EP1985936A1 - Climatiseur et son procédé de fonctionnement - Google Patents

Climatiseur et son procédé de fonctionnement Download PDF

Info

Publication number
EP1985936A1
EP1985936A1 EP08153504A EP08153504A EP1985936A1 EP 1985936 A1 EP1985936 A1 EP 1985936A1 EP 08153504 A EP08153504 A EP 08153504A EP 08153504 A EP08153504 A EP 08153504A EP 1985936 A1 EP1985936 A1 EP 1985936A1
Authority
EP
European Patent Office
Prior art keywords
temperature
distance
space region
human body
corresponding space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08153504A
Other languages
German (de)
English (en)
Other versions
EP1985936B1 (fr
Inventor
Hyen Young Choi
Jeong Su Han
Su Ho Jo
Sang Jun Lee
O Do Ryu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of EP1985936A1 publication Critical patent/EP1985936A1/fr
Application granted granted Critical
Publication of EP1985936B1 publication Critical patent/EP1985936B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the present invention relates to an air conditioner and a control method thereof, and, more particularly, to an air conditioner capable of detecting whether there is a human body in an indoor space and a control method thereof.
  • an air conditioner is an apparatus which cools or heats the circumference using heat absorbing action and heat generating action performed when a circulated coolant is evaporated or liquefied in a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion unit, an indoor expansion unit and an indoor heat exchanger are connected to each other by coolant lines to form a closed circuit.
  • the air conditioner detects whether there is a human body in an indoor space and a position of the human body, and controls a flow direction and a flow rate based on the detected results, thereby cooling and heating the indoor space in a user-desired optimal state.
  • Korean Patent Registration No. 0166933 discloses an air conditioner, wherein an acoustic wave sensor, which is installed to interwork with lateral louvers, is used to sequentially detect a distance to an object or a human body in various directions by dividing a rotational range of the lateral louvers at specific angle intervals, and existence of the human body and a position of the human body are determined based on a variation in the detected distance, thereby controlling a flow direction and a flow rate based on the determination information.
  • an acoustic wave sensor which is installed to interwork with lateral louvers, is used to sequentially detect a distance to an object or a human body in various directions by dividing a rotational range of the lateral louvers at specific angle intervals, and existence of the human body and a position of the human body are determined based on a variation in the detected distance, thereby controlling a flow direction and a flow rate based on the determination information.
  • the present invention has been made in order to solve the above problems. It is an aspect of the invention to provide an air conditioner capable of improving a human body detection performance to quickly and accurately determine whether there is a human body and a position of the human body and a control method thereof.
  • an air conditioner comprising: a distance detection unit which detects a distance to an obstacle in an indoor space; a temperature detection unit which detects a space temperature of the indoor space; a rotation unit which rotates the distance detection unit and the temperature detection unit; and a controller which controls to detect distance information and temperature information according to space regions obtained by dividing the indoor space into a plurality of regions in a rotation direction while the distance detection unit and the temperature detection unit are rotated, to sequentially store the distance information and temperature information according to the space regions, and to determine whether there is a human body in a corresponding space region and a position of the human body based on a variation in the stored distance information and temperature information.
  • a method of controlling an air conditioner to rotate a sensor which detects a distance to an obstacle in an indoor space and a sensor which detects a space temperature of the indoor space comprising: rotating the sensors; detecting distance information and temperature information according to space regions obtained by dividing the indoor space into a plurality of regions in a rotation direction while the sensors are rotated; sequentially storing the detected distance information and temperature information according to the space regions; and determining whether there is a human body in a corresponding space region and a position of the human body based on a variation in the distance information and temperature information stored according to the space regions.
  • an air conditioner according to the embodiment of the present invention includes a main body 10 having a box-shaped cabinet 11 with an open front surface and a front panel 12 which covers the open front surface of the cabinet 11. Further, the air conditioner includes a heat exchanger 13 to exchange heat and a blower fan 14 to blow air, which are installed in the main body 10.
  • First suction ports 15 are formed on opposite side surfaces of a lower portion of the main body 10 to suck indoor air into the main body 10.
  • a discharge port 16 is formed at an upper portion of the front panel 12 of the main body 10 to discharge conditioned air into an indoor space.
  • An infrared distance sensor 17a and an infrared temperature sensor 17b are installed at the lower side of the discharge port 16 to reciprocatingly rotatable within a specific angle range.
  • the infrared distance sensor 17a and the infrared temperature sensor 17b are rotated by a motor 18.
  • the infrared distance sensor 17a detects a distance to an obstacle in the indoor space in the rotation direction.
  • the infrared temperature sensor 17b detects a space temperature in the rotation direction.
  • Lateral louvers 19a which guide the discharged air in a lateral direction and vertical louvers 19b which guide the discharged air in a vertical direction are installed in the discharge port 16.
  • the heat exchanger 13 is installed in an upper inner space of the main body 10 to have a predetermined inclination to exchange heat with air passing through the inside of the main body 10. Further, the blower fan 14 is installed in a lower inner space of the main body 10 to blow air, which is sucked into the main body 10 through the suction ports 15 of the opposite sides, toward the discharge port 16 through the heat exchanger 13 disposed at the upper portion of the main body 10.
  • a reference numeral 19 is a fan casing which forms an air blowing path inside the main body 10.
  • the air conditioner is configured such that air, which is sucked into the main body 10 through the suction ports 15 when the blower fan 14 is operated, is heat-exchanged through the heat exchanger 13 disposed at an upper inner portion of the main body 10, and then the heat-exchanged air is supplied to the indoor space again through the discharge port 16 disposed at the upper portion, thereby cooling and heating the indoor air.
  • the air conditioner having the above configuration according to the embodiment of the present invention includes a controller 20 which performs an overall control.
  • the input side of the controller 20 is electrically connected to the infrared distance sensor 17a and the infrared temperature sensor 17b.
  • the infrared distance sensor 17a and the infrared temperature sensor 17b are rotated by the motor 18.
  • the infrared distance sensor 17a detects a distance to an obstacle in the indoor space in the rotation direction.
  • the infrared distance sensor 17a includes a light emitting part and a light receiving part to measure the distance by transmitting infrared ray and receiving infrared ray reflected from the obstacle.
  • the infrared temperature sensor 17b detects a space temperature in the rotation direction.
  • the infrared temperature sensor 17b includes a lens, a thermopile and an embedded signal processor to measure the space temperature by transmitting infrared ray and receiving infrared ray reflected from the obstacle.
  • the output side of the controller 20 is electrically connected to a fan driving unit 22 which drives the blower fan 14, a louver driving unit 23 which drives the lateral louvers 19a and the vertical louvers 19b, a rotation unit 24 which drives the motor 18 to rotate the infrared distance sensor 17a and the infrared temperature sensor 17b, and a compressor driving unit 25 which drives a compressor 26.
  • controller 20 is electrically connected to a storing unit 21 which sequentially stores distance information and temperature information detected by the infrared distance sensor 17a and the infrared temperature sensor 17b according to the respective space regions.
  • the controller 20 measures distance values to the obstacle and temperature values according to the space regions in the respective directions at specific time intervals while the infrared distance sensor 17a and the infrared temperature sensor 17b are reciprocatingly rotated.
  • the measured distance values and temperature values in the respective space regions are stored in the storing unit 21 according to the corresponding space regions.
  • FIG. 5 illustrates a pattern of the temperature values and the distance values stored according to the respective space regions when the indoor space is divided into n space regions.
  • a first distance value Y1-1 to the obstacle and a first temperature value X1-1 in the G1 space region are measured and stored while passing through the G1 space region
  • a first distance value Y2-1 to the obstacle and a first temperature value X2-1 in a G2 space region are measured and stored while passing through the G2 space region.
  • the measuring and storing operations are performed in the remaining space regions.
  • a first distance value Yn-1 and a first temperature value Xn-1 in the Gn space region are measured and stored.
  • a second distance value Yn-2 and a second temperature value Xn-2 in the Gn space region are measured and stored, and a second distance value Yn-1-2 to the obstacle and a second temperature value Xn-1-2 in a Gn-1 space region are measured and stored while passing through the Gn-1 space region.
  • the measuring and storing operations are performed in the remaining space regions, and a second distance value Y1-2 and a second temperature value X1-2 in the G1 space region are measured and stored while passing through the G1 space region.
  • infrared ray is transmitted and then returns after being reflected from the wall surface. If there is an obstacle in the corresponding space region, transmitted infrared ray returns after being reflected from the obstacle. Accordingly, there is a difference in time until infrared ray returns according to whether there is an obstacle.
  • the controller 20 can determine whether there is an obstacle in the corresponding space region and a position of the obstacle in the corresponding space region based on a variation between a previous distance value and a current distance value.
  • the previous distance may be a distance just prior to the current distance or an average value of all previous distances.
  • both a distance variation and a temperature variation are measured in the corresponding space region. If there is no human body in the corresponding space region, a low temperature value is measured in the corresponding space region. However, if there is a human body, a relatively high temperature value is measured due to a body temperature. Particularly, if there is a heat source, not a human body, a much higher temperature value is measured. Accordingly, the controller 20 can determine whether there is a human body in the corresponding space region by comparing a current temperature with a previous temperature. In this case, it is possible to easily distinguish a human body from a heat source since the measured temperature values have a large difference. In this case, the previous temperature may be a temperature just prior to the current temperature or an average value of all previous temperatures.
  • the controller 20 determines that there is an obstacle newly coming into the corresponding space region and the obstacle is a human body or a heat source. Since the heat source has a temperature value higher than that of the human body, it is determined that the obstacle is a heat source if the temperature variation is equal to or larger than a reference value, and it is determined that the obstacle is a human body if the temperature variation is smaller than the reference value.
  • the controller 20 determines that there is an obstacle newly coming into the corresponding space region and the obstacle is an object.
  • the controller 20 determines that there is a heat source if the temperature variation is equal to or larger than a reference value, and determines that there is a human body if the temperature variation is smaller than the reference value. In this case, the human body is a hardly moving body.
  • the controller 20 determines that there is no obstacle newly coming into the corresponding space region and there is no human body, object or heat source the beginning.
  • the controller 20 controls the lateral louvers 19a toward the space region in which a human body exists and controls the vertical louvers 19b corresponding to a position of the human body. That is, as the human body is far separated from the main body 10, the vertical louvers 19b are controlled upward.
  • the controller 20 performs a cooling operation or a heating operation at operation 100.
  • the controller 20 controls the rotation unit 24 to rotate the infrared distance sensor 17a and the infrared temperature sensor 17b at operation 110.
  • the controller 20 After the infrared distance sensor 17a and the infrared temperature sensor 17b are rotated, the controller 20 detects a distance and a temperature in the corresponding space region by transmitting infrared ray and receiving reflected infrared ray according to respective space regions at operations 120 and 130.
  • the controller 20 controls the storing unit 21 to store detected distance information and temperature information according to the respective space regions at operation 140.
  • the controller 20 determines whether there is a human body and a position of the human body according to the respective space regions at operation 150. That is, as shown in FIG. 7 , if there are both a distance variation having a current distance smaller than a previous distance and a temperature variation having a current temperature higher than a previous temperature, it is determined that there is an obstacle newly coming into the corresponding space region and the obstacle is a human body or a heat source. Since the heat source has a temperature value higher than that of the human body, it is determined that the obstacle is a heat source if the temperature variation is equal to or larger than a reference value, and it is determined that the obstacle is a human body if the temperature variation is smaller than the reference value.
  • the controller 20 controls the lateral louvers 19a toward the space region in which a human body exists and controls the vertical louvers 19b corresponding to a position of the human body such that the vertical louvers 19b are controlled upward as the human body is far separated from the main body 10.
  • the present invention while rotating the distance sensor which detects a distance to an obstacle in the indoor space and the temperature sensor which detects a temperature of the indoor space, distance information and temperature information are detected and stored according to a plurality of space regions divided in the rotation direction. Then, existence of a human body and a position of the human body are determined based on a variation in the stored distance information and temperature information. Accordingly, it is possible to quickly and accurately distinguish an object from a human body, and also possible to quickly and accurately determine even a hardly moving body. Thus, there is an effect of improving pleasantness of a human body by concentrating or removing cool air or warm air to or from the human body according to a user's preference.
  • the infrared distance sensor and the infrared temperature sensor having a relatively high detection rate are used, there is an effect of determining whether there is a human body in real time.
  • the rotation operation of the infrared distance sensor and the infrared temperature sensor is performed by an independent rotation unit without interworking with the lateral louvers having a relatively low speed. Accordingly, since it is possible to increase a rotational speed, there is an effect of more quickly determining whether there is a human body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
EP08153504A 2007-04-27 2008-03-28 Climatiseur et son procédé de fonctionnement Ceased EP1985936B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070041206A KR100855000B1 (ko) 2007-04-27 2007-04-27 공기조화기 및 그 제어방법

Publications (2)

Publication Number Publication Date
EP1985936A1 true EP1985936A1 (fr) 2008-10-29
EP1985936B1 EP1985936B1 (fr) 2011-01-26

Family

ID=39646359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08153504A Ceased EP1985936B1 (fr) 2007-04-27 2008-03-28 Climatiseur et son procédé de fonctionnement

Country Status (3)

Country Link
EP (1) EP1985936B1 (fr)
KR (1) KR100855000B1 (fr)
CN (1) CN101294729B (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194330A2 (fr) 2008-12-03 2010-06-09 LG Electronics Inc. Climatiseur et procédé de commande correspondant
WO2010074328A1 (fr) * 2008-12-26 2010-07-01 Panasonic Corporation Unité interne de climatiseur à détecteur de corps humain et détecteur d'obstacle pour le réglage d'une température donnée
WO2010074330A1 (fr) * 2008-12-26 2010-07-01 Panasonic Corporation Unité de climatiseur interne à détecteur de corps humain et détecteur d'obstacle permettant de réguler la direction de ventilation
WO2010074329A1 (fr) * 2008-12-26 2010-07-01 Panasonic Corporation Unité intérieure de climatisation à dispositif de détection de corps humain et à dispositif de détection d'obstacle
EP2206983A2 (fr) * 2008-12-26 2010-07-14 LG Electronics Inc. Climatiseur et procédé de fonctionnement correspondant
JP2011080624A (ja) * 2009-10-05 2011-04-21 Panasonic Corp 空気調和機
JP2011080625A (ja) * 2009-10-05 2011-04-21 Panasonic Corp 空気調和機
EP2368074A2 (fr) * 2008-12-23 2011-09-28 LG Electronics Inc. Climatiseur et son procédé de régulation
CN102495617A (zh) * 2011-12-29 2012-06-13 深圳Tcl新技术有限公司 具备联动功能的智能家居空调系统
US8204627B2 (en) 2008-12-26 2012-06-19 Lg Electronics Inc. Air conditioner and method of controlling the same
US8364317B2 (en) 2008-12-26 2013-01-29 Lg Electronics Inc. Air conditioner and method of operating the same
TWI418790B (zh) * 2008-12-30 2013-12-11 Ind Tech Res Inst 紅外線人體活動感測器架構及偵側人體活動量的方法
CN105546748A (zh) * 2015-12-31 2016-05-04 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105546746A (zh) * 2015-12-31 2016-05-04 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105546747A (zh) * 2015-12-31 2016-05-04 广东美的制冷设备有限公司 空调送风控制方法及装置
US9812926B1 (en) 2014-08-15 2017-11-07 Carlos Rodriguez Micro-wind turbine for the power and recharge of satellite home automation sensors
EP2669591A4 (fr) * 2011-01-28 2018-04-25 Mitsubishi Electric Corporation Système et méthode de climatisation
US10371399B1 (en) 2012-03-15 2019-08-06 Carlos Rodriguez Smart vents and systems and methods for operating an air conditioning system including such vents
JP2020029966A (ja) * 2018-08-21 2020-02-27 パナソニックIpマネジメント株式会社 空気清浄機
CN112628964A (zh) * 2020-12-18 2021-04-09 珠海格力电器股份有限公司 空调器的控制方法和空调器
CN113587234A (zh) * 2021-07-21 2021-11-02 青岛海尔空调器有限总公司 一种空调器及空调器出风控制方法
NL2025838B1 (en) * 2020-06-16 2022-02-17 Nanjing Enwell Tech Service Co Ltd Smart air-heating bathroom heater
WO2022227606A1 (fr) * 2021-04-27 2022-11-03 青岛海尔空调器有限总公司 Procédé et appareil de commande de climatiseurs, et climatiseur intelligent

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645196B1 (ko) * 2008-10-31 2016-08-03 엘지전자 주식회사 공기조화기 및 그 제어방법
JP4547029B2 (ja) * 2009-02-10 2010-09-22 パナソニック株式会社 空気調和機
KR101571565B1 (ko) * 2009-02-13 2015-11-24 엘지전자 주식회사 인체 감지 에어컨 및 그 제어 방법
JP2010270999A (ja) * 2009-05-25 2010-12-02 Panasonic Corp 空気調和機
JP5267395B2 (ja) * 2009-09-15 2013-08-21 パナソニック株式会社 空気調和機
JP2012063077A (ja) * 2010-09-16 2012-03-29 Panasonic Corp 空気調和機のリモコン装置
CN103308908B (zh) * 2012-03-08 2015-03-11 珠海格力电器股份有限公司 人体位置的识别方法及装置和空调器
CN104279688B (zh) * 2013-07-10 2017-02-15 海尔集团公司 人体探测方法、背景温度确定方法、装置及空调设备
CN104514736A (zh) * 2013-09-27 2015-04-15 广东美的环境电器制造有限公司 风扇及风扇的控制方法
CN105333560B (zh) * 2014-07-23 2018-09-25 海信(山东)空调有限公司 一种出风风向控制方法及装置
CN104329772B (zh) * 2014-10-22 2017-10-13 珠海格力电器股份有限公司 空调器和空调器的控制方法
CN104456853B (zh) * 2014-12-08 2017-12-19 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制系统和空调器
CN104896657B (zh) * 2015-05-13 2018-04-24 澳柯玛股份有限公司 一种家用空调的自动控制方法
CN104896673B (zh) * 2015-06-12 2017-09-22 珠海格力电器股份有限公司 一种空调控制方法及空调
CN105485852B (zh) * 2015-12-30 2018-05-08 美的集团武汉制冷设备有限公司 基于体表温度的空调控制方法及装置
CN105627508B (zh) * 2015-12-30 2018-08-14 美的集团武汉制冷设备有限公司 基于体表温度的空调控制方法及装置
KR102557652B1 (ko) * 2016-08-22 2023-07-19 엘지전자 주식회사 공기조화기 및 그 제어방법
CN113944908A (zh) * 2016-12-28 2022-01-18 贵州恩纬西光电科技发展有限公司 一种灯具
CN110631229B (zh) * 2019-09-30 2022-02-08 广东美的制冷设备有限公司 空调器及其线控器控制方法、控制装置和可读存储介质
CN112665149B (zh) * 2020-12-21 2022-03-18 珠海格力电器股份有限公司 一种空调器控制方法、装置、空调器及存储介质
CN113091230A (zh) * 2021-04-12 2021-07-09 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调
CN113156831B (zh) * 2021-05-24 2023-07-18 青岛海尔空调器有限总公司 用于驱蚊的家电设备控制方法及装置、家电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294404A (en) 1978-02-14 1981-10-13 Integrated Energy Systems Environmental control system
US5180333A (en) 1991-10-28 1993-01-19 Norm Pacific Automation Corp. Ventilation device adjusted and controlled automatically with movement of human body
JPH05240488A (ja) * 1992-02-27 1993-09-17 Daikin Ind Ltd 空気調和機
US5637040A (en) * 1995-04-13 1997-06-10 Samsung Electronics Co., Ltd. Infrared object detector
US5815078A (en) 1996-08-02 1998-09-29 Samsung Electronics Co., Ltd. Louver driving device for an air conditioner and method of controlling the louver driving device
US6415984B1 (en) * 1998-04-07 2002-07-09 University Of Central Florida Automatic occupancy and temperature control for ceiling fan operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0164740B1 (ko) * 1993-11-12 1999-01-15 김광호 공기조화기의 풍향 및 풍량제어방법
KR960038284A (ko) * 1995-04-24 1996-11-21 구자홍 서치레이더 적외선 센서를 장착한 에어컨과 그 제어방법
KR0166933B1 (ko) * 1995-12-27 1999-01-15 구자홍 공기조화기의 제어방법
KR100421840B1 (ko) * 1997-12-27 2004-05-17 엘지전자 주식회사 공기조화기의인체감지방법
KR100390395B1 (ko) * 1997-12-29 2003-08-30 엘지전자 주식회사 공조기의인체감지방법및장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294404A (en) 1978-02-14 1981-10-13 Integrated Energy Systems Environmental control system
US5180333A (en) 1991-10-28 1993-01-19 Norm Pacific Automation Corp. Ventilation device adjusted and controlled automatically with movement of human body
JPH05240488A (ja) * 1992-02-27 1993-09-17 Daikin Ind Ltd 空気調和機
US5637040A (en) * 1995-04-13 1997-06-10 Samsung Electronics Co., Ltd. Infrared object detector
US5815078A (en) 1996-08-02 1998-09-29 Samsung Electronics Co., Ltd. Louver driving device for an air conditioner and method of controlling the louver driving device
US6415984B1 (en) * 1998-04-07 2002-07-09 University Of Central Florida Automatic occupancy and temperature control for ceiling fan operation

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194330A2 (fr) 2008-12-03 2010-06-09 LG Electronics Inc. Climatiseur et procédé de commande correspondant
EP2194330A3 (fr) * 2008-12-03 2012-05-16 LG Electronics Inc. Climatiseur et procédé de commande correspondant
US8155792B2 (en) 2008-12-03 2012-04-10 Lg Electronics Inc. Air conditioner and method of controlling the same
EP2368074A2 (fr) * 2008-12-23 2011-09-28 LG Electronics Inc. Climatiseur et son procédé de régulation
EP2368074A4 (fr) * 2008-12-23 2012-10-17 Lg Electronics Inc Climatiseur et son procédé de régulation
CN102326029B (zh) * 2008-12-26 2014-04-02 松下电器产业株式会社 具有风向控制用人体检测装置和障碍物检测装置的空调机室内机
US8364317B2 (en) 2008-12-26 2013-01-29 Lg Electronics Inc. Air conditioner and method of operating the same
EP2206983A3 (fr) * 2008-12-26 2011-06-15 LG Electronics Inc. Climatiseur et procédé de fonctionnement correspondant
EP2206973B1 (fr) * 2008-12-26 2018-06-27 LG Electronics Inc. Climatiseur avec senseur pour scanner des espaces et pour la détection des sources de chaleur
CN102326029A (zh) * 2008-12-26 2012-01-18 松下电器产业株式会社 具有风向控制用人体检测装置和障碍物检测装置的空调机室内机
EP2206983A2 (fr) * 2008-12-26 2010-07-14 LG Electronics Inc. Climatiseur et procédé de fonctionnement correspondant
WO2010074329A1 (fr) * 2008-12-26 2010-07-01 Panasonic Corporation Unité intérieure de climatisation à dispositif de détection de corps humain et à dispositif de détection d'obstacle
WO2010074330A1 (fr) * 2008-12-26 2010-07-01 Panasonic Corporation Unité de climatiseur interne à détecteur de corps humain et détecteur d'obstacle permettant de réguler la direction de ventilation
US8204627B2 (en) 2008-12-26 2012-06-19 Lg Electronics Inc. Air conditioner and method of controlling the same
WO2010074328A1 (fr) * 2008-12-26 2010-07-01 Panasonic Corporation Unité interne de climatiseur à détecteur de corps humain et détecteur d'obstacle pour le réglage d'une température donnée
TWI418790B (zh) * 2008-12-30 2013-12-11 Ind Tech Res Inst 紅外線人體活動感測器架構及偵側人體活動量的方法
JP2011080625A (ja) * 2009-10-05 2011-04-21 Panasonic Corp 空気調和機
JP2011080624A (ja) * 2009-10-05 2011-04-21 Panasonic Corp 空気調和機
EP2669591A4 (fr) * 2011-01-28 2018-04-25 Mitsubishi Electric Corporation Système et méthode de climatisation
CN102495617A (zh) * 2011-12-29 2012-06-13 深圳Tcl新技术有限公司 具备联动功能的智能家居空调系统
US10371399B1 (en) 2012-03-15 2019-08-06 Carlos Rodriguez Smart vents and systems and methods for operating an air conditioning system including such vents
US9812926B1 (en) 2014-08-15 2017-11-07 Carlos Rodriguez Micro-wind turbine for the power and recharge of satellite home automation sensors
CN105546746B (zh) * 2015-12-31 2019-02-19 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105546747A (zh) * 2015-12-31 2016-05-04 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105546746A (zh) * 2015-12-31 2016-05-04 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105546747B (zh) * 2015-12-31 2019-04-30 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105546748A (zh) * 2015-12-31 2016-05-04 广东美的制冷设备有限公司 空调送风控制方法及装置
JP2020029966A (ja) * 2018-08-21 2020-02-27 パナソニックIpマネジメント株式会社 空気清浄機
NL2025838B1 (en) * 2020-06-16 2022-02-17 Nanjing Enwell Tech Service Co Ltd Smart air-heating bathroom heater
CN112628964A (zh) * 2020-12-18 2021-04-09 珠海格力电器股份有限公司 空调器的控制方法和空调器
CN112628964B (zh) * 2020-12-18 2021-12-17 珠海格力电器股份有限公司 空调器的控制方法和空调器
WO2022227606A1 (fr) * 2021-04-27 2022-11-03 青岛海尔空调器有限总公司 Procédé et appareil de commande de climatiseurs, et climatiseur intelligent
CN113587234A (zh) * 2021-07-21 2021-11-02 青岛海尔空调器有限总公司 一种空调器及空调器出风控制方法
CN113587234B (zh) * 2021-07-21 2022-07-19 青岛海尔空调器有限总公司 一种空调器及空调器出风控制方法

Also Published As

Publication number Publication date
EP1985936B1 (fr) 2011-01-26
CN101294729B (zh) 2012-05-23
CN101294729A (zh) 2008-10-29
KR100855000B1 (ko) 2008-08-28

Similar Documents

Publication Publication Date Title
EP1985936B1 (fr) Climatiseur et son procédé de fonctionnement
CN107576021B (zh) 壁挂式空调室内机及其控制方法
CN107631354A (zh) 壁挂式空调室内机及其控制方法
KR102168705B1 (ko) 천장형 공기조화기의 제어방법
KR20090085368A (ko) 공기조화기 및 그 제어방법
WO2019024826A1 (fr) Unité intérieure de climatiseur montée au mur et son procédé de commande
JP6359176B2 (ja) 空気調和機
KR101253239B1 (ko) 공기조화기
CN107305035B (zh) 空调机
JP6071626B2 (ja) 室内機及び空気調和装置
KR20080111626A (ko) 공기조화기 및 그 제어방법
KR20090081919A (ko) 공기조화기 및 그 제어방법
KR20120064492A (ko) 공기조화기 및 그 동작방법
JP6091348B2 (ja) 空気調和機
KR20090116299A (ko) 공기조화기의 제습운전방법
KR101204000B1 (ko) 공기조화기 및 그 제어방법
KR20140047324A (ko) 공기 조화기
EP3896355A1 (fr) Climatiseur et procédé de commande associé
KR100187217B1 (ko) 공기조화기의 운전제어장치 및 그 방법
JP7230339B2 (ja) 空気調和装置
JP6921318B2 (ja) 空気調和機の室内機
US20180156524A1 (en) Control device for air-conditioning equipment and air conditioning system
JP2015052416A (ja) 空気調和機
KR20090002552A (ko) 공기조화기 및 그 제어방법
KR100189109B1 (ko) 공기조화기의 루버구동제어장치 및 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090327

17Q First examination report despatched

Effective date: 20090429

AKX Designation fees paid

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170316

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331