place between power transmission lines, that is to say between the waveguide or the triplate line on the one hand and each of the power supply lines. subnet network on the other hand. In this way, each sub-network supply line is then excited by the energy radiated by the slots, and then supplies all the radiation elements connected to this line.
Là où la structure d'antenne de la
On notera que le document
Au contraire de la présente invention, ce document ne se rapporte pas à l'alimentation d'une antenne présentant un circuit sur lequel des éléments rayonnants sont imprimés, et ne traite donc pas de l'alimentation de tels éléments. Ce document n'envisage en outre aucunement d'exploiter le rayonnement de fentes pour réaliser un couplage entre deux lignes de transmission d'énergie, et notamment un couplage du guide d'ondes avec des lignes d'alimentation d'éléments rayonnants.Unlike the present invention, this document does not relate to the supply of an antenna having a circuit on which radiating elements are printed, and therefore does not deal with the supply of such elements. In addition, this document does not envisage exploiting the radiation of slots to form a coupling between two power transmission lines, and in particular a coupling of the waveguide with radiating element supply lines.
L'antenne plate constitue un réseau d'éléments rayonnants. En l'absence d'une pondération d'amplitudes des éléments rayonnants, le niveau des lobes secondaires est susceptible de s'établir à -13 dB environ.The flat antenna is a network of radiating elements. In the absence of a weighting of amplitudes of the radiating elements, the level of the side lobes is likely to be about -13 dB.
La description ci-après concerne deux modes de réalisation possible d'une pondération d'amplitudes des éléments rayonnants de l'antenne plate permettant notamment de contenir le niveau de lobes secondaires, par exemple à environ - 20 dB. On notera que ces modes de réalisation ne sont pas limitées au cadre de la présente invention pour un accès direct en guide d'ondes par couplage électromagnétique par fente entre le guide d'ondes et les lignes d'alimentation de sous-réseau. On notera également que ces modes de réalisation peuvent être mis en oeuvre séparément ou conjointement.The following description relates to two possible embodiments of a weighting of amplitudes of the radiating elements of the flat antenna, in particular for containing the level of secondary lobes, for example at about -20 dB. It will be appreciated that these embodiments are not limited to the scope of the present invention for direct waveguide access by electromagnetic slot coupling between the waveguide and the subnetwork feed lines. It will also be appreciated that these embodiments may be implemented separately or together.
Selon un premier mode de réalisation possible, tel qu'illustré sur la
Les transformateurs T sont plus précisément prévus avec des rapports de transformation correspondant aux atténuations progressives que l'on souhaite obtenir.Transformers T are more precisely provided with transformation ratios corresponding to the progressive attenuations that one wishes to obtain.
Les transformateurs T sont typiquement des transformateurs quart d'ondes ou demi d'ondes ; il peut également s'agir de transformateurs disposant de lois dites progressives (par exemple des lois exponentielles ou logarithmiques).Transformers T are typically quarter-wave or half-wave transformers; they may also be transformers with so-called progressive laws (eg exponential or logarithmic laws).
Selon un deuxième mode de réalisation possible, tel qu'illustré sur la
En particulier, la réduction de la surface d'un élément rayonnant s'accompagne d'une réduction la capacité de transfert d'énergie depuis l'élément rayonnant vers l'extérieur, en conservant toutefois un même niveau de signal.In particular, the reduction of the surface of a radiating element is accompanied by a reduction in the energy transfer capacity from the radiating element towards the outside, while nevertheless maintaining the same signal level.
Ce deuxième mode de réalisation s'avère avantageux dans la mesure où il permet de ne pas utiliser de transformateurs. Ceux-ci produisent effectivement des discontinuités sur la ligne d'alimentation bi de sous-réseau. Et ces discontinuités engendrent à leur tour un rayonnement parasite en partie responsable des niveaux importants de composante croisée dans le plan H du diagramme de rayonnement de l'antenne plate (à environ - 10 dB).This second embodiment is advantageous in that it allows not to use transformers. These actually produce discontinuities on the subnetwork supply line b i . And these discontinuities generate in their turn a parasitic radiation in responsible for significant cross-component levels in the H-plane of the flat antenna radiation pattern (at approximately -10 dB).
En réalisant une telle pondération « intégrée », la ligne d'alimentation de sous-réseau bi ne présente donc plus les discontinuités liées à l'utilisation de transformateurs.By performing such "integrated" weighting, the subnetwork supply line b i no longer has the discontinuities associated with the use of transformers.
Les différents éléments rayonnants 3 du sous-réseau sont alors équipondérés en ce qu'ils sont tous alimentés de la même manière par la ligne d'alimentation bi.The
Les éléments rayonnants ont généralement la forme de plaques conductrices carrées, de côté /2, où représente la longueur d'onde guidée sur le substrat du circuit imprimé sur lequel sont formés les éléments rayonnants et qui correspond à la fréquence de rayonnement principale de l'antenne.The radiating elements generally have the form of square conductive plates, on the side / 2, where represents the wavelength guided on the substrate of the printed circuit on which the radiating elements are formed and which corresponds to the main radiation frequency of the antenna.
A titre d'exemple de réduction de surface d'un élément, on considère un élément rayonnant sous la forme d'une plaque conductrice rectangulaire, possédant une longueur de /2 et une largeur de /n, où n est supérieur à 2.As an example of surface reduction of an element, consider a radiating element in the form of a rectangular conductive plate, having a length of / 2 and a width of / n, where n is greater than 2.
En d'autres termes, on réduit ici uniquement un côté d'un élément carré. Le fait de conserver un côté de longueur /2 permet en effet de conserver comme fréquence de rayonnement ladite fréquence principale.In other words, only one side of a square element is reduced here. The fact of keeping a side of length / 2 makes it possible to retain as radiation frequency said main frequency.
D'une manière plus générale, il s'agit de réduire l'une des dimensions caractéristiques de l'élément rayonnant (un côté dans le cas d'une élément rayonnant polygonal, le diamètre dans le cas d'un élément rayonnant sous la forme d'un cercle).In a more general way, it is a question of reducing one of the characteristic dimensions of the radiating element (one side in the case of a polygonal radiating element, the diameter in the case of a radiating element in the form of a circle).
Comme cela est schématiquement représenté sur la
Revenant à la description de la structure d'antenne selon l'invention, et selon un mode de réalisation avantageux de l'invention, on contrôle le transfert d'énergie entre les deux lignes de transmission (entre le guide d'ondes ou la ligne triplaque et une ligne d'alimentation de sous-réseau), c'est-à-dire que l'on contrôle le taux de couplage, en jouant sur le décalage de la ligne d'alimentation de sous-réseau par rapport au centre de la fente.Returning to the description of the antenna structure according to the invention, and according to an advantageous embodiment of the invention, it controls the transfer of energy between the two transmission lines (between the waveguide or the line triplate and a subnetwork supply line), i.e., the coupling rate is controlled, by varying the offset of the subnetwork supply line from the center of the subnetwork. slot.
Comme déjà mentionné précédemment, les fentes sont identiques entre elles (par exemple des entailles rectangulaires identiques pratiquées à la fois dans le plan de masse et dans le corps du guide d'ondes à section rectangulaire) et on notera que le contrôle du taux de couplage est réalisé dans le cadre de l'invention sans jouer sur les dimensions des fentes (c'est-à-dire notamment sans prévoir différentes tailles de fentes).As already mentioned, the slots are identical to each other (for example identical rectangular notches made both in the ground plane and in the body of the rectangular waveguide) and it will be noted that the control of the coupling ratio is performed in the context of the invention without playing on the dimensions of the slots (that is to say, in particular without providing different sizes of slots).
Ce contrôle du taux de couplage s'avère avantageux en ce qu'il permet de compenser le décroissement de la puissance des champs électromagnétiques se propageant à l'intérieur du guide d'ondes (décroissance progressive vers une extrémité terminale - plaque supérieure 11 du guide d'ondes G - de la propagation de l'énergie dans l'espace du guide d'ondes) en augmentant progressivement le taux de couplage guide d'ondes/ligne d'alimentation de sous-réseau dans le sens entrant (du bas vers le haut sur la
On a représenté sur la
Le couplage avec une ligne d'alimentation bi de sous-réseau, placée transversalement à la fente Fi est donc tributaire de cette loi de distribution des courants. Ainsi plus la ligne bi s'écarte du centre de la fente, plus le couplage est faible.The coupling with a subnetwork supply line b i , placed transversely to the slot F i is therefore dependent on this current distribution law. Thus the more the line b i deviates from the center of the slot, the lower the coupling is low.
Sur la
On a représenté sur la
La
Dans l'exemple ici représenté, le taux de couplage croît d'une ligne d'alimentation à l'autre dans le sens entrant (du bas vers le haut sur la
Au fur et à mesure que l'on progresse dans le sens de propagation de l'énergie dans le guide d'ondes, la croix s'approche progressivement du centre de la fente correspondante, et le taux de couplage augmente ainsi progressivement. Au niveau du dernier sous-réseau, la croix coïncide avec le centre de la fente correspondant, le taux de couplage est alors maximal.As one progresses in the direction of propagation of the energy in the waveguide, the cross progressively approaches the center of the corresponding slot, and the coupling ratio thus increases progressively. At the last subnet, the cross coincides with the center of the corresponding slot, the coupling rate is then maximum.
L'agencement selon l'invention du guide d'ondes en oblique par rapport aux lignes d'alimentation des sous-réseaux, tel qu'illustré par la
Les deux types de lignes de transmissions (guide d'ondes d'une part, ligne d'alimentation de sous-réseau d'autre part) possèdent des milieux diélectriques différents. La longueur d'ondes dans le substrat de faibles pertes de l'antenne est de l'ordre de 0.7 à 0.8 fois la longueur d'ondes dans l'espace libre. La longueur d'ondes dans l'espace libre est quant à elle proche de la longueur d'ondes dans le guide d'ondes.The two types of transmission lines (waveguide on the one hand, subnetwork supply line on the other hand) have different dielectric media. The wavelength in the substrate of low losses of the antenna is of the order of 0.7 to 0.8 times the wavelength in the free space. The wavelength in the free space is close to the wavelength in the waveguide.
D'une manière générale, afin d'éviter la remontée des lobes secondaires potentiellement importants dans le diagramme de rayonnement de l'antenne, il est important de veiller à ce que l'écart entre les éléments rayonnants ne dépasse pas environ 0.8 longueur d'onde dans l'espace libre.In general, in order to avoid the rise of the potentially important secondary lobes in the antenna radiation pattern, it is important to ensure that the gap between the radiating elements does not exceed about 0.8 length. wave in free space.
Dans le cas d'un sous-réseau réseau linéaire alimenté par une ligne micro-ruban, ladite ligne, qui fait 0.8 longueur d'onde dans le vide entre deux éléments rayonnants, possède une longueur électrique d'une longueur d'onde dans le diélectrique entre deux éléments rayonnants, permettant l'alimentation de tous les éléments avec la même phase.In the case of a linear network subnetwork fed by a micro-ribbon line, said line, which is 0.8 wavelength in the vacuum between two radiating elements, has an electric length of one wavelength in the dielectric between two radiating elements, allowing the supply of all elements with the same phase.
Ainsi dans le cadre de l'invention, la longueur d'ondes dans le guide étant très proche de celle dans le vide, le positionnement du guide d'ondes en oblique par rapport aux lignes d'alimentation des sous-réseaux permet d'aboutir à un écart d'une longueur d'ondes dans le vide, et par conséquent une alimentation équi-phase entre les sous-réseaux, tout en laissant un espacement vertical entre les lignes des sous-réseaux d'environ 0.8 longueur d'ondes.Thus, in the context of the invention, the wavelength in the guide being very close to that in the vacuum, the positioning of the waveguide obliquely with respect to the power supply lines of the sub-networks makes it possible to achieve at a gap of one wavelength in the vacuum, and therefore an equi-phase power supply between the sub-networks, while leaving a Vertical spacing between sub-array lines of approximately 0.8 wavelengths.
On notera que le positionnement en oblique est en outre avantageux en ce qu'il permet d'usiner le corps du guide d'ondes de manière à y pratiquer des fentes obliques (les lignes d'alimentation seront alors perpendiculaires aux fentes, comme cela est schématiquement illustré sur la
Une application que l'on fera du système d'antenne selon l'invention concerne les transmissions dans la bande de 22,1 à 23,1 GHz, mais l'invention n'est bien entendu aucunement limitée à cette gamme particulière de fréquences.An application that will be made of the antenna system according to the invention relates to transmissions in the band of 22.1 to 23.1 GHz, but the invention is of course in no way limited to this particular range of frequencies.
Claims (13)
- Flat antenna system (10) comprising at least one sub-network of radiating elements (a1-a4) positioned on a face of a substrate superposed on an earth plane (5), wherein each sub-network is composed of a plurality of radiating elements (3) that may be powered by a sub-network power supply line (b1-b4) to which they are connected, wherein a slot (F1-F4) is made in the earth plane (5) opposite each sub-network power supply line (b1-b4), wherein the system further comprises an energy transmission line (G) positioned with respect to the earth plane so as to create one electromagnetic coupling per slot between said energy transmission line and each of the sub-network power supply lines, wherein the system is characterised in that the energy transmission line is fitted so that it extends obliquely with respect to the sub-network power supply lines.
- System according to claim 1, characterised in that the energy transmission line is a rectangular wave guide (G) of which one face is in contact with the earth plane (5), and in that wave radiation slots are made in said face of the wave guide so that the slots in the earth plane and the slots of the wave guide are superposed.
- System according to claim 1, characterised in that the energy transmission line is a wave guide with a U-shaped cross section, and in that said wave guide is fitted so that the earth plane (5) closes off the wave guide space.
- System according to claim 1, characterised in that the energy transmission line is a three plate line comprising a conductor line sandwiched between two three-plate line earth planes, wherein wave radiation slots are made in the three-plate line earth plane that is in contact with said earth plane so that the slots of the earth plane (5) and the slots of the three-plate line are superposed.
- System according to claim 1, characterised in that the energy transmission line is a three-plate line comprising a conductor line sandwiched between two three-plate line earth planes, and in that one of the three-plate line earth planes is combined with said earth plane (5).
- System according to any one of the preceding claims, characterised in that it comprises a plurality of linear sub-networks that are parallel to one another and in that the slots (F1-F4) made in the earth plane (5) are positioned vertically to the power supply lines.
- System according to the previous claim, combined with claim 2 or claim 4, characterised in that the slots made in the transmission line are notches made obliquely in the length of the transmission line.
- System according to any one of the preceding claims, characterised in that each power supply line is positioned with respect to the corresponding slot so as to control the coupling rate between the energy transmission line and said power supply line.
- System according to any one of the preceding claims, characterised in that each sub-network power supply line (b1-b4) comprises means of weighting the radiation amplitudes of the radiating elements (3) of the sub-network.
- System according to the preceding claim, characterised in that the weighting means comprise impedance transformers (T) interspaced between the radiating elements (3).
- System according to any one of the preceding claims, characterised in that the size of the radiating elements (3) of a sub-network (b1-b4) is weighted so as to weight the radiation amplitudes of said radiating elements.
- System according to the preceding claim, characterised in that the weighting of the size of a radiating element in the form of a conductive surface consists of reducing one of the characteristic dimensions of said surface.
- System according to any one of the previous claims, characterised in that the power supply line of a sub-network of radiating elements is a micro-strip line.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0511527A FR2893451B1 (en) | 2005-11-14 | 2005-11-14 | DIRECT ACCESS FLAT ANTENNA SYSTEM IN WAVEGUIDE. |
PCT/EP2006/068430 WO2007054582A1 (en) | 2005-11-14 | 2006-11-14 | Flat antenna system with a direct waveguide access |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1949496A1 EP1949496A1 (en) | 2008-07-30 |
EP1949496B1 true EP1949496B1 (en) | 2012-05-16 |
Family
ID=36204540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06819455A Not-in-force EP1949496B1 (en) | 2005-11-14 | 2006-11-14 | Flat antenna system with a direct waveguide access |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090096692A1 (en) |
EP (1) | EP1949496B1 (en) |
JP (1) | JP2009516446A (en) |
KR (1) | KR101166665B1 (en) |
CN (1) | CN101310413B (en) |
ES (1) | ES2384887T3 (en) |
FR (1) | FR2893451B1 (en) |
WO (1) | WO2007054582A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013005296A (en) * | 2011-06-17 | 2013-01-07 | Hitachi Chem Co Ltd | Line interlayer connector, planar array antenna having line interlayer connector and planar array antenna module |
EP2805543B1 (en) | 2012-03-05 | 2020-06-03 | Huawei Technologies Co., Ltd. | Method for improving handover performance in a cellular wireless communication system |
CN105676007A (en) * | 2016-02-17 | 2016-06-15 | 北京森馥科技股份有限公司 | Dipole antenna and omnidirectional probe employing same |
TWI765755B (en) * | 2021-06-25 | 2022-05-21 | 啟碁科技股份有限公司 | Antenna module and wireless transceiver device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2812501A (en) * | 1954-03-04 | 1957-11-05 | Sanders Associates Inc | Transmission line |
US3665480A (en) * | 1969-01-23 | 1972-05-23 | Raytheon Co | Annular slot antenna with stripline feed |
GB1529541A (en) * | 1977-02-11 | 1978-10-25 | Philips Electronic Associated | Microwave antenna |
JPS6124311A (en) * | 1984-07-13 | 1986-02-03 | Matsushita Electric Works Ltd | Microstrip line antenna |
US4939527A (en) * | 1989-01-23 | 1990-07-03 | The Boeing Company | Distribution network for phased array antennas |
JPH03101507A (en) * | 1989-09-14 | 1991-04-26 | Yagi Antenna Co Ltd | Planer antenna |
JPH0563409A (en) * | 1991-08-29 | 1993-03-12 | Nissan Motor Co Ltd | Waveguide |
JPH08186436A (en) * | 1994-12-27 | 1996-07-16 | Toshiba Corp | Microstrip array antenna |
US5539361A (en) * | 1995-05-31 | 1996-07-23 | The United States Of America As Represented By The Secretary Of The Air Force | Electromagnetic wave transfer |
SE508296C2 (en) * | 1997-01-10 | 1998-09-21 | Ericsson Telefon Ab L M | Device at microstrip distribution network and group antenna |
JP3306592B2 (en) * | 1999-05-21 | 2002-07-24 | 株式会社豊田中央研究所 | Microstrip array antenna |
WO2001020720A1 (en) * | 1999-09-14 | 2001-03-22 | Paratek Microwave, Inc. | Serially-fed phased array antennas with dielectric phase shifters |
US6313807B1 (en) * | 2000-10-19 | 2001-11-06 | Tyco Electronics Corporation | Slot fed switch beam patch antenna |
US6476772B1 (en) * | 2001-04-16 | 2002-11-05 | Space Systems/Loral, Inc. | Waveguide slot array capable of radiating shaped beams |
US6452550B1 (en) | 2001-07-13 | 2002-09-17 | Tyco Electronics Corp. | Reduction of the effects of process misalignment in millimeter wave antennas |
US6509874B1 (en) * | 2001-07-13 | 2003-01-21 | Tyco Electronics Corporation | Reactive matching for waveguide-slot-microstrip transitions |
JP2003209411A (en) * | 2001-10-30 | 2003-07-25 | Matsushita Electric Ind Co Ltd | High frequency module and production method for high frequency module |
US20060273973A1 (en) * | 2005-06-02 | 2006-12-07 | Chandler Cole A | Millimeter wave passive electronically scanned antenna |
-
2005
- 2005-11-14 FR FR0511527A patent/FR2893451B1/en active Active
-
2006
- 2006-11-14 CN CN2006800425236A patent/CN101310413B/en not_active Expired - Fee Related
- 2006-11-14 US US12/085,006 patent/US20090096692A1/en not_active Abandoned
- 2006-11-14 ES ES06819455T patent/ES2384887T3/en active Active
- 2006-11-14 JP JP2008540599A patent/JP2009516446A/en active Pending
- 2006-11-14 WO PCT/EP2006/068430 patent/WO2007054582A1/en active Application Filing
- 2006-11-14 KR KR1020087014216A patent/KR101166665B1/en active IP Right Grant
- 2006-11-14 EP EP06819455A patent/EP1949496B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
KR20080072048A (en) | 2008-08-05 |
EP1949496A1 (en) | 2008-07-30 |
WO2007054582A1 (en) | 2007-05-18 |
CN101310413B (en) | 2012-11-28 |
CN101310413A (en) | 2008-11-19 |
FR2893451B1 (en) | 2009-10-16 |
FR2893451A1 (en) | 2007-05-18 |
ES2384887T3 (en) | 2012-07-13 |
KR101166665B1 (en) | 2012-07-24 |
US20090096692A1 (en) | 2009-04-16 |
JP2009516446A (en) | 2009-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2024992C (en) | Planar antenna | |
EP2564466B1 (en) | Compact radiating element having resonant cavities | |
CA1290449C (en) | Device for exciting a circularly polarized wage guide by means of a planar antenna | |
EP1723693B1 (en) | Antenna with variable misalignment comprising at least one phase-changing element | |
FR2810163A1 (en) | IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS | |
FR2641904A1 (en) | ANTENNA DEVICE FOR CIRCULAR POLARIZATION | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
EP3602689B1 (en) | Electromagnetic antenna | |
FR2778272A1 (en) | RADIOCOMMUNICATION DEVICE AND BIFREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE | |
FR2817661A1 (en) | DEVICE FOR RECEIVING AND / OR TRANSMITTING MULTI-BEAM SIGNALS | |
FR2652453A1 (en) | COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE. | |
CA2869648A1 (en) | Compact, polarizing power distributor, network of several distributors, compact radiating element and flat antenna comprising such a distributor | |
EP1949496B1 (en) | Flat antenna system with a direct waveguide access | |
EP1466384B1 (en) | Device for receiving and/or emitting electromagnetic waves with radiation diversity | |
EP2059973B1 (en) | Polarization diversity multi-antenna system | |
EP1225655A1 (en) | Dual-band planar antenna and apparatus including such an antenna device | |
FR2859824A1 (en) | POLARIZATION DIVERSITY ANTENNA | |
FR2646564A1 (en) | SLOTTED FLAT ANTENNA SYSTEM FOR TE MODE WAVE | |
FR2552273A1 (en) | Omnidirectional microwave antenna | |
EP3692598B1 (en) | Antenna with partially saturated dispersive ferromagnetic substrate | |
EP0337841A1 (en) | Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops | |
EP1152483B1 (en) | Dual-band microwave radiating element | |
FR2784236A1 (en) | FREQUENCY SWITCHED ANTENNA | |
EP0831550B1 (en) | Versatile array antenna | |
EP1376758A1 (en) | Compact patch antenna with a matching circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080530 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOUYGUES TELECOM |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 558466 Country of ref document: AT Kind code of ref document: T Effective date: 20120615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2384887 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120713 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006029570 Country of ref document: DE Effective date: 20120719 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120516 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120916 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 558466 Country of ref document: AT Kind code of ref document: T Effective date: 20120516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120817 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130219 |
|
BERE | Be: lapsed |
Owner name: BOUYGUES TELECOM Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006029570 Country of ref document: DE Effective date: 20130219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120816 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171212 Year of fee payment: 12 Ref country code: FI Payment date: 20171122 Year of fee payment: 12 Ref country code: FR Payment date: 20171110 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171120 Year of fee payment: 12 Ref country code: SE Payment date: 20171117 Year of fee payment: 12 Ref country code: GB Payment date: 20171219 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180129 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006029570 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181115 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181114 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181115 |