EP1993362A1 - Stabilisation de biocides contenant de l'iode au moyen de composés de type azole particuliers - Google Patents

Stabilisation de biocides contenant de l'iode au moyen de composés de type azole particuliers

Info

Publication number
EP1993362A1
EP1993362A1 EP07711609A EP07711609A EP1993362A1 EP 1993362 A1 EP1993362 A1 EP 1993362A1 EP 07711609 A EP07711609 A EP 07711609A EP 07711609 A EP07711609 A EP 07711609A EP 1993362 A1 EP1993362 A1 EP 1993362A1
Authority
EP
European Patent Office
Prior art keywords
iodine
hydroxy
mercapto
compounds
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07711609A
Other languages
German (de)
English (en)
Inventor
Hermann Uhr
Johannes Kaulen
Thomas Jaetsch
Peter Spetmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Publication of EP1993362A1 publication Critical patent/EP1993362A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/12Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, neither directly attached to a ring nor the nitrogen atom being a member of a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides

Definitions

  • the invention relates to the use of specific, known azole compounds as stabilizers of iodine-containing biocides, as well as active ingredient formulations, concentrates and technical products containing iodine-containing biocide and specific azole compounds.
  • Iodine-containing biocides are generally used to protect engineering materials from decomposition / destruction and optical change by fungi, bacteria and algae, preferably fungi.
  • active substances are also used here in which one or more iodine atoms are bound to double bond systems, but also to singly bonded carbon atoms.
  • transition metal compounds which are preferably used as driers (siccatives) in alkyd resin-containing paints.
  • Cobalt-containing dryers should be mentioned here in particular, but lead and manganese and vanadium dryers, which are used alternatively and in part, lead to a considerable reduction in active ingredient.
  • Solvents the destabilizing effect is still relatively weak, the other common components of a color formulation, e.g. Process additives, plasticizers,
  • iodine-containing biocides can be stabilized both before chemical, as well as light-induced degradation, so that the disadvantages described above such as color changes and chemical degradation can be prevented.
  • the azoles to be used according to the invention in particular from the series of imidazoles, triazoles and tetrazoles, are known, their use for stabilizing iodine-containing biocides, however, is not described above.
  • WO 98/22543 describes the addition of chelating reagents.
  • transition metal-containing alkyd resin paints are known in which halopropargyl compounds are stabilized by organic epoxides (see WO 00/16628).
  • epoxy compounds is said to reduce the discoloration of iodoalkyne compounds such as IPBC (see US-A 4,276,211 and US-A 4,297,258).
  • Stabilizers are not always adequate and are subject to application-related disadvantages.
  • the drying times of the colors are significantly extended, which in many cases is not acceptable to the user.
  • the inhibition of discoloration is not always sufficient.
  • the present invention therefore provides active substance mixtures comprising at least one iodine-containing biocide and at least one azole compound of the general formula (I) or tautomer thereof,
  • R 1 is hydrogen, hydroxy, mercapto or optionally substituted amino
  • X, Y and Z are independently N or CR 2 ,
  • R 2 is hydrogen, hydroxy, mercapto or optionally substituted amino.
  • mixtures comprising at least one iodine-containing biocide and at least one azole compound of the formula (I) or its tautomer,
  • R 1 represents hydrogen, hydroxy, mercapto, amino, Ci - C 3 alkylamino or Ci - C 3 - dialkylamino
  • X, Y and Z are independently N or CR 2
  • R 2 is hydrogen, hydroxy, mercapto, amino, C 1 -C 3 -alkylamino or di-C 1 -C 3 -alkylamino.
  • radicals given in the respective definitions or preferred and particularly preferred definitions can be replaced, irrespective of the particular combination given, optionally also by radical definitions of other combinations.
  • remainder definitions from any preferred area can be omitted.
  • mixtures according to the invention which comprise at least one of the following imidazoles, triazoles or tetrazoles:
  • the iodine-containing biocides contained in the mixtures according to the invention are preferably iodoalkynyl compounds or compounds in which one or more iodine atoms are bonded to double bond systems or compounds in which one or more iodine atoms are bonded to singly bonded carbon atoms.
  • the iodine-containing active ingredients are particularly preferably the following compounds: 3-iodo-2-propynyl-propyl-carbamate, 3-iodo-2-propynyl-butyl-carbamate (IPBC), 3-iodo-2-propynyl 3-iodo-2-propynyl-2,4,5-trichlorophenyl ether, 3-iodo-2-propynyl-4-chlorophenylformal (IPCF), Di- (3-iodo-2-propynyl) hexyl dicarbamate, 3-iodo-2-propynyl oxyethanol ethylcarbamate, 3-iodo-2-propynyl-oxy-ethanol-phenylcarbamate, 3-iodo-2-propynylthioxo thioethyl carbamate, 3-iodo-2-propynylcarbamic acid ester (IPC), N-io
  • the mixtures according to the invention can be prepared by mixing the individual components with one another depending on their physical and / or chemical properties without additives or converting them into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols and ultrafine encapsulations in polymeric materials.
  • the mixtures according to the invention are suitable for the protection of industrial materials.
  • Technical materials as used herein mean non-living materials that have been prepared for use in the art.
  • the technical materials are adhesives, glues, paper and cardboard, textiles, leather, wood, wood-based materials, paints and plastic articles, cooling lubricants and other materials that can be attacked or decomposed by microorganisms.
  • Another object is the use of the mixtures according to the invention for the protection of industrial materials against attack and / or destruction by microorganisms.
  • microorganisms that can cause degradation or a change in the technical materials
  • bacteria, fungi, yeasts, algae and mucus organisms may be mentioned.
  • the active compounds according to the invention preferably act against fungi, in particular molds, wood-discolouring and wood-destroying fungi (Basidiomycetes) and against slime organisms and bacteria.
  • microorganisms of the following genus are mentioned:
  • Alternaria such as Alternaria tenuis, Aspergillus such as Aspergillus niger, Chaetomium such as Chaetomium globosum, Coniophora such as Coniophora puetana, Lentinus such as Lentinus tigrinus, Penicillium such as Penicillium glaucum, Polyporus such as Polyporus versicolor, Aureobasidium such as Aureobasidium pullulans, Sclerophoma such as Sclerophoma pityophila, Trichoderma such as Trichoderma viride, Escherichia such as Escherichia coli, Pseudomonas such as Pseudomonas aeruginosa, Staphylococcus such as Staphylococcus aureus.
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • mixtures according to the invention can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols and ultrafine encapsulations in polymeric substances.
  • formulations can be prepared in a known manner, for example by mixing the individual active compounds with extenders, ie liquid solvents, liquefied gases under pressure and / or solid carriers, if appropriate using surface-active agents, ie emulsifiers and / or dispersants and / or foaming agents.
  • extenders ie liquid solvents, liquefied gases under pressure and / or solid carriers, if appropriate using surface-active agents, ie emulsifiers and / or dispersants and / or foaming agents.
  • organic solvents can also be used as auxiliary solvents.
  • Suitable liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, eg petroleum fractions, alcohols such as butanol or glycol and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatic or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride
  • aliphatic hydrocarbons such as
  • liquefied gaseous diluents or carriers are meant those liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons as well as butane, propane, nitrogen and carbon dioxide.
  • Suitable solid carriers are: for example ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates.
  • solid carriers for granules are: for example, broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, coconut shells, corncobs and tobacco stalks.
  • emulsifier and / or foaming producing agents are suitable: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates and protein hydrolysates.
  • Suitable dispersants are: for example lignin-sulphite liquors and methylcellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex polymers may be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins, and synthetic phospholipids.
  • Other additives may be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • the formulations generally contain between 0.1 and 95% by weight of active compound mixture, preferably between 2 and 75% by weight.
  • the present invention furthermore relates to microbicidal compositions based on the mixtures according to the invention, comprising at least one solvent or diluent and, if appropriate, processing auxiliaries and, if appropriate, further antimicrobial substances.
  • the active ingredients may be present either in dissolved form or as suspensions or emulsions.
  • the solvents or diluents are either water or all common organic solvents.
  • the efficacy and spectrum of activity of the mixtures according to the invention or of the preparations obtainable therefrom can be increased if, if desired, further antimicrobially active compounds, fungicides, bactericides, herbicides, insecticides or other active substances are added to increase the spectrum of activity or to achieve particular effects. These mixtures can have an even broader spectrum of activity.
  • Triazoles such as:
  • Succinate dehydrogenase inhibitors such as:
  • Naphthalene derivatives such as:
  • Dichlorofluidide tolylfluanid, folpet, fluorfolpet; Captan, Captofol; Benzimidazoles such as:
  • Benzothiazoles such as: 2-mercaptobenzothiazole; Benzothiophene dioxides such as: Benzo ⁇ thiophene-SS-dioxide carbonklarecyclohexylarnid; Benzamides like:
  • Formaldehyde and formaldehyde-releasing compounds such as:
  • Isothiazolinones such as:
  • Aldehydes such as: cinnamaldehyde, formaldehyde, glutardialdehyde, ⁇ -bromocinnamaldehyde, o-phthaldialdehyde; Thiocyanates such as:
  • Benzalkonium chloride benzyldimethyltetradecylammonium chloride, benzyldimethyldodecylammonium chloride, dichlorobenzyldimethylalkylammonium chloride, didecyldimethylammonium chloride, dioctyldimethylammonium chloride, N-hexadecyltrimethylammonium chloride, 1-hexadecylpyridinium chloride, iminoctadine tris (albesilate);
  • Iodine derivatives such as:
  • Methoxyacrylates or similar such as:
  • Azoxystrobin Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, 2,4-dihydro-5-methoxy-2-methyl-4- [2 - [[[[l- [3- (trifluoromethyl ) phenyl] ethylidenes] amino] oxy] methyl] phenyl] -3H-l, 2,4-triazol-3-ones (CAS No. 185336-79-2);
  • Salts of the metals tin, copper and zinc with higher fatty, resinous, naphthenic and phosphoric acid e.g. Tin, copper, zinc naphthenate, octoate, 2-ethylhexanoate, oleate, phosphate, benzoate;
  • Metal salts like: Salts of the metals tin, copper, zinc, as well as chromates and dichromates such as copper hydroxycarbonate, sodium dichromate, potassium dichromate, potassium chromate, copper sulfate, copper chloride, copper borate, zinc fluorosilicate, copper fluorosilicate;
  • Oxides such as: Oxides of the metals tin, copper and zinc, e.g. Tributyltin oxide, G12O, CuO, ZnO; Oxidizing agents such as:
  • Cufraneb Ferban, potassium N-hydroxymethyl-N '-methyl-dithiobarbamat, sodium or potassium dimethyl dithiocarbamate, Macozeb, maneb, metam, metiram, thiram, zineb, ziram;
  • Bacillus thuringiensis barthrin, 4-bromo-2 (4-chlorophenyl) -1- (ethoxymethyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile, bendiocarb, benfuracarb, bensultap, betacyfluthrin, bifenthrin, bioresmethrin, bioallethrin, Bistrifluron, Bromophos A, Bromophos M, Bufencarb, Buprofezin, Butathiophos, Butocarboxine, Butoxycarboxime,
  • Halofenocide HCH (CAS RN: 58-89-9), heptenophos, hexaflumuron, hexythiazox, hydramethylnone, hydroprene,
  • Imidacloprid imiprothrin, indoxycarb, iodoffen, iprinomectin, Iprobenfos, isazophos, isoamidophos, isofenphos, isoprocarb, isoprothiolanes, isoxathion, ivermectin,
  • Parathion A parathion M, penfluron, permethrin, 2- (4-phenoxyphenoxy) ethyl-ethylcarbamate, phenthoate, phorate, phosalone, phosmet, phosphamidone, phoxim, pirimicarb, pirimiphos M, pirimiphos A, prallethrin, profenophos, promecarb, propaphos, Propoxur, Prothiophos, Prothoate, Pymetrozine, Pyrachlophos, Pyridaphenthione, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyrimidifen, Pyriproxifen, Pyrithiobac Sodium
  • MCPA MCPA hydrazide, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methazole, methopyrone, methyldymrone, methylisothiocyanate, metobromuron, metoxuron, metribuzin, metsulfuron, Molinate, Monalid, Monolinuron, MSMA, Metolachlor, Metosulam, Metobenzuron,
  • Another object of the present invention is the use of azole compounds of the formula (I) for the stabilization of iodine-containing biocides against chemical degradation reactions.
  • the substances to be protected from degradation may in principle be all iodine-containing active substances.
  • the use according to the invention is preferred for stabilizing the iodine-containing biocides listed above as being preferred and particularly preferred.
  • Another object of the present invention is the use of azole compounds of formula (I) as stabilizers in formulations containing iodine-containing biocides and technical products against chemical degradation reactions and color changes.
  • the azole compounds of formula (I) can be used to suppress or at least slow down the chemical degradation of iodine-containing biocides in drug formulations, especially paints such as paints, varnishes, primers, impregnations, glazes and other engineering materials.
  • the azole compounds of the formula (I) which can be used according to the invention for stabilizing iodine-containing biocides are very particularly effective in alkyd resin-based systems, such as paints containing transition metal dryers, which have a good stabilizing effect.
  • the present invention furthermore relates to the use of azole compounds of the formula (I) for stabilizing iodine-containing biocides in alkyd resin-based paints containing transition-metal dryers.
  • the paints used according to the invention are especially paints, varnishes, primers, impregnations and glazes containing binders based on alkyd resins.
  • the alkyd resins contained in the paints are generally polycondensation resins of polyols, polybasic carboxylic acids or their anhydrides and fatty oils or free natural and / or synthetic fatty acids.
  • the alkyd resins may optionally be chemically modified.
  • the polyols mentioned are preferably glycerol, pentaerythritol, trimethylolethane, trimethylolpropane and various diols, such as ethane-2-propanediol, diethylene glycol, neopentyl glycol.
  • the polybasic carboxylic acids or their anhydrides mentioned are preferably phthalic acid, phthalic anhydride, maleic anhydride, isophthalic acid, terephthalic acid, trimellitic anhydride, adipic acid, azelaic acid or sebacic acid.
  • oils or fatty acids mentioned are generally linseed oil, oiticia oil, wood oil, soybean oil, sunflower oil, safflower oil, ricinole oil, tall oil, castor oil, coconut oil, peanut oil, their fatty acids and synthetic monocarboxylic acids.
  • the alkyd resins may optionally be modified with natural resins, phenolic resins, acrylic resins, styrene, epoxy resins, silicone resins, isocyanates, polyamides or aluminum alcoholates.
  • the alkyd resins generally have a molecular weight of from 500 to 100,000.
  • the molecular weight is preferably from 1,000 to 50,000, and more preferably from 1,500 to 20,000.
  • the alkyd resins are generally present at from 1 to 80% by weight, preferably from 2 to 70% by weight and more preferably from 3 to 60% by weight, in the paints, preferably paints, lacquers, primers, impregnations or glazes ,
  • the transition metal dryers are used to accelerate the drying and curing of oxidatively drying alkyd paints.
  • the salts of transition metals of the groups Vb, VIb, VHb, VIII and Ib of the chemical periodic system are preferably used according to the invention. Preference is given to the salts of cobalt, manganese,
  • the transition metal salts generally consist of the organic solvent-soluble salts of said transition metals. In principle, it may be the salts of all carboxylic acids which have a good compatibility with the alkyd resin binders and ensure sufficient solubility of the metal salt.
  • the transition metal salts of fatty acids such as oleates or linoleates, resin acids such as resinates or salts of 2-ethylhexanoic acid (octoates) are preferably used.
  • Preferred transition metal dryers are cobalt octoate and cobalt naphthenate.
  • the amounts of dryers in the alkyd resin based paints can be varied over a wide range and are e.g. the type and concentration of the alkyd resin binder and the other color components as well as the desired drying behavior of the paint.
  • the necessary amount of dryers can be determined by routine experimentation. In general, from 0.001 to 1 wt .-%, preferably 0.005 to 0.5 wt .-% and very particularly preferably 0.01 to 0.1 wt .-% dryer used, each based on the amount of binder.
  • the use according to the invention in general from 1 to 150% by weight of at least one compound of the formula (I), preferably from 2 to 100% by weight, in particular from 5 to 80% by weight, based on the iodine-containing biocide are added.
  • the iodine-containing biocides to be stabilized in the use according to the invention are the compounds generally and specifically listed above.
  • paints of the following composition are used:
  • Color pigments generally 0 to 50 wt .-%, preferably 0 to 45 wt .-%, particularly preferably 0 to 40 wt .-%.
  • Alkyd resin binder generally 1 to 80 wt .-%, preferably 2 to 70 wt .-%, particularly preferably 3 to 60 wt .-%.
  • Iodinated biocide generally 0.01 to 5% by weight, preferably 0.05 to 3% by weight, particularly preferably 0.1 to 2% by weight
  • Compound of formula (I) generally 0.001 to 5 wt .-%, preferably 0.005 to 3 wt .-%, particularly preferably 0.01 to 2 wt .-%.
  • the paints may also contain fillers, anti-skinning agents, rheology additives such as anti-settling agents and thixotropic agents, other biocides such as fungicides, bactericides, antifouling agents and algicides, solvents, process additives, plasticizers, UV and heat stabilizers, corrosion inhibitors in customary amounts known to those skilled in the art.
  • Iodine-containing biocides are degraded, especially in the presence of the dryer described in more detail above. Although the strongest effects are observed in the presence of these dryers, a number of other color components also have a destabilizing effect on iodine-containing biocides. These include inorganic and organic pigments, fillers, anti-skinning agents, rheology additives such as anti-settling agents and thixotropic agents, other biocides such as fungicides, bactericides, antifouling agents and algicides, solvents, process additives, plasticizers, UV and heat stabilizers, corrosion inhibitors, etc. The imidazoles, triazoles or Tetrazoles of the formula (I) also show a strong stabilizing effect here.
  • the stabilizing effect of azole compounds of the formula (I) according to the invention is not limited to active substance formulations, paints, lacquers and glazes, but also includes the stabilization of iodine-containing biocides in other media, such as, for example, plastics. Dichtu ⁇ gsmassen, adhesives, glues, coolants, drug concentrates and formulations.
  • the stabilizing effect of the azole compounds of the formula (I) is independent of the type of addition.
  • the stabilizer may be added directly or as a solution, suspension or emulsion to the medium containing the iodine-containing biocide.
  • further stabilizers may also be added during the use according to the invention, such as, for example, the chelating reagents mentioned in WO 98/22543 or the organic epoxides mentioned in WO 00/16628. In many cases, synergistic effects are observed here.
  • one or more stabilizers from the series of antioxidants, free-radical scavengers and UV absorbers may be added in the inventive use, which have partially synergistic effects.
  • hindered phenols such as
  • Esters of ⁇ - (3,5-di-tert-butyl-4-hydroxyphenyl) -propionic acid with monohydric or polyhydric alcohols e.g. with methanol, octadecanol, 1,6-hexanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-hydroxyethyl isocyanurate or di-hydroxyethyl-oxalic acid diamide,
  • Esters of ⁇ - (5-tert-butyl-4-hydroxy-3-methylphenyl) propionic acid with mono- or polyhydric alcohols e.g. with methanol, octadecanol, 1,6-hexanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-hydroxyethyl isocyanurate or di-hydroxyethyl-oxalklarediamid.
  • N, N'-bis (2,2,6,6-tetramethyl-4-piperidinyl) isophthalamides 4-hydroxy 2 , 2,6,6-tetramethylpiperidines, 1-allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1- (4- tert -butyl-2-butenyl) - 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 1-ethyl-4-salicyloyloxy-2,2, 6,6-tetramethylpiperidines, 4-methacryloyloxy-l, 2,2,6,6-pentamethylpiperidines, l, 2,2,6,6-pentamethylpiperidine 4-yl- ⁇ - (3,5-di-tert-butyl-4-hydroxyphenyl) -propionate, 1-benzyl-2
  • Tri (nonylphenyl) phosphites tris (2,4-di-tert-butylphenyl) phosphites, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphites, bis (2,6-di-tert-butyl-4-methylphenyl ) pentaerythritol diphosphites, 2,2'-methylenebis (4,6-di-tert-butylphenyl) octyl phosphites, tetrakis (2,4-di-tert-butylphenyl) [l, 1'-biphenyl] -4,4'- diyl bisphosphonites, 2,2'-ethylidenebis (4,6-di-tert-butylphenyl) fluorophosphites, dioctadecyl pentaerythritol diphosphonites, 2 -
  • N- (2-naphthyl) -N-phenylamines, 2,2,4-trimethyl-1,2-dihydroquinoline polymer (CAS No. 26780-96-1), N-2-propyl-N'-phenyl-p phenylenediamines, N- (1-naphthyl) -N-phenylamines, (Benzeneamines, N-phenyl-, reaction products with 2,4,4-trimethylpentenes) (CAS No. 68411-46-1), 4- (1 -Methyl-1-phenylethyl) -N- [4- (1-methyl-1-phenyl-1-yl) -phenyl] -aniline.
  • UV absorbers like, (Methanones, [methylene bis (hydroxymethoxyphenylenes)] to [phenyl], (methanones, [1,6-hexanediylbis [oxy (2-hydroxy-4, 1-phenylene)]] to [phenyl], 2-benzoyl-5 -methoxyphenol, 2,4-dihydroxybenzophenones, 2,2'-dihydroxy-4-methoxybenzophenones, 2-hydroxy-4-octyloxybenzophenones, 2-hydroxy-4-dodecyloxybenzophenones, 2- (2-hydroxy-4-hexyloxyphenyl) - 4,6-diphenyl-1,3,5-triazines, 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-octyloxyphenyl) -1, 3,5-triazines, 2-ethoxy -2'-ethyloxalic acid bisanilides, N- (5-tert-butyl
  • Ethylenediaminetetraacetate ethylenediamine, acetylacetone, nitrilotriacetic acid, ethylene glycol bis ( ⁇ -aminoethyl ether) -N, N-tetraacetic acid, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 2,2 ⁇ 6 ', 2 "-terpyridine, 4,4'-diphenyl-2,2'-bipyridine, 2,2'-bipyridine-3,3'-diol, 1,10-phenanthroline, 4- Methyl-l, 10-phenanthrolines, 5-methyl-l, 10-phenanthrolines, 4,7-dimethyl-l, 10-phenanthrolines, 5,6-dimethyl-l, 10-phenanthrolines, 3,4,7,8- Tetramethyl-l, 10-phenanthrolines, 4,7-diphenyl-1, 10-phenanthrolines, 2,4,7,9-tetramethyl-
  • the amount of azole compounds of the formula (I) which is necessary in order to achieve a stabilization of the iodine-containing biocide in a technical medium can be determined by routine experiments and depends both on the type and concentration of the iodine-containing biocide, as well as the type and amount of additives in the technical medium, for example, the color or formulation.
  • the amount of azole compounds of the formula (I) necessary for the stabilization depends on the type and amount of the drier used, the alkyd resins and other constituents in the color formulation.
  • the amount In the case of alkyd resin paints, the amount must be adjusted so that the iodine-containing biocides do not degrade, but the actual effect of the dryer is not suppressed. In other media, the application amount must be set so that, although a stabilization is observed, the properties of the medium are not changed.
  • the azole compounds of formula (I) are generally used in concentrations of from 0.001% to 5% by weight, based on the total amount of color. Preference is given to using the imidazoles, triazoles or tetrazoles of the formula (I) in concentrations of 0.005 wt .-% to 3 wt .-% and particularly preferably between 0.01 wt .-% and 2 wt .-%.
  • the azole compounds of the formula (I) are used in higher amounts. In general, from 0.5% by weight to 50% by weight, preferably from 1% by weight to 40% by weight and particularly preferably from 2% by weight to 30% by weight, of azole compounds of the formula (I ) based on the formulation or concentrate amount.
  • a solution was prepared in Dowanol TPM (tripropylene glycol methyl ether) containing 10% by weight of iodopropargyl butylcarbamate, 5% by weight of octasoligen cobalt 8 (from Borchers, Langenfeld, Germany) and 5% by weight of the azole compounds indicated in Table 1 of the formula (I) as a stabilizer.
  • Dowanol TPM tripropylene glycol methyl ether
  • octasoligen cobalt 8 from Borchers, Langenfeld, Germany
  • composition of the wood preservative varnish used is composed of the wood preservative varnish used:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Des composés de type azole particuliers, notamment des imidazoles, triazoles ou tétrazoles, conviennent remarquablement bien pour la stabilisation de biocides contenant de l'iode, en particulier, des composés iodoalkinyles, iodoalcényles ou iodoalkyles, dans des matériaux techniques, notamment dans des peintures à base de résines alkydes.
EP07711609A 2006-03-06 2007-02-21 Stabilisation de biocides contenant de l'iode au moyen de composés de type azole particuliers Withdrawn EP1993362A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006010199A DE102006010199A1 (de) 2006-03-06 2006-03-06 Stabilisierung Iod-haltiger Biozide durch spezielle Azolverbindungen
PCT/EP2007/001480 WO2007101549A1 (fr) 2006-03-06 2007-02-21 Stabilisation de biocides contenant de l'iode au moyen de composés de type azole particuliers

Publications (1)

Publication Number Publication Date
EP1993362A1 true EP1993362A1 (fr) 2008-11-26

Family

ID=38198457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07711609A Withdrawn EP1993362A1 (fr) 2006-03-06 2007-02-21 Stabilisation de biocides contenant de l'iode au moyen de composés de type azole particuliers

Country Status (7)

Country Link
US (1) US7943644B2 (fr)
EP (1) EP1993362A1 (fr)
JP (1) JP4943459B2 (fr)
AU (1) AU2007222754A1 (fr)
DE (1) DE102006010199A1 (fr)
MX (1) MX2008011374A (fr)
WO (1) WO2007101549A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023243A1 (de) * 2006-05-18 2007-11-22 Lanxess Deutschland Gmbh Stabilisierung von Dikohlensäurediestern durch feinteilige Feststoffe
EP2236033A1 (fr) 2009-04-01 2010-10-06 LANXESS Deutschland GmbH Stabilisation de composés contenant de l'iode
EP2440043A1 (fr) 2009-06-12 2012-04-18 Lanxess Deutschland GmbH Supports inorganiques contenant des composés hétérocycliques à 3 cycles
EP2270087A1 (fr) 2009-06-30 2011-01-05 LANXESS Deutschland GmbH 3-liaisons annulaires hétérocycliques et polymères contenant des liaisons à teneur en iode
JP5364936B2 (ja) * 2010-11-09 2013-12-11 ダウ グローバル テクノロジーズ エルエルシー フルメツラムまたはジクロスラムとジヨードメチル−p−トリルスルホンとの相乗的組み合わせ
EP2462805A1 (fr) 2010-12-10 2012-06-13 LANXESS Deutschland GmbH Formulations comprenant des composés stabilisés contenant de l'iode
JP5511093B2 (ja) * 2010-12-22 2014-06-04 ダウ グローバル テクノロジーズ エルエルシー グリホサート化合物とtbzとの相乗的組み合わせ
DE102011077071A1 (de) * 2011-06-07 2012-12-13 Beiersdorf Ag Wirkstoffkombinationen aus Epsilon-Polylysin und Climbazol
EP2594132A1 (fr) 2011-11-16 2013-05-22 Lanxess Deutschland GmbH Stabilisation de composés contenant de l'iode avec des polymères contenant de l'azote
BR112014023867B1 (pt) 2012-03-28 2021-02-09 Lanxess Deutschland Gmbh composição; produto polimérico; processo para a preparação do produto polimérico; e uso da composição
CA2852530A1 (fr) 2014-05-21 2015-11-21 The Sansin Corporation Composition antimicrobienne destinee a la protection du bois
CN117487303B (zh) * 2023-12-28 2024-05-14 汕头市科彩新材料有限公司 一种耐光热老化改性聚丙烯材料及其制备方法和在无纺布中的应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739922A (en) * 1952-03-13 1956-03-27 Herman A Shelanski Mixtures of polymeric n-vinyl pyrrolidone and halogens
US4276211A (en) * 1980-03-10 1981-06-30 Troy Chemical Corporation Stabilization composition for coating composition
US4297258A (en) * 1980-04-28 1981-10-27 Ici Americas Inc. Non-yellowing paint formulations containing iodo substituted alkynyl urethanes as fungicides
DE3269755D1 (en) * 1981-12-24 1986-04-10 Ciba Geigy Ag Process for stabilising fungicides
US4552885A (en) * 1981-12-24 1985-11-12 Ciba Geigy Corporation Stabilized fungicide compositions
US5051256A (en) * 1988-02-16 1991-09-24 Barnes Carl E Biocidal complex and dressing formed therefrom
JPH02164803A (ja) * 1988-12-15 1990-06-25 Takeda Chem Ind Ltd 安定な殺菌組成物
JPH04297427A (ja) * 1991-03-27 1992-10-21 Central Glass Co Ltd ハロゲン化炭化水素組成物
US5916930A (en) 1996-11-20 1999-06-29 Troy Corporation Stabilization of biocidal activity in air drying alkyds
JPH10158110A (ja) * 1996-11-29 1998-06-16 Mitsui Chem Inc 防菌防黴剤組成物
JPH115882A (ja) * 1997-06-19 1999-01-12 Mitsui Chem Inc 塩化ビニル樹脂成形用組成物
US6059991A (en) * 1997-12-12 2000-05-09 Troy Technology Corporation, Inc. Stabilized composition containing halopropynyl compounds
US5938825A (en) * 1998-05-21 1999-08-17 Troy Technology Corporation Inc. Stabilized antimicrobial compositions containing halopropynyl compounds
US6143204A (en) * 1998-06-19 2000-11-07 Lonza Inc. Stabilization of iodopropynl compounds
US6140370A (en) 1998-09-21 2000-10-31 Troy Technology Corporation, Inc. Stabilized alkyd based compositions containing halopropynl compounds
JP2001172333A (ja) * 1999-12-17 2001-06-26 Mitsui Chemicals Inc 1−メチル−3−ビニル−2−イミダゾリジノンおよびこの重合体、ならびにこの重合体を用いてなる錯体および殺菌性組成物
US6472424B1 (en) * 2000-06-07 2002-10-29 Troy Technology Corporation, Inc. Stabilized antimicrobial compositions containing halopropynyl compounds and benzylidene camphors
CA2439640A1 (fr) * 2001-03-01 2002-09-12 Lonza Inc. Combinaison d'un derive d'iodopropynyle et d'un acide cetonique ou de son sel et/ou d'un acide carboxylique aromatique ou de son sel
US7083801B2 (en) * 2002-07-18 2006-08-01 Rohm And Haas Company Stabilized haloalkynyl microbicide compositions
WO2006019517A2 (fr) * 2004-07-16 2006-02-23 Isp Investments Inc. Stabilisation thermique de biocides dans des compositions de matrices traitees a des temperatures elevees
US20060013833A1 (en) * 2004-07-16 2006-01-19 Isp Investments Inc. Thermal stabilization of biocides in matrix compositions processed at elevated temperatures
DE102005042433A1 (de) 2005-09-07 2007-03-08 Lanxess Deutschland Gmbh Stabilisierung Iod haltiger Biozide
US20070128246A1 (en) * 2005-12-06 2007-06-07 Hossainy Syed F A Solventless method for forming a coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007101549A1 *

Also Published As

Publication number Publication date
WO2007101549A1 (fr) 2007-09-13
US20090192219A1 (en) 2009-07-30
DE102006010199A1 (de) 2007-09-13
JP2009529013A (ja) 2009-08-13
AU2007222754A1 (en) 2007-09-13
JP4943459B2 (ja) 2012-05-30
US7943644B2 (en) 2011-05-17
MX2008011374A (es) 2008-09-22

Similar Documents

Publication Publication Date Title
US7943644B2 (en) Stabilization of iodine-containing biocides by means of special azole compounds
EP1926367A1 (fr) Stabilisation de biocides iodes
US9328065B2 (en) Nitrogen-containing inorganic carrier materials
WO2012076699A1 (fr) Formulations en microcapsules biocides contenant des composés iodés stabilisés
US9585384B2 (en) Stabilization of compounds comprising iodine
EP2449016A1 (fr) Polymères contenant des composés hétérocycliques tricycliques et des composés à base d&#39;iode
EP2779830B1 (fr) Stabilisation de composés contenant de l&#39;iode avec des polymères contenant de l&#39;azote
US20120186487A1 (en) Inorganic carrier materials containing heterocyclic 3-ring compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPETMANN, PETER

Inventor name: UHR, HERMANN

Inventor name: JAETSCH, THOMAS

Inventor name: KAULEN, JOHANNES

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141218