EP2000003B1 - Infrarot-bestrahlungseinheit - Google Patents

Infrarot-bestrahlungseinheit Download PDF

Info

Publication number
EP2000003B1
EP2000003B1 EP07723672A EP07723672A EP2000003B1 EP 2000003 B1 EP2000003 B1 EP 2000003B1 EP 07723672 A EP07723672 A EP 07723672A EP 07723672 A EP07723672 A EP 07723672A EP 2000003 B1 EP2000003 B1 EP 2000003B1
Authority
EP
European Patent Office
Prior art keywords
heat protection
module according
radiator module
encompasses
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07723672A
Other languages
English (en)
French (fr)
Other versions
EP2000003A1 (de
Inventor
Martin Klinecky
Jochen Simon
Sven Linow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP2000003A1 publication Critical patent/EP2000003A1/de
Application granted granted Critical
Publication of EP2000003B1 publication Critical patent/EP2000003B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/009Heating devices using lamps heating devices not specially adapted for a particular application
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders

Definitions

  • the present invention relates to high power radiator modules, in particular NIR modules.
  • Such modules are surface radiators and usually contain at least two parallel juxtaposed infrared radiators, which have a simple round tube or a double tube.
  • air-cooled gold reflectors are suitable for focusing the radiation on the object to be irradiated.
  • Connected loads of 200 kW / m 2 and above can only be carried out with water-cooled reflectors, as the reflectors would otherwise be destroyed very quickly by overheating.
  • Such provided with an additional water cooling modules are from the DE 101 56 915 or from the DE 101 25 888 known.
  • ceramic fiber boards are disclosed as heat protection of the housing and as heat protection of a chamber in which the electrical leads and the cooling water hoses. These fiberboard protect the housing from stray radiation, which, despite the gold reflectors in the cooling channels, is still emitted in the direction of the module.
  • JP 07-198949 A and the JP 05-024853 A describe IR emitters, which are provided with a heat protection.
  • the object of the present invention is to provide high performance radiator modules with reduced hazard potential.
  • a heat protection which is inhomogeneous with respect to its optical density and consists of inorganic oxidic material is arranged between the radiator and the housing of a module.
  • the heat protection according to the invention enables connection surface powers of 200 kW / m 2 and more.
  • High-power radiators with the heat protection according to the invention are extremely robust and suitable for continuous operation, ie the radiator can be operated with complete equilibrium with the environment. This equilibrium state usually sets in after 5 to 15 minutes.
  • Fibers are no longer necessary for the heat protection according to the invention, which is why the danger potential emanating from fiber material is eliminated according to the invention.
  • monolithic sintered body which is suitable as heat protection, in particular one-piece heat protection or as a heat protection element
  • monolithic sintered bodies of slip such as. B. Quarzmehlschlicker, produced by sintering.
  • the decisive factor is that the optical density of the heat protection varies with respect to IR radiation and possibly with respect to UV radiation, in particular in the micro range is uneven. Have to Bubbles or doping proven.
  • the dimensions of these inclusions are less than 1 mm, preferably less than 100 ⁇ m, and more preferably less than 10 ⁇ m.
  • the heat protection which is optically inhomogeneous with respect to IR radiation consists of a material transparent to IR radiation, such as quartz glass or Al 2 O 3 ceramic.
  • a material transparent to IR radiation such as quartz glass or Al 2 O 3 ceramic.
  • variations in the optical density, in particular by different phases within the inorganic oxide material are formed so that these variations in the optical density of the material scatter substantial radiation components.
  • this invention according to the invention in its optical density with respect to IR radiation or possibly UV radiation non-uniform material in the wavelength range in which a very high transparency would be achieved in homogeneous and single-phase design of the material, not the energy transfer, which Damage the case.
  • this is the wavelength range from 180 nm to 5000 nm for quartz glass.
  • This property is achieved by an optical inhomogeneity of the quartz glass, such as by targeted and homogeneous introduction of bubbles and disturbances.
  • Alumina in pure form has a very good transmission of UV radiation to about 6000 nm out.
  • the said property is achieved by a suitable microcrystalline structure of the solid.
  • the shield is applicable under conditions that metallic reflectors can no longer withstand, although the shield absorbs more radiant energy or radiant power than reflectors, but not as it thereby loses its functionality. While metallic reflectors depend in their functionality on their surface and thus lose their functionality when damaged, the functionality of the heat protection according to the invention depends on its thickness, which in contrast to the known reflectors, the rusticity of the heat protection increases with the thickness thereof.
  • High-performance radiator modules which are distinguished by the fact that the heat protection arranged between radiator and housing has only one air cooling for its cooling, wherein in a preferred embodiment the air cooling additionally cools the radiator.
  • a simple air cooling whose energy consumption in relation to the radiator power is negligible, for example in the percent or per thousand range, are with the heat protection according to the invention robust high-power radiator modules with a pad power from 400 to 600 KW / m 2 feasible.
  • connection capacities of more than 600 KW / m 2 are possible, whereby even surface powers of more than 1 MW / m 2 can be realized.
  • a simple air cooling takes place for example by an air flow from a fan, a fan or a centrifugal compressor.
  • cooling with another process gas e.g. Nitrogen or argon included.
  • the invention also encompasses the cooling with a stream of compressed air or other suitable gas, which was not generated directly by means of a centrifugal compressor, a fan or a fan, but is taken indirectly from a pressure circuit or pressure vessels, as well as any other known to the expert variant the generation of a suitable gas stream.
  • the heat protection on the side of the case is coated with gold. This reduces the secondary radiation from the surface of a heated in operation heat protection. The radiation of the secondary radiation then takes place predominantly from the ungolded radiator-side surface.
  • the high-performance radiator modules equipped with the heat protection according to the invention show no deterioration of the efficiency with increasing operating time, as is known, for example, from high-power radiator modules with water-cooled reflectors.
  • the inorganic oxide material of the heat protection can be selected from high-temperature-stable glasses, in particular quartz glass, as well as from glass ceramics, aluminosilicate or ceramics, in particular aluminum oxide. Pure quartz glass and pure aluminum oxide ceramics have proven to be particularly suitable.
  • Invention vessel is provided a radiation protection, which returns much more power in the direction of the irradiating object of the radiation power directed at him, as he radiates on his back on the module and transmits. Another decisive factor is that the radiation protection does not heat up to self-destruction.
  • the radiation protection devices according to the invention it is possible for the first time to provide high-power radiator modules with a connection area power of 200 watts and far beyond that without water or liquid cooling.
  • the radiation protection according to the invention is also suitable for modules with a connected load between 100 and 200 watts / m 2 , in particular for the range of 150 to 200 watts / m 2 in which considerable efforts are made to get along without water cooling.
  • the radiation protection according to the invention furthermore makes it possible to further increase the connection area power of the order of magnitude of 1 MW / m 2 achievable so far with water-cooled reflectors, in particular in the case of water-cooled modules.
  • optical, inhomogeneous quartz glass has proven to be radiation protection, especially in a composite with gold, in which the optical, inhomogeneous quartz glass directed to the module front is, ie in the direction of the object to be irradiated and the gold is arranged as a layer facing back on the back of the module on the optical, inhomogeneous quartz glass.
  • quartz glass ceramics or ceramics glazed with quartz glass, in particular with a gold coating on the back can be used.
  • the back side is coated with gold or a gold reflector to spaced.
  • Air cooling has proved its worth by directing an air flow from the back of the module through openings in the radiation protection onto the radiators.
  • the emitters used according to the invention have a heating filament arranged in an envelope or a discharge space delimited in the envelope.
  • the envelope is preferably tubular or double-tube-shaped, wherein the tube ends are sealed vacuum-tight and have current feedthroughs.
  • the radiation maximum of the radiators is preferably in the NIR, in particular in the IR-A.
  • the heating filament preferably consists essentially of tungsten or carbon.
  • a heat protection according to the invention between the cladding tube of the radiator and the housing holding the radiator is advantageous, in particular when using a plurality of radiators in a module.
  • the heat protection 3 is made of an optical, inhomogeneous quartz glass according to the Heraeus brochure "Opaque Fused Material OFM 970".
  • a heat protection 3 made of optically inhomogeneous quartz glass according to Heraeus brochure "Opaque Fused Material OFM 970" is coated on the housing side with gold, as already done for gold-plated cladding of infrared radiators in a known manner.
  • FIG. 1 shows a module with a surface power of 400 kW / m 2 , in which 6 twin tube radiator (1) arranged parallel to each other and fixed by means of holding elements (2).
  • the heat protection elements (3) according to the invention made of optically inhomogeneous quartz glass are shaped as half shells and either fixed to the radiator tubes by glassblowing or correspondingly FIG. 1 by means of additional retaining elements (4). These half shells are arranged so that the individual emitters do not illuminate each other.
  • the actual module consists of a housing (11), an inlet opening for air (12) and a baffle plate (13) at which the incoming air flow is distributed in the module housing.
  • a diffuser plate 14
  • This sheet is firstly the mechanical support of emitter and reflector, which can also be held elsewhere in the module.
  • holes or slots are incorporated in this diffuser plate, which serve to optimally shape the cooling gas flow.
  • holes or slots in particular centrally behind the individual heat shields to be ordered.
  • additional plates from the heat shield material are arranged (15).
  • FIG. 2 is an enlarged view of a section of the FIG. 1 , Shells made of OMF 70 are used as the heat shield (according to the Heraeus brochure "Opaque Fused Material OFM 70"), whereby many other quartz glasses optically inhomogeneous to IR radiation can serve as the starting material.
  • the twin tube radiators arranged in parallel are held at their long, unheated ends and are arranged in front of a plate of optically inhomogeneous, gold-plated quartz glass.
  • This plate consists of several segments to keep production costs low. Holes are inserted into the segments at suitable positions, so that the gas made available in the module housing by means of suitable devices flows out through these holes in such a way that the emitters are effectively blown and convectively cooled, and secondly the still cold gas flow from the housing through the heat shield this cools.
  • the plates are made of OM100 (according to Heraeus brochure "OM 100 High purity opaque quartz glass"), although many other optically inhomogeneous quartz glasses can be used as starting material.
  • the twin tube radiators arranged in parallel are held at their long, unheated ends.
  • the rear heat shield consists of a plate transparent quartz glass, on which a sufficiently strong layer of optically inhomogeneous quartz was applied as a slip and subsequently sintered. This layer is aligned in the direction of the infrared radiator and gold plated the back quartz plate. Slots and holes for cooling the heat shield and the radiator are performed as in Embodiment 2, but the amount of air for cooling increased accordingly.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Glass Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft Hochleistungsstrahlermodule, insbesondere NIR-Module. Derartige Module sind Flächenstrahler und enthalten üblicherweise mindestens zwei parallel nebeneinander angeordnete Infrarotstrahler, die ein einfaches Rundrohr oder ein Doppelrohr aufweisen. Bei Modulen mit einer Flächenleistung bis 150 kW/m2 eignen sich luftgekühlte Goldreflektoren, um die Strahlung auf das zu bestrahlende Objekt zu fokussieren. Anschlussleistungen von 200 kW/m2 und darüber können nur mit wassergekühlten Reflektoren ausgeführt werden, da die Reflektoren andernfalls durch Überhitzung sehr schnell zerstört würden. Solche mit einer zusätzlichen Wasserkühlung versehenen Module sind aus der DE 101 56 915 oder aus der DE 101 25 888 bekannt.
  • Aufwändige Wasserkühlung ist in elektrischen Anlagen nicht erwünscht. Erstens aufgrund der zusätzlichen Kosten und zweitens, da stets die Gefahr von Wasseraustritt besteht. Wasseraustritt kann zum einen die zu bestrahlenden Produkte schädigen und zum anderen verheerende Auswirkungen für die elektrischen Einrichtungen oder die heißen Teile der Anlage haben. Wasser ist daher unter dem Gesichtspunkt der Betriebssicherheit ein äußerst unerwünschtes Medium.
  • In der DE 101 56 915 werden zudem keramische Faserplatten als Hitzeschutz des Gehäuses und als Hitzeschutz einer Kammer in der die elektrischen Zuführungen und die Kühlwasserschläuche offenbart. Diese Faserplatten schützen das Gehäuse vor Streustrahlung, die trotz der Goldreflektoren in den Kühlkanälen noch in Richtung des Moduls ausgesendet wird.
  • Auch die JP 07-198949 A und die JP 05-024853 A beschreiben IR-Strahler, welche mit einem Hitzeschutz versehen sind.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, Hochleistungsstrahlermodule mit verringertem Gefahrenpotential bereit zu stellen.
  • Lösungen der Aufgabe erfolgen nach den unabhängigen Ansprüchen. Bevorzugte Ausführungen sind in den abhängigen Ansprüchen beschrieben.
  • Erfindungsgemäß wird ein bezüglich seiner optischen Dichte inhomogener, aus anorganischem oxidischen Material bestehender Hitzeschutz zwischen Strahler und Gehäuse eines Moduls angeordnet. Der erfindungsgemäße Hitzeschutz ermöglicht Anschlussflächenleistungen von 200 kW/m2 und mehr. Hochleistungsstrahler mit dem erfindungsgemäßen Hitzeschutz sind äußerst robust und für den Dauerbetrieb geeignet, d.h. der Strahler kann beim vollständigen Erreichen des Gleichgewichts mit der Umgebung betrieben werden. Dieser Gleichgewichtszustand stellt sich üblicherweise nach 5 bis 15 Minuten ein.
  • Fasern sind für den erfindungsgemäßen Hitzeschutz nicht mehr nötig, weshalb das von Fasermaterial ausgehende Gefahrenpotential erfindungsgemäß eliminiert wird.
  • Zur Herstellung eines Körpers, insbesondere monolithischen Sinterkörpers, der als Hitzeschutz, insbesondere einstückiger Hitzeschutz oder als Hitzeschutzelement geeignet ist, eignen sich die in EP 1 159 227 beschriebenen Verfahren. Grundsätzlich sind monolithische Sinterkörper aus Schlicker, wie z. B. Quarzmehlschlicker, durch Sintern herstellbar.
  • Es hat sich bewährt, wenn pro Strahler oder Doppelrohrstrahler je ein Hitzeschutzelement oder ein einstückiger Hitzeschutz für alle Strahler eines Moduls verwendet wird.
  • Insbesondere
    • ist der Hitzeschutz oder sind die Hitzeschutzelemente ein oder jeweils ein Sinterkörper;
    • weist der Hitzeschutz oder weisen die Hitzeschutzelemente Material mit einer Körnung im Nanometer- oder Mikrometerbereich auf;
    • ist der Hitzeschutz oder sind die Hitzeschutzelemente ein oder jeweils ein Monolith;
    • weist das Material des Hitzeschutzes oder der Hitzeschutzelemente Einschlüsse im Nanometer- oder Mikrometerbereich auf, beispielsweise Hohlräume oder Kristalle.
  • Maßgeblich ist, dass die optische Dichte des Hitzeschutzes hinsichtlich IR-Strahlung und ggf. bezüglich UV-Strahlung schwankt, insbesondere im Mikrobereich uneinheitlich ist. Hierzu haben sich Bläschen oder Dotierungen bewährt. Insbesondere sind die Dimensionen dieser Einschlüsse kleiner als 1 mm, vorzugsweise kleiner als 100 µm und besonders bevorzugt kleiner als 10 µm.
  • In bevorzugter Ausführung besteht der bezüglich IR-Strahlung optisch inhomogene Hitzeschutz aus einem an sich für IR-Strahlung transparentem Material, wie Quarzglas oder Al2O3-Keramik. Es werden jedoch Schwankungen in der optischen Dichte, insbesondere durch unterschiedliche Phasen innerhalb des anorganischen oxidischen Materials gebildet, so dass diese Schwankungen bezüglich der optischen Dichte des Materials wesentliche Strahlungsanteile streuen. Aufgrund seiner speziellen Struktur weist dieses erfindungsgemäß in seiner optischen Dichte bezüglich IR-Strahlung oder ggf. UV-Strahlung uneinheitliche Material in dem Wellenlängenbereich, in dem bei homogener und einphasiger Ausführung des Materials eine sehr hohe Transparenz erreicht würde, nicht die Energieübertragung auf, die das Gehäuse beschädigen würde. Dies ist für Quarzglas je nach Zusammensetzung und Anteil an Spurenverunreinigungen der Wellenlängebereich von 180 nm bis 5000 nm. Dabei ist der Bereich von 180 bis 400 nm, insbesondere 200 nm bis 380 nm für UV-Strahler maßgeblich und der Bereich von 760 bis 5000 nm, insbesondere 780 bis 4000 nm, für IR-Strahler maßgeblich. Erreicht wird diese Eigenschaft durch eine optische Inhomogenität des Quarzglases, wie z.B. durch gezieltes und homogenes Einbringen von Blasen und Störungen. Aluminiumoxid in reiner Form weist eine sehr gute Transmission von UV-Strahlung bis etwa 6000 nm hin auf. Hier wird die genannte Eigenschaft durch eine geeignete mikrokristalline Struktur des Festkörpers erreicht. Überraschend ist, dass der Schutzschild unter Bedingungen anwendbar ist, denen metallische Reflektoren nicht mehr standhalten können, obwohl der Schutzschild mehr Strahlungsenergie bzw. Strahlungsleistung absorbiert als Reflektoren, aber nicht wie diese dadurch seine Funktionalität verliert. Während metallische Reflektoren in ihrer Funktionalität von ihrer Oberfläche abhängen und bei deren Beschädigung somit auch ihre Funktionalität verlieren, ist die Funktionalität des erfindungsgemäßen Hitzeschutzes von dessen Dicke abhängig, wobei im weiteren Gegensatz zu den bekannten Reflektoren die Rustikalität des Hitzeschutzes mit dessen Dicke zunimmt.
  • Bewährt haben sich Hochleistungsstrahlermodule, die sich dadurch auszeichnen, dass der zwischen Strahler und Gehäuse angeordnete Hitzeschutz zu seiner Kühlung nur eine Luftkühlung aufweist, wobei in einer bevorzugten Ausführung die Luftkühlung zusätzlich den Strahler kühlt. Mit einer einfachen Luftkühlung, deren Energieverbrauch im Verhältnis zur Strahlerleistung vernachlässigbar gering ausfällt, beispielsweise im Prozent- oder Promille-Bereich, sind mit dem erfindungsgemäßen Hitzeschutz robuste Hochleistungsstrahlermodule mit einer Anschlussflächenleistung von 400 bis 600 KW/m2 realisierbar. Mit aufwendigeren Kühlsystemen werden Anschlussleistungen von über 600 KW/ m2 ermöglicht, wobei sogar Anschlussflächenleistungen von über 1 MW/ m2 realisierbar sind. Eine einfache Luftkühlung erfolgt beispielsweise durch einen Luftstrom aus einem Ventilator, einem Lüfter oder einem Radialverdichter.
  • Erfindungsgemäß ist auch die Kühlung mit einem anderen Prozessgas, wie z.B. Stickstoff oder Argon eingeschlossen. Weiter umschließt die Erfindung auch die Kühlung mit einem Strom aus Druckluft oder einem anderen geeigneten Gas, welcher nicht mittels eines Radialverdichters, eines Lüfters oder eines Ventilators direkt erzeugt wurde, sondern mittelbar aus einem Druckkreislauf oder Druckbehältern entnommen wird, sowie jede weitere dem Fachmann bekannte Variante der Erzeugung eines geeigneten Gasstromes.
  • In einer erfinderischen Weiterbildung ist der Hitzeschutz auf der Gehäuseseite mit Gold beschichtet. Dies reduziert die Sekundärstrahlung von der Oberfläche eines im Betrieb aufgeheizten Hitzeschutzes. Die Abstrahlung der Sekundärstrahlung erfolgt dann überwiegend von der unvergoldeten strahlerseitigen Oberfläche aus.
  • Die mit dem efindungsgemäßen Hitzeschutz ausgestatteten Hochleistungsstrahlermodule zeigen keine Verschlechterung des Wirkungsgrades mit zunehmender Betriebsdauer, wie dies beispielsweise von Hochleistungsstrahlermodulen mit wassergekühlten Reflektoren her bekannt ist.
  • Das anorganisch oxidische Material des Hitzeschutzes ist aus hochtemperaturstabilen Gläsern, insbesondere Quarzglas sowie aus Glaskeramiken, Aluminosilikat oder Keramiken, insbesondere Aluminiumoxid auswählbar. Besonders bewährt haben sich reines Quarzglas sowie reine Aluminiumoxidkeramik.
  • Erfindungsgefäß wird ein Strahlungsschutz bereitgestellt, der von der auf ihn gerichteten Strahlungsleistung wesentlich mehr Leistung in Richtung des bestrahlenden Objektes zurückführt, als er auf seiner Rückseite auf das Modul abstrahlt und transmittiert. Weiter maßgeblich ist, dass der Strahlungsschutz sich nicht bis zur Selbstzerstörung erhitzt. Mit den erfindungsgemäßen Strahlungsschutzeinrichtungen wird es erstmals ermöglicht, Hochleistungsstrahlermodule mit einer Anschlussflächenleistung von 200 Watt und weit darüber hinaus ohne Wasser- bzw. Flüssigkeitskühlung bereit zu stellen.
  • Efindungsgemäß wird also das leidige Sicherheitsrisiko bezüglich der Wasserkühlung ausgeräumt und der bislang betriebene enorme Aufwand zur Minimierung des Risikos bezüglich der Wasserkühlung erübrigt sich.
  • Der erfindungsgemäße Strahlungsschutz eignet sich auch für Module mit einer Anschlussleistung zwischen 100 und 200 Watt/m2, insbesondere für den Bereich von 150 bis 200 Watt/m2 in dem erhebliche Anstrengungen gemacht werden, um ohne Wasserkühlung auszukommen.
  • Der erfindungsgemäße Strahlungsschutz ermöglicht es weiterhin, die bisher mit wassergekühlten Reflektoren erreichbare Anschlussflächenleistung in der Größenordnung von 1 MW/m2 weiter zu steigern, insbesondere bei wassergekühlten Modulen.
  • Für Höchstleistungsanwendungen, beispielsweise luftgekühlten Modulen mit Flächenleistungen ab 400 Watt/m2, insbesondere ab 600 Watt/m2, hat sich optisches, inhomogenes Quarzglas als Strahlungsschutz bewährt, insbesondere in einem Verbund mit Gold, bei dem das optische, inhomogene Quarzglas zur Modulvorderseite gerichtet ist, d.h. in Richtung des zu bestrahlenden Objekts und das Gold als Schicht rückseitig zur Modulrückseite weisend auf dem optischen, inhomogenen Quarzglas angeordnet ist. Alternativ bieten sich Quarzglaskeramiken oder mit Quarzglas glasierte Keramiken, insbesondere mit einer rückseitigen Gold-Beschichtung an.
  • Für weniger extreme Anwendungen, beispielsweise luftgekühlte Module mit einer Anschlussflächenleistung von 100 bis 300 Watt/m2, insbesondere 150 bis 250 Watt/m2, eignen sich bereits hochtemperaturstabile optische, inhomogene Gläser, beispielsweise Alumino-Silikat-Gläser, Borat-Silikat-Gläser, Alumino-Silikat-Borat-Gläser. In vorteilhafter Ausführung ist deren Rückseite mit Gold beschichtet oder ein Goldreflektor dazu beabstandet.
  • Bewährt hat sich eine Luftkühlung, bei der ein Luftstrom von der Rückseite des Moduls durch Öffnungen im Strahlungsschutz auf die Strahler gerichtet wird.
  • Die erfindungsgemäß angewendeten Strahler weisen ein in einer Umhüllung angeordnetes Heizfilament oder einen in der Umhüllung begrenzten Entladungsraum auf. Die Umhüllung ist vorzugsweise rohrförmig oder doppelrohrförmig ausgebildet, wobei die Rohrenden vakuumdicht verschlossen sind und Stromdurchführungen aufweisen. Das Strahlungsmaximum der Strahler liegt vorzugsweise im NIR, insbesondere im IR-A. Das Heizfilament besteht vorzugsweise im Wesentlichen aus Wolfram oder Kohlenstoff.
  • Zum Betreiben von Hochleistungs-Heizfilamenten auf Wolframbasis mit Emittertemperaturen von über 2500 K, insbesondere über 3000 K, ist ein erfindungsgemäßer Hitzeschutz zwischen dem Hüllrohr des Strahlers und dem den Strahler haltenden Gehäuse vorteilhaft, insbesondere bei Anwendung mehrerer Strahler in einem Modul.
  • Im Folgenden wird die Erfindung anhand von Beispielen mit Bezug auf Figuren verdeutlicht.
    • Figur 1 zeigt einen Querschnitt durch ein Hochleistungsmodut.
    • Figur 2 zeigt einen Querschnitt einer Strahleranordnung des Moduls aus Figur 1.
  • Der Hitzeschutz 3 wird aus einem optischen, inhomogenen Quarzglas gemäß Heraeus-Broschüre "Opaque Fused Material OFM 970" gefertigt.
  • Ein Hitzeschutz 3 aus optisch inhomogenem Quarzglas gemäß Heraeus-Broschüre "Opaque Fused Material OFM 970" wird gehäuseseitig mit Gold beschichtet, wie dies bereits für vergoldete Hüllrohre von Infrarotstrahlern in bekannter Weise ausgeführt wird.
  • Ausführungsbeispiel 1
  • Die Figur 1 zeigt ein Modul mit einer Flächenleistung von 400 kW/m2, in dem 6 Zwillingsrohrstrahler (1) parallel nebeneinander angeordnet und mittels Halteelementen (2) fixiert sind. Die erfindungsgemäßen Hitzeschutzelemente (3) aus optisch inhomogenem Quarzglas sind als Halbschalen ausgeformt und entweder glasbläserisch an den Strahlerrohren fixiert oder entsprechend Figur 1 mittels zusätzlicher Halteelemente (4). Diese Halbschalen sind so angeordnet, dass die einzelnen Emitter sich nicht gegenseitig anstrahlen.
  • Das eigentliche Modul besteht aus einem Gehäuse (11), einer Einlassöffnung für Luft (12) und einer Prallplatte (13), an der der eintretende Luftstrom im Modulgehäuse verteilt wird. Zwischen dem Modulinnenraum und der Strahler/Hitzeschildanordnung befindet sich ein Diffusorblech (14). Dieses Blech dient erstens der mechanischen Halterung von Strahler und Reflektor, wobei diese auch an anderer Stelle im Modul gehalten werden können. Zweitens sind in dieses Diffusorblech Löcher oder Schlitze eingearbeitet, die zur optimalen Formung des Kühlgasstromes dienen. Hierzu können Löcher oder Schlitze insbesondere zentral hinter den einzelnen Hitzeschilden angeordnet werden. Als Begrenzung des Strahlerfeldes werden zusätzliche Platten aus dem Hitzeschutzschildmaterial angeordnet (15).
  • Die Figur 2 ist eine vergrößerte Darstellung eines Ausschnittes aus der Figur 1. Als Hitzeschutzschild werden Halbschalen, geschnitten aus Rohren aus OMF 70 eingesetzt (gemäß Heraeus-Broschüre "Opaque Fused Material OFM 70"), wobei hier viele andere für IR-Strahlung optisch inhomogene Quarzgläser als Ausgangsmaterial dienen können.
  • Ausführungsbeispiel 2
  • In einem zweiten Ausführungsbeispiel mit einer Flächenleistung von 550 kW/m2 werden die parallel angeordneten Zwillingsrohrstrahler an ihren langen unbeheizten Enden gehalten und sind vor einer Platte aus optisch inhomogem, rückseitig vergoldetem Quarzglas angeordnet. Diese Platte besteht aus mehreren Segmenten, um die Produktionskosten gering zu halten. In die Segmente sind an geeigneten Positionen Löcher eingebracht, so dass das mittels geeigneter Vorrichtungen im Modulgehäuse zur Verfügung gestellte Gas so über diese Löcher abfließt, dass zum einen die Strahler effektiv angeblasen und so konvektiv gekühlt werden und zum zweiten der noch kalte Gasstrom aus dem Gehäuse durch das Hitzeschild dieses kühlt. Die Platten werden aus OM100 gefertigt (gemäß Heraeus-Broschüre "OM 100 High purity opaque quartz glass"), wobei alternativ viele andere optisch inhomogene Quarzgläser als Ausgangsmaterial verwendbar sind.
  • Seitlich sind zum Schutz des Modules zusätzliche Platten aus OM100 angeordnet, die rückseitig konvektiv gekühlt werden.
  • Ausführungsbeispiel 3
  • In einem dritten Ausführungsbeispiel mit einer Flächenleistung von 600 kW/m2 werden die parallel angeordneten Zwillingsrohrstrahler an ihren langen unbeheizten Enden gehalten. Anordnung wie im Ausführungsbeispiel 2, jedoch besteht der rückseitige Hitzeschutz aus einer Platte transparenten Quarzglases, auf das eine ausreichend starke Schicht aus optisch inhomogenem Quarz als Schlicker aufgebracht und nachträglich aufgesintert wurde. Diese Schicht wird in Richtung der Infrarotstrahler ausgerichtet und die rückseitige Quarzplatte vergoldet. Schlitze und Löcher zur Kühlung des Hitzeschildes und der Strahler werden wie bei Ausführungsbeispiel 2 ausgeführt, jedoch die Luftmenge zur Kühlung entsprechend erhöht.

Claims (13)

  1. Hochleistungsstrahlermodul, bei dem zwischen Strahler (1) und Gehäuse (11) ein Hitzeschutz (3) aus anorganischem oxidischen Material angeordnet ist, dadurch gekennzeichnet, dass der Hitzeschutz (3) aus einem im Wesentlichen faserfreien und bezüglich IR-Strahlung optisch inhomogenem Material besteht und das Hochleistungsstrahlermodul (1) eine Anschlussflächenleistung von mindestens 200 kW/m2 aufweist und der Hitzeschutz (3) so dick ist, dass er eine IR-Transmission von weniger als 10 % bei einer Temperatur zwischen 0 bis 1000°C aufweist.
  2. Hochleistungsstrahlermodul nach Anspruch 1, dadurch gekennzeichnet, dass der Hitzeschutz (3) zu seiner Kühlung nur eine Luftkühlung aufweist.
  3. Hochleistungsstrahlermodul nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das optisch inhomogene, oxidische Material Quarzglas, hochtemperaturstabile Gläser, Glaskeramiken, Aluminosilikate, Keramiken aufweist.
  4. Hochleistungsstrahlermodul nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein kühlender Luftstrom über Hitzeschutzschilder zu den Strahlern (1) geführt wird.
  5. Hochleistungsstrahlermodul nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Hitzeschutz (3) Öffnungen aufweist, durch die Kühlluft auf die Strahler (1) geführt werden kann.
  6. Hochleistungsstrahlermodul nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Material des Hitzeschutzes (3) Einschlüsse aufweist.
  7. Hochleistungsstrahlermodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dessen Hitzeschutz (3) Material mit einer Körnung im Nanometer- oder Mikrometerbereich aufweist.
  8. Hochleistungsstrahlermodul nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Hitzeschutz (3) ein Sinterkörper ist oder einen Sinterkörper pro Strahler aufweist.
  9. Hochleistungsstrahlermodul nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Hitzeschutz (3) ein Monolith ist oder einen Monolith pro Strahler aufweist.
  10. Verwendung eines Strahlermoduls nach Anspruch 1 als wassergekühltes Hochleistungsstrahlermodul mit einer Anschlussflächenleistung von mindestens 600 KW/m2, insbesondere mindestens 1 Megawatt/m2.
  11. Verfahren zur Herstellung eines Strahlermoduls nach Anspruch 1, bei dem mehrere Strahler (1) oder Strahlereinheiten (1) in einem Gehäuse (11) mit einer Austrittsöffnung für die emittierte Strahlung elektrisch angeschlossen und mechanisch gehaltert werden, dadurch gekennzeichnet, dass auf der Seite der Strahler, die der Austrittsöffnung abgewandt sind, ein Hitzeschutz (3) aus anorganischem oxidischen Material angeordnet wird, dadurch gekennzeichnet, dass der Hitzeschutz (3) optisch inhomogen und im Wesentlichen faserfrei ist.
  12. Verfahren zur Herstellung eines Strahlermoduls nach Anspruch 11, dadurch gekennzeichnet, dass zwischen dem Hitzeschutz (3) und dem Gehäuse (11) eine Goldschicht angeordnet wird, insbesondere durch gehäuseseitiges Beschichten des Hitzeschutzes mit Gold.
  13. Verwendung eines anorganischen oxidischen Hitzeschutzes (3) für ein Hochleistungsstrahlermodul nach Anspruch 1 insbesondere mit einer Anschlussflächenleistung von mindestens 200 kW/m2, dadurch gekennzeichnet, dass der Hitzeschutz (3) optisch inhomogen und im Wesentlichen faserfrei ist.
EP07723672A 2006-03-28 2007-03-27 Infrarot-bestrahlungseinheit Not-in-force EP2000003B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006014689A DE102006014689A1 (de) 2006-03-28 2006-03-28 Infrarot Bestrahlungseinheit
PCT/EP2007/002726 WO2007112896A1 (de) 2006-03-28 2007-03-27 Infrarot-bestrahlungseinheit

Publications (2)

Publication Number Publication Date
EP2000003A1 EP2000003A1 (de) 2008-12-10
EP2000003B1 true EP2000003B1 (de) 2011-05-04

Family

ID=38120669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723672A Not-in-force EP2000003B1 (de) 2006-03-28 2007-03-27 Infrarot-bestrahlungseinheit

Country Status (5)

Country Link
US (1) US20110044060A1 (de)
EP (1) EP2000003B1 (de)
AT (1) ATE508612T1 (de)
DE (2) DE102006014689A1 (de)
WO (1) WO2007112896A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370213B2 (en) 2020-10-23 2022-06-28 Darcy Wallace Apparatus and method for removing paint from a surface

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540388A1 (de) * 1985-11-14 1987-05-21 Santrade Ltd Verfahren und vorrichtung zur herstellung von faserbahnverstaerkten kunststofflaminaten
JP3203694B2 (ja) 1991-07-19 2001-08-27 東ソー株式会社 石英ガラスの製造方法
JPH07198949A (ja) 1993-12-28 1995-08-01 Bridgestone Corp 光散乱体
EP0728709B1 (de) * 1995-02-22 1998-04-29 Heraeus Quarzglas GmbH Opakes Quarzglas und Verfahren zu dessen Herstellung
DE19962449C2 (de) 1999-12-22 2003-09-25 Heraeus Quarzglas Quarzglastiegel und Verfahren für seine Herstellung
US6437290B1 (en) * 2000-08-17 2002-08-20 Tokyo Electron Limited Heat treatment apparatus having a thin light-transmitting window
DE10125888C2 (de) 2001-04-18 2003-03-13 Advanced Photonics Tech Ag Strahlermodul und Hochleistungs-Bestrahlungsanlage
DE10156915B4 (de) * 2001-11-21 2007-11-29 Heraeus Noblelight Gmbh Vorrichtung zum homogenen Erwärmen von Substraten oder Oberflächen und deren Verwendung
DE102004002357A1 (de) * 2004-01-15 2005-08-11 Heraeus Noblelight Gmbh Verfahren zum Betreiben eines Infrarotstrahlerelements sowie Verwendung

Also Published As

Publication number Publication date
WO2007112896A1 (de) 2007-10-11
US20110044060A1 (en) 2011-02-24
DE102006014689A1 (de) 2007-10-11
EP2000003A1 (de) 2008-12-10
DE502007007128D1 (de) 2011-06-16
ATE508612T1 (de) 2011-05-15

Similar Documents

Publication Publication Date Title
EP3378280B1 (de) Infrarotstrahler
DE102005055686B3 (de) Anordnung zur Erzeugung kurzwelliger Strahlung auf Basis eines Gasentladungsplasmas sowie Verfahren zur Herstellung von kühlmitteldurchströmten Elektrodengehäusen
DE102008063677B4 (de) Infrarotstrahler und Verwendung des Infrarotstrahlers in einer Prozesskammer
EP0465766B1 (de) Infrarot-Flächenstrahler
DE102009039400A1 (de) Reflektives optisches Element zur Verwendung in einem EUV-System
DE10029522B4 (de) Vorrichtung zum homogenen Erwärmen von Gläsern und/oder Glaskeramiken, Verfahren und Verwendungen
DE2812283A1 (de) Laseranordnung mit gekuehlter blitzlampe
EP1667489B1 (de) CFC-Heizstrahler
DE102011005817B4 (de) Solarabsorbermodul
EP2000003B1 (de) Infrarot-bestrahlungseinheit
DE102011012363A1 (de) Infrarot-Flächenstrahler mit hoher Strahlungsleistung und Verfahren für seine Herstellung
EP1039780A1 (de) Infrarotstrahler und Verfahren zur Erwärmung eines Behandlungsgutes
DE102007032496B3 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
DE102013113600B4 (de) Prüfvorrichtung und hochfokussierende Heizvorrichtung zur Erzeugung hoher Wärmestromdichten
DE10156915B4 (de) Vorrichtung zum homogenen Erwärmen von Substraten oder Oberflächen und deren Verwendung
DE102010011156A1 (de) Vorrichtung zur thermischen Behandlung von Halbleitersubstraten
DE10051904B4 (de) Strahlungsquelle und Bestrahlungsanordnung
EP0412305B1 (de) Vorrichtung zum Steuern der Dicke einer durch einen Walzenspalt laufenden Materialbahn
WO2021180388A1 (de) Heizsystem
DE10063941C1 (de) Elektrischer Antrieb einer Rauch- und Wärmeabzugsanlage
DE19515704A1 (de) Gekühlter diodengepumpter Festkörperlaser
DE102004038247B3 (de) Vorrichtung und Verfahren zur Erwärmung von Strangpresswerkzeugen vor dem Einbau in eine Strangpresse
DE102021132374A1 (de) Vorrichtung zum Erwärmen von Kunststoffvorformlingen mit Flächenstrahlern
WO1988009071A1 (en) Laser and process for production of a laser beam
DE19704179A1 (de) Kühleinrichtung für Gase, insbesondere für Lasermedium in einem Entladungsraum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20080926

17Q First examination report despatched

Effective date: 20090323

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007007128

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007007128

Country of ref document: DE

Effective date: 20110616

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110815

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110904

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120326

Year of fee payment: 6

Ref country code: FR

Payment date: 20120403

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007007128

Country of ref document: DE

Effective date: 20120207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120327

Year of fee payment: 6

BERE Be: lapsed

Owner name: HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 508612

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120327

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160324

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007007128

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007007128

Country of ref document: DE

Representative=s name: EULER, MATTHIAS, DR., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170327

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190321

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007007128

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007007128

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001