EP1979501B1 - Iron-nickel alloy - Google Patents

Iron-nickel alloy Download PDF

Info

Publication number
EP1979501B1
EP1979501B1 EP07721864A EP07721864A EP1979501B1 EP 1979501 B1 EP1979501 B1 EP 1979501B1 EP 07721864 A EP07721864 A EP 07721864A EP 07721864 A EP07721864 A EP 07721864A EP 1979501 B1 EP1979501 B1 EP 1979501B1
Authority
EP
European Patent Office
Prior art keywords
max
pernifer
mpa
thermal expansion
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07721864A
Other languages
German (de)
French (fr)
Other versions
EP1979501A1 (en
Inventor
Bodo Gehrmann
Bernd De Boer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
ThyssenKrupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp VDM GmbH filed Critical ThyssenKrupp VDM GmbH
Publication of EP1979501A1 publication Critical patent/EP1979501A1/en
Application granted granted Critical
Publication of EP1979501B1 publication Critical patent/EP1979501B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention relates to the use of a creep-resistant and low-expansion iron-nickel alloy with higher mechanical strength.
  • CFRP carbon fiber reinforced plastics
  • JP 04180542 A1 is a high-strength, low-expansion alloy, of the following composition (in% by mass): ⁇ 0.2% C, ⁇ 2.0% Si, ⁇ 2.0% Mn, 35-50% Ni, ⁇ 12% Cr, 0, 2 - 1.0% Al, 0.5-2.0% Ti, 2.0-6.0% Nb, balance Fe. If necessary, the following elements may be provided ⁇ 0.02% B and / or ⁇ 0.2% Zr.
  • the alloy can be used, among other things, for metal molds for precision flat glass production.
  • the WO 01/07673 A1 discloses a creep-resistant and low-expansion iron-nickel alloy, which (in mass%) in addition to max. 0.2 C, max. 0.3% Mn and max. 0.3% Si has an Al content of 0.05 to 3.0%, a Ti content of 0.1 to 3.0%, ⁇ 1.0 Nb and a Ni content of 39.0 to 45, 0%, the remainder iron and production-related admixtures, which in the temperature range of 20 to 100 ° C has a thermal expansion coefficient ⁇ 6.0 x 10 -6 / K.
  • This iron-nickel alloy can be used for passive components of thermo-bimetals, components for the production, storage and transport of liquefied gases, components in laser technology, leadframes, metal glass melts, frame parts of screen or shadow masks and components of electron guns, especially in television tubes , be used.
  • a flat screen CRT apparatus comprising a shadow mask support frame and a shadow mask mounted on the support frame so as to be live at ambient temperature.
  • the support frame consists of a hardened iron-nickel alloy with a thermal expansion coefficient in the temperature range of 20 to 150 ° C ⁇ 5 x 10 -6 / K.
  • the iron-nickel alloy has the following composition (in% by mass): 40 . 5 % ⁇ Ni + Co + Cu ⁇ 44 . 5 % 0 % ⁇ Co ⁇ 5 % 0 % ⁇ Cu ⁇ 3 % 1 .
  • a high-strength alloy with a low coefficient of thermal expansion which has the following composition (in% by mass): ⁇ 0.15 C, ⁇ 0.5 Si, ⁇ 0.5% Mn, 0.5 to 4% Ti and 0 , 2% Al, 30.7 to 43.0% Ni, ⁇ 14% Co. If necessary, at least one of the elements V, W, Nb and Mo ⁇ 1.0% and at least one of the elements S, Pb, Ca and SE ⁇ 0.5%. The rest is formed by iron.
  • the invention is therefore based on the object to find a new application for an Fe-Ni alloy, wherein the alloy should also have a higher mechanical strength in addition to a low thermal expansion coefficient.
  • This object is alternatively achieved by the use of a creep-resistant and low-expansion iron-nickel alloy with higher mechanical strength, with (in% by mass) Ni 37 to 41% C Max. 0.1% Ti 2.0 to 3.5% al 0.1 to 1.5% Nb 0.1 to 1.0% Mn 0.005 to 0.8% Si 0.005 to 0.6% Co 2.5 to 5.5% Cr Max. 0.1% Not a word Max. 0.1% Cu Max. 0.1% mg Max. 0.005% B Max. 0.005% N Max. 0.006% O Max. 0.003% S Max. 0.005% P Max. 0.008% Ca Max.
  • Remainder Fe and production-related admixtures the following condition is sufficient Ni + 1 ⁇ 2 Co> 38 to ⁇ 43.5%, wherein the alloy in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient ⁇ 4 x 10 -6 / K in the CFRP mold.
  • alloy can be provided for similar applications, on the one hand cobalt-free and on the other hand with additions of defined cobalt contents.
  • Alloys with cobalt are characterized by even lower coefficients of thermal expansion, but have the disadvantage that they are associated with an increased cost factor compared to cobalt-free alloys.
  • the invention can meet the wishes of the mold makers, in particular in aircraft construction, for a low coefficient of thermal expansion which is acceptable for the application, with simultaneously higher mechanical strength.
  • the alloy is to be cobalt-free, it advantageously has the following composition (in% by mass) Ni 40.5 to 42% C 0.001 to 0.05% Ti 2.0 to 3.0% al 0.1 to 0.8% Nb 0.1 to 0.6% Mn 0.005 to 0.1% Si 0.005 to 0.1% Co Max. 0.1% Remainder Fe and production-related admixtures, in the temperature range of 20 to 200 ° C has a coefficient of thermal expansion ⁇ 4.5 x 10 -6 / K.
  • the contents of said alloying elements to achieve thermal expansion coefficients ⁇ 4.0 x 10 -6 / K, in particular ⁇ 3.5 x 10 -6 / K, in their contents can be further limited.
  • Such an alloy is characterized by the following composition (in% by mass): Ni 41 to 42% C 0.001 to 0.02% Ti 2.0 to 2.5% al 0.1 to 0.45% Nb 0.1 to 0.45% Mn 0.005 to 0.05% Si 0.005 to 0.05% Co Max. 0.05% Remaining Fe and production-related admixtures.
  • an alloy with cobalt is to be used for the mold construction, it can be composed of the same (in mass%) according to a further aspect of the invention: Ni 37.5 to 40.5% C Max. 0.1% Ti 2.0 to 3.0% al 0.1 to 0.8% Nb 0.1 to 0.6% Mn 0.005 to 0.1% Si 0.005 to 0.1% Co > 3.5 to ⁇ 5.5% Remainder Fe and production-related admixtures, the following condition is sufficient Ni + 1 ⁇ 2 co > 38 to ⁇ 43 % . in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient ⁇ 3.5 x 10 -6 / K.
  • Another alloy has the following composition (in% by mass): Ni 38.0 to 39.5% C 0.001 to 0.05% Ti 2.0 to 3.0% al 0.1 to 0.8% Nb 0.1 to 0.6% Mn 0.005 to 0.1% Si 0.005 to 0.1% Co > 4 to ⁇ 5.5% Remaining Fe and production-related admixtures, the following condition is sufficient Ni + 1 ⁇ 2 co > 38 . 5 to ⁇ 43 % . in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient ⁇ 3.5 x 10 -6 / K.
  • the accompanying elements should not exceed the following max. Contents (in% by mass): Cr Max. 0.1% Not a word Max. 0.1% Cu Max. 0.1% mg Max. 0.005% B Max. 0.005% N Max. 0.006% O Max. 0.003% S Max. 0.005% P Max. 0.008% Ca Max. 0.005%.
  • Both the cobalt-free and the cobalt-containing alloy should be used in CFRP mold making, in the form of sheet metal, strip or pipe material.
  • the alloy as a wire, in particular as a welding filler material, for connecting the semi-finished products forming the mold.
  • the alloy should be used as a molded part for the production of CFRP aircraft parts, such as wings, fuselages or tail units.
  • the molds are machined out as milled parts from thermoformed (forged or rolled) or cast solid material and subsequently annealed as needed.
  • Table 1 shows the chemical composition of two investigated cobalt-free laboratory melts in comparison to two prior art alloys Pernifer 36.
  • Table 1 alloy Pernifer 36 MoSo2 Pernifer 36 Pernifer 40 Ti HS Pernifer 41 Ti HS LB-Charge 151292 50576 1018 1019 Element (%) Cr 0.20% 0.03 12:01 12:01 Ni 36.31 36.07 40.65 41.55 Mn 0.12 0.31 12:01 12:01 Si 0.12 0.07 12:01 12:01 Not a word 0.61 0.06 12:01 12:01 Ti ⁇ 0.01 ⁇ 0.01 2.29 2:34 Nb 0.08 ⁇ 0.01 12:38 12:39 Cu 0.03 0.03 12:01 12:03 Fe rest rest R 56.24 R 55.31 al 0.02 ⁇ 0.01 12:35 12:31 mg 0.0016 ⁇ 0.001 0.0005 0.0005 Co 0.02 0.02 12:01 12:01 B 0.0005 0.0005 C 0003 0003 N 0002 0002 Zr 000
  • Table 2 compares cobalt-containing laboratory melts with a prior art Pernifer 36 alloy.
  • the laboratory melts LB1018 to LB1025 were melted and cast in the block.
  • the blocks were hot rolled to 12 mm plate thickness.
  • One half each of the blocks was left at 12 mm and solution annealed.
  • the second half was further rolled to 5.1 mm.
  • Tables 3 / 3a and 4 / 4a show the mechanical properties on the one hand of the two and on the other hand the six laboratory batches compared to the two Pemifer comparison batches at room temperature.
  • Table 4 Mechanical properties at room temperature (cobalt-free alloys) Hardened 732 ° C / 1h charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness HRB LB 1018 Pernifer 40 Ti HS 1205 1299 3 113 LB 1019 Pernifer 41 Ti HS 1197 1286 2 112 151292 Pernifer 36 Mo So 2 510 640 23 91 50576 Pernifer 36 269 453 40 73 Solution annealed + hardened 1140 ° C / 3min + 732 ° C / 1h charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness HRB LB 1018 Pernifer 40 Ti HS 896 1135 12 110 LB 1019 Pernifer 41 Ti HS 901 1125 10 112 151292 Pernifer 36 Mo So 2 319 539 38 77 50576 Pernifer 36 242 427 43 65 Hardened 732 ° C / 1
  • Table 5 / 5a shows the mechanical properties of the two or six laboratory batches compared to Pernifer 36 at room temperature in the solution annealed (1140 ° C / 3min) and cured state (732 ° C / 6h, top; 600 ° C / 16h) ., below). Measurements were taken on cold-rolled samples of thickness 4.1 to 4.2 mm rolled in the states and solution annealed. The samples were cold rolled starting from hot rolled material, which was hot rolled from the 12 mm thick sheets.
  • Table 5 Mechanical properties at room temperature (cobalt-free alloys) Solution annealed + hardened 1140 ° C / 3min + 732 ° C / 6h / OK charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness HRB LB 1018 Pernifer 40 Ti HS 926 1152 12 111 LB 1019 Pernifer 41 Ti HS 929 1142 12 112 151292 Pernifer 36 Mo So 2 326 542 37 76 50576 Pernifer 36 260 441 38 66 Solution annealed + hardened 1140 ° C / 3min + 600 ° C / 16h charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness HRB LB 1018 Pernifer 40 Ti HS 815 1007 20 105 LB 1019 Pernifer 41 Ti HS 814 1031 18 106 151292 Pernifer 36 Mo So 2 330 544 36 78 50576 Pern
  • the yield strength R p0.2 in the case of the LB batches is between 715 and 743 MPa.
  • the tensile strength R m is between 801 and 813 MPa.
  • the elongation values A 50 are 11%, the hardnesses HRB between 100 and 101.
  • the highest strength values are achieved when the LB batches are cured eg at 732 ° C./1 h in the previously rolled state (ie without prior solution annealing) (Table 4, top).
  • the LB batches reach values of the yield strength R p0.2 of 1197 to 1205 MPa and for the tensile strength R m values between 1286 and 1299 MPa.
  • the expansion values are then only at 2 to 3%.
  • the hardness HRB increases to values of 111 to 113.
  • the mechanical properties in the solution-annealed + cured state are relevant.
  • Tab. 4 below the corresponding values for a heat treatment of 1140 ° C / 3min + 732 ° C / 1h are listed.
  • the LB batches reach values of yield strength R p0.2 of 896 to 901 MPa and tensile strengths R m between 1125 and 1135 MPa.
  • the alloys Pernifer 36 Mo So 2 and Pernifer 36 have significantly lower strength values.
  • the lowering of the annealing temperature to 600 ° C. of the hardening heat treatment with an annealing time of 16 h generally reduces the strength values more clearly in the LB batches, in particular in the case of the tensile strength R m (see Table 5, bottom).
  • Table 6 shows the values of the mean thermal expansion coefficient CTE (20-100 ° C) for the investigated alloys in the considered states.
  • the chemical composition influences the Curie temperature and thus the break point temperature, above which the thermal expansion curve increases more steeply.
  • illustration 1 shows expansion coefficients (CTE) 20-100 ° C and 20-200 ° C of LB batches in Condition B (see Table 6), ie hot rolled 12mm sheet, solution annealed + 1h cured at 732 ° C, depending on Ni Content of the laboratory melt.
  • CTE expansion coefficients
  • the charge LB 1018 with a Ni content of 40.65% has a lower coefficient of expansion than the batch LB 1019 with a Ni content of 41.55%.
  • a test melt with even lower Ni content Ni: 39.5%, Ti: 2.28%, Nb: 0.37%, Fe: balance, Al: 0.32%
  • the optimum was about 41% nickel is reached.
  • the coefficient of thermal expansion between 20 ° C and 200 ° C the optimum shifts to slightly higher Ni content ( ⁇ 41.5%).
  • the yield strength R p0.2 in the case of the LB batches is between 706 and 801 MPa.
  • the lowest value is the batch LB 1025, the highest value is the batch LB 1021.
  • the tensile strength R m is between 730 and 819 MPa (lowest value for LB 1025, highest value for LB 1020).
  • the elongation values A 50 range between 11 and 15%, the hardnesses HRB between 97 and 100.
  • the highest strength values can be achieved if the LB batches z. B. at 732 ° C / 1h in the previously rolled state (ie without previous solution annealing) are cured (Table 4a, above).
  • the LB batches reach values of the yield strength R p0.2 of 1144 to 1185 MPa and for the tensile strength R m values between 1248 and 1308 MPa.
  • the expansion values are then only at 3 to 6%.
  • the hardness HRB increases to values of 111 to 114.
  • the mechanical properties in the solution-annealed + cured state are relevant.
  • Tab. 4a below, the corresponding values for a heat treatment of 1140 ° C / 3min + 732 ° C / 1h are listed.
  • the LB batches reach values of yield strength R p0.2 of 899 to 986 MPa and tensile strengths R m of between 1133 and 1183 MPa.
  • the alloys Pernifer 36 Mo So 2 and Pernifer 36 have significantly lower strength values.
  • the lowering of the annealing temperature to 600 ° C. of the hardening heat treatment with an annealing time of 16 h generally reduces the strength values more clearly in the LB batches, in particular in the case of the tensile strength R m (see Table 5a, bottom).
  • Table 6a shows the values of the mean thermal expansion coefficient CTE (20-100 ° C) for the tested alloys in the considered states. Good values are shown by e.g. LB1021 u. LB1023.
  • the chemical composition influences the Curie temperature and thus the break point temperature, above which the thermal expansion curve increases more steeply.
  • the coefficients of expansion are 20 - 100 ° C ( Fig. 2 ) and 20-200 ° C ( Fig. 3 ) of the 6 LB batches in the series with Co contents 4.1% and 5.1% in state B (see Table 6a), ie hot-rolled 12 mm sheet, solution-treated + 1 h at 732 ° C hardened, in Dependence on Ni content of the laboratory melt shown.
  • the T-range 20-200 ° C is interesting for use in mold making, since the curing of the CFRP takes place at about 200 ° C.
  • the differences in the coefficient of thermal expansion between the 4% Co and 5% Co-containing alloys is so small that, for reasons of cost, the alloys with the higher co-content can not be justified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Disclosed is a creep-resistant low-expansion iron-nickel alloy that is provided with increased mechanical resistance and contains 40 to 43 wt. % of Ni, a maximum of 0.1 wt. % of C, 2.0 to 3.5 wt. % of Ti, 0.1 to 1.5 wt. % of Al, 0.1 to 1.0 wt. % of Nb, 0.005 to 0.8 wt. % of Mn, 0.005 to 0.6 wt. % of Si, a maximum of 0.5 wt. % of Co, the remainder being composed of Fe and production-related impurities. Said alloy has a mean coefficient of thermal expansion <5×10<−6>/K in the temperature range of 20 to 200 DEG C.

Description

Die Erfindung betrifft die Verwendung einer kriechbeständigen und ausdehnungsarmen Eisen-Nickel-Legierung mit höherer mechanischer Festigkeit.The invention relates to the use of a creep-resistant and low-expansion iron-nickel alloy with higher mechanical strength.

In zunehmendem Maße werden Bauteile auch für sicherheitsrelevante Produkte, wie im Flugzeugbau, aus Kohlenfaser verstärkten Kunststoffen (CFK) hergestellt. Für die Produktion derartiger Bauteile werden großformatige Gestellunterlagen als Werkzeugformteile benötigt, wobei bis dato ausdehnungsarme Eisen-Nickel-Legierungen mit etwa 36 % Nickel (Ni36) verarbeitet werden.Increasingly, components for safety-related products, such as in aircraft, made of carbon fiber reinforced plastics (CFRP) produced. For the production of such components, large-sized frame supports are required as tool moldings, with hitherto low-expansion iron-nickel alloys having about 36% nickel (Ni36) being processed.

Die bis dato eingesetzten Legierungen haben zwar einen Wärmeausdehnungskoeffizienten, der unterhalb von 2,0 x 10-6/K liegt, ihre mechanischen Eigenschaften werden jedoch als zu gering angesehen.Although the alloys used to date have a coefficient of thermal expansion below 2.0 × 10 -6 / K, their mechanical properties are considered too low.

Durch die US 5,688,471 A ist eine hochfeste Legierung mit einem Ausdehnungskoeffizienten von höchsten 4,9 x 10-6m/m/°C bei 204°C bekannt geworden, die sich zusammensetzt aus (in Masse %) 40,5 bis 48 % Ni, 2 bis 3,7 % Nb, 0,75 bis 2 % Ti, höchstens 3,7 % Gesamtgehalt an Nb + Ta, 0 bis 1 % Al, 0 bis 0,1 % C, 0 bis 1 % Mn, 0 bis 1 % Si, 0 bis 1 % Cu, 0 bis 1 % Cr, 0 bis 5 % Co, 0 bis 0,01 % B, 0 bis 2 % W, 0 bis 2 % V, 0 bis 0,01 Gesamtgehalt an Mg + Ca + Ce, 0 bis 0,5 % Y und Seltenen Erden, 0 bis 0,1 % S, 0 bis 0,1 % P, 0 bis 0,1 % N und als Restmaterial Eisen und geringfügigen Verunreinigungen. Die Legierung soll zur Herstellung von Formen für Verbundwerkstoffe mit niedrigem Ausdehnungskoeffizienten, z.B. für Kohlefaser-Verbundwerkstoffe, oder zur Herstellung von Elektronikstreifen, aushärtbaren Leadframes bzw. Masken für Bildschirmröhren einsetzbar sein.By the US 5,688,471 A is a high-strength alloy with a coefficient of expansion of the highest 4.9 x 10 -6 m / m / ° C at 204 ° C has become known, which is composed of (in% by mass) 40.5 to 48% Ni, 2 to 3, 7% Nb, 0.75 to 2% Ti, not more than 3.7% total content of Nb + Ta, 0 to 1% Al, 0 to 0.1% C, 0 to 1% Mn, 0 to 1% Si, 0 to 1% Cu, 0 to 1% Cr, 0 to 5% Co, 0 to 0.01% B, 0 to 2% W, 0 to 2% V, 0 to 0.01 total content of Mg + Ca + Ce, 0 to 0.5% Y and rare earths, 0 to 0.1% S, 0 to 0.1% P, 0 to 0.1% N and residual iron and minor impurities. The alloy is intended to be used to make molds for low expansion coefficient composites, eg, carbon fiber composites, or to make electronic strips, thermoset leadframes, or screen mask masks.

Der JP 04180542 A1 ist eine hochfeste ausdehnungsarme Legierung, folgender Zusammensetzung (in Masse %) zu entnehmen: ≤ 0,2 % C, ≤ 2,0 % Si, ≤ 2,0 % Mn, 35 - 50 % Ni, ≤ 12 % Cr, 0,2 - 1,0 % Al, 0,5 - 2,0 % Ti, 2,0 - 6,0 % Nb, Rest Fe. Sofern notwendig können noch folgende Elemente vorgesehen werden: ≤ 0,02 % B und/oder ≤ 0,2 % Zr. Die Legierung ist u. a. einsetzbar für Metallformen für die Präzisions-Flachglasherstellung.Of the JP 04180542 A1 is a high-strength, low-expansion alloy, of the following composition (in% by mass): ≤ 0.2% C, ≤ 2.0% Si, ≤ 2.0% Mn, 35-50% Ni, ≤ 12% Cr, 0, 2 - 1.0% Al, 0.5-2.0% Ti, 2.0-6.0% Nb, balance Fe. If necessary, the following elements may be provided ≤ 0.02% B and / or ≤ 0.2% Zr. The alloy can be used, among other things, for metal molds for precision flat glass production.

Die WO 01/07673 A1 offenbart eine kriechbeständige und ausdehnungsarme Eisen-Nickel-Legierung, die (in Masse-%) neben max. 0,2 C, max. 0,3 % Mn und max. 0,3 % Si einen Al-Gehalt von 0,05 bis 3,0 %, einen Ti-Gehalt von 0,1 bis 3,0 %, ≤ 1,0 Nb sowie einen Ni-Gehalt von 39,0 bis 45,0 % aufweist, Rest Eisen und herstellungsbedingte Beimengungen, die im Temperaturbereich von 20 bis 100°C einen Wärmeausdehnungskoeffizienten < 6,0 x 10-6/K aufweist. Diese Eisen-Nickel-Legierung kann für passive Komponenten von Thermo-Bimetallen, Komponenten zur Herstellung, Lagerung und zum Transport von verflüssigten Gasen, Komponenten in der Lasertechnologie, Leadframes, Metallglasanschmelzungen, Rahmenteile von Bildschirm- oder Monitorschattenmasken sowie Bauteile von Elektronenkanonen, insbesondere in Fernsehröhren, verwendet werden.The WO 01/07673 A1 discloses a creep-resistant and low-expansion iron-nickel alloy, which (in mass%) in addition to max. 0.2 C, max. 0.3% Mn and max. 0.3% Si has an Al content of 0.05 to 3.0%, a Ti content of 0.1 to 3.0%, ≤ 1.0 Nb and a Ni content of 39.0 to 45, 0%, the remainder iron and production-related admixtures, which in the temperature range of 20 to 100 ° C has a thermal expansion coefficient <6.0 x 10 -6 / K. This iron-nickel alloy can be used for passive components of thermo-bimetals, components for the production, storage and transport of liquefied gases, components in laser technology, leadframes, metal glass melts, frame parts of screen or shadow masks and components of electron guns, especially in television tubes , be used.

In der EP 1 063 304 A1 wird eine Einrichtung für eine Kathodenstrahlbildröhre mit ebenem Bildschirm beschrieben, die einen Halterahmen für eine Schattenmaske und eine Schattenmaske umfasst, die an dem Halterahmen so angebracht ist, dass sie bei Umgebungstemperatur unter Spannung steht. Der Halterahmen besteht aus einer gehärteten Eisen-Nickel-Legierung mit einem Wärmeausdehnungskoeffizienten im Temperaturbereich von 20 bis 150°C < 5 x 10-6/K. Gleiches gilt für die Schattenmaske, die im genannten Temperaturbereich einen gleichartigen Wärmeausdehnungskoeffizienten aufweisen soll. Die Eisen-Nickel-Legierung hat folgende Zusammensetzung (in Masse-%): 40 , 5 % Ni + Co + Cu 44 , 5 %

Figure imgb0001
0 % Co 5 %
Figure imgb0002
0 % Cu 3 %
Figure imgb0003
1 , 5 % Ti 3 , 5 %
Figure imgb0004
0 , 05 % Al 1 %
Figure imgb0005
C 0 , 05 %
Figure imgb0006
Si 0 , 5 %
Figure imgb0007
Mn 0 , 5 %
Figure imgb0008
S 0 , 01 %
Figure imgb0009
P 0 , 02 %
Figure imgb0010

Rest Eisen und herstellungsbedingte Verunreinigungen.In the EP 1 063 304 A1 For example, there is described a flat screen CRT apparatus comprising a shadow mask support frame and a shadow mask mounted on the support frame so as to be live at ambient temperature. The support frame consists of a hardened iron-nickel alloy with a thermal expansion coefficient in the temperature range of 20 to 150 ° C <5 x 10 -6 / K. The same applies to the shadow mask, which should have a similar coefficient of thermal expansion in the temperature range mentioned. The iron-nickel alloy has the following composition (in% by mass): 40 . 5 % Ni + Co + Cu 44 . 5 %
Figure imgb0001
0 % Co 5 %
Figure imgb0002
0 % Cu 3 %
Figure imgb0003
1 . 5 % Ti 3 . 5 %
Figure imgb0004
0 . 05 % al 1 %
Figure imgb0005
C 0 . 05 %
Figure imgb0006
Si 0 . 5 %
Figure imgb0007
Mn 0 . 5 %
Figure imgb0008
S 0 . 01 %
Figure imgb0009
P 0 . 02 %
Figure imgb0010

Remaining iron and manufacturing impurities.

Durch die JP 10310845 A1 ist eine hochfeste Legierung mit geringem thermischen Ausdehnungskoeffizienten bekannt geworden, die folgende Zusammensetzung (in Masse-%) aufweist: ≤ 0,15 C, ≤ 0,5 Si, ≤ 0,5 % Mn, 0,5 bis 4 % Ti und 0,2 % Al, 30,7 bis 43,0 % Ni, ≤ 14 % Co. Bedarfsweise kann mindestens eines der Elemente V, W, Nb und Mo ≤ 1,0 % sowie mindestens eines der Elemente S, Pb, Ca und SE ≤ 0,5 % hinzugegeben werden. Der Rest wird durch Eisen gebildet.By the JP 10310845 A1 For example, a high-strength alloy with a low coefficient of thermal expansion has become known which has the following composition (in% by mass): ≦ 0.15 C, ≦ 0.5 Si, ≦ 0.5% Mn, 0.5 to 4% Ti and 0 , 2% Al, 30.7 to 43.0% Ni, ≤ 14% Co. If necessary, at least one of the elements V, W, Nb and Mo ≤ 1.0% and at least one of the elements S, Pb, Ca and SE ≤ 0.5%. The rest is formed by iron.

Neben einem niedrigen Wärmeausdehnungskoeffizienten wünschen insbesondere Formenbauer im Flugzeugbau eine verbesserte Legierung, die gegenüber Ni36 eine höhere mechanische Festigkeit aufweisen soll.In addition to a low coefficient of thermal expansion, mold makers in aircraft construction, in particular, would like an improved alloy which should have a higher mechanical strength compared to Ni36.

Der Erfindung liegt daher die Aufgabe zugrunde, für eine Fe-Ni-Legierung einen neuen Einsatzbereich zu finden, wobei die Legierung neben einem geringen Wärmeausdehnungskoeffizienten auch eine höhere mechanische Festigkeit aufweisen soll.The invention is therefore based on the object to find a new application for an Fe-Ni alloy, wherein the alloy should also have a higher mechanical strength in addition to a low thermal expansion coefficient.

Diese Aufgabe wird gelöst durch die Verwendung einer kriechbeständigen und ausdehnungsarmen Eisen-Nickel-Legierung mit höherer mechanischer Festigkeit, mit (in Masse %) Ni 40 bis 43 % C max. 0,1 % Ti 2,0 bis 3,5 % Al 0,1 bis 1,5 % Nb 0,1 bis 1,0 % Mn 0,005 bis 0,8 % Si 0,005 bis 0,6 % Co max. 0,5 % Cr max. 0,1 % Mo max. 0,1 % Cu max. 0,1 % Mg max. 0,005 % B max. 0,005 % N max. 0,006 % O max. 0,003 % S max. 0,005 % P max. 0,008 % Ca max. 0,005 %. Rest Fe und herstellungsbedingte Beimengungen,
die im Temperaturbereich von 20 bis 200°C einen mittleren Wärmeausdehnungskoeffizienten < 5 x 10-6/K aufweist im CFK-Formenbau.
This object is achieved by the use of a creep-resistant and low-expansion iron-nickel alloy with higher mechanical strength, with (in% by mass) Ni 40 to 43% C Max. 0.1% Ti 2.0 to 3.5% al 0.1 to 1.5% Nb 0.1 to 1.0% Mn 0.005 to 0.8% Si 0.005 to 0.6% Co Max. 0.5% Cr Max. 0.1% Not a word Max. 0.1% Cu Max. 0.1% mg Max. 0.005% B Max. 0.005% N Max. 0.006% O Max. 0.003% S Max. 0.005% P Max. 0.008% Ca Max. 0.005%. Remainder Fe and production-related admixtures,
in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient <5 x 10 -6 / K in the CFRP mold.

Diese Aufgabe wird alternativ auch gelöst durch die Verwendung einer kriechbeständigen und ausdehnungsarmen Eisen-Nickel-Legierung mit höherer mechanischer Festigkeit, mit (in Masse %) Ni 37 bis 41 % C max. 0,1 % Ti 2,0 bis 3,5 % Al 0,1 bis 1,5 % Nb 0,1 bis 1,0 % Mn 0,005 bis 0,8 % Si 0,005 bis 0,6 % Co 2,5 bis 5,5 % Cr max. 0,1 % Mo max. 0,1 % Cu max. 0,1 % Mg max. 0,005 % B max. 0,005 % N max. 0,006 % O max. 0,003 % S max. 0,005 % P max. 0,008 % Ca max. 0,005 % Rest Fe und herstellungsbedingte Beimengungen,
die folgender Bedingung genügt
Ni + ½ Co > 38 bis < 43,5 %, wobei die Legierung im Temperaturbereich von 20 bis 200°C einen mittleren Wärmeausdehnungskoeffizienten < 4 x 10-6/K aufweist im CFK-Formenbau.
This object is alternatively achieved by the use of a creep-resistant and low-expansion iron-nickel alloy with higher mechanical strength, with (in% by mass) Ni 37 to 41% C Max. 0.1% Ti 2.0 to 3.5% al 0.1 to 1.5% Nb 0.1 to 1.0% Mn 0.005 to 0.8% Si 0.005 to 0.6% Co 2.5 to 5.5% Cr Max. 0.1% Not a word Max. 0.1% Cu Max. 0.1% mg Max. 0.005% B Max. 0.005% N Max. 0.006% O Max. 0.003% S Max. 0.005% P Max. 0.008% Ca Max. 0.005% Remainder Fe and production-related admixtures,
the following condition is sufficient
Ni + ½ Co> 38 to <43.5%, wherein the alloy in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient <4 x 10 -6 / K in the CFRP mold.

Vorteilhafte Weiterbildungen der alternativen einerseits kobaltfreien und andererseits kobalthaltigen Verwendung sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous developments of the alternative, on the one hand, cobalt-free and, on the other hand, cobalt-containing use can be found in the associated subclaims.

Die Legierung kann für gleichartige Anwendungsfälle einerseits kobaltfrei und andererseits mit Zugaben definierter Kobaltgehalte vorgesehen sein. Legierungen mit Kobalt zeichnen sich durch noch geringere Wärmeausdehnungskoeffizienten aus, haben jedoch den Nachteil, dass sie gegenüber kobaltfreien Legierungen mit einem erhöhten Kostenfaktor einhergehen.The alloy can be provided for similar applications, on the one hand cobalt-free and on the other hand with additions of defined cobalt contents. Alloys with cobalt are characterized by even lower coefficients of thermal expansion, but have the disadvantage that they are associated with an increased cost factor compared to cobalt-free alloys.

Gegenüber bisher zum Einsatz gelangenden Legierungen auf Basis von Ni 36 kann mit den Erfindungsgegenständen den Wünschen der Formenbauer, insbesondere im Flugzeugbau, nach einem für den Anwendungsfall akzeptablen niedrigen Wärmeausdehnungskoeffizienten bei gleichzeitig höherer mechanischer Festigkeit nachgekommen werden.Compared with previously used alloys based on Ni 36, the invention can meet the wishes of the mold makers, in particular in aircraft construction, for a low coefficient of thermal expansion which is acceptable for the application, with simultaneously higher mechanical strength.

Soll die Legierung kobaltfrei sein, weist sie vorteilhafterweise folgende Zusammensetzung (in Masse %) auf Ni 40,5 bis 42 % C 0,001 bis 0,05 % Ti 2,0 bis 3,0 % Al 0,1 bis 0,8 % Nb 0,1 bis 0,6 % Mn 0,005 bis 0,1 % Si 0,005 bis 0,1 % Co max. 0,1 % Rest Fe und herstellungsbedingte Beimengungen,
die im Temperaturbereich von 20 bis 200°C einen Wärmeausdehnungskoeffizienten < 4,5 x 10-6/K aufweist.
If the alloy is to be cobalt-free, it advantageously has the following composition (in% by mass) Ni 40.5 to 42% C 0.001 to 0.05% Ti 2.0 to 3.0% al 0.1 to 0.8% Nb 0.1 to 0.6% Mn 0.005 to 0.1% Si 0.005 to 0.1% Co Max. 0.1% Remainder Fe and production-related admixtures,
in the temperature range of 20 to 200 ° C has a coefficient of thermal expansion <4.5 x 10 -6 / K.

Je nach Anwendungsfall können die Gehalte der genannten Legierungselemente zur Erzielung von Wärmeausdehnungskoeffizienten < 4,0 x 10-6/K, insbesondere < 3,5 x 10-6/K, in ihren Gehalten weiter eingeschränkt werden. Eine derartige Legierung zeichnet sich durch folgende Zusammensetzung (in Masse %) aus: Ni 41 bis 42 % C 0,001 bis 0,02 % Ti 2,0 bis 2,5 % Al 0,1 bis 0,45 % Nb 0,1 bis 0,45 % Mn 0,005 bis 0,05 % Si 0,005 bis 0,05 % Co max. 0,05 % Rest Fe und herstellungsbedingte Beimengungen.Depending on the application, the contents of said alloying elements to achieve thermal expansion coefficients <4.0 x 10 -6 / K, in particular <3.5 x 10 -6 / K, in their contents can be further limited. Such an alloy is characterized by the following composition (in% by mass): Ni 41 to 42% C 0.001 to 0.02% Ti 2.0 to 2.5% al 0.1 to 0.45% Nb 0.1 to 0.45% Mn 0.005 to 0.05% Si 0.005 to 0.05% Co Max. 0.05% Remaining Fe and production-related admixtures.

In folgender Tabelle sind die eher unerwünschten Begleitelemente mit ihren Maximalgehalten angegeben (in Masse %): Cr max. 0,1 % Mo max. 0,1 % Cu max. 0,1 % Mg max. 0,005 % B max. 0,005 % N max. 0,006 % O max. 0,003 % S max. 0,005 % P max. 0,008 % Ca max. 0,005 %. The following table shows the rather unwanted accompanying elements with their maximum contents (in mass%): Cr Max. 0.1% Not a word Max. 0.1% Cu Max. 0.1% mg Max. 0.005% B Max. 0.005% N Max. 0.006% O Max. 0.003% S Max. 0.005% P Max. 0.008% Ca Max. 0.005%.

Soll für den Formenbau eine Legierung mit Kobalt zum Einsatz gelangen, kann selbige, einem weiteren Gedanken der Erfindung gemäß, wie folgt zusammengesetzt sein (in Masse %): Ni 37,5 bis 40,5 % C max. 0,1 % Ti 2,0 bis 3,0 % Al 0,1 bis 0,8 % Nb 0,1 bis 0,6 % Mn 0,005 bis 0,1 % Si 0,005 bis 0,1 % Co > 3,5 bis < 5,5 % Rest Fe und herstellungsbedingte Beimengungen,
die folgender Bedingung genügt Ni + ½ Co > 38 bis < 43 % ,

Figure imgb0011

die im Temperaturbereich von 20 bis 200°C einen mittleren Wärmeausdehnungskoeffizienten < 3,5 x 10-6/K aufweist.If an alloy with cobalt is to be used for the mold construction, it can be composed of the same (in mass%) according to a further aspect of the invention: Ni 37.5 to 40.5% C Max. 0.1% Ti 2.0 to 3.0% al 0.1 to 0.8% Nb 0.1 to 0.6% Mn 0.005 to 0.1% Si 0.005 to 0.1% Co > 3.5 to <5.5% Remainder Fe and production-related admixtures,
the following condition is sufficient Ni + ½ co > 38 to < 43 % .
Figure imgb0011

in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient <3.5 x 10 -6 / K.

Eine weitere Legierung weist folgende Zusammensetzung (in Masse %) auf: Ni 38,0 bis 39,5 % C 0,001 bis 0,05 % Ti 2,0 bis 3,0 % Al 0,1 bis 0,8 % Nb 0,1 bis 0,6 % Mn 0,005 bis 0,1 % Si 0,005 bis 0,1 % Co > 4 bis < 5,5 % Rest Fe und herstellungsbedingte Beimengungen,die folgender Bedingung genügt Ni + ½ Co > 38 , 5 bis < 43 % ,

Figure imgb0012

die im Temperaturbereich von 20 bis 200°C einen mittleren Wärmeausdehnungskoeffizienten < 3,5 x 10-6/K aufweist.Another alloy has the following composition (in% by mass): Ni 38.0 to 39.5% C 0.001 to 0.05% Ti 2.0 to 3.0% al 0.1 to 0.8% Nb 0.1 to 0.6% Mn 0.005 to 0.1% Si 0.005 to 0.1% Co > 4 to <5.5% Remaining Fe and production-related admixtures, the following condition is sufficient Ni + ½ co > 38 . 5 to < 43 % .
Figure imgb0012

in the temperature range of 20 to 200 ° C has a mean thermal expansion coefficient <3.5 x 10 -6 / K.

Für besondere Anwendungsfälle, insbesondere zur Reduzierung des Wärmeausdehnungskoeffizienten in Bereiche < 3,2 x 10-6/K, insbesondere < 3.0 x 10-6/K, können einzelne der Elemente in ihren Gehalten wie folgt weiter eingeschränkt werden (in Masse %): Ni 38,0 bis 39,0 % C 0,001 bis 0,02 % Ti 2,0 bis 2,5 % Al 0,1 bis 0,45 % Nb 0,1 bis 0,45 % Mn 0,005 bis 0,05 % Si 0,005 bis 0,5 % Co > 4 bis < 5,5 % Rest Fe und herstellungsbedingte Beimengungen, die folgender Bedingung genügt, Ni + ½ Co > 40 bis < 42 % .

Figure imgb0013
For special applications, in particular for reducing the coefficient of thermal expansion in ranges <3.2 x 10 -6 / K, in particular <3.0 x 10 -6 / K, individual contents of the elements can be further restricted as follows (in% by mass): Ni 38.0 to 39.0% C 0.001 to 0.02% Ti 2.0 to 2.5% al 0.1 to 0.45% Nb 0.1 to 0.45% Mn 0.005 to 0.05% Si 0.005 to 0.5% Co > 4 to <5.5% Residual Fe and production-related admixtures satisfying the following condition Ni + ½ co > 40 to < 42 % ,
Figure imgb0013

Für die Kobalt enthaltenden Legierungen sollen die Begleitelemente folgende Max.-Gehalte nicht überschreiten (in Masse %): Cr max. 0,1 % Mo max. 0,1 % Cu max. 0,1 % Mg max. 0,005 % B max. 0,005 % N max. 0,006 % O max. 0,003 % S max. 0,005 % P max. 0,008 % Ca max. 0,005 %. For the cobalt-containing alloys, the accompanying elements should not exceed the following max. Contents (in% by mass): Cr Max. 0.1% Not a word Max. 0.1% Cu Max. 0.1% mg Max. 0.005% B Max. 0.005% N Max. 0.006% O Max. 0.003% S Max. 0.005% P Max. 0.008% Ca Max. 0.005%.

Sowohl die kobaltfreie als auch die kobalthaltige Legierung soll im CFK-Formenbau eingesetzt werden, und zwar in Form von Blech-, Band- oder Rohrmaterial.Both the cobalt-free and the cobalt-containing alloy should be used in CFRP mold making, in the form of sheet metal, strip or pipe material.

Ebenfalls denkbar ist die Verwendung der Legierung als Draht, insbesondere als Schweißzusatzwerkstoff, zur Verbindung der die Form bildenden Halbzeuge.Also conceivable is the use of the alloy as a wire, in particular as a welding filler material, for connecting the semi-finished products forming the mold.

Besonders vorteilhaft soll die Legierung als Formbauteil zur Erzeugung von CFK-Flugzeugteilen, wie beispielsweise Tragflächen, Rumpfteilen oder Leitwerken eingesetzt werden.Particularly advantageously, the alloy should be used as a molded part for the production of CFRP aircraft parts, such as wings, fuselages or tail units.

Auch ist denkbar, die Legierung nur für diejenigen Teile der Form zu verwenden, die mechanisch hoch belastet werden. Die weniger belasteten Teile werden dann in einer Legierung ausgeführt, die ein thermisches Ausdehnungsverhalten aufweist, das dem einzusetzenden Werkstoff angepasst ist.It is also conceivable to use the alloy only for those parts of the mold which are subjected to high mechanical loading. The less loaded parts are then carried out in an alloy having a thermal expansion behavior, which is adapted to the material to be used.

Vorteilhafter Weise werden die Formen als Frästeile aus warmgeformtem (geschmiedetem oder gewalztem) oder gegossenem Massivmaterial herausgearbeitet und bedarfsweise anschließend geglüht.Advantageously, the molds are machined out as milled parts from thermoformed (forged or rolled) or cast solid material and subsequently annealed as needed.

Im Folgenden werden bevorzugte Legierungen in Bezug auf ihre mechanischen Eigenschaften mit einer Legierung gemäß Stand der Technik verglichen.In the following, preferred alloys are compared in terms of their mechanical properties with a prior art alloy.

Der folgenden Tabelle 1 ist die chemische Zusammensetzung von zwei untersuchten kobaltfreien Laborschmelzen im Vergleich zu zwei dem Stand der Technik zuzuordnenden Legierungen Pernifer 36 zu entnehmen. Tabelle 1 Legierung Pernifer 36 MoSo2 Pernifer 36 Pernifer 40 Ti HS Pernifer 41 Ti HS LB-Charge 151292 50576 1018 1019 Element (%) Cr 0,20 % 0,03 0.01 0.01 Ni 36,31 36,07 40.65 41.55 Mn 0,12 0,31 0.01 0.01 Si 0,12 0,07 0.01 0.01 Mo 0,61 0,06 0.01 0.01 Ti < 0,01 < 0,01 2.29 2.34 Nb 0,08 < 0,01 0.38 0.39 Cu 0,03 0,03 0.01 0.03 Fe Rest Rest R 56.24 R 55.31 Al 0,02 < 0,01 0.35 0.31 Mg 0,0016 < 0,001 0.0005 0.0005 Co 0,02 0,02 0.01 0.01 B 0.0005 0.0005 C 0.003 0.003 N 0.002 0.002 Zr 0.003 0.002 O 0.004 S 0.002 0.002 P 0.002 0.002 Ca 0,003 0,0003 0.0005 0.0005 The following Table 1 shows the chemical composition of two investigated cobalt-free laboratory melts in comparison to two prior art alloys Pernifer 36. Table 1 alloy Pernifer 36 MoSo2 Pernifer 36 Pernifer 40 Ti HS Pernifer 41 Ti HS LB-Charge 151292 50576 1018 1019 Element (%) Cr 0.20% 0.03 12:01 12:01 Ni 36.31 36.07 40.65 41.55 Mn 0.12 0.31 12:01 12:01 Si 0.12 0.07 12:01 12:01 Not a word 0.61 0.06 12:01 12:01 Ti <0.01 <0.01 2.29 2:34 Nb 0.08 <0.01 12:38 12:39 Cu 0.03 0.03 12:01 12:03 Fe rest rest R 56.24 R 55.31 al 0.02 <0.01 12:35 12:31 mg 0.0016 <0.001 0.0005 0.0005 Co 0.02 0.02 12:01 12:01 B 0.0005 0.0005 C 0003 0003 N 0002 0002 Zr 0003 0002 O 0004 S 0002 0002 P 0002 0002 Ca 0,003 0.0003 0.0005 0.0005

In Tabelle 2 werden kobalthaltige Laborschmelzen mit einer dem Stand der Technik zuzuordnenden Pernifer 36 Legierung verglichen. Tabelle 2 Legierung Pernifer 36 Pernifer 37 TiCo HS Pernifer 39 TiCo HS Pernifer 40 TiCo HS Pernifer 37 TihCo HS Pernifer 39 TihCo HS Pernifer 40 TihCo HS LB-Charge 50576 1020 1021 1022 1023 1024 1025 Element (%) Cr 0.20 % 0.01 0.1 0.01 0.01 0.01 0.01 Ni 36,31 37.28 38.48 40.54 37.01 38.54 40.15 Mn 0,12 0.01 0.01 0.01 0.01 0.01 0.01 Si 0,12 0.01 0.01 0.01 0.01 0.01 0.01 Mo 0,61 0.01 0.01 0.01 0.01 0.01 0.01 Ti < 0,01 2.33 2.31 2.28 2.41 2.36 2.39 Nb 0,08 0.37 0.37 0.37 0.43 0.42 0.43 Cu 0,03 0.01 0.01 0.01 0.01 0.01 0.01 Fe Rest R 55.55 R 54.38 R 52.35 R 54.63 R 53.18 R 51.57 Al 0,02 0.29 0.28 0.27 0.29 0.29 0.28 Mg 0.0016 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 Co 0,02 4.10 4.10 4.11 5.15 15.13 5.10 B 0.0005 0.0005 0.0006 0.0005 0.0006 0.0006 C 0.002 0.002 0.002 0.003 0.003 0.002 N 0.002 0.002 0.002 0.002 0.002 0.002 Zr 0.002 0.005 0.006 0.004 0.006 0.005 O 0.004 0.004 0.004 0.003 0.005 0.005 S 0.002 0.002 0.002 0.002 0.002 0.002 P 0.002 0.002 0.002 0.002 0.002 Ca 0,003 0.005 0.0005 0.0005 0.0006 0.0006 0.0006 Table 2 compares cobalt-containing laboratory melts with a prior art Pernifer 36 alloy. Table 2 alloy Pernifer 36 Pernifer 37 TiCo HS Pernifer 39 TiCo HS Pernifer 40 TiCo HS Pernifer 37 TihCo HS Pernifer 39 TihCo HS Pernifer 40 TihCo HS LB-Charge 50576 1020 1021 1022 1023 1024 1025 Element (%) Cr 0.20% 12:01 0.1 12:01 12:01 12:01 12:01 Ni 36.31 37.28 38.48 40.54 37.01 38.54 40.15 Mn 0.12 12:01 12:01 12:01 12:01 12:01 12:01 Si 0.12 12:01 12:01 12:01 12:01 12:01 12:01 Not a word 0.61 12:01 12:01 12:01 12:01 12:01 12:01 Ti <0.01 2:33 2.31 2.28 2:41 2:36 2:39 Nb 0.08 12:37 12:37 12:37 12:43 12:42 12:43 Cu 0.03 12:01 12:01 12:01 12:01 12:01 12:01 Fe rest R 55.55 R 54.38 R 52.35 R 54.63 R 53.18 R 51.57 al 0.02 12:29 12:28 12:27 12:29 12:29 12:28 mg 0.0016 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 Co 0.02 4.10 4.10 4.11 5.15 15:13 5.10 B 0.0005 0.0005 0.0006 0.0005 0.0006 0.0006 C 0002 0002 0002 0003 0003 0002 N 0002 0002 0002 0002 0002 0002 Zr 0002 0005 0006 0004 0006 0005 O 0004 0004 0004 0003 0005 0005 S 0002 0002 0002 0002 0002 0002 P 0002 0002 0002 0002 0002 Ca 0,003 0005 0.0005 0.0005 0.0006 0.0006 0.0006

Die Laborschmelzen LB1018 bis LB1025 wurden geschmolzen und im Block vergossen. Die Blöcke wurden an 12 mm Blechstärke warm gewalzt. Jeweils eine Hälfte der Blöcke wurde an 12 mm belassen und lösungsgeglüht. Die zweite Hälfte wurde an 5,1 mm weiter gewalzt.The laboratory melts LB1018 to LB1025 were melted and cast in the block. The blocks were hot rolled to 12 mm plate thickness. One half each of the blocks was left at 12 mm and solution annealed. The second half was further rolled to 5.1 mm.

Die Tabellen 3/3a und 4/4a zeigen die mechanischen Eigenschaften einerseits der zwei und andererseits der sechs Laborchargen im Vergleich zu den beiden Pemifer-Vergleichschargen bei Raumtemperatur.Tables 3 / 3a and 4 / 4a show the mechanical properties on the one hand of the two and on the other hand the six laboratory batches compared to the two Pemifer comparison batches at room temperature.

Gemäß Tabelle 3/3a wurden Messwerte an kalt gewalztem Material der Dicke 4,1 bis 4,2 mm in den Zuständen gewalzt und lösungsgeglüht ermittelt. Die jeweiligen Proben wurden, ausgehend vom warmgewalzten Zustand, kalt gewalzt, welche aus den 12 mm dicken Blechen warm gewalzt wurden. Tabelle 3 - Mechanische Eigenschaften (kobaltfreie Legierungen) Gewalzter Zustand Charge Legierung Rp0,2 (MPa) Rm (MPa) A50 (%) Härte
HRB
LB 1018 Pernifer 40 Ti HS 715 801 11 100 LB 1019 Pernifer 41 Ti HS 743 813 11 101 151292 Pernifer 36 Mo So 2 693 730 12 95 50576 Pernifer 36 558 592 13 90
Lösungsgeglüht 1140°C/3min Charge Legierung Rp0,2 (MPa) Rm (MPa) A50 (%) Härte
HRB
LB 1018 Pernifer 40 Ti HS 394 640 40 82 LB 1019 Pernifer 41 Ti HS 366 619 40 85 151292 Pernifer 36 Mo So 2 327 542 38 79 50576 Pernifer 36 255 433 38 66
Tabelle 3a: Mechanische Eigenschaften (kobalthaltige Legierungen) Gewalzter Zustand Charge Legierung Rp0,2
(MPa)
Rm
(MPa)
A50 (%) Härte
HRB
LB 1020 Pernifer 37 TiCo HS 762 819 11 100 LB 1021 Pernifer 39 TiCo HS 801 813 12 98 LB 1022 Pernifer 40 TiCo HS 782 801 13 98 LB 1023 Pernifer 37 TihCo HS 719 790 12 98 LB 1024 Pernifer 39 TihCo HS 727 801 13 99 LB 1025 Pernifer 40 TihCo HS 706 781 15 97 151292 Pernifer 36 Mo So 2 693 730 12 95 50576 Pernifer 36 558 592 13 90
Lösungsgeglüht 1140°C/3min Charge Legierung Rp0,2
(MPa)
Rm
(MPa)
A50 (%) Härte
HRB
LB 1020 Pernifer 37 TiCo HS 439 660 38 84 LB 1021 Pernifer 39 TiCo HS 415 645 37 85 LB 1022 Pernifer 40 TiCo HS 401 655 42 83 LB 1023 Pernifer 37 TihCo HS 453 675 36 87 LB 1024 Pernifer 39 TihCo HS 437 667 37 83 LB 1025 Pernifer 40 TihCo HS 436 680 41 81 151292 Pernifer 36 Mo So 2 327 542 38 79 50576 Pernifer 36 255 433 38 66
According to Table 3 / 3a, measured values were cold-rolled and solution annealed on cold-rolled material with a thickness of 4.1 to 4.2 mm in the states. The respective samples were cold rolled, starting from the hot rolled state, which were hot rolled from the 12 mm thick sheets. Table 3 - Mechanical properties (cobalt-free alloys) Rolled condition charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness
HRB
LB 1018 Pernifer 40 Ti HS 715 801 11 100 LB 1019 Pernifer 41 Ti HS 743 813 11 101 151292 Pernifer 36 Mo So 2 693 730 12 95 50576 Pernifer 36 558 592 13 90
Solution annealed 1140 ° C / 3min charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness
HRB
LB 1018 Pernifer 40 Ti HS 394 640 40 82 LB 1019 Pernifer 41 Ti HS 366 619 40 85 151292 Pernifer 36 Mo So 2 327 542 38 79 50576 Pernifer 36 255 433 38 66
Rolled condition charge alloy Rp0.2
(MPa)
rm
(MPa)
A50 (%) hardness
HRB
LB 1020 Pernifer 37 TiCo HS 762 819 11 100 LB 1021 Pernifer 39 TiCo HS 801 813 12 98 LB 1022 Pernifer 40 TiCo HS 782 801 13 98 LB 1023 Pernifer 37 TihCo HS 719 790 12 98 LB 1024 Pernifer 39 TihCo HS 727 801 13 99 LB 1025 Pernifer 40 TihCo HS 706 781 15 97 151292 Pernifer 36 Mo So 2 693 730 12 95 50576 Pernifer 36 558 592 13 90
Solution annealed 1140 ° C / 3min charge alloy Rp0.2
(MPa)
rm
(MPa)
A50 (%) hardness
HRB
LB 1020 Pernifer 37 TiCo HS 439 660 38 84 LB 1021 Pernifer 39 TiCo HS 415 645 37 85 LB 1022 Pernifer 40 TiCo HS 401 655 42 83 LB 1023 Pernifer 37 TihCo HS 453 675 36 87 LB 1024 Pernifer 39 TihCo HS 437 667 37 83 LB 1025 Pernifer 40 TihCo HS 436 680 41 81 151292 Pernifer 36 Mo So 2 327 542 38 79 50576 Pernifer 36 255 433 38 66

Gemäß Tabelle 4/4a sind die mechanischen Eigenschaften der zwei bzw. sechs Laborchargen im Vergleich zu Pernifer 36 bei Raumtemperatur im lösungsgeglühten und ausgehärteten Zustand sowie im nur ausgehärteten Zustand dargestellt. Messwerte wurden ermittelt an kalt gewalzten Proben der Dicke 4,1 bis 4,2 mm in den Zuständen gewalzt und lösungsgeglüht. Die Proben wurden, ausgehend von warm gewalztem Material, kalt gewalzt, welche aus den 12 mm dicken Blechen warm gewalzt wurden. Tabelle 4: Mechanische Eigenschaften bei Raumtemperatur (kobaltfreie Legierungen) Ausgehärtet 732°C/1h Charge Legierung Rp0,2 (MPa) Rm (MPa) A50 (%) Härte
HRB
LB 1018 Pernifer 40 Ti HS 1205 1299 3 113 LB 1019 Pernifer 41 Ti HS 1197 1286 2 112 151292 Pernifer 36 Mo So 2 510 640 23 91 50576 Pernifer 36 269 453 40 73
Lösungsgeglüht + gehärtet
1140°C/3min + 732°C/1h
Charge Legierung Rp0,2 (MPa) Rm (MPa) A50 (%) Härte
HRB
LB 1018 Pernifer 40 Ti HS 896 1135 12 110 LB 1019 Pernifer 41 Ti HS 901 1125 10 112 151292 Pernifer 36 Mo So 2 319 539 38 77 50576 Pernifer 36 242 427 43 65
Tabelle 4a: Mechanische Eigenschaften bei Raumtemperatur (kobalthaltige Legierungen) Ausgehärtet 732°C/1h Charge Legierung Rp0,2
(MPa)
Rm
(MPa)
A50 (%) Härte
HRB
LB 1020 Pernifer 37 TiCo HS 1182 1304 4 114 LB 1021 Pernifer 39 TiCo HS 1144 1257 3 111 LB 1022 Pernifer 40 TiCo HS 1185 1290 3 111 LB 1023 Pernifer 37 TihCo HS 1183 1308 6 112 LB 1024 Pernifer 39 TihCo HS 1147 1248 4 111 LB 1025 Pernifer 40 TihCo HS 1173 1277 3 114 151292 Pernifer 36 Mo So 2 510 640 23 91 50576 Pernifer 36 269 453 40 73
Lösungsgeglüht + gehärtet
1140°C/3min + 732°C/1h
Charge Legierung Rp0,2
(MPa)
Rm
(MPa)
A50 (%) Härte
HRB
LB 1020 Pernifer 37 TiCo HS 986 1180 12 111 LB 1021 Pernifer 39 TiCo HS 946 1148 9 112 LB 1022 Pernifer 40 TiCo HS 899 1133 11 111 LB 1023 Pernifer 37 TihCo HS 980 1183 11 111 LB 1024 Pernifer 39 TihCo HS 946 1155 9 110 LB 1025 Pernifer 40 TihCo HS 911 1148 11 111 151292 Pernifer 36 Mo So 2 319 539 38 77 50576 Pernifer 36 242 427 43 65
According to Table 4 / 4a, the mechanical properties of the two or six laboratory batches compared to Pernifer 36 are shown at room temperature in the solution-annealed and cured state and in the only cured state. Measurements were taken on cold-rolled samples of thickness 4.1 to 4.2 mm rolled in the states and solution annealed. The samples were cold rolled starting from hot rolled material, which was hot rolled from the 12 mm thick sheets. Table 4: Mechanical properties at room temperature (cobalt-free alloys) Hardened 732 ° C / 1h charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness
HRB
LB 1018 Pernifer 40 Ti HS 1205 1299 3 113 LB 1019 Pernifer 41 Ti HS 1197 1286 2 112 151292 Pernifer 36 Mo So 2 510 640 23 91 50576 Pernifer 36 269 453 40 73
Solution annealed + hardened
1140 ° C / 3min + 732 ° C / 1h
charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness
HRB
LB 1018 Pernifer 40 Ti HS 896 1135 12 110 LB 1019 Pernifer 41 Ti HS 901 1125 10 112 151292 Pernifer 36 Mo So 2 319 539 38 77 50576 Pernifer 36 242 427 43 65
Hardened 732 ° C / 1h charge alloy Rp0.2
(MPa)
rm
(MPa)
A50 (%) hardness
HRB
LB 1020 Pernifer 37 TiCo HS 1182 1304 4 114 LB 1021 Pernifer 39 TiCo HS 1144 1257 3 111 LB 1022 Pernifer 40 TiCo HS 1185 1290 3 111 LB 1023 Pernifer 37 TihCo HS 1183 1308 6 112 LB 1024 Pernifer 39 TihCo HS 1147 1248 4 111 LB 1025 Pernifer 40 TihCo HS 1173 1277 3 114 151292 Pernifer 36 Mo So 2 510 640 23 91 50576 Pernifer 36 269 453 40 73
Solution annealed + hardened
1140 ° C / 3min + 732 ° C / 1h
charge alloy Rp0.2
(MPa)
rm
(MPa)
A50 (%) hardness
HRB
LB 1020 Pernifer 37 TiCo HS 986 1180 12 111 LB 1021 Pernifer 39 TiCo HS 946 1148 9 112 LB 1022 Pernifer 40 TiCo HS 899 1133 11 111 LB 1023 Pernifer 37 TihCo HS 980 1183 11 111 LB 1024 Pernifer 39 TihCo HS 946 1155 9 110 LB 1025 Pernifer 40 TihCo HS 911 1148 11 111 151292 Pernifer 36 Mo So 2 319 539 38 77 50576 Pernifer 36 242 427 43 65

Tabelle 5/5a zeigt die mechanischen Eigenschaften der zwei bzw. sechs Laborchargen im Vergleich zu Pernifer 36 bei Raumtemperatur im lösungsgeglühten (1140°C/3min) und ausgehärteten Zustand (732°C/6 Std., oben; 600°C/16 Std., unten). Messwerte wurden ermittelt an kalt gewalzten Proben der Dicke 4,1 bis 4,2 mm in den Zuständen gewalzt und lösungsgeglüht. Die Proben wurden, ausgehend von warm gewalztem Material, kalt gewalzt, welche aus den 12 mm dicken Blechen warm gewalzt wurden. Tabelle 5: Mechanische Eigenschaften bei Raumtemperatur (kobaltfreie Legierungen) Lösungsgeglüht + gehärtet
1140°C/3min + 732°C/6h/OK
Charge Legierung Rp0,2 (MPa) Rm (MPa) A50 (%) Härte
HRB
LB 1018 Pernifer 40 Ti HS 926 1152 12 111 LB 1019 Pernifer 41 Ti HS 929 1142 12 112 151292 Pernifer 36 Mo So 2 326 542 37 76 50576 Pernifer 36 260 441 38 66
Lösungsgeglüht + gehärtet
1140°C/3min + 600°C/16h
Charge Legierung Rp0,2 (MPa) Rm (MPa) A50 (%) Härte
HRB
LB 1018 Pernifer 40 Ti HS 815 1007 20 105 LB 1019 Pernifer 41 Ti HS 814 1031 18 106 151292 Pernifer 36 Mo So 2 330 544 36 78 50576 Pernifer 36 257 442 37 66
Tabelle 5a: Mechanische Eigenschaften bei Raumtemperatur (kobalthaltige Legierungen) Lösungsgeglüht + gehärtet
1140°C/3min + 732°C/6h/OK
Charge Legierung Rp0,2
(MPa)
Rm
(MPa)
A50
(%)
Härte
HRB
LB 1020 Pernifer 37 TiCo HS 949 1164 14 112 LB 1021 Pernifer 39 TiCo HS 921 1141 13 110 LB 1022 Pernifer 40 TiCo HS 916 1142 14 111 LB 1023 Pernifer 37 TihCo HS 950 1179 14 111 LB 1024 Pernifer 39 TihCo HS 927 1157 13 110 LB 1025 Pernifer 40 TihCo HS 930 1151 12 111 151292 Pernifer 36 Mo So 2 326 542 37 76 50576 Pernifer 36 260 441 38 66
Lösungsgeglüht + gehärtet
1140°C/3min + 600°C/16h
Charge Legierung Rp0,2
(MPa)
Rm
(MPa)
A50
(%)
Härte
HRB
LB 1020 Pernifer 37 TiCo HS 905 1068 16 107 LB 1021 Pernifer 39 TiCo HS 915 1075 13 107 LB 1022 Pernifer 40 TiCo HS 871 1065 14 107 LB 1023 Pernifer 37 TihCo HS 983 1125 13 107 LB 1024 Pernifer 39 TihCo HS 939 1096 14 107 LB 1025 Pernifer 40 TihCo HS 884 1060 15 105 151292 Pernifer 36 Mo So 2 330 544 36 78 50576 Pernifer 36 257 442 37 66
Table 5 / 5a shows the mechanical properties of the two or six laboratory batches compared to Pernifer 36 at room temperature in the solution annealed (1140 ° C / 3min) and cured state (732 ° C / 6h, top; 600 ° C / 16h) ., below). Measurements were taken on cold-rolled samples of thickness 4.1 to 4.2 mm rolled in the states and solution annealed. The samples were cold rolled starting from hot rolled material, which was hot rolled from the 12 mm thick sheets. Table 5: Mechanical properties at room temperature (cobalt-free alloys) Solution annealed + hardened
1140 ° C / 3min + 732 ° C / 6h / OK
charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness
HRB
LB 1018 Pernifer 40 Ti HS 926 1152 12 111 LB 1019 Pernifer 41 Ti HS 929 1142 12 112 151292 Pernifer 36 Mo So 2 326 542 37 76 50576 Pernifer 36 260 441 38 66
Solution annealed + hardened
1140 ° C / 3min + 600 ° C / 16h
charge alloy R p0.2 (MPa) R m (MPa) A 50 (%) hardness
HRB
LB 1018 Pernifer 40 Ti HS 815 1007 20 105 LB 1019 Pernifer 41 Ti HS 814 1031 18 106 151292 Pernifer 36 Mo So 2 330 544 36 78 50576 Pernifer 36 257 442 37 66
Solution annealed + hardened
1140 ° C / 3min + 732 ° C / 6h / OK
charge alloy Rp0.2
(MPa)
rm
(MPa)
A50
(%)
hardness
HRB
LB 1020 Pernifer 37 TiCo HS 949 1164 14 112 LB 1021 Pernifer 39 TiCo HS 921 1141 13 110 LB 1022 Pernifer 40 TiCo HS 916 1142 14 111 LB 1023 Pernifer 37 TihCo HS 950 1179 14 111 LB 1024 Pernifer 39 TihCo HS 927 1157 13 110 LB 1025 Pernifer 40 TihCo HS 930 1151 12 111 151292 Pernifer 36 Mo So 2 326 542 37 76 50576 Pernifer 36 260 441 38 66
Solution annealed + hardened
1140 ° C / 3min + 600 ° C / 16h
charge alloy Rp0.2
(MPa)
rm
(MPa)
A50
(%)
hardness
HRB
LB 1020 Pernifer 37 TiCo HS 905 1068 16 107 LB 1021 Pernifer 39 TiCo HS 915 1075 13 107 LB 1022 Pernifer 40 TiCo HS 871 1065 14 107 LB 1023 Pernifer 37 TihCo HS 983 1125 13 107 LB 1024 Pernifer 39 TihCo HS 939 1096 14 107 LB 1025 Pernifer 40 TihCo HS 884 1060 15 105 151292 Pernifer 36 Mo So 2 330 544 36 78 50576 Pernifer 36 257 442 37 66

Tabelle 6/6a zeigt mittlere Wärmeausdehnungskoeffizienten (20 bis 200°C) in 10-6/K) der zwei bzw. sechs Laborschargen im Vergleich zu Pernifer 36 in verschiedenen Zuständen:

A)
warm gewalztes 12 mm dickes Blech, lösungsgeglüht
B)
warm gewalztes 12 mm dickes Blech, lösungsgeglüht und 1 Stunde bei 732°C ausgehärtet
C,D,E,F)
an 5 mm warm gewalzt (ausgehend vom 12 mm Blech), kalt an 4,15 mm gewalzt.
C)
ausgehärtet bei 732°C/1 Std.
D)
lösungsgeglüht, 1140°C/3 min. und ausgehärtet 732°C/1 Std.
E)
lösungsgeglüht, 1140°C/3 min. und ausgehärtet 732°C/6 Std.
F)
lösungsgeglüht, 1140°C/3 min. und ausgehärtet 600°C/16 Std.
Tabelle 6 Probe 12mm 12mm 4,15m 4,15m 4,15m 4,15 Zustand A B C D E F Legierung Charge Pernifer 40 Ti HS LB 1018 3,19 2,72 3,45 3,55 3,18 4,26 Pernifer 41 Ti HS LB 1019 3,48 3,11 3,01 2,98 3,63 3,43 Pernifer 36 Mo So 2 151292 1,6 1,97 1,98 2,03 2,13 Pernifer 36 50576 1,2 1,43 1,44 1,5 1,23 Tabelle 6a Probe 12mm 12mm 4,15m 4,15m 4,15m 4,15 Zustand A B C D E F Legierung Charge Pernifer 37 TiCo HS LB 1020 2,90 3,00 2,83 3,33 3,04 3,59 Pernifer 39 TiCo HS LB 1021 3,33 2,73 2,52 2,87 2,63 2,89 Pernifer 40 TiCo HS LB 1022 4,81 3,48 3,28 3,53 3,48 3,31 Pernifer 37 TihCo HS LB 1023 3,15 2,50 2,42 3,09 2,68 3,22 Pernifer 39 TihCo HS LB 1024 3,91 2,93 2,61 3,24 2,87 2,71 Pernifer 40 TihCo HS LB 1025 5,04 3,64 3,46 3,59 3,77 3,48 Pernifer 36 Mo So 2 151292 1,6 1,97 1,98 2,03 2,13 Pernifer 36 50576 1,2 1,43 1,44 1,5 1,23 Table 6 / 6a shows average coefficients of thermal expansion (20 to 200 ° C) in 10 -6 / K) of the two and six laboratory batches compared to Pernifer 36 in different states:
A)
hot-rolled 12 mm thick sheet, solution treated
B)
hot-rolled 12 mm thick sheet, solution-treated and cured at 732 ° C for 1 hour
C, D, E, F)
Hot rolled to 5 mm (starting from the 12 mm sheet), cold rolled to 4.15 mm.
C)
Hardened at 732 ° C / 1 hr.
D)
solution annealed, 1140 ° C / 3 min. and cured 732 ° C / 1 hr.
e)
solution annealed, 1140 ° C / 3 min. and cured 732 ° C / 6 hours
F)
solution annealed, 1140 ° C / 3 min. and cured at 600 ° C / 16 hrs.
Table 6 sample 12mm 12mm 4,15m 4,15m 4,15m 4.15 Status A B C D e F alloy charge Pernifer 40 Ti HS LB 1018 3.19 2.72 3.45 3.55 3.18 4.26 Pernifer 41 Ti HS LB 1019 3.48 3.11 3.01 2.98 3.63 3.43 Pernifer 36 Mo So 2 151292 1.6 1.97 1.98 2.03 2.13 Pernifer 36 50576 1.2 1.43 1.44 1.5 1.23 sample 12mm 12mm 4,15m 4,15m 4,15m 4.15 Status A B C D e F alloy charge Pernifer 37 TiCo HS LB 1020 2.90 3.00 2.83 3.33 3.04 3.59 Pernifer 39 TiCo HS LB 1021 3.33 2.73 2.52 2.87 2.63 2.89 Pernifer 40 TiCo HS LB 1022 4.81 3.48 3.28 3.53 3.48 3.31 Pernifer 37 TihCo HS LB 1023 3.15 2.50 2.42 3.09 2.68 3.22 Pernifer 39 TihCo HS LB 1024 3.91 2.93 2.61 3.24 2.87 2.71 Pernifer 40 TihCo HS LB 1025 5.04 3.64 3.46 3.59 3.77 3.48 Pernifer 36 Mo So 2 151292 1.6 1.97 1.98 2.03 2.13 Pernifer 36 50576 1.2 1.43 1.44 1.5 1.23

Diskussion der Ergebnissediscussion of the results A Kobaltfreie LegierungenA cobalt-free alloys

Im kalt gewalzten Zustand (Tab. 3, oben) liegt die Streckgrenze Rp0,2 im Fall der LB-Chargen zwischen 715 und 743 MPa. Die Zugfestigkeit Rm liegt zwischen 801 und 813 MPa. Die Dehnwerte A50 liegen bei 11 %, die Härten HRB zwischen 100 und 101.In the cold rolled state (Table 3, top), the yield strength R p0.2 in the case of the LB batches is between 715 and 743 MPa. The tensile strength R m is between 801 and 813 MPa. The elongation values A 50 are 11%, the hardnesses HRB between 100 and 101.

Dagegen sind die mechanischen Festigkeitswerte im Fall von Pernifer 36 Mo So 2 niedriger (Rp0,2 = 693 MPa, Rm = 730 MPa) und bei Pernifer 36 deutlich niedriger (Rp0,2 = 558 MPa, Rm = 592%).In contrast, in the case of Pernifer 36 Mo So 2, the mechanical strength values are lower (R p0.2 = 693 MPa, R m = 730 MPa) and significantly lower for Pernifer 36 (R p0.2 = 558 MPa, R m = 592%). ,

Im lösungsgeglühten Zustand (Tab. 3, unten) liegen die Werte der Streckgrenze zwischen 366 und 394 MPa im Fall der LB-Chargen, die Zugfestigkeiten Rm liegen zwischen 619 und 640 MPa. Entsprechend höher liegen die Dehnwerte bzw. niedriger die Härtewerte. Die Festigkeit von Pernifer 36 Mo So 2 ist im lösungsgeglühten Zustand niedriger (Rp0,2 = 327 MPa, Rm = 542 MPa) sowie die von Pernifer 36 deutlich niedriger (Rp0,2 = 255 MPa, Rm = 433 MPa).In the solution-annealed condition (Table 3, bottom), the values of the yield strength are between 366 and 394 MPa in the case of LB batches, the tensile strengths R m are between 619 and 640 MPa. Correspondingly higher are the elongation values or lower the hardness values. The strength of Pernifer 36 Mo So 2 is lower in the solution- annealed state (R p0.2 = 327 MPa, R m = 542 MPa) and that of Pernifer 36 is significantly lower (R p0.2 = 255 MPa, R m = 433 MPa) ,

Die höchsten Festigkeitswerte werden erzielt, wenn die LB-Chargen z.B. bei 732°C/1h im zuvor gewalzten Zustand (d.h. ohne vorherige Lösungsglühung) ausgehärtet werden (Tab. 4, oben). In diesem Fall erreichen die LB-Chargen Werte der Streckgrenze Rp0,2 von 1197 bis 1205 MPa und für die Zugfestigkeit Rm Werte zwischen 1286 und 1299 MPa. Die Dehnwerte liegen dann nur noch bei 2 bis 3%. Die Härte HRB steigt auf Werte von 111 bis 113. Im gleichen Walz- und Glühzustand weisen die Legierungen Pernifer 36 Mo So 2 und Pernifer 36 wesentlich niedrigere Festigkeitswerte auf (Rp0,2 = 510 MPa bzw. 269 MPa; Rm = 640 MPa bzw. 453 MPa).The highest strength values are achieved when the LB batches are cured eg at 732 ° C./1 h in the previously rolled state (ie without prior solution annealing) (Table 4, top). In this case, the LB batches reach values of the yield strength R p0.2 of 1197 to 1205 MPa and for the tensile strength R m values between 1286 and 1299 MPa. The expansion values are then only at 2 to 3%. The hardness HRB increases to values of 111 to 113. In the same rolling and annealing state, the alloys Pernifer 36 Mo So 2 and Pernifer 36 have significantly lower strength values (R p 0.2 = 510 MPa or 269 MPa, R m = 640 MPa) or 453 MPa).

Da zum Blechformen der lösungsgeglühte Zustand der geeignete ist, sind die mechanischen Eigenschaften im Zustand "lösungsgeglüht + gehärtet" relevant. In Tab. 4, unten sind die zugehörigen Werte für eine Wärmebehandlung von 1140°C/3min + 732°C/1h aufgelistet. In diesem Fall erreichen die LB-Chargen Werte der Streckgrenze Rp0,2 von 896 bis 901 MPa und Zugfestigkeiten Rm zwischen 1125 und 1135 MPa. In diesem Glühzustand weisen die Legierungen Pernifer 36 Mo So 2 und Pernifer 36 deutlich niedrigere Festigkeitswerte auf.Since the solution-annealed state is suitable for sheet-forming, the mechanical properties in the solution-annealed + cured state are relevant. In Tab. 4, below the corresponding values for a heat treatment of 1140 ° C / 3min + 732 ° C / 1h are listed. In this case, the LB batches reach values of yield strength R p0.2 of 896 to 901 MPa and tensile strengths R m between 1125 and 1135 MPa. In this annealing condition, the alloys Pernifer 36 Mo So 2 and Pernifer 36 have significantly lower strength values.

Eine Verlängerung der Glühdauer auf 6h der härtenden Wärmebehandlung bei 732°C verändert die Festigkeitswerte (s. Tab. 5, oben) auf Bereiche Rp0,2 von 926 - 929 MPa und Zugfestigkeiten Rm zwischen 1142 und 1152 MPa. Auch hier weisen die Vergleichslegierungen deutlich niedrigere Festigkeitswerte auf.An extension of the annealing time to 6 h of the hardening heat treatment at 732 ° C. changes the strength values (see Table 5, above) to areas R p0.2 of 926-929 MPa and tensile strengths R m between 1142 and 1152 MPa. Again, the comparative alloys have significantly lower strength values.

Die Erniedrigung der Glühtemperatur auf 600°C der härtenden Wärmebehandlung bei einer Glühdauer von 16h erniedrigt die Festigkeitswerte im Allgemeinen bei den LB-Chargen deutlicher, insbesondere im Fall der Zugfestigkeit Rm (s. Tab. 5, unten).The lowering of the annealing temperature to 600 ° C. of the hardening heat treatment with an annealing time of 16 h generally reduces the strength values more clearly in the LB batches, in particular in the case of the tensile strength R m (see Table 5, bottom).

Tabelle 6 zeigt die Werte des mittleren Wärmeausdehnungskoeffizienten CTE(20-100°C) für die untersuchten Legierungen in den betrachteten Zuständen.Table 6 shows the values of the mean thermal expansion coefficient CTE (20-100 ° C) for the investigated alloys in the considered states.

Die chemische Zusammensetzung beeinflusst die Curie-Temperatur und damit die Knickpunkttemperatur, oberhalb der die Wärmeausdehnungskurve steiler ansteigt.The chemical composition influences the Curie temperature and thus the break point temperature, above which the thermal expansion curve increases more steeply.

Abbildung 1 zeigt Ausdehnungskoeffizienten (CTE) 20-100°C und 20 - 200°C der LB-Chargen im Zustand B (s. Tab. 6), d.h. warm gewalztes 12mm Blech, lösungsgeglüht + 1h bei 732°C gehärtet, in Abhängigkeit vom Ni-Gehalt der Laborschmelze. illustration 1 shows expansion coefficients (CTE) 20-100 ° C and 20-200 ° C of LB batches in Condition B (see Table 6), ie hot rolled 12mm sheet, solution annealed + 1h cured at 732 ° C, depending on Ni Content of the laboratory melt.

Die Charge LB 1018 mit einem Ni-Gehalt von 40,65% weist einen niedrigeren Ausdehnungskoeffizienten auf als die Charge LB 1019 mit einem Ni-Gehalt von 41,55%. Eine Testschmelze mit noch geringerem Ni-Gehalt (Ni: 39,5%, Ti: 2,28%, Nb: 0,37%, Fe: Rest, Al: 0,32%) zeigte, dass das Optimum bei etwa 41% Nickel erreicht ist. Für den Wärmeausdehnungskoeffizienten zwischen 20°C und 200°C verschiebt sich das Optimum zu etwas höherem Ni-Gehalt (∼41,5%).The charge LB 1018 with a Ni content of 40.65% has a lower coefficient of expansion than the batch LB 1019 with a Ni content of 41.55%. A test melt with even lower Ni content (Ni: 39.5%, Ti: 2.28%, Nb: 0.37%, Fe: balance, Al: 0.32%) showed that the optimum was about 41% nickel is reached. For the coefficient of thermal expansion between 20 ° C and 200 ° C, the optimum shifts to slightly higher Ni content (~41.5%).

B Kobalthaltige LegierungenB Cobalt-containing alloys

Im gewalzten Zustand (Tab. 3a, oben) liegt die Streckgrenze Rp0,2 im Fall der LB-Chargen zwischen 706 und 801 MPa. Den niedrigsten Wert weist die Charge LB 1025 auf, den höchsten Wert die Charge LB 1021. Die Zugfestigkeit Rm liegt zwischen 730 und 819 MPa (niedrigster Wert bei LB 1025, höchster Wert bei LB 1020). Die Dehnwerte A50 bewegen sich zwischen 11 und 15%, die Härten HRB zwischen 97 und 100.In the rolled state (Table 3a, top), the yield strength R p0.2 in the case of the LB batches is between 706 and 801 MPa. The lowest value is the batch LB 1025, the highest value is the batch LB 1021. The tensile strength R m is between 730 and 819 MPa (lowest value for LB 1025, highest value for LB 1020). The elongation values A 50 range between 11 and 15%, the hardnesses HRB between 97 and 100.

Dagegen sind die mechanischen Festigkeitswerte im Fall von Pernifer 36 Mo So 2 niedriger (Rp0,2 = 693 MPa, Rm = 730 MPa) und bei Pernifer 36 deutlich niedriger (Rp0,2 = 558 MPa, Rm = 592 MPa).In contrast, in the case of Pernifer 36 Mo So 2, the mechanical strength values are lower (Rp 0.2 = 693 MPa, R m = 730 MPa) and significantly lower for Pernifer 36 (R p0.2 = 558 MPa, R m = 592 MPa) ,

Im lösungsgeglühten Zustand (Tab. 3a, unten) liegen die Werte der Streckgrenze zwischen 401 und 453 MPa im Fall der LB-Chargen, die Zugfestigkeiten Rm liegen zwischen 645 und 680 MPa. Entsprechend höher liegen die Dehnwerte bzw. niedriger die Härtewerte. Die Festigkeit von Pernifer 36 Mo So 2 ist im lösungsgeglühten Zustand niedriger (Rp0,2 = 327 MPa, Rm = 542 MPa) sowie die von Pernifer 36 deutlich niedriger (Rp0,2 = 255 MPa, Rm = 433 MPa).In the solution-annealed condition (Table 3a, bottom), the values of the yield strength lie between 401 and 453 MPa in the case of LB batches, and the tensile strengths R m are between 645 and 680 MPa. Correspondingly higher are the elongation values or lower the hardness values. The strength of Pernifer 36 Mo So 2 is lower in the solution- annealed state (R p0.2 = 327 MPa, R m = 542 MPa) and that of Pernifer 36 is significantly lower (R p0.2 = 255 MPa, R m = 433 MPa) ,

Die höchsten Festigkeitswerte können erzielt werden, wenn die LB-Chargen z. B. bei 732°C/1h im zuvor gewalzten Zustand (d.h. ohne vorherige Lösungsglühung) ausgehärtet werden (Tab. 4a, oben). In diesem Fall erreichen die LB-Chargen Werte der Streckgrenze Rp0,2 von 1144 bis 1185 MPa und für die Zugfestigkeit Rm Werte zwischen 1248 und 1308 MPa. Die Dehnwerte liegen dann nur noch bei 3 bis 6%. Die Härte HRB steigt auf Werte von 111 bis 114. Im gleichen Walz- und Glühzustand weisen die Legierungen Pernifer 36 Mo So 2 und Pernifer 36 wesentlich niedrigere Festigkeitswerte auf (Rp0,2 = 510 MPa bzw. 269 MPa; Rm = 640 MPa bzw. 453 MPa).The highest strength values can be achieved if the LB batches z. B. at 732 ° C / 1h in the previously rolled state (ie without previous solution annealing) are cured (Table 4a, above). In this case, the LB batches reach values of the yield strength R p0.2 of 1144 to 1185 MPa and for the tensile strength R m values between 1248 and 1308 MPa. The expansion values are then only at 3 to 6%. The hardness HRB increases to values of 111 to 114. In the same rolling and annealing state, the alloys Pernifer 36 Mo So 2 and Pernifer 36 have significantly lower strength values (R p 0.2 = 510 MPa or 269 MPa, R m = 640 MPa) or 453 MPa).

Da zum Blechformen der lösungsgeglühte Zustand der geeignete ist, sind die mechanischen Eigenschaften im Zustand "lösungsgeglüht + gehärtet" relevant. In Tab. 4a, unten sind die zugehörigen Werte für eine Wärmebehandlung von 1140°C/3min + 732°C/1h aufgelistet. In diesem Fall erreichen die LB-Chargen Werte der Streckgrenze Rp0,2 von 899 bis 986 MPa und Zugfestigkeiten Rm zwischen 1133 und 1183 MPa. In diesem Glühzustand weisen die Legierungen Pernifer 36 Mo So 2 und Pernifer 36 deutlich niedrigere Festigkeitswerte auf.Since the solution-annealed state is suitable for sheet-forming, the mechanical properties in the solution-annealed + cured state are relevant. In Tab. 4a, below, the corresponding values for a heat treatment of 1140 ° C / 3min + 732 ° C / 1h are listed. In this case, the LB batches reach values of yield strength R p0.2 of 899 to 986 MPa and tensile strengths R m of between 1133 and 1183 MPa. In this annealing condition, the alloys Pernifer 36 Mo So 2 and Pernifer 36 have significantly lower strength values.

Eine Verlängerung der Glühdauer auf 6h der härtenden Wärmebehandlung bei 732°C verändert die Festigkeitswerte (s. Tab. 5a, oben) dergestalt, dass Werte der Streckgrenze Rp0,2 zwischen 916 und 950 MPa und Zugfestigkeiten Rm zwischen 1142 und 1179 MPa erreicht werden.An extension of the annealing time to 6 h of the hardening heat treatment at 732 ° C. changes the strength values (see Table 5a, above) in such a way that values of the yield strength R p0.2 between 916 and 950 MPa and tensile strengths R m between 1142 and 1179 MPa are reached become.

Die Erniedrigung der Glühtemperatur auf 600°C der härtenden Wärmebehandlung bei einer Glühdauer von 16h erniedrigt die Festigkeitswerte im Allgemeinen bei den LB-Chargen deutlicher, insbesondere im Fall der Zugfestigkeit Rm (s. Tab. 5a, unten).The lowering of the annealing temperature to 600 ° C. of the hardening heat treatment with an annealing time of 16 h generally reduces the strength values more clearly in the LB batches, in particular in the case of the tensile strength R m (see Table 5a, bottom).

In Tabelle 6a sind die Werte des mittleren Wärmeausdehnungskoeffizienten CTE(20-100°C) für die untersuchten Legierungen in den betrachteten Zuständen aufgeführt. Gute Werte zeigen z.B. LB1021 u. LB1023.Table 6a shows the values of the mean thermal expansion coefficient CTE (20-100 ° C) for the tested alloys in the considered states. Good values are shown by e.g. LB1021 u. LB1023.

Die chemische Zusammensetzung beeinflusst die Curie-Temperatur und damit die Knickpunkttemperatur, oberhalb der die Wärmeausdehnungskurve steiler ansteigt.The chemical composition influences the Curie temperature and thus the break point temperature, above which the thermal expansion curve increases more steeply.

In den Abbildungen 2 und 3 sind die Ausdehnungskoeffizienten 20 - 100°C (Abb. 2) und 20 - 200°C (Abb. 3) der 6 LB-Chargen in den Serien mit Co-Gehalten 4,1% und 5,1% im Zustand B (s. Tab. 6a), d.h. warm gewalztes 12 mm Blech, lösungsgeglüht + 1h bei 732°C gehärtet, in Abhängigkeit vom Ni-Gehalt der Laborschmelze dargestellt.In Figures 2 and 3, the coefficients of expansion are 20 - 100 ° C ( Fig. 2 ) and 20-200 ° C ( Fig. 3 ) of the 6 LB batches in the series with Co contents 4.1% and 5.1% in state B (see Table 6a), ie hot-rolled 12 mm sheet, solution-treated + 1 h at 732 ° C hardened, in Dependence on Ni content of the laboratory melt shown.

Bei der Serie mit 4,1% Co zeigt sich ein minimaler Ausdehnungskoeffizient im T-Bereich zwischen 20 und 100°C bei etwa 38,5% Ni, im T-Bereich 20 - 200°C bei 39,5% Ni. Im Fall der Serie mit 5,1% Co fällt der Ausdehnungskoeffizient bei den drei untersuchten LB-Chargen mit abnehmendem Ni-Gehalt.In the 4.1% Co series, a minimum expansion coefficient in the T range between 20 and 100 ° C is found at about 38.5% Ni, in the T range 20-200 ° C at 39.5% Ni. In the case of the 5.1% Co series, the coefficient of expansion for the three LB lots investigated decreases with decreasing Ni content.

Insbesondere der T-Bereich 20 - 200°C ist interessant für die Anwendung im Formenbau, da das Aushärten des CFKs bei etwa 200°C erfolgt. Die Unterschiede im Wärmeausdehnungskoeffizienten zwischen den 4% Co- und 5% Co-haltigen Legierungen ist so gering, dass aus Kostengründen die Legierungen mit dem höhere Co-gehalt nicht zu rechtfertigen sind.In particular, the T-range 20-200 ° C is interesting for use in mold making, since the curing of the CFRP takes place at about 200 ° C. The differences in the coefficient of thermal expansion between the 4% Co and 5% Co-containing alloys is so small that, for reasons of cost, the alloys with the higher co-content can not be justified.

Claims (13)

  1. A use of a creep-resistant and low-expansive iron-nickel alloy having a higher mechanical stability and comprising (in % by mass) Ni 40 to 43 % C max. 0.1 % Ti 2.0 to 3.5 % Al 0.1 to 1.5 % Nb 0.1 to 1.0 % Mn 0.005 to 0.8 % Si 0.005 to 0.6 % Co max. 0.5 % Cr max. 0.1 % Mo max. 0.1 % Cu max. 0.1 % Mg max. 0.005 % B max. 0.005 % N max. 0.006 % O max. 0.003 % S max. 0.005 % P max. 0.008 % Ca max. 0.005 %
    the rest being Fe and admixtures due to manufacturing,
    which comprises an average coefficient of thermal expansion of < 5 x 10-6/K in the temperature range comprised between 20 and 200°C in carbon fiber reinforced plastic mould making.
  2. A use of a creep-resistant and low-expansive iron-nickel alloy having a higher mechanical stability and comprising (in % by mass) Ni 37 to 41 % C max. 0.1 % Ti 2.0 to 3.5 % Al 0.1 to 1.5 % Nb 0.1 to 1.0 % Mn 0.005 to 0.8 % Si 0.005 to 0.6 % Co 2.5 to 5.5 % Cr max. 0.1 % Mo max. 0.1 % Cu max. 0.1 % Mg max. 0.005 % B max. 0.005 % N max. 0.006 % O max. 0.003 % S max. 0.005 % P max. 0.008 % Ca max. 0.005 %
    the rest being Fe and admixtures due to manufacturing,
    which meets the following condition Ni + ½ Co > 38 to < 43.5 % ,
    Figure imgb0018

    wherein the alloy comprises an average coefficient of thermal expansion of < 4 x 10-6/K in the temperature range comprised between 20 and 200°C in carbon fiber reinforced plastic mould making.
  3. A use according to claim 1, comprising (in % by mass) Ni 40.5 to 42 % C 0.001 to 0.05 % Ti 2.0 to 3.0 % Al 0.1 to 0.8 % Nb 0.1 to 0.6 % Mn 0.005 to 0.1 % Si 0.005 to 0.1 % Co max. 0.1 %
    the rest being Fe and admixtures due to manufacturing,
    which comprises an average coefficient of thermal expansion of < 4.5 x 10-6/K in the temperature range comprised between 20 and 200°C.
  4. A use according to claim 3, comprising (in % by mass) Ni 41 to 42 % C 0.001 to 0.02 % Ti 2.0 to 2.5 % Al 0.1 to 0.45 % Nb 0.1 to 0.45 % Mn 0.005 to 0.05 % Si 0.005 to 0.05 % Co max. 0.05 %
    the rest being Fe and admixtures due to manufacturing,
    which comprises an average coefficient of thermal expansion of < 4.0 x 10-6/K, in particular of < 3.5 x 10-6/K in the temperature range comprised between 20 and 200°C.
  5. A use according to claim 2, comprising (in % by mass) Ni 37.5 to 40.5 % C max. 0.1 % Ti 2.0 to 3.0 % Al 0.1 to 0.8 % Nb 0.1 to 0.6 % Mn 0.005 to 0.1 % Si 0.005 to 0.1 % Co > 3.5 to < 5.5 %
    the rest being Fe and admixtures due to manufacturing,
    which meets the following condition Ni + ½ Co > 38 to < 43 % ,
    Figure imgb0019

    which comprises an average coefficient of thermal expansion of < 3.5 x 10-6/K in the temperature range comprised between 20 and 200°C.
  6. A use according to claim 5, comprising (in % by mass) Ni 38.0 to 39.5 % C 0.001 to 0.05 % Ti 2.0 to 3.0 % Al 0.1 to 0.7 % Nb 0.1 to 0.6 % Mn 0.005 to 0.1 % Si 0.005 to 0.1 % Co > 4.0 to < 5.5 %
    the rest being Fe and admixtures due to manufacturing,
    which meets the following condition Ni + ½ Co > 38.5 to < 43.0 % ,
    Figure imgb0020

    which comprises an average coefficient of thermal expansion of < 3.5 x 10-6/K in the temperature range comprised between 20 and 200°C.
  7. A use according to claim 5 or 6, comprising (in % by mass) Ni 38.0 to 39.0 % C 0.001 to 0.02 % Ti 2.0 to 2.5 % Al 0.1 to 0.45 % Nb 0.1 to 0.45 % Mn 0.005 to 0.05 % Si 0.005 to 0.05 % Co > 4.0 to < 5.5 %
    the rest being Fe and admixtures due to manufacturing,
    which meets the following condition Ni + ½ Co > 40.0 to < 42.0 % ,
    Figure imgb0021

    which comprises an average coefficient of thermal expansion of < 3.2 x 10-6/K, in particular of < 3.0 x 10-6/K in the temperature range comprised between 20 and 200°C.
  8. A use according to one of the claims 1 through 7, wherein large sized semifinished products in form of sheet metal, strip or tube material will be used.
  9. A use according to one of the claims 1 through 7, wherein wire, in particular in the form of weld filler will be used.
  10. A use according to one of the claims 1 through 7 as mould component for manufacturing aircraft parts made of carbon fiber reinforced plastic.
  11. A use according to one of the claims 1 through 7, wherein only those parts of the mould will be made of this alloy which are subject to a high mechanical stress.
  12. A use according to one of the claims 1 through 7 as forged pieces.
  13. A use according to one of the claims 1 through 7 as cast components.
EP07721864A 2006-02-02 2007-01-26 Iron-nickel alloy Active EP1979501B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005250A DE102006005250B4 (en) 2006-02-02 2006-02-02 Iron-nickel alloy
PCT/DE2007/000141 WO2007087785A1 (en) 2006-02-02 2007-01-26 Iron-nickel alloy

Publications (2)

Publication Number Publication Date
EP1979501A1 EP1979501A1 (en) 2008-10-15
EP1979501B1 true EP1979501B1 (en) 2010-03-24

Family

ID=38016856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07721864A Active EP1979501B1 (en) 2006-02-02 2007-01-26 Iron-nickel alloy

Country Status (10)

Country Link
US (1) US8808475B2 (en)
EP (1) EP1979501B1 (en)
JP (1) JP5175225B2 (en)
CN (2) CN102965570A (en)
AT (1) ATE462021T1 (en)
BR (1) BRPI0707449B1 (en)
CA (1) CA2637790C (en)
DE (2) DE102006005250B4 (en)
ES (1) ES2341048T3 (en)
WO (1) WO2007087785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210340664A1 (en) * 2018-09-27 2021-11-04 Nippon Steel Chemical & Material Co., Ltd. Metal mask material, method for manufacturing same, and metal mask

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978086B (en) * 2008-05-08 2013-07-10 蒂森克鲁普德国联合金属制造有限公司 Iron-nickle alloy
ES2812501T3 (en) * 2009-06-11 2021-03-17 Genius Solutions Eng Company Low CTE hollow mold with textured surface and method of manufacture and use of the same
GB2480625A (en) * 2010-05-25 2011-11-30 Advanced Composites Group Ltd Mould tool comprising a foamed Ferrous/Nickel alloy
CN102888557B (en) * 2011-07-18 2014-10-29 宝钢特钢有限公司 High-strength and low-expansion coefficient alloy wire and manufacturing method thereof
CN103185058B (en) * 2011-12-29 2015-04-08 财团法人金属工业研究发展中心 Low thermal expansion screw
CN103084753B (en) * 2013-01-23 2016-07-27 宝山钢铁股份有限公司 A kind of ferronickel Precise Alloy welding wire
CN103074523B (en) * 2013-01-31 2015-05-13 安徽工业大学 Mould material for detecting high-temperature fatigue performance and preparation method of mould material
ES2763348T3 (en) * 2013-02-01 2020-05-28 Aperam Fe-36Ni Alloy Welding Wire
CN104630566B (en) * 2015-02-06 2017-01-25 铜陵百荣新型材料铸件有限公司 Ferro-nickel alloy and preparation method thereof
AU2016218315B2 (en) * 2015-02-13 2018-02-08 Cardiac Pacemakers, Inc. Implantable electrode
US20190035744A1 (en) * 2016-03-31 2019-01-31 Tdk Corporation Electronic circuit package using composite magnetic sealing material
US20190387615A1 (en) * 2018-06-14 2019-12-19 Microsoft Technology Licensing, Llc Multi-layer interconnected electro-thermal system having a thermally non-expansive support for mounting positionally related sensor components
CN113195763B (en) * 2019-03-26 2022-02-18 日本铸造株式会社 Low thermal expansion alloy having excellent low temperature stability and method for producing same
CN111074181B (en) * 2019-12-26 2021-01-15 东莞市振亮精密科技有限公司 5G antenna fixing seat and forming method thereof
CN112159942A (en) * 2020-08-18 2021-01-01 重庆材料研究院有限公司 Constant-elasticity alloy for anti-radiation sensor and preparation method thereof
CN112962033B (en) * 2021-02-01 2021-11-19 山西太钢不锈钢股份有限公司 High-strength invar alloy and processing method thereof
CN114633045A (en) * 2022-04-01 2022-06-17 山西太钢不锈钢股份有限公司 Welding material suitable for iron-nickel alloy welding and application thereof
WO2023227929A1 (en) * 2022-05-27 2023-11-30 Aperam Alloy for manufacturing tools intended for manufacturing aeronautical parts made of composite material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331715A (en) * 1959-10-16 1967-07-18 Westinghouse Electric Corp Damping alloys and members prepared therefrom
US3514284A (en) 1966-06-08 1970-05-26 Int Nickel Co Age hardenable nickel-iron alloy for cryogenic service
GB1401259A (en) * 1973-05-04 1975-07-16 Int Nickel Ltd Low expansion alloys
US3971677A (en) * 1974-09-20 1976-07-27 The International Nickel Company, Inc. Low expansion alloys
JPS5554548A (en) 1978-10-12 1980-04-21 Daido Steel Co Ltd High strength, low expansion alloy
JPH02298236A (en) 1989-05-12 1990-12-10 Shinichi Enomoto Low thermal expansion alloy
JPH04180542A (en) 1990-11-14 1992-06-26 Hitachi Metals Ltd High strength material reduced in thermal expansion
US5425912A (en) * 1994-07-07 1995-06-20 Inco Alloys International, Inc. Low expansion superalloy with improved toughness
US5688471A (en) * 1995-08-25 1997-11-18 Inco Alloys International, Inc. High strength low thermal expansion alloy
JP3730360B2 (en) 1997-05-13 2006-01-05 東北特殊鋼株式会社 High strength low thermal expansion alloy
JPH11293413A (en) 1998-04-13 1999-10-26 Nippon Chuzo Kk Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity
FR2795431B1 (en) 1999-06-22 2001-12-07 Imphy Ugine Precision FLAT SCREEN COLOR VIEWING CATHODIC TUBE MASKING DEVICE, OF THE TYPE INCLUDING A SUPPORT FRAME FOR TENDERED SHADOW MASK AND TENDER SHADOW MASK
DE19934401A1 (en) * 1999-07-22 2001-03-22 Krupp Vdm Gmbh Creep-resistant, low-expansion iron-nickel alloy
DE19934400C2 (en) * 1999-07-22 2001-07-19 Krupp Vdm Gmbh Use of a creep-resistant, low-expansion iron-nickel alloy
FR2807269B1 (en) * 2000-03-31 2002-11-01 Imphy Ugine Precision MASKING DEVICE FOR FLAT SCREEN COLOR DISPLAY CATHODIC TUBE WITH SHADOW MASK TENSIONED IN FE-NI ALLOYS
FR2819825B1 (en) 2001-01-24 2003-10-31 Imphy Ugine Precision PROCESS FOR MANUFACTURING A FE-NI ALLOY STRIP
FR2855185B1 (en) 2003-05-21 2006-08-11 Usinor FE-NI ALLOY METAL WIRE HAVING HIGH MECHANICAL STRENGTH AND LOW THERMAL EXPANSION COEFFICIENT FOR HIGH VOLTAGE CABLES AND METHOD OF MANUFACTURE
JP4180542B2 (en) 2004-05-27 2008-11-12 日本電信電話株式会社 Shortest path selection method, node and multilayer network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210340664A1 (en) * 2018-09-27 2021-11-04 Nippon Steel Chemical & Material Co., Ltd. Metal mask material, method for manufacturing same, and metal mask
US12037673B2 (en) * 2018-09-27 2024-07-16 Nippon Steel Chemical & Material Co., Ltd. Metal mask material, method for manufacturing same, and metal mask

Also Published As

Publication number Publication date
EP1979501A1 (en) 2008-10-15
US8808475B2 (en) 2014-08-19
DE102006005250B4 (en) 2010-04-29
CN101495663A (en) 2009-07-29
BRPI0707449B1 (en) 2015-09-08
JP5175225B2 (en) 2013-04-03
JP2009525399A (en) 2009-07-09
ES2341048T3 (en) 2010-06-14
CN101495663B (en) 2013-05-22
DE502007003218D1 (en) 2010-05-06
ATE462021T1 (en) 2010-04-15
DE102006005250A1 (en) 2007-08-16
WO2007087785A1 (en) 2007-08-09
CN102965570A (en) 2013-03-13
US20090047167A1 (en) 2009-02-19
CA2637790A1 (en) 2007-08-09
CA2637790C (en) 2013-10-22
BRPI0707449A2 (en) 2011-05-03

Similar Documents

Publication Publication Date Title
EP1979501B1 (en) Iron-nickel alloy
EP2956562B1 (en) Nickel-cobalt alloy
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
EP3102711B1 (en) Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
EP3102710B1 (en) Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
EP2886332B1 (en) Flat steel product, and method of producing a component of a motor vehicle body and of a motor vehicle body.
DE3884887T2 (en) Heavy metal alloys made of tungsten-nickel-iron-cobalt with high hardness and process for producing these alloys.
EP2480695B1 (en) Method of manufactur an iron-chrome alloy.
EP1887096A1 (en) Hot working steel
EP3102712B1 (en) Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
DE60020263T2 (en) USE OF A DESIGN-HARDENED MARTENSITIC STAINLESS STEEL
DE102020116865A1 (en) Nickel-based alloy for powders and a process for producing a powder
EP3412790A1 (en) Precipitation hardening steel and use of such a steel for thermoforming tools
DE112021006352T5 (en) METHOD FOR PRODUCING AN AUSTENITIC STAINLESS STEEL STRIP
DE2253148C3 (en) Process for the production of a ferritic, corrosion-resistant steel and its use
EP1930456A2 (en) Powder-metallurgically produced steel plate, application of such a steel plate and method for its manufacture
EP1475450B1 (en) High strength soft magnetic Iron-Cobalt-Vanadium alloy.
EP0570072B1 (en) Method of producing a chromium-base alloy
DE2948916C2 (en) Copper-tin alloy, process for their manufacture and use
EP1255873B9 (en) Maraging type spring steel
DE102013104935A1 (en) CoNiCrMo alloy and method for producing a CoNiCrMo alloy
EP1471160B1 (en) Cold-worked Steel Object
EP3781719B1 (en) Copper-zinc-nickel-manganese alloy
EP2154261B1 (en) High temperature alloy
EP3458623B1 (en) Method for producing a steel material, and steel material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081127

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007003218

Country of ref document: DE

Date of ref document: 20100506

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2341048

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100726

26N No opposition filed

Effective date: 20101228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003218

Country of ref document: DE

Owner name: OUTOKUMPU VDM GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003218

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003218

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003218

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003218

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003218

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140623

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003218

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20140623

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003218

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160122

Year of fee payment: 10

Ref country code: ES

Payment date: 20160112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160120

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003218

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003218

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170127

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240122

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 18

Ref country code: GB

Payment date: 20240119

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240119

Year of fee payment: 18

Ref country code: IT

Payment date: 20240129

Year of fee payment: 18

Ref country code: FR

Payment date: 20240124

Year of fee payment: 18