JP6921318B2 - 空気調和機の室内機 - Google Patents

空気調和機の室内機 Download PDF

Info

Publication number
JP6921318B2
JP6921318B2 JP2020518931A JP2020518931A JP6921318B2 JP 6921318 B2 JP6921318 B2 JP 6921318B2 JP 2020518931 A JP2020518931 A JP 2020518931A JP 2020518931 A JP2020518931 A JP 2020518931A JP 6921318 B2 JP6921318 B2 JP 6921318B2
Authority
JP
Japan
Prior art keywords
temperature
sensor
indoor unit
unit
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020518931A
Other languages
English (en)
Other versions
JPWO2019220631A1 (ja
Inventor
薦正 田辺
薦正 田辺
淳一 岡崎
淳一 岡崎
弘志 ▲廣▼▲崎▼
弘志 ▲廣▼▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019220631A1 publication Critical patent/JPWO2019220631A1/ja
Application granted granted Critical
Publication of JP6921318B2 publication Critical patent/JP6921318B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples

Description

本発明は、室内の空気調和を行う空気調和機の室内機に関するものである。
従来、非接触で温度を測定するセンサを用いて室内に存在する人体を検出する空気調和機の室内機が提案され、実用化されている。人体を検出するためのセンサとして、例えば赤外線センサ等の温度センサが用いられる。このような室内機では、室内および室内の人体の温度を検出することを目的としている。そのため、室内機は、予め設定された前方の設定範囲における温度を検出するように動作する(例えば、特許文献1参照)。
特開2012−42183号公報
ところで、空気調和機では、室内の温度環境を調節するために、吹出口から室温よりも暖かい空気または冷たい空気が吹き出される。これにより、温度センサの周囲の温度環境が急激に変化し、サーモパイル式のセンサ等の非接触式の温度センサの出力値は、実際の室内温度値(以下、「真値」と称する)から乖離する場合がある。また、温度センサは、自己発熱による温度ドリフトにより、出力値が真値から乖離する場合もある。これらの場合、温度センサは、対象物の温度を測定しても、正しい値を得ることができない。
例えば、温度センサが真値よりも低い値を検出値として出力する場合、空気調和機は、実際には人体が存在するにもかかわらず、人体が存在しないと誤検出する。温度センサが真値よりも高い値を検出値として出力する場合、空気調和機は、実際には人体が存在しない場所に人体が存在すると誤検出する。すなわち、空間内の温度を誤検出した場合、空気調和機は、人体の存在を検出するという本来の機能を果たすことができず、人体に向けて気流を当てるなどの人体検出に付随した各種制御を行うことができない。
また、温度センサによる出力値が真値から乖離した場合、空気調和機は、室内の温度状態を正確に把握することができない。そのため、空気調和機は、室内の温度に応じた最適な空調制御を行うことができない。
本発明は、上記従来の課題に鑑みてなされたものであって、室内温度の検出精度を向上させることができる空気調和機の室内機を提供することを目的とする。
本発明の空気調和機の室内機は、空調対象空間に対して調和空気を送出する空気調和機の室内機であって、前記空調対象空間を含む設定範囲を走査して前記空調対象空間内の温度を検出するセンサと、吸い込み空気温度を検出する温度センサと、前記設定範囲とは異なる設定校正範囲に設けられた温度校正部材と、前記センサの駆動を制御し、前記センサの検出結果に基づいて送出する前記調和空気の気流を制御する制御装置とを備え、前記制御装置は、前記温度校正部材の温度を検出するように、前記設定校正範囲に向けて前記センサを駆動し、前記センサによって検出された前記温度校正部材の温度に基づき、前記センサの温度校正を行うものであり、前記温度校正の際に、基準となる参照値を決定する参照値決定部と、前記センサで検出された前記温度校正部材の温度と前記参照値とに基づき、前記センサで検出される温度を補正する出力補正係数を決定する補正係数決定部と、前記出力補正係数を用いて、前記センサで検出される温度を補正する温度補正部とを有し、前記温度センサによって検出された前記吸い込み空気温度を前記参照値とするものである。
以上のように、本発明の空気調和機の室内機によれば、空調対象空間を含む設定範囲とは異なる設定校正範囲に設けられた温度校正部材の温度を検出し、検出結果に基づいてセンサの温度校正を行うことにより、室内温度の検出精度を向上させることができる。
実施の形態1に係る室内機の外観の一例を示す斜視図である。 図1の赤外線センサの構成の一例を示す概略図である。 赤外線センサと温度校正部材との位置関係の第1の例を示す概略図である。 赤外線センサと温度校正部材との位置関係の第2の例を示す概略図である。 赤外線センサと温度校正部材との位置関係の第3の例を示す概略図である。 赤外線センサと温度校正部材との位置関係の第4の例を示す概略図である。 赤外線センサと温度校正部材との位置関係の他の例を示す概略図である。 実施の形態1に係る室内機を用いた空気調和機の回路構成の一例を示す概略図である。 図8に示す室内制御装置の構成の一例を示すブロック図である。 図3に示す演算処理装置の構成の一例を示す機能ブロック図である。 図8に示す室外制御装置の構成の一例を示すブロック図である。 実施の形態1に係る空気調和機による空調処理の流れの一例を示すフローチャートである。 赤外線センサの出力値と得られる温度との関係について説明するための概略図である。 実施の形態1に係る室内機における温度校正処理の流れの一例を示すフローチャートである。 図14における温度校正の要否判断の一例を示すフローチャートである。
実施の形態1.
以下、本発明の実施の形態1に係る空気調和機の室内機について説明する。本実施の形態1に係る空気調和機の室内機は、空調対象空間である室内の温度情報を取得し、取得した温度情報に基づいて空調を行う。
[室内機10の外観例]
図1は、本実施の形態1に係る室内機10の外観の一例を示す斜視図である。室内機10は、例えば、室内の壁面に設置される壁掛けタイプの室内機である。図1に示すように、室内機10には、外郭を形成する筐体に、吸込口1および吹出口2が設けられている。吸込口1は、室内機10の周囲の空気を内部に吸い込むために設けられている。吹出口2は、室内機10の内部に吸い込んだ空気を調和空気として外部に吹き出すために設けられている。室内機10の内部には、吸込口1から吹出口2へ通じる吹出風路が形成されている。
吹出口2には、上下風向板3が設けられている。また、室内機10内の吹出風路上の吹出口2の近傍には、左右風向板4が設けられている。上下風向板3は、調和空気を吹き出す際の鉛直方向の送出方向を調整するため、回動自在に設けられている。左右風向板4は、調和空気を送出する際の水平方向の送出方向を調整するため、回動自在に設けられている。
また、室内機10には、赤外線センサ5が設けられている。赤外線センサ5は、室内の温度を走査し、物体の表面から放射される赤外線を検出して温度情報を取得する。図1に示す例において、赤外線センサ5は、室内機10側から見た際に左側の下部に設けられている。
なお、赤外線センサ5の設置位置は、図1に示す位置に限られない。例えば、赤外線センサ5が室内の温度情報を取得できる位置に設置されていればよい。また、赤外線センサ5の形状についても、図1に示すような形状に限られず、室内の温度情報が取得できれば、どのような形状でもよい。
[赤外線センサ5の構成]
図2は、図1の赤外線センサ5の構成の一例を示す概略図である。図2に示すように、赤外線センサ5には、ステッピングモータ等の駆動装置6が取り付けられている。
赤外線センサ5は、例えばサーモパイルセンサであり、対象物の赤外線量を検出して温度情報に変換する。赤外線センサ5は、駆動装置6が駆動することによって回動し、予め設定された設定範囲を走査する。これにより、赤外線センサ5は、当該設定範囲内の赤外線量に基づく温度を検出し、温度情報として出力する。なお、この例では、赤外線センサ5と駆動装置6とが別体で構成されているが、これに限られず、一体的に構成されてもよい。
本実施の形態1において、赤外線センサ5の近傍には、赤外線センサ5の温度校正を行う際に用いられる温度校正部材7が設けられている。温度校正部材7は、通常の温度検出の際の設定範囲には含まれない範囲内に設けられている。
図3は、赤外線センサ5と温度校正部材7との位置関係の第1の例を示す概略図である。図3に示すように、温度校正部材7は、赤外線センサ5が室内全体を走査するための設定範囲とは異なる範囲である設定校正範囲に設けられている。温度校正が行われる場合、赤外線センサ5は、温度校正部材7が設けられた設定校正範囲に向けて回動する。これにより、赤外線センサ5は、温度校正部材7の温度のみを検出することができる。
なお、図3の例において、温度校正部材7は、赤外線センサ5の光軸に対して垂直に設けるとよい。これは、その他の部材等からの赤外線を反射しないようにして、校正の精度を高めるためである。
図4は、赤外線センサ5と温度校正部材7との位置関係の第2の例を示す概略図である。図4は、空調対象空間を天井側から見た際の赤外線センサ5の設定範囲を示す。図4に示すように、赤外線センサ5が左右に回動する場合、赤外線センサ5および室内機10の筐体のそれぞれに位置決め用部材を設け、それぞれの位置決め用部材が接する際の赤外線センサ5の視野内に温度校正部材7が設けられてもよい。この場合、温度校正部材7は、赤外線センサ5の設定範囲以外の領域に設けられる。
図5は、赤外線センサ5と温度校正部材7との位置関係の第3の例を示す概略図である。図5に示すように、赤外線センサ5が左右に回動する場合、温度校正部材7は、設定範囲とは異なる範囲である赤外線センサ5の周囲の一部を囲むように設けられてもよい。
図6は、赤外線センサ5と温度校正部材7との位置関係の第4の例を示す概略図である。図6に示すように、温度校正部材7は、校正の精度を高めるために、赤外線センサ5からの距離が一定となるように球面形状としてもよい。
図7は、赤外線センサ5と温度校正部材7との位置関係の他の例を示す概略図である。図7に示すように、赤外線センサ5には、ラック8が接続されている。ラック8上には、駆動装置6に接続された平歯車9が設けられている。駆動装置6が駆動して平歯車9が回動することにより、ラック8が赤外線センサ5を伴って上下に移動する。一方、温度校正部材7は、赤外線センサ5と異なる高さにおける設定範囲を覆うように設けられている。
温度校正が行われる場合、赤外線センサ5は、駆動装置6が駆動することによって温度校正部材7が設けられている高さまで移動する。これにより、赤外線センサ5は、温度校正部材7の温度のみを検出することができる。
なお、図7の例において、赤外線センサ5が上下に駆動して、不使用時に室内機10の内部に収納される場合には、例えば、赤外線センサ5が室内機10内に収納された状態で、温度校正が行われるようにしてもよい。この場合、温度校正部材7は、室内機10内に配置される。
このように、本実施の形態1では、室内の温度を検出するための設定範囲とは異なる設定校正範囲が設定され、当該設定校正範囲内に温度校正部材7が配置される。そして、温度校正が行われる場合には、赤外線センサ5が設定校正範囲に向かうように駆動する。これにより、赤外線センサ5は、温度校正の際に温度校正部材7の温度のみを検出する。
なお、温度校正部材7は、例えば室内機10の筐体の一部として形成されてもよい。また、温度校正部材7は、校正の精度を高めるために、赤外線反射率の低い材料を用いたり、赤外線透過率の低い材料を用いたりして形成されてもよい。
[空気調和機100の回路構成]
図8は、本実施の形態1に係る室内機10を用いた空気調和機100の回路構成の一例を示す概略図である。図8に示すように、空気調和機100は、室内機10および室外機20で構成されている。空気調和機100では、室内機10および室外機20が冷媒配管によって接続され、冷媒配管内を冷媒が流れることにより、冷凍サイクルが形成される。
なお、図8の例では、1台の室内機10と1台の室外機20とが接続される場合を示すが、室内機10および室外機20の台数は、この例に限られない。例えば、1台の室外機20に対して複数台の室内機10が接続されてもよい。また、例えば、複数の室外機20に対して1または複数の室内機10が接続されてもよい。
(室内機)
室内機10は、膨張弁11、室内熱交換器12、室内送風機13および室内制御装置30で構成され、それぞれが室内機10の筐体に収容されている。膨張弁11は、冷媒を膨張させる。膨張弁11は、例えば、電子式膨張弁などの開度の制御が可能な弁で構成されている。膨張弁11の開度は、室内制御装置30によって制御される。
室内熱交換器12は、室内空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される調和空気である暖房用空気または冷房用空気が生成される。室内熱交換器12は、冷房運転の際に、冷媒を蒸発させた際の気化熱により室内空気を冷却する蒸発器として機能し、空調対称空間の空気を冷却して冷房を行う。また、室内熱交換器12は、暖房運転の際に、冷媒の熱を室内空気に放熱して冷媒を凝縮させる凝縮器として機能し、空調対称空間の空気を加熱して暖房を行う。
室内送風機13は、吸込口1から吹出口2に至る気流を生成し、室内熱交換器12に対して室内空気を供給する。室内送風機13の回転数は、室内制御装置30によって制御される。回転数が制御されることにより、室内熱交換器12に対する送風量が調整される。
室内制御装置30は、室内制御装置30は、例えば、図示しないリモートコントローラに対する使用者の操作による設定、ならびに、赤外線センサ5からの温度情報などに基づき、この室内機10全体の動作を制御する。特に、本実施の形態1において、室内制御装置30は、赤外線センサ5によって温度情報が取得される際の、赤外線センサ5の駆動を制御する。
図9は、図8に示す室内制御装置30の構成の一例を示すブロック図である。図9に示すように、室内制御装置30は、入力回路31、演算処理装置32、記憶装置33、および出力回路34で構成されている。
入力回路31は、リモートコントローラ等からの設定情報、赤外線センサ5からの温度情報、および室外制御装置40からの制御情報などが入力される。入力回路31は、入力された各種情報を演算処理装置32に対して出力する。
演算処理装置32は、例えばCPU(Central Processing Unit)等のマイクロコンピュータであり、記憶装置33に記憶されたソフトウェアを実行することにより、各種機能を実現する。なお、演算処理装置32は、これに限られず、例えば、各種機能を実現する回路デバイスなどのハードウェア等で構成されてもよい。
演算処理装置32は、記憶装置33に記憶されたデータを用いて、入力回路31から受け取った情報に基づき各種処理を行う。例えば、演算処理装置32は、赤外線センサ5からの温度情報に基づき、室内の温度状態を示す熱画像を作成する処理、作成した熱画像に基づいて室内に存在する人体の位置を検出する処理などを行う。このような演算処理装置32による処理の詳細については、後述する。
演算処理装置32は、検出された人体の位置に応じて調和空気を送出するように、室内機10に設けられた動作装置に対する制御情報、および室外機20に対する制御情報などを生成して出力回路34に出力する。このとき生成される制御情報としては、例えば、風向を制御するための情報、室内送風機13の風量を制御するための情報、および膨張弁11の開度を制御するための情報等である。
記憶装置33は、演算処理装置32で行われる処理に必要なプログラムおよび各種データを記憶する。また、記憶装置33は、演算処理装置32における各種処理によって得られたデータを記憶する。
例えば、記憶装置33は、室内に人体が存在しない場合の熱画像を記憶する。この熱画像は、演算処理装置32によって室内の人体の位置を検出する際に用いられる基準となる熱画像(以下、「基準熱画像」と適宜称する)である。基準熱画像は、例えば、室内に人体が存在しないと判断できる場合の温度情報に基づき、演算処理装置32によって予め作成される。
また、記憶装置33は、赤外線センサ5の温度校正を行う際に用いられる出力補正係数および補正式を記憶する。出力補正係数および補正式の詳細については、後述する。
出力回路34は、演算処理装置32から各種の制御情報を受け取り、対応する室内機10に設けられた動作装置または室外機20に対して出力する。例えば、風向を制御するための制御情報を受け取った場合、出力回路34は、上下風向板3および左右風向板4を駆動するための図示しない駆動装置に対してこの制御情報を出力する。
また、例えば、風量を制御するための制御情報を受け取った場合、出力回路34は、室内送風機13を駆動するための図示しない駆動装置に対してこの制御情報を出力する。さらに、例えば、室外機20に対する制御情報を受け取った場合、出力回路34は、室外機20の室外制御装置40に対してこの制御情報を出力する。さらにまた、出力回路34は、赤外線センサ5の温度校正を行う場合に、赤外線センサ5または温度校正部材7に対する制御情報を出力する。
図10は、図3に示す演算処理装置32の構成の一例を示す機能ブロック図である。図10に示すように、演算処理装置32は、温度情報取得部51、温度補正部52、熱画像作成部53、室内検出部54、体感温度算出部55、機器制御部56、温度校正判断部57、参照値決定部58、補正係数決定部59およびタイマ60で構成されている。なお、図10では、本発明の特徴に関連する部分についての機能ブロックのみを図示し、それ以外の部分については、図示および説明を省略する。
温度情報取得部51は、赤外線センサ5で検出された温度情報を、入力回路31を介して取得する。温度補正部52は、温度情報取得部51で取得された温度情報を、記憶装置33に記憶された出力補正係数および補正式を用いて補正する。出力補正係数は、赤外線センサ5の温度校正を行った場合に、温度情報を補正するためのものであり、温度補正部52は、当該出力補正係数を適用した補正式を用いることにより、取得した温度情報を補正する。
熱画像作成部53は、温度情報取得部51で取得された温度情報に基づき、室内の温度分布を示す熱画像を作成する。熱画像は、例えば、赤外線センサ5が室内を走査して得られる温度値を、走査した際の座標位置に並べることにより作成される。
室内検出部54は、熱画像作成部53で作成された熱画像に基づき、壁等の室内を形成する構造体の温度を検出する。また、熱画像作成部53は、室内における人体の有無および人体の位置を検出する。人体は、例えば、作成された熱画像と、記憶装置33に予め記憶された基準熱画像とを比較し、温度が変化した部分を抽出することによって検出される。また、室内における人体の位置は、人体として抽出された画像である人体画像の画素の座標に基づき検出される。
体感温度算出部55は、室内検出部54で検出された、室内に存在する人体の位置での体感温度を算出する。このとき、体感温度算出部55は、輻射による影響を含む体感温度を算出する。
機器制御部56は、体感温度算出部55で算出された体感温度に基づき、室内機10および室外機20内の各機器を制御する。室内機10内の各機器に対する制御信号は、出力回路34を介して各機器に供給される。また、室外機20内の各機器に対する制御信号は、出力回路34を介して室外機20に供給される。
温度校正判断部57は、予め設定された方法により、赤外線センサ5に対する温度校正の要否を判断する。温度校正の要否は、例えば、赤外線センサ5に対する通電時間の長さによって判断される。
参照値決定部58は、温度校正判断部57によって温度校正が必要であると判断された場合に、参照値を決定する。参照値は、温度校正を行う際に基準となるものであり、例えば、温度校正部材7に温度センサを取り付けた場合に、当該温度センサで検出された温度を適用することができる。また、これに限られず、参照値は、例えば、赤外線センサ5とは異なる非接触温度センサを設け、当該非接触温度センサで検出された温度を適用することができる。
さらに、例えば、室内の空気温度が安定している場合に、参照値は、室内機10の吸い込み空気温度を検出する温度センサで検出された温度を適用してもよい。さらにまた、赤外線センサ5が複数箇所の温度を検出するセンサである場合には、参照値は、検出温度の相対的な差が解消されるように、複数の出力値のうちの1つ、あるいは複数の出力値の平均値など、赤外線センサ5の出力値に基づいた値を適用してもよい。
補正係数決定部59は、温度情報取得部51で取得された温度情報と、参照値決定部58で決定された参照値とに基づき、赤外線センサ5の出力を補正するための出力補正係数を決定する。タイマ60は、本実施の形態1による各種処理を行う際に必要な計時を行う。特に、温度校正の要否判断が赤外線センサ5に対する通電時間の長さによって判断される場合、タイマ60は、温度校正判断部57の制御に基づき、赤外線センサ5に対する通電時間を計時する。
(室外機)
図8の室外機20は、圧縮機21、冷媒流路切替装置22、室外熱交換器23、室外送風機24、および室外制御装置40で構成されている。圧縮機21は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機21として、例えば、運転周波数を任意に変化させることにより、単位時間あたりの冷媒送出量である容量が制御されるインバータ圧縮機等が用いられる。圧縮機21の運転周波数は、室外制御装置40によって制御される。
冷媒流路切替装置22は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置22は、冷房運転時に、図8の実線で示す状態に切り替わる。また、冷媒流路切替装置22は、暖房運転時に、図8の点線で示す状態に切り替わる。冷媒流路切替装置22における流路の切替は、室外制御装置40によって制御される。なお、冷媒流路切替装置22としては、上述した四方弁に限らず、例えば他の弁を組み合わせて使用してもよい。
室外熱交換器23は、室外空気と冷媒との間で熱交換を行う。具体的には、室外熱交換器23は、冷房運転の際に凝縮器として機能する。また、室外熱交換器23は、暖房運転の際に蒸発器として機能する。室外送風機24は、室外熱交換器23に対して室外空気を供給する。室外送風機24の回転数は、室外制御装置40によって制御される。回転数が制御されることにより、室外熱交換器23に対する送風量が調整される。
室外制御装置40は、室外機20の各部から受け取る各種情報に基づき、この室外機20全体の動作を制御する。具体的には、室外制御装置40は、室内制御装置30からの制御情報、ならびに、冷凍サイクル中に設けられた図示しない各種センサからの情報に基づき、圧縮機21の運転周波数、冷媒流路切替装置22の流路の切替、および室外送風機24の回転数を制御する。
図11は、図8に示す室外制御装置40の構成の一例を示すブロック図である。図11に示すように、室外制御装置40は、入力回路41、演算処理装置42、記憶装置43、および出力回路44で構成されている。
入力回路41は、室内制御装置30からの制御情報、および空気調和機100内に設けられた図示しない各種センサによって取得した情報などが入力される。入力回路41は、入力された各種情報を演算処理装置42に対して出力する。
演算処理装置42は、例えばCPU等のマイクロコンピュータであり、記憶装置43に記憶されたソフトウェアを実行することにより、各種機能を実現する。
なお、演算処理装置42は、これに限られず、例えば、各種機能を実現する回路デバイスなどのハードウェア等で構成されてもよい。
演算処理装置42は、記憶装置43に記憶されたデータを用いて、入力回路41から受け取った情報に基づき各種処理を行う。演算処理装置42は、室外機20に設けられた各種動作を行うための制御情報、および室内機10に対する制御情報などを生成し、出力回路44に対して出力する。このとき生成される制御情報としては、例えば、室内制御装置30で算出された室温および体感温度と、室内機10の設定温度とに基づき圧縮機21の運転周波数を制御するための情報である。また、それ以外の制御情報としては、例えば、室外送風機24の風量を制御するための情報、および冷媒流路切替装置22を制御するための情報等である。
記憶装置43は、演算処理装置42で行われる処理に必要なプログラムおよび各種データを記憶する。また、記憶装置43は、演算処理装置42における各種処理によって得られたデータを記憶する。
出力回路44は、演算処理装置42から各種の制御情報を受け取り、対応する室外機20に設けられた動作装置または室内機10に対して出力する。例えば、圧縮機21の運転周波数を制御するための制御情報を受け取った場合、出力回路44は、圧縮機21に対してこの制御情報を出力する。また、例えば、風量を制御するための制御情報を受け取った場合、出力回路44は、室外送風機24を駆動するための図示しない駆動装置に対してこの制御情報を出力する。さらに、例えば、室内機10に対する制御情報を受け取った場合、出力回路34は、室内機10の室内制御装置30に対してこの制御情報を出力する。
[空気調和機の動作]
次に、上記構成を有する空気調和機100における冷房運転モードおよび暖房運転モードでの冷媒の動作について説明する。なお、図8に示す例において、冷媒流路切替装置22の実線で示す状態が冷房運転モードでの状態であり、冷媒の流れ方向を実線で示す。また、冷媒流路切替装置22の点線で示す状態が暖房運転モードでの状態であり、冷媒の流れ方向を破線で示す。
(冷房運転モード)
まず、冷房運転モードでの冷媒の動作について説明する。冷房運転モードでは、冷媒流路切替装置22が図8の実線で示す状態に切り替えられ、圧縮機21の吐出側と室外熱交換器23が接続されるとともに、圧縮機21の吸入側と室内熱交換器12とが接続される。そして、低温低圧の冷媒が圧縮機21によって圧縮され、高温高圧のガス冷媒となって吐出される。
圧縮機21から吐出された高温高圧のガス冷媒は、冷媒流路切替装置22を介して室外熱交換器23に流入する。室外熱交換器23に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって室外熱交換器23から流出する。
室外熱交換器23から流出した高圧の液冷媒は、膨張弁11によって減圧されて低温低圧の気液二相冷媒となり、室内熱交換器12に流入する。室内熱交換器12に流入した低温低圧の気液二相冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低温低圧のガス冷媒となって室内熱交換器12から流出する。
室内熱交換器12から流出した低温低圧のガス冷媒は、冷媒流路切替装置22を通過して、圧縮機21へ吸入される。
(暖房運転モード)
次に、暖房運転モードでの冷媒の動作について説明する。暖房運転モードでは、冷媒流路切替装置22が図3の点線で示す状態に切り替えられ、圧縮機21の吐出側と室内熱交換器12とが接続されるとともに、圧縮機21の吸入側と室外熱交換器23とが接続される。そして、低温低圧の冷媒が圧縮機21によって圧縮され、高温高圧のガス冷媒となって吐出される。
圧縮機21から吐出された高温高圧のガス冷媒は、冷媒流路切替装置22を介して室内熱交換器12に流入する。室内熱交換器12に流入した高温高圧のガス冷媒は、室内空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって室内熱交換器12から流出する。
室内熱交換器12から流出した高圧の液冷媒は、膨張弁11によって減圧されて低温低圧の気液二相冷媒となり、室外熱交換器23に流入する。室外熱交換器23に流入した低温低圧の気液二相冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって室外熱交換器23から流出する。
室外熱交換器23から流出した低温低圧のガス冷媒は、冷媒流路切替装置22を通過して、圧縮機21へ吸入される。
[空調処理]
本実施の形態1に係る空気調和機100による空調処理について説明する。空気調和機100は、室内における人体の有無と、人体が存在する場合にその人体の位置を検出し、検出された人体の位置に応じた空調を行う。
図12は、本実施の形態1に係る空気調和機100による空調処理の流れの一例を示すフローチャートである。図12に示す処理は、予め設定された時間毎に行われる。
ステップS1において、温度情報取得部51は、赤外線センサ5によって検出された設定範囲内の温度情報を入力回路31から取得する。そして、熱画像作成部53は、温度情報取得部51で取得した温度情報に基づき、室内の温度分布を示す熱画像を作成する。なお、赤外線センサ5で取得される温度情報が温度補正部52によって補正されている場合、熱画像作成部53は、補正された温度情報を用いて熱画像を作成する。
ステップS2において、室内検出部54は、作成された熱画像から室内を形成する構造体の温度を検出するとともに、室内における人体の有無および存在する人体の位置を検出する。ステップS3において、体感温度算出部55は、室内検出部54で検出された人体の位置での体感温度を算出する。
ステップS4において、機器制御部56は、算出された体感温度に基づき、室内機10内に設けられた上下風向板3、左右風向板4、膨張弁11および室内送風機13等の各機器を制御するための制御信号を出力する。また、機器制御部56は、室外機20内に設けられた圧縮機21、冷媒流路切替装置22および室外送風機24等の各機器を制御するための制御信号を出力する。これにより、室内機10および室外機20内の各機器は、制御信号の内容に応じて動作する。
このように、本実施の形態1では、赤外線センサ5で検出された室内の温度情報に基づき熱画像が作成され、作成された熱画像から室内の人体の位置での体感温度が算出される。そして、算出された体感温度に基づき、室内機10および室外機20内の各機器が制御されることにより、人体に対する風向および風量等が適切に制御される。
[温度校正処理]
温度校正処理について説明する。赤外線センサ5は、室内機10の吹出口2から吹き出される空気、および赤外線センサ5自身の発熱などにより、検出する温度に誤差が生じる。誤差が生じたまま室内の温度が検出されると、室内の熱画像の作成および人体の検出を精度よく行うことが困難となり、空調制御を正確に行うことができない。そこで、本実施の形態1では、赤外線センサ5からの温度を取得する際に、赤外線センサ5で生じる誤差を補正するための温度校正が行われる。
温度を校正する際の補正方法は、赤外線センサ5の特性に応じて異なる。例えば、赤外線センサ5がサーモパイル方式の場合、赤外線センサ5は、温度測定対象物から出力される赤外線に基づく温接点と、基板上の冷接点との温度差をゼーベック効果によって電圧差として取り出す。温接点の温度は、赤外線吸収膜によって吸収した温度測定対象物からの赤外線を温度に変換することによって取得する。冷接点の温度は、赤外線センサ5の基板上に設けられた温度センサによって取得する。これにより、赤外線センサ5は温度測定対象物の温度を検出する。
ここで、赤外線センサ5の出力値と、出力値に基づき得られる温度との間には、式(1)に示す一次近似式で表される関係が成立する。式(1)において、変数xは赤外線センサ5の出力値を示し、変数yは温度を示す。傾きaおよび切片bは、それぞれ赤外線センサ5の特性によって決定される係数である。
y=ax+b ・・・(1)
赤外線センサ5の通電時間が長くなると、自己発熱等により、式(1)で示す一次近似式の傾きaおよび切片bが変化する。そのため、傾きaおよび切片bが変化した状態の一次近似式を用いた場合、赤外線センサ5の出力値に基づいて算出される温度は、誤差を含んだものとなる。
図13は、赤外線センサ5の出力値と得られる温度との関係について説明するための概略図である。図13において、実線で示す一次近似式Aは、自己発熱等による誤差を含んだ近似式を示す。また、破線で示す一次近似式Bは、誤差を含まない本来の近似式を示す。
例えば、ある時点で赤外線センサ5の出力値が「x」である場合、誤差を含んだ状態で得られる温度測定対象物の温度は、一次近似式Aに基づき「y」となる。一方、誤差を含まない本来の温度測定対象物の温度は、一次近似式Bに基づき「y」である。すなわち、この場合に得られる温度測定対象物の温度は、「y−y」だけの誤差を有する。
したがって、本実施の形態1では、赤外線センサ5の出力値「y」が出力値「y」に近づくように温度校正が行われる。具体的には、本実施の形態1では、温度校正によって一次近似式Aが一次近似式Bに近づくように、式(1)における係数aおよびbの少なくとも一方の係数を補正するための出力補正係数が決定される。
図14は、本実施の形態1に係る室内機10における温度校正処理の流れの一例を示すフローチャートである。図14の温度校正処理は、図12のステップS1で赤外線センサ5によって温度を取得する際に行われる。
ステップS11において、温度校正判断部57は、予め設定された方法により、温度校正を行う必要があるか否かを判断する。
温度校正が必要であると判断された場合(ステップS11;Yes)、機器制御部56は、ステップS12において、赤外線センサ5によって温度校正部材7のみの温度が検出されるように、赤外線センサ5を動かす。そして、赤外線センサ5により温度校正部材7の温度が検出される。一方、温度校正が必要ないと判断された場合(ステップS11;No)、処理がステップS15に移行する。
ステップS13において、参照値決定部58は、温度校正を行う際に用いられる参照値を決定する。ステップS14において、補正係数決定部59は、温度情報取得部51で取得された温度情報と、参照値決定部58で決定された参照値に基づき、出力補正係数を決定する。
出力補正係数は、例えば、温度情報取得部51で取得された温度情報が参照値決定部58で決定された参照値と同一になるように決定される。補正係数決定部59は、決定された出力補正係数を記憶装置33に記憶する。
ステップS15において、温度情報取得部51は、赤外線センサ5によって検出された設定範囲内の温度情報を入力回路31から取得する。ステップS16において、温度補正部52は、検出された温度情報を、記憶装置33に記憶された出力補正係数を適用した補正式を用いて補正する。
(温度校正の要否判断)
温度校正処理における、温度校正の要否判断について説明する。図15は、図14における温度校正の要否判断の一例を示すフローチャートである。図15の例は、赤外線センサ5の通電時間の長さによって、温度校正を行うか否かを判断する場合の一例である。このように、赤外線センサ5の温度校正を行うタイミングを通電時間で判断するのは、通電が継続された場合に、赤外線センサ5が自己発熱することによって誤差が生じるためである。
ステップS21において、温度校正判断部57は、赤外線センサ5に対する通電が開始されたタイミングで、赤外線センサ5の通電時間の計時を開始するように、タイマ60を制御する。これにより、タイマ60は、赤外線センサ5の通電時間の計時を開始する。ステップS22において、温度校正判断部57は、赤外線センサ5の通電時間が設定時間以上であるか否かを判断する。
赤外線センサ5の通電時間が設定時間以上である場合(ステップS22;Yes)、室内制御装置30は、ステップS23において温度校正処理を実施する。このときの温度校正処理は、図14のステップS12〜ステップS14までの処理である。ステップS24において、温度校正判断部57は、温度校正処理を実施した後に、赤外線センサ5の通電時間の計時を停止してリセットするとともに、計時をリスタートする。
一方、ステップS22において、赤外線センサ5の通電時間が設定時間未満である場合(ステップS22;No)には、処理がステップS22に戻り、赤外線センサ5の通電時間が設定時間以上となるまで、ステップS22の処理が繰り返される。
なお、温度校正処理を行うタイミングは、赤外線センサ5の通電時間による場合に限られない。例えば、空気調和機100の吸い込み温度の変化量に応じて、赤外線センサ5の温度校正の要否が判断されてもよい。
以上のように、本実施の形態1に係る空気調和機100の室内機10では、赤外線センサ5により、空調対象空間を含む設定範囲とは異なる設定校正範囲に設けられた温度校正部材7の温度が検出される。そして、検出された温度校正部材7の温度に基づき、赤外線センサ5の温度校正が行われる。このように、赤外線センサ5の温度校正が行われることにより、赤外線センサ5で検出される温度を実際の温度に近づけることができるため、室内温度の検出精度を向上させることができる。そして、室内温度の検出精度が向上することにより、室内に存在する人体の検出精度が向上するため、意図したとおりの空調を行うことができ、快適な空気調和環境を作ることができる。
また、室内機10において、赤外線センサ5は、温度校正の際に温度校正部材7の温度を検出するために、設定校正範囲に向けて左右に回動または上下に駆動する。これにより、赤外線センサ5は、設定校正範囲内の温度校正部材7の温度のみを検出することができる。そのため、温度校正を正確に行うことができる。
さらに、室内機10において、温度校正部材7は、室内機10の筐体と一体に構成される。これにより、温度校正部材7を別途作製する必要がないため、室内機10を安価に製造することができる。
実施の形態2.
次に、本発明の実施の形態2に係る空気調和機の室内機について説明する。本実施の形態2において、室内機10の室内制御装置30は、温度校正を行う際に、赤外線センサ5を固定し、温度校正部材7を駆動する。すなわち、本実施の形態2では、温度校正を行う際に温度校正部材7が移動し、赤外線センサ5の設定範囲全体が覆われるようにする。
これにより、室内制御装置30は、温度校正部材7を移動させるだけで温度校正を行うことができる。そのため、温度校正を行うタイミングの自由度があがり、赤外線センサ5によって正確な温度を検出する機会を増やすことができる。
以上、本発明の実施の形態1および2について説明したが、本発明は、上述した本発明の実施の形態1および2に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、本実施の形態1および2では、赤外線センサ5としてサーモパイル方式のものを例にとって説明したが、これはこの例に限られない。例えば、赤外線センサ5は、ボロメータ方式およびSOI方式など、室内の温度検出および温度校正ができるものであれば、どのようなセンサを用いてもよい。
1 吸込口、2 吹出口、3 上下風向板、4 左右風向板、5 赤外線センサ、6 駆動装置、7 温度校正部材、8 ラック、9 平歯車、10 室内機、11 膨張弁、12 室内熱交換器、13 室内送風機、20 室外機、21 圧縮機、22 冷媒流路切替装置、23 室外熱交換器、24 室外送風機、30 室内制御装置、31 入力回路、32 演算処理装置、33 記憶装置、34 出力回路、40 室外制御装置、41 入力回路、42 演算処理装置、43 記憶装置、44 出力回路、51 温度情報取得部、52 温度補正部、53 熱画像作成部、54 室内検出部、55 体感温度算出部、56 機器制御部、57 温度校正判断部、58 参照値決定部、59 補正係数決定部、60 タイマ、100 空気調和機。

Claims (8)

  1. 空調対象空間に対して調和空気を送出する空気調和機の室内機であって、
    前記空調対象空間を含む設定範囲を走査して前記空調対象空間内の温度を検出するセンサと、
    吸い込み空気温度を検出する温度センサと、
    前記設定範囲とは異なる設定校正範囲に設けられた温度校正部材と、
    前記センサの駆動を制御し、前記センサの検出結果に基づいて送出する前記調和空気の気流を制御する制御装置と
    を備え、
    前記制御装置は、
    前記温度校正部材の温度を検出するように、前記設定校正範囲に向けて前記センサを駆動し、
    前記センサによって検出された前記温度校正部材の温度に基づき、前記センサの温度校正を行うものであり、
    前記温度校正の際に、基準となる参照値を決定する参照値決定部と、
    前記センサで検出された前記温度校正部材の温度と前記参照値とに基づき、前記センサで検出される温度を補正する出力補正係数を決定する補正係数決定部と、
    前記出力補正係数を用いて、前記センサで検出される温度を補正する温度補正部と
    を有し、
    前記温度センサによって検出された前記吸い込み空気温度を前記参照値とする
    空気調和機の室内機。
  2. 前記制御装置は、
    前記温度校正の際に、前記温度校正部材の温度を検出するように、前記センサを前記設定校正範囲に向けて左右に回動させる
    請求項1に記載の空気調和機の室内機。
  3. 前記温度校正部材は、
    前記室内機の内部に設けられ、
    前記制御装置は、
    前記センサが使用されない場合に、前記センサを上下に駆動して前記室内機の内部に収納し、
    前記温度校正の際に、前記センサが前記室内機の内部に収納された状態で、前記温度校正部材の温度を検出するように、前記センサを前記設定校正範囲に向けて駆動する
    請求項1に記載の空気調和機の室内機。
  4. 前記温度校正部材は、
    前記センサの周囲の一部を囲むように設けられる
    請求項1〜3のいずれか一項に記載の空気調和機の室内機。
  5. 前記温度校正部材は、
    前記センサの光軸に対して垂直に設けられる
    請求項1〜3のいずれか一項に記載の空気調和機の室内機。
  6. 前記温度校正部材は、
    前記室内機の外郭を形成する筐体と一体に構成される
    請求項1〜5のいずれか一項に記載の空気調和機の室内機。
  7. 前記制御装置は、
    前記センサの通電時間に基づき、前記温度校正を行うか否かを判断する温度校正判断部を有する
    請求項1〜のいずれか一項に記載の空気調和機の室内機。
  8. 前記センサは、
    物体の表面から放射された赤外線を検出する赤外線センサである
    請求項1〜のいずれか一項に記載の空気調和機の室内機。
JP2020518931A 2018-05-18 2018-05-18 空気調和機の室内機 Active JP6921318B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019327 WO2019220631A1 (ja) 2018-05-18 2018-05-18 空気調和機の室内機

Publications (2)

Publication Number Publication Date
JPWO2019220631A1 JPWO2019220631A1 (ja) 2021-03-11
JP6921318B2 true JP6921318B2 (ja) 2021-08-18

Family

ID=68539960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518931A Active JP6921318B2 (ja) 2018-05-18 2018-05-18 空気調和機の室内機

Country Status (2)

Country Link
JP (1) JP6921318B2 (ja)
WO (1) WO2019220631A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134370A (ja) * 2019-02-21 2020-08-31 パナソニックIpマネジメント株式会社 温度検出システム、温度制御システム、制御方法、及びプログラム
CN111219851A (zh) * 2020-02-25 2020-06-02 珠海格力电器股份有限公司 阵列式温度传感器的异常检测方法及装置、空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147243A (ja) * 1987-12-02 1989-06-08 Sharp Corp 空気調和機
JPH0694521A (ja) * 1992-09-11 1994-04-05 Matsushita Electric Ind Co Ltd 焦電センサとそれを用いた空調制御法
KR101507163B1 (ko) * 2008-11-10 2015-03-30 엘지전자 주식회사 공기 조화기의 실내기
JP2011215155A (ja) * 2011-06-15 2011-10-27 Seiko Npc Corp 赤外線センサ測定装置
WO2017026071A1 (ja) * 2015-08-13 2017-02-16 三菱電機株式会社 センサユニット及びセンサユニットを備えた空気調和装置の室内機
JP6304502B2 (ja) * 2015-10-14 2018-04-04 パナソニックIpマネジメント株式会社 空気調和機
WO2017199373A1 (ja) * 2016-05-18 2017-11-23 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
JPWO2019220631A1 (ja) 2021-03-11
WO2019220631A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
CN108885021B (zh) 空调装置的室内机
US10024563B2 (en) Indoor unit of air-conditioning apparatus and air-conditioning apparatus
EP1985936B1 (en) Air Conditioner and Control Method thereof
JP6790220B2 (ja) 室内機および空気調和装置
CN107305035B (zh) 空调机
JP5847034B2 (ja) 空気調和機
JP6167305B2 (ja) 空気調和機
JP6921318B2 (ja) 空気調和機の室内機
JP2019060561A (ja) 空気調和機
KR101204000B1 (ko) 공기조화기 및 그 제어방법
JP2016121857A (ja) 空気調和機
US20170102157A1 (en) Air conditioner units and methods for determining indoor room temperatures
JP5316473B2 (ja) 空気調和装置
US10837670B2 (en) Air-conditioning apparatus
JP6941290B2 (ja) 空気調和機
JP7150176B2 (ja) 空気調和装置の室内機
JP6562139B2 (ja) 冷凍装置
JP6851483B2 (ja) 空気調和機
KR101913511B1 (ko) 공기조화기의 제어방법
WO2021024421A1 (ja) 空気調和機
US20230258365A1 (en) Environment control system
KR100393779B1 (ko) 공기조화기의 쾌적 운전방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6921318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150