EP0570072B1 - Method of producing a chromium-base alloy - Google Patents

Method of producing a chromium-base alloy Download PDF

Info

Publication number
EP0570072B1
EP0570072B1 EP93201342A EP93201342A EP0570072B1 EP 0570072 B1 EP0570072 B1 EP 0570072B1 EP 93201342 A EP93201342 A EP 93201342A EP 93201342 A EP93201342 A EP 93201342A EP 0570072 B1 EP0570072 B1 EP 0570072B1
Authority
EP
European Patent Office
Prior art keywords
chromium
metals
base alloy
producing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93201342A
Other languages
German (de)
French (fr)
Other versions
EP0570072A3 (en
EP0570072A2 (en
Inventor
Ralf Dr. Eck
Günter Dr. Kneringer
Wolfgang Dr. Köck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of EP0570072A2 publication Critical patent/EP0570072A2/en
Publication of EP0570072A3 publication Critical patent/EP0570072A3/en
Application granted granted Critical
Publication of EP0570072B1 publication Critical patent/EP0570072B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen

Definitions

  • the invention relates to a powder metallurgical process for producing a chromium-based alloy with a chromium content> 65% by weight, with 0.1 to 32% by weight of one or more of the metals from the group iron, cobalt, nickel with up to 30% by weight of one or more metals from the group aluminum, titanium, zirconium and hafnium, with up to 10% by weight of one or more metals from the group vanadium, niobium, molybdenum, tantalum, tungsten and rhenium, with up to 1% by weight of one or more of the elements carbon, nitrogen, boron and silicon, and with 0.005 to 5% by weight of finely dispersed oxide particles from the group of rare earths.
  • the process includes the steps of powder mixing, powder pressing and sintering.
  • a major disadvantage of pure chromium is the brittleness of the material, which usually begins at around 400 ° C., depending on the forming, so that in practice the use of the material is often only possible due to increased manufacturing and construction costs.
  • DE-OS 16 08 116 describes a chromium alloy which contains up to 45% by weight of iron and / or nickel and / or cobalt and up to a total of 5% by weight of Al, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Y and rare earths and up to 1% by weight of C, N, B and Si.
  • the alloying of iron in particular, but also of nickel and cobalt is said to Oxidation and corrosion resistance increased and the deformability at low temperatures can be improved.
  • the addition of Al, Ti, Zr, Hf, V, Nb, Ta and Y and rare earths is said to significantly reduce the ductile-brittle transition temperature. In fact, the ductile-brittle transition temperature of this alloy is still too high, so that this alloy has no practical significance.
  • DE-OS 21 05 750 relates to a cast body made of a chromium-based alloy, which consists of a single crystal or of directed crystals.
  • the alloy preferably contains 10-35% by weight of iron and / or cobalt and / or nickel and 2-10% by weight of niobium and / or tantalum and / or molybdenum and / or tungsten and / or rhenium and up to 2% by weight on Y and / or rare earths and / or aluminum as well as up to 1% by weight boron and / or carbon and / or nitrogen and / or silicon in conjunction with additives on metals which form boride, carbide, nitride or silicide.
  • This prior publication also describes that this alloy in the monocrystalline state can achieve a ductile-brittle transition temperature which was then lowered by several 100 ° C. and a relatively high notched impact strength at room temperature.
  • this alloy no information can be found in the previous publication.
  • a disadvantage of this alloy is above all that it is no longer mechanically formable as a cast alloy, so that not all workpieces can be produced in any dimensions. In particular, the production of semi-finished products, such as sheets, rods and wire, is not possible.
  • US 3 591 362, US 3 874 938 and DE-AS 23 03 802 generally describe dispersion-strengthened metal alloys which can contain up to 25% by volume of a dispersoid, including oxides of rare earth metals. Chromium contents of the alloy of up to 65% by weight are described in the claims. From the examples and the description, however, it appears that the invention is primarily based on alloys with a significantly lower chromium content, in particular is aimed at ODS superalloys with a chromium content between approximately 10 and 20% by weight. US 3 909 309 describes a method for improving the flexural strength in ODS superalloys. Chromium contents of up to 65% by weight are mentioned in a subclaim.
  • ODS superalloys are primarily used in hot gas turbine construction, where good corrosion resistance to vanadium pentoxide is not so important.
  • the dispersoids are primarily added to increase the strength properties of the alloy.
  • US Pat. No. 3,841,847 shows a chromium-based alloy with at least 70% by weight chromium, which in addition to yttrium, aluminum and silicon can also contain up to 18% by weight yttrium oxide. With this alloy, the transition temperature is still very ductile-brittle, so that the production of semi-finished products and parts by forming processes is problematic.
  • JP-A 2 258 946 describes a two-phase composite material which, in addition to chromium, contains 5 to 50% by weight of Fe and 5 to 60% by weight of Y 2 O 3 .
  • the Y 2 O 3 is not present as a dispersoid in a uniform material matrix.
  • the sintered composite alloy consists of a sintered body that has a uniform mixed structure. The use lies with facilities for steel production.
  • EP-A 0 510 495 describes a chromium alloy with optionally up to 20% by weight of Fe and with 0.2 to 2.0% by weight of finely dispersed particles of Y 2 O 3 .
  • a particle size of up to 0.1 ⁇ m is mandatory and, according to the explanations, this size can only be achieved by means of a long-lasting process, mechanical alloying.
  • the object of the present invention is to provide a method for producing a chromium-based alloy.
  • Chrome alloys manufactured according to this process and a group of chrome alloys to be developed should be characterized by the fact that they have good corrosion resistance, in particular to combustion gases and non-volatile combustion residues of fossil fuels, and at the same time have a ductile-brittle transition temperature which is sufficiently low for forming processes and good heat resistance properties .
  • a chromium-based alloy which fulfills this task, is defined by the dependent claim 9, this alloy, in addition to a chromium content of more than 65% by weight, the usual content of impurities and a number of optionally added elements, from 0.3 to 2 % By weight of La 2 O 3 or a mixture of La and Y oxide and 0.1 to 32% by weight of one or more metals from the group consisting of iron, nickel and cobalt.
  • the addition of rare earth oxides is known for various alloys to increase the heat resistance through dispersion strength.
  • a chromium-based alloy with a chromium content of more than 65% by weight by using lanthanum oxide or a mixture of yttrium oxide and lanthanum oxide as oxides of the rare earths in a proportion of 0.5 to 2% by weight, and of iron and nickel with a share of 5 to 25% by weight, the improved material properties can be achieved according to the task.
  • the addition of these rare earth oxides does not have the desired effect.
  • the upper limit for their addition is 2% by weight, since if the proportions exceed this, the processability of the alloy deteriorates to an unacceptable extent.
  • the alloying elements iron, nickel and cobalt only have a ductile effect on the alloy from a minimum content of 0.1% by weight, while the corrosion properties of the alloy exceed the upper limit of 32% by weight Alloy deteriorate to an extent that such an alloy is practically no longer interesting.
  • the alloys manufactured by the process according to the invention and the alloys according to the invention are particularly suitable as materials for stationary but also moving parts in systems in which temperatures of about 800 to over 1200 ° C. occur and in which contact with gases and residues from the combustion occurs at the same time , in particular fossil fuels and clean or polluted air.
  • the alloys have a high heat resistance and a high recrystallization temperature as well as a coefficient of thermal expansion which, compared to known chrome alloys, is much better adapted to other high-temperature materials, such as ceramics, which further increases the area of application of the alloy according to the invention expanded.
  • the optional alloying of up to 30% by weight of one or more metals from the group aluminum, titanium, zirconium and hafnium primarily improves the oxidation resistance of the alloy.
  • Metals from the group aluminum, titanium and zircon with a proportion of 3 to 10% by weight have proven to be particularly suitable elements.
  • the optional addition of up to 10% by weight of one or more metals from the group of vanadium, niobium, molybdenum, tantalum, tungsten and rhenium increases the dimensional stability at high temperatures in components made from the alloys according to the invention, which is particularly long when they occur Continuous stresses that act on the components is important.
  • the light and ductile metals vanadium and niobium are preferred.
  • the addition of the high-melting metals tungsten and rhenium can reduce the oxidation resistance of the alloy, which is why they are advantageously used only in relatively small amounts.
  • Vanadium, niobium and molybdenum individually or in combination with a total content of 3 to 8% by weight, have proven to be particularly advantageous.
  • the strength is to be increased further for a temperature range above 1000 ° C.
  • These hard phase-forming elements increase the strength without impairing the good corrosion properties of the alloy and without significantly reducing the ductility.
  • the mixture of the starting powder is pressed to a minimum compression density of 65% and the compact is sintered at a sintering temperature between 1500 and 1600 ° C. under an H 2 atmosphere for 15-20 hours.
  • the sintered plates were cut into steel sheet with a thickness of 2 mm on all sides.
  • the forged plates were forged by 35% and cooled from the forging temperature in the furnace to room temperature within 12 hours.
  • the plates were rolled into sheets of 4.5 mm in thickness and cooled from the final roll temperature in the furnace to room temperature within 12 hours.
  • the sheets were heated to 1250 ° C and rolled to a thickness of 2 mm and trimmed the edges.
  • the sheets were again heated to 1250 ° C. and annealed at this temperature for one hour.
  • the sheets were 1.3 mm thick finish rolled and then subjected to final annealing at 1600 ° C for one hour.
  • samples with the dimensions 100 mm ⁇ 100 mm were cut from the sheets produced according to the production example. The samples were then ground on both sides to remove the superficial steel layers to a final thickness of 1 mm.
  • the alloys according to the invention have a corrosion resistance which is improved by up to factor 2 compared to pure chromium.
  • samples with the dimensions 20 mm ⁇ 30 mm were cut from the sheets produced according to the production example. The samples were then ground on both sides to remove the superficial steel layers to a final thickness of 1 mm. After weighing, the samples were oxidized in air once at a temperature of 1000 ° C and once at a temperature of 1200 ° C for a period of 7 days. At 1000 ° C, a well adhering oxide layer formed on the samples, so that the average Weight gain of the samples was used as a measure of the oxidation resistance. At 1000 ° C, the course of the oxidation curve was also determined within an oxidation time of 112 hours, and the rate constant was calculated from this.
  • the samples formed a poorly adhering oxide layer, which was removed by brushing and washing the samples in water, so that the average weight loss of the samples was used as a measure of the resistance to oxidation.
  • Oxidation conditions air at 1200 ° C material Weight loss after 168 hours (g / cm 2 ) Cr 14 Cr - 0.15 Fe - 1 Y 2 O 3 3rd Cr-0.15 Fe - 1 La 2 O 3 6 Cr - 24 Fe - 5 Al - 1 Y 2 O 3 2nd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The invention relates to a chromium-base alloy having a chromium content of more than 65% by weight, and the following composition: 0.005 to 5% by weight of one or more rare earth oxides and 0.1 to 32% by weight of one or more metals from the group comprising iron, nickel and cobalt, the remainder being chromium. In addition, the alloy can contain up to 30% by weight of one or more metals from the group comprising Al, Ti, Zr and Hf, up to 10% by weight of one or more metals from the group comprising V, Nb, Mo, Ta, W and Re, and also up to 1% by weight of C and/or N and/or B and/or Si. As compared with pure chromium, the alloy has a markedly improved oxidation resistance and improved corrosion resistance, in particular against vanadium pentoxide.

Description

Die Erfindung betrifft ein pulvermetallurgisches Verfahren zur Herstellung einer Legierung auf Chrombasis
mit einem Chrom-Anteil > 65 Gew.%,
mit 0,1 bis 32 Gew.% von einem oder mehreren der Metalle aus der Gruppe Eisen, Kobalt, Nickel
mit bis zu 30 Gew.% von einem oder mehreren Metallen aus der Gruppe Aluminium, Titan, Zirkon und Hafnium,
mit bis zu 10 Gew.% von einem oder mehreren Metallen aus der Gruppe Vanadium, Niob, Molybdän, Tantal, Wolfram und Rhenium, mit bis zu 1 Gew.% von einem oder mehreren der Elemente Kohlenstoff, Stickstoff, Bor und Silizium,
sowie mit 0,005 bis 5 Gew.% in der Legierung feindispers verteilten Oxidteilchen aus der Gruppe der Seltenen Erden. Das Verfahren schließt die Verfahrensschritte Pulvermischen, Pulverpressen und Sintern mit ein.
The invention relates to a powder metallurgical process for producing a chromium-based alloy
with a chromium content> 65% by weight,
with 0.1 to 32% by weight of one or more of the metals from the group iron, cobalt, nickel
with up to 30% by weight of one or more metals from the group aluminum, titanium, zirconium and hafnium,
with up to 10% by weight of one or more metals from the group vanadium, niobium, molybdenum, tantalum, tungsten and rhenium, with up to 1% by weight of one or more of the elements carbon, nitrogen, boron and silicon,
and with 0.005 to 5% by weight of finely dispersed oxide particles from the group of rare earths. The process includes the steps of powder mixing, powder pressing and sintering.

Reines Chrom mit einer derzeit technisch möglichen Reinheit von 99,97 % kommt vielfach dort zum Einsatz, wo es auf eine gute Korrosionsbeständigkeit ankommt. Es hat jedoch den Nachteil, daß es je nach Herstellungsverfahren bei relativ tiefen Temperaturen zwischen 700 und 800°C rekristallisiert und damit keine Festigkeitszunahme durch Umformung erlaubt, wie das üblicherweise für derartige metallische Werkstoffe gegeben ist.Pure chrome with a currently technically possible purity of 99.97% is used in many cases where good corrosion resistance is important. However, it has the disadvantage that, depending on the production process, it recrystallizes at relatively low temperatures between 700 and 800 ° C. and thus does not permit an increase in strength due to deformation, as is usually the case for such metallic materials.

Ein wesentlicher Nachteil des reinen Chroms ist die in der Regel je nach Umformung unter etwa 400°C beginnende Sprödigkeit des Werkstoffes, so daß eine Verwendung des Werkstoffes in der Praxis vielfach nur durch erhöhten fertigungstechnischen und konstruktiven Aufwand ermöglicht wird.A major disadvantage of pure chromium is the brittleness of the material, which usually begins at around 400 ° C., depending on the forming, so that in practice the use of the material is often only possible due to increased manufacturing and construction costs.

Man hat daher in der Vergangenheit versucht, durch Legieren von Chrom mit anderen Elementen die Übergangstemperatur duktil-spröde zu senken, ohne daß die gute Korrosionsbeständigkeit verlorengeht, was bisher jedoch noch nicht in vollständig befriedigendem Umfang erreicht worden ist.In the past, therefore, attempts have been made to alloy the chrome with other elements to determine the transition temperature to reduce ductile-brittle without losing the good corrosion resistance, which has not yet been achieved to a completely satisfactory extent.

Die DE-OS 16 08 116 beschreibt eine Chromlegierung, die bis zu 45 Gew.% Eisen und/oder Nickel und/oder Kobalt sowie bis zu insgesamt 5 Gew.% an Al, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Y und Seltene Erden sowie bis zu 1 Gew.% an C, N, B und Si enthält. Bei dieser Legierung soll insbesondere durch das Zulegieren von Eisen, aber auch von Nickel und Kobalt die Oxidations- und Korrosionsbeständigkeit gesteigert und die Verformbarkeit bei tiefen Temperaturen verbessert werden. Darüberhinaus soll durch den Zusatz von Al, Ti, Zr, Hf, V, Nb, Ta sowie von Y und Seltenen Erden die übergangstemperatur duktil-spröde erheblich gesenkt werden. Tatsächlich liegt bei dieser Legierung die übergangstemperatur duktil-spröde immer noch zu hoch, sodaß diese Legierung keine praktische Bedeutung erlangt hat.DE-OS 16 08 116 describes a chromium alloy which contains up to 45% by weight of iron and / or nickel and / or cobalt and up to a total of 5% by weight of Al, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Y and rare earths and up to 1% by weight of C, N, B and Si. In this alloy, the alloying of iron in particular, but also of nickel and cobalt is said to Oxidation and corrosion resistance increased and the deformability at low temperatures can be improved. In addition, the addition of Al, Ti, Zr, Hf, V, Nb, Ta and Y and rare earths is said to significantly reduce the ductile-brittle transition temperature. In fact, the ductile-brittle transition temperature of this alloy is still too high, so that this alloy has no practical significance.

Die DE-OS 21 05 750 bezieht sich auf einen Gußkörper aus einer Chrombasislegierung, die aus einem Einkristall oder aus gerichteten Kristallen besteht. Die Legierung enthält vorzugsweise 10-35 Gew.% Eisen und/oder Kobalt und/oder Nickel sowie 2-10 Gew.% Niob und/oder Tantal und/oder Molybdän und/oder Wolfram und/oder Rhenium und bis zu 2 Gew.% an Y und/oder Seltenen Erden und/oder Aluminium sowie zu bis 1 Gew.% Bor und/oder Kohlenstoff und/oder Stickstoff und/oder Silizium in Verbindung mit Zusätzen an borid-, karbid-, nitrid- oder silizidbildenden Metallen.DE-OS 21 05 750 relates to a cast body made of a chromium-based alloy, which consists of a single crystal or of directed crystals. The alloy preferably contains 10-35% by weight of iron and / or cobalt and / or nickel and 2-10% by weight of niobium and / or tantalum and / or molybdenum and / or tungsten and / or rhenium and up to 2% by weight on Y and / or rare earths and / or aluminum as well as up to 1% by weight boron and / or carbon and / or nitrogen and / or silicon in conjunction with additives on metals which form boride, carbide, nitride or silicide.

Auch in dieser Vorveröffentlichung ist beschrieben, daß sich durch diese Legierung im einkristallinen Zustand eine zum damaligen Zeitpunkt um mehrere 100°C erniedrigte übergangstemperatur duktil-spröde sowie eine relativ hohe Kerbschlagzähigkeit bei Raumtemperatur erreichen läßt. Hinsichtlich der Korrosions- und Oxidationsfestigkeit dieser Legierung sind der Vorveröffentlichung keine Hinweise zu entnehmen. Nachteilig bei dieser Legierung ist vor allem, daß sie als Gußlegierung mechanisch nicht mehr umformbar ist, sodaß sich nicht alle Werkstücke in beliebigen Abmessungen herstellen lassen. Insbesondere die Herstellung von Halbzeug, wie Bleche, Stäbe und Draht, ist nicht möglich.This prior publication also describes that this alloy in the monocrystalline state can achieve a ductile-brittle transition temperature which was then lowered by several 100 ° C. and a relatively high notched impact strength at room temperature. With regard to the corrosion and oxidation resistance of this alloy, no information can be found in the previous publication. A disadvantage of this alloy is above all that it is no longer mechanically formable as a cast alloy, so that not all workpieces can be produced in any dimensions. In particular, the production of semi-finished products, such as sheets, rods and wire, is not possible.

Die US 3 591 362, US 3 874 938 sowie die DE-AS 23 03 802 beschreiben allgemein dispersionsverfestigte Metallegierungen, die bis zu 25 Vol.% eines Dispersoids, unter anderem auch Oxide der Seltenen Erdmetalle enthalten können. Von den Ansprüchen her sind dort Chromgehalte der Legierung bis zu 65 Gew.% beschrieben. Aus den Beispielen und der Beschreibung geht jedoch hervor, daß die Erfindung in erster Linie auf Legierungen mit einem wesentlich niedrigeren Chromgehalt, insbesondere auf ODS-Superlegierungen mit einem Chromgehalt zwischen etwa 10 und 20 Gew.%, ausgerichtet ist.
Die US 3 909 309 beschreibt ein Verfahren zur Verbesserung der Biegebruchfestigkeiten bei ODS-Superlegierungen. In einem Unteranspruch sind Chromgehalte von bis zu 65 Gew.% genannt. Aber auch hier ist aus den Beispielen zu ersehen, daß der praktische Chromgehalt bei ODS-Superlegierungen wesentlich niedriger, bei etwa 20 Gew.% liegt. ODS-Superlegierungen werden in erster Linie im Heißgasturbinenbau eingesetzt, wo es nicht so sehr auf gute Korrosionsfestigkeit gegenüber Vanadiumpentoxid ankommt. Die Dispersoide werden in erster Linie zur Steigerung der Festigkeitseigenschaften der Legierung zugegeben.
US 3 591 362, US 3 874 938 and DE-AS 23 03 802 generally describe dispersion-strengthened metal alloys which can contain up to 25% by volume of a dispersoid, including oxides of rare earth metals. Chromium contents of the alloy of up to 65% by weight are described in the claims. From the examples and the description, however, it appears that the invention is primarily based on alloys with a significantly lower chromium content, in particular is aimed at ODS superalloys with a chromium content between approximately 10 and 20% by weight.
US 3 909 309 describes a method for improving the flexural strength in ODS superalloys. Chromium contents of up to 65% by weight are mentioned in a subclaim. But here too it can be seen from the examples that the practical chromium content in ODS superalloys is considerably lower, at about 20% by weight. ODS superalloys are primarily used in hot gas turbine construction, where good corrosion resistance to vanadium pentoxide is not so important. The dispersoids are primarily added to increase the strength properties of the alloy.

Aus der US 3 841 847 ist eine Legierung auf Chrombasis mit mindestens 70 Gew.% Chrom zu entnehmen, die neben Yttrium, Aluminium und Silizium noch bis zu 18 Gew.% Yttriumoxid enthalten kann. Auch bei dieser Legierung liegt die Übergangstemperatur duktil-spröde noch sehr hoch, so daß die Herstellung von Halbzeug und Teilen durch Umformprozesse problematisch ist.US Pat. No. 3,841,847 shows a chromium-based alloy with at least 70% by weight chromium, which in addition to yttrium, aluminum and silicon can also contain up to 18% by weight yttrium oxide. With this alloy, the transition temperature is still very ductile-brittle, so that the production of semi-finished products and parts by forming processes is problematic.

Die JP-A 2 258 946 beschreibt einen zweiphasigen Verbundwerkstoff, der neben Chrom 5 bis 50 Gew.% Fe und 5 bis 60 Gew.% Y2O3 enthält. Das Y2O3 liegt nicht als Dispersoid in einer einheitlichen Werkstoff-Matrix vor.
Die Sinterverbundlegierung besteht aus einem Sinterkörper, der eine gleichmäßige Mischstruktur aufweist.
Die Verwendung liegt bei Einrichtungen zur Stahlherstellung.
JP-A 2 258 946 describes a two-phase composite material which, in addition to chromium, contains 5 to 50% by weight of Fe and 5 to 60% by weight of Y 2 O 3 . The Y 2 O 3 is not present as a dispersoid in a uniform material matrix.
The sintered composite alloy consists of a sintered body that has a uniform mixed structure.
The use lies with facilities for steel production.

Die EP-A 0 510 495 beschreibt eine Chromlegierung mit wahlweise bis zu 20 Gew.% Fe und mit 0,2 bis 2,0 Gew.% feindispers verteilten Partikeln von Y2O3. Zur Erzielung verbesserter Eigenschaften ist eine Partikelgröße von bis zu 0,1 µm zwingend und diese Größe läßt sich laut Ausführungen nur mittels eines lang andauernden Verfahrens, dem mechanischen Legieren, erzielen.EP-A 0 510 495 describes a chromium alloy with optionally up to 20% by weight of Fe and with 0.2 to 2.0% by weight of finely dispersed particles of Y 2 O 3 . To achieve improved properties, a particle size of up to 0.1 µm is mandatory and, according to the explanations, this size can only be achieved by means of a long-lasting process, mechanical alloying.

Das mechanische Legieren ist ein sehr kostenintensives Verfahren. Der Anwendungsbereich derart gefertigter Chromlegierungen ist aus wirtschaftlichen Gründen sehr beschränkt.Mechanical alloying is a very expensive process. The area of application of chromium alloys produced in this way is very limited for economic reasons.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung einer Legierung auf Chrombasis bereitzustellen. Nach diesem Verfahren gefertigte Chromlegierungen sowie eine Gruppe von zu entwickelnden Chromlegierungen soll sich dadurch auszeichnen, daß sie eine gute Korrosionsbeständigkeit, insbesondere gegenüber Verbrennungsgasen und nicht flüchtigen Verbrennungsrückständen fossiler Brennstoffe aufweisen und gleichzeitig eine für Umformprozesse ausreichend tiefe Übergangstemperatur duktil-spröde sowie gute Warmfestigkeits-Eigenschaften besitzen.The object of the present invention is to provide a method for producing a chromium-based alloy. Chrome alloys manufactured according to this process and a group of chrome alloys to be developed should be characterized by the fact that they have good corrosion resistance, in particular to combustion gases and non-volatile combustion residues of fossil fuels, and at the same time have a ductile-brittle transition temperature which is sufficiently low for forming processes and good heat resistance properties .

Erfindungsgemäß wird dies durch ein Verfahren gemäß Anspruch 1 vorliegender Erfindung erreicht.
Weiterhin ist eine Legierung auf Chrombasis, welche diese Aufgabe erfüllt, durch den Nebenanspruch 9 definiert, wobei diese Legierung neben einem Chromgehalt von mehr als 65 Gew.%, dem üblichen Gehalt an Verunreinigungen und einer Reihe wahlweise zugesetzter Elemente zwingend aus 0,3 bis 2 Gew.% La2O3 oder einer Mischung aus La- und Y-Oxid und 0,1 bis 32 Gew.% von einem oder mehreren Metallen aus der Gruppe Eisen, Nickel und Kobalt besteht.
According to the invention, this is achieved by a method according to claim 1 of the present invention.
Furthermore, a chromium-based alloy, which fulfills this task, is defined by the dependent claim 9, this alloy, in addition to a chromium content of more than 65% by weight, the usual content of impurities and a number of optionally added elements, from 0.3 to 2 % By weight of La 2 O 3 or a mixture of La and Y oxide and 0.1 to 32% by weight of one or more metals from the group consisting of iron, nickel and cobalt.

Die Zugabe von Oxiden der Seltenen Erden ist bei verschiedenen Legierungen zur Erhöhung der Warmfestigkeit durch Dispersionsfestigkeit bekannt. Überraschend war jedoch die Erkenntnis, daß bei einer Chrombasislegierung mit einem Chromgehalt von mehr als 65 Gew.% durch die Verwendung von Lanthanoxid oder einer Mischung von Yttriumoxid und Lanthanoxid als Oxide der Seltenen Erden mit einem Anteil von 0,5 bis 2 Gew.%, sowie von Eisen und Nickel mit einem Anteil von 5 bis 25 Gew.% die verbesserten Werkstoffeigenschaften gemäß Aufgabenstellung erreicht werden.
Unter einem Anteil von 0,5 Gew.% zeigt eine Zugabe von diesen Selten Erdoxiden nicht die gewünschte Wirkung. Die Obergrenze für ihre Zugabe liegt bei 2 Gew.%, da bei darüberhinausgehenden Anteilen die Verarbeitbarkeit der Legierung in einem unzumutbaren Ausmaß verschlechtert wird.
The addition of rare earth oxides is known for various alloys to increase the heat resistance through dispersion strength. However, it was surprising to discover that, in the case of a chromium-based alloy with a chromium content of more than 65% by weight, by using lanthanum oxide or a mixture of yttrium oxide and lanthanum oxide as oxides of the rare earths in a proportion of 0.5 to 2% by weight, and of iron and nickel with a share of 5 to 25% by weight, the improved material properties can be achieved according to the task.
In a proportion of 0.5% by weight, the addition of these rare earth oxides does not have the desired effect. The upper limit for their addition is 2% by weight, since if the proportions exceed this, the processability of the alloy deteriorates to an unacceptable extent.

Die Legierungselemente Eisen, Nickel und Kobalt bewirken erst ab einem Mindestgehalt von 0,1 Gew.% ihre duktilisierende Wirkung auf die Legierung, während bei einem Überschreiten der Obergrenze von 32 Gew.% die Korrosionseigenschaften der Legierung in einem Ausmaß verschlechtert werden, daß eine derartige Legierung praktisch nicht mehr interessant ist.The alloying elements iron, nickel and cobalt only have a ductile effect on the alloy from a minimum content of 0.1% by weight, while the corrosion properties of the alloy exceed the upper limit of 32% by weight Alloy deteriorate to an extent that such an alloy is practically no longer interesting.

Die nach dem erfindungsgemäßen Verfahren gefertigten, sowie die erfindungsgemäßen Legierungen sind besonders als Werkstoffe für ruhende, aber auch bewegte Teile in Anlagen geeignet, in denen Temperaturen von etwa 800 bis über 1200°C auftreten und in denen gleichzeitig Kontakt zu Gasen und Rückständen aus der Verbrennung, insbesondere fossiler Brennstoffe und reiner oder verunreinigter Luft, besteht.The alloys manufactured by the process according to the invention and the alloys according to the invention are particularly suitable as materials for stationary but also moving parts in systems in which temperatures of about 800 to over 1200 ° C. occur and in which contact with gases and residues from the combustion occurs at the same time , in particular fossil fuels and clean or polluted air.

Neben der vielseitigen Korrosionsbeständigkeit weisen die Legierungen eine hohe Warmfestigkeit und eine hohe Rekristallisationstemperatur sowie einen Wärmeausdehnungs-Koeffizienten auf, der im Vergleich zu bekannten Chromlegierungen wesentlich besser an andere Hochtemperatur-Werkstoffe, wie zum Beispiel Keramik, angepaßt ist, was den Einsatzbereich der erfindungsgemäßen Legierung nochmals erweitert.In addition to the versatile corrosion resistance, the alloys have a high heat resistance and a high recrystallization temperature as well as a coefficient of thermal expansion which, compared to known chrome alloys, is much better adapted to other high-temperature materials, such as ceramics, which further increases the area of application of the alloy according to the invention expanded.

Durch das wahlweise Zulegieren von bis zu 30 Gew.% von einem oder mehreren Metallen aus der Gruppe Aluminium, Titan, Zirkon und Hafnium wird in erster Linie die Oxidationsfestigkeit der Legierung nochmals verbessert.The optional alloying of up to 30% by weight of one or more metals from the group aluminum, titanium, zirconium and hafnium primarily improves the oxidation resistance of the alloy.

Als besonders geeignete Elemente haben sich hierbei Metalle aus der Gruppe Aluminium, Titan und Zirkon mit einem Anteil von 3 bis 10 Gew.% herausgestellt.Metals from the group aluminum, titanium and zircon with a proportion of 3 to 10% by weight have proven to be particularly suitable elements.

Durch das wahlweise Zulegieren von bis zu 10 Gew.% von einem oder mehreren Metallen aus der Gruppe Vanadium, Niob, Molybdän, Tantal, Wolfram und Rhenium wird bei Bauteilen aus den erfindungsgemäßen Legierungen die Formbeständigkeit bei hohen Temperaturen erhöht, was vor allem beim Auftreten lang andauernder Spannungen, die auf die Bauteile einwirken, wichtig ist. Den leichten und duktilisierenden Metallen Vanadium und Niob wird dabei der Vorzug gegeben. Der Zusatz der hochschmelzenden Metalle Wolfram und Rhenium kann die Oxidationsbeständigkeit der Legierung herabsetzen, weshalb sie vorteilhafterweise nur in verhältnismäßig geringen Mengen eingesetzt werden.The optional addition of up to 10% by weight of one or more metals from the group of vanadium, niobium, molybdenum, tantalum, tungsten and rhenium increases the dimensional stability at high temperatures in components made from the alloys according to the invention, which is particularly long when they occur Continuous stresses that act on the components is important. The light and ductile metals vanadium and niobium are preferred. The addition of the high-melting metals tungsten and rhenium can reduce the oxidation resistance of the alloy, which is why they are advantageously used only in relatively small amounts.

Als besonders vorteilhaft haben sich Vanadium, Niob und Molybdän, einzeln oder in Kombination mit einem Gesamtgehalt von 3 bis 8 Gew.% erwiesen.Vanadium, niobium and molybdenum, individually or in combination with a total content of 3 to 8% by weight, have proven to be particularly advantageous.

Für Anwendungen, bei denen die Festigkeit für einen Temperaturbereich über 1000°C weiter erhöht werden soll, ist es vorteilhaft, der Legierung bis zu 1 Gew.% von einem oder mehreren der Elemente Kohlenstoff, Stickstoff, Bor und Silizium zuzulegieren. Diese Hartphasen bildenden Elemente erhöhen die Festigkeit, ohne die gute Korrosionseigenschaft der Legierung zu verschlechtern und ohne die Duktilität wesentlich zu vermindern.For applications in which the strength is to be increased further for a temperature range above 1000 ° C., it is advantageous to add up to 1% by weight of one or more of the elements carbon, nitrogen, boron and silicon to the alloy. These hard phase-forming elements increase the strength without impairing the good corrosion properties of the alloy and without significantly reducing the ductility.

Besonders vorteilhaft ist es hierbei, Kohlenstoff, ggf. gemeinsam mit Stickstoff mit einem Anteil von 0,03 bis 0,3 Gew.% einzusetzen.It is particularly advantageous here to use carbon, optionally together with nitrogen, in a proportion of 0.03 to 0.3% by weight.

In einem vorteilhaften pulvermetallurgischen Verfahren zur Herstellung der erfindungsgemäßen Legierung wird die Mischung des Ausgangspulvers auf eine Mindestpreßdichte von 65 % gepreßt und der Preßling bei einer Sintertemperatur zwischen 1500 und 1600°C unter H2-Atmosphäre während 15 - 20 Stunden gesintert.In an advantageous powder metallurgical process for producing the alloy according to the invention, the mixture of the starting powder is pressed to a minimum compression density of 65% and the compact is sintered at a sintering temperature between 1500 and 1600 ° C. under an H 2 atmosphere for 15-20 hours.

Nachfolgend wird die Erfindung anhand von Beispielen näher erläutert.The invention is explained in more detail below with the aid of examples.

HerstellungsbeispielManufacturing example

Zur Herstellung von Blech aus der Legierung Cr-4Fe-5Ti-1Y2O3 wurden 60 kg einer Pulvermischung aus 4 Gew.% Eisenpulver mit einer mittleren Korngröße von 26 µm, 5 Gew.% Titanhydridpulver mit einer mittleren Korngröße von 2 µm, 1 Gew.% Y2O3-Pulver mit einer mittleren Korngröße von 0,35 µm, Rest Chrompulver mit einer mittleren Korngröße von 30 µm in einem Attritor 12 Stunden unter Argon mit einem Druck von einer Atmosphäre gemahlen. Die Pulvermischung wurde dann in einer Stahlmatrize zu Platten mit den Abmessungen 80 mm x 300 mm x 40 mm mit einem Preßdruck von 3000 bar kaltisostatisch gepreßt und anschließend ohne Vorsinterung bei 1600°C 20 Stunden unter Wasserstoff gesintert. Danach wurden die gesinterten Platten in Stahlblech mit einer Dicke von 2 mm allseitig eingekannt. Nach einem Anwärmen auf 1250°C wurden die eingekannten Platten durch Schmieden um 35 % umgeformt und von der Schmiedeendtemperatur im Ofen innerhalb von 12 Stunden auf Raumtemperatur abgekühlt. Nach Anwärmen auf 1250°C wurden die Platten zu Blechen von 4,5 mm Stärke gewalzt und von der Walzendtemperatur im Ofen innerhalb von 12 Stunden auf Raumtemperatur abgekühlt. Dann wurden die Bleche auf 1250°C angewärmt und auf eine Stärke von 2 mm weitergewalzt und die Ränder besäumt. Unmittelbar danach wurden die Bleche wiederum auf 1250°C angewärmt und eine Stunde lange bei dieser Temperatur geglüht. Nach einem Abkühlen auf 500°C wurden die Bleche auf eine Stärke von 1,3 mm fertiggewalzt und danach einer Endglühung bei 1600°C während einer Stunde unterzogen.To produce sheet metal from the alloy Cr-4Fe-5Ti-1Y 2 O 3 , 60 kg of a powder mixture of 4% by weight iron powder with an average grain size of 26 µm, 5% by weight titanium hydride powder with an average grain size of 2 µm, 1 % By weight of Y 2 O 3 powder with an average particle size of 0.35 μm, the remainder being chrome powder with an average particle size of 30 μm, milled in an attritor for 12 hours under argon with a pressure of one atmosphere. The powder mixture was then cold-isostatically pressed into plates with the dimensions 80 mm × 300 mm × 40 mm in a steel die with a pressing pressure of 3000 bar and then sintered under hydrogen at 1600 ° C. for 20 hours without presintering. After that, the sintered plates were cut into steel sheet with a thickness of 2 mm on all sides. After warming up to 1250 ° C the forged plates were forged by 35% and cooled from the forging temperature in the furnace to room temperature within 12 hours. After heating to 1250 ° C, the plates were rolled into sheets of 4.5 mm in thickness and cooled from the final roll temperature in the furnace to room temperature within 12 hours. Then the sheets were heated to 1250 ° C and rolled to a thickness of 2 mm and trimmed the edges. Immediately afterwards, the sheets were again heated to 1250 ° C. and annealed at this temperature for one hour. After cooling to 500 ° C, the sheets were 1.3 mm thick finish rolled and then subjected to final annealing at 1600 ° C for one hour.

Mit denselben Fertigungsschritten und -bedingungen wurden 1,3 mm starke Bleche aus den Legierungen    Cr - 0,15 Fe - 1 Y2O3
   Cr - 0,15 Fe - 1 La2O3
   Cr - 24 Fe - 5 Al - 1 Y2O3 sowie aus reinem Chrom gefertigt.
Bei den Aluminium enthaltenden Legierungen wurde Aluminiumpulver mit einer mittleren Korngröße von 28 µm verwendet.
With the same manufacturing steps and conditions, 1.3 mm thick sheets made of the alloys Cr - 0.15 Fe - 1 Y 2 O 3
Cr - 0.15 Fe - 1 La 2 O 3
Cr - 24 Fe - 5 Al - 1 Y 2 O 3 and made of pure chrome.
Aluminum powder with an average grain size of 28 µm was used for the aluminum-containing alloys.

Prüfung der KorrosionsbeständigkeitCorrosion resistance test

Zur Prüfung der Korrosionsbeständigkeit der erfindungsgemäßen Legierungen im Vergleich mit reinem Chrom gegenüber Vanadiumpentoxid wurden aus den nach dem Herstellungsbeispiel gefertigten Blechen Proben mit den Abmessungen 100 mm x 100 mm geschnitten. Die Proben wurden dann beidseitig unter Entfernung der oberflächlichen Stahlschichten auf eine Enddicke von 1 mm geschliffen.To test the corrosion resistance of the alloys according to the invention in comparison with pure chromium against vanadium pentoxide, samples with the dimensions 100 mm × 100 mm were cut from the sheets produced according to the production example. The samples were then ground on both sides to remove the superficial steel layers to a final thickness of 1 mm.

Nach dem Abwiegen wurden die Proben im Feuerungsraum einer ölverbrennungsanlage bei 900°C 3 Stunden lang der Verbrennungsschlacke ausgesetzt.
Dann wurden die Proben abgekühlt, mit Wasser gewaschen und erneut abgewogen. Dabei wurden im Schnitt folgende durchschnittliche Gewichtsverluste als Maß der jeweiligen Korrosion festgestellt: Material Gewichtsverlust (mg/cm2) Chrom 3,7 Cr - 4 Fe - 5 Ti - 1 Y2O3 1,8 Cr - 0,15 Fe - 1 Y2O3 2,4 Cr - 0,15 Fe - 1 La2O3 2,8 Cr - 24 Fe - 5 Al - 1 Y2O3 3,2
After weighing, the samples were exposed to the combustion slag in the furnace of an oil combustion plant at 900 ° C for 3 hours.
The samples were then cooled, washed with water and weighed again. The following average weight losses were determined as a measure of the respective corrosion: material Weight loss (mg / cm 2 ) chrome 3.7 Cr - 4 Fe - 5 Ti - 1 Y 2 O 3 1.8 Cr - 0.15 Fe - 1 Y 2 O 3 2.4 Cr - 0.15 Fe - 1 La 2 O 3 2.8 Cr - 24 Fe - 5 Al - 1 Y 2 O 3 3.2

Daraus ist zu ersehen, daß die erfindungsgemäßen Legierungen eine bis um den Faktcr 2 verbesserte Korrosionsbeständigkeit gegenüber reinem Chrom aufweisen.It can be seen from this that the alloys according to the invention have a corrosion resistance which is improved by up to factor 2 compared to pure chromium.

Prüfung der WarmfestigkeitTesting the heat resistance

Zur Ermittlung der Warmfestigkeitseigenschaften der erfindungsgemäßen Legierungen wurden Bleche mit 3 mm Stärke gefertigt und bei 1000°C auf Zugfestigkeit und Bruchdehnung geprüft. Werkstoff Blech 3 mm Zugfestigk. (N/mm2) bei 1000° C Bruchdehnung (%) bei 1000° C Übergangst. duktil/spröde (° C) Cr 40 62 365 Cr - 0,15 Fe - 1 Y2O3 140 24 107 Cr - 0,15 Fe - 1 La2O3 115 44 203 Cr - 24 Fe - 5 Al - 1 Y2O3 90 16,5 nicht gem. To determine the heat resistance properties of the alloys according to the invention, sheets with a thickness of 3 mm were produced and tested for tensile strength and elongation at break at 1000 ° C. Material sheet 3 mm Tensile strength (N / mm 2 ) at 1000 ° C Elongation at break (%) at 1000 ° C Transitional ductile / brittle (° C) Cr 40 62 365 Cr - 0.15 Fe - 1 Y 2 O 3 140 24th 107 Cr - 0.15 Fe - 1 La 2 O 3 115 44 203 Cr - 24 Fe - 5 Al - 1 Y 2 O 3 90 16.5 not acc.

Es ist die gegenüber reinem Chrom deutlich verbesserte Warmzugfestigkeit bei einer wesentlichen Absenkung der übergangstemperatur duktil/spröde zu erkennen.The warm tensile strength, which is significantly better than that of pure chrome, can be seen with a significant reduction in the ductile / brittle transition temperature.

Prüfung der OxidationsbeständigkeitTesting the resistance to oxidation

Zur Prüfung der Oxidationsbeständigkeit der erfindungsgemäßen Legierungen im Vergleich mit reinem Chrom wurden aus den nach dem Herstellungsbeispiel gefertigten Blechen Proben mit den Abmessungen 20 mm x 30 mm geschnitten. Die Proben wurden dann beidseitig unter Entfernung der oberflächlichen Stahlschichten auf eine Enddicke von 1 mm geschliffen. Nach dem Abwiegen wurden die Proben an Luft einmal bei einer Temperatur von 1000°C und einmal bei einer Temperatur von 1200°C über einen Zeitraum von 7 Tagen oxidiert. Bei 1000°C bildete sich an den Proben eine gut haftende Oxidschicht aus, so daß die durchschnittliche Gewichtszunahme der Proben als Maß für die Oxidationsbeständigkeit herangezogen wurde.
Bei 1000°C wurde darüberhinaus innerhalb einer Oxidationszeit von 112 Stunden der Kurvenverlauf der Oxidation ermittelt und daraus die Geschwindigkeitskonstante errechnet.
Bei 1200°C bildete sich an den Proben eine nur mehr schlecht haftende Oxidschicht, die durch Abbürsten und Waschen der Proben in Wasser entfernt wurde, so daß die durchschnittliche Gewichtsabnahme der Proben als Maß für die Oxidationsbeständigkeit herangezogen wurde.

Figure imgb0001
Oxidationsbedingungen: Luft bei 1200°C Werkstoff Gewichtsabnahme nach 168 Std. (g/cm2) Cr 14 Cr - 0,15 Fe - 1 Y2O3 3 Cr-0,15 Fe - 1 La2O3 6 Cr - 24 Fe - 5 Al - 1 Y2O3 2 To test the oxidation resistance of the alloys according to the invention in comparison with pure chromium, samples with the dimensions 20 mm × 30 mm were cut from the sheets produced according to the production example. The samples were then ground on both sides to remove the superficial steel layers to a final thickness of 1 mm. After weighing, the samples were oxidized in air once at a temperature of 1000 ° C and once at a temperature of 1200 ° C for a period of 7 days. At 1000 ° C, a well adhering oxide layer formed on the samples, so that the average Weight gain of the samples was used as a measure of the oxidation resistance.
At 1000 ° C, the course of the oxidation curve was also determined within an oxidation time of 112 hours, and the rate constant was calculated from this.
At 1200 ° C, the samples formed a poorly adhering oxide layer, which was removed by brushing and washing the samples in water, so that the average weight loss of the samples was used as a measure of the resistance to oxidation.
Figure imgb0001
Oxidation conditions: air at 1200 ° C material Weight loss after 168 hours (g / cm 2 ) Cr 14 Cr - 0.15 Fe - 1 Y 2 O 3 3rd Cr-0.15 Fe - 1 La 2 O 3 6 Cr - 24 Fe - 5 Al - 1 Y 2 O 3 2nd

Die deutlich verbesserte Oxidationsbeständigkeit der erfindungsgemäßen Legierung gegenüber reinem Chrom ist zu ersehen.The significantly improved oxidation resistance of the alloy according to the invention compared to pure chromium can be seen.

Claims (10)

  1. Powder metallurgical method with the manufacturing steps powder mixing, powder pressing and sintering, for producing a chromium-base alloy
    with a chromium content > 65 wt %,
    with from 0.1 to 32 wt % of one or more of the metals from the group iron, cobalt, nickel,
    with up to 30 wt % of one or more metals from the group aluminium, titanium, zirconium and hafnium,
    with up to 10 wt % of one or more metals from the group vanadium, niobium, molybdenum, tantalum, tungsten and rhenium,
    with up to 1 wt % of one or more of the elements carbon, nitrogen, boron and silicon and with
    from 0.005 to 5 wt % of oxide particles distributed finely dispersed in the alloy from the group of the Rare Earths,
    characterised in that
    the sintered alloy is encased in sheet steel and is hot formed in several consecutive process cycles, wherein a cycle consists of heating to a temperature in the 1250°C range, hot formation with the amount of working > 35% and cooling to room temperature.
  2. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that the powder pressing takes place to a minimum pressing density of 60% and the sintering takes place under H2 atmosphere for 15 - 20 hours at a temperature of between 1500 and 1600 °C.
  3. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that Y2O3 particles are used as oxide particles distributed widely dispersed.
  4. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that from 5 to 25 wt % of one or more of the metals iron and nickel is used for this purpose.
  5. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that from 3 to 10 wt % of one or more of the metals aluminium, titanium and zirconium is used for this purpose.
  6. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that from 3 to 8 wt % of one or more of the metals vanadium, niobium and molybdenum is used for this purpose.
  7. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that from 0.03 to 0.3 wt % of one or more of the elements carbon and nitrogen is used for this purpose.
  8. Powder metallurgical method of producing a chromium-base alloy according to claim 1, characterised in that 24 wt % iron, 5 wt % aluminium, 1 wt % yttrium oxide, balance chromium, are used for this purpose.
  9. Chromium-base alloy with a chromium content of more than 65 wt %, which in addition to conventional impurities comprises the following alloy ingredients:
    from 0.3 to 2 wt % of lanthanum oxide or a mixture of lanthanum oxide and yttrium oxide,
    from 0.1 to 32 wt % of one or more metals from the group iron, nickel and cobalt,
    up to 30 wt % of one or more metals from the group aluminium, titanium, zirconium and hafnium,
    up to 10 wt % of one or more metals from the group vanadium, niobium, molybdenum, tantalum, tungsten and rhenium,
    up to 1 wt % of one or more of the elements carbon, nitrogen, boron and silicon, balance chromium.
  10. Chromium-base alloy according to claim 9, characterised in that the latter contains from 5 to 25 wt % of one or more of the metals iron and nickel.
EP93201342A 1992-05-14 1993-05-10 Method of producing a chromium-base alloy Expired - Lifetime EP0570072B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0098192A AT399165B (en) 1992-05-14 1992-05-14 CHROME BASED ALLOY
AT981/92 1992-05-14

Publications (3)

Publication Number Publication Date
EP0570072A2 EP0570072A2 (en) 1993-11-18
EP0570072A3 EP0570072A3 (en) 1994-01-12
EP0570072B1 true EP0570072B1 (en) 1996-07-31

Family

ID=3504219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93201342A Expired - Lifetime EP0570072B1 (en) 1992-05-14 1993-05-10 Method of producing a chromium-base alloy

Country Status (7)

Country Link
US (1) US5608174A (en)
EP (1) EP0570072B1 (en)
JP (1) JPH0633180A (en)
AT (2) AT399165B (en)
AU (1) AU681577B2 (en)
DE (1) DE59303350D1 (en)
ES (1) ES2090843T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214464A1 (en) * 2013-07-24 2015-01-29 Johannes Eyl Method for producing a chromium-containing alloy and chromium-containing alloy

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546614C2 (en) * 1995-12-13 1998-12-17 Forschungszentrum Juelich Gmbh Oxidation-resistant, chromium oxide-forming alloy
AT4737U1 (en) * 2001-01-15 2001-11-26 Plansee Ag POWDER METALLURGICAL METHOD FOR PRODUCING HIGH-DENSITY MOLDED PARTS
US6692586B2 (en) 2001-05-23 2004-02-17 Rolls-Royce Corporation High temperature melting braze materials for bonding niobium based alloys
DE10340132B4 (en) * 2003-08-28 2010-07-29 Eads Deutschland Gmbh Oxidation-resistant, ductile CrRe alloy, especially for high-temperature applications, and corresponding CrRe material
US20090068055A1 (en) * 2007-09-07 2009-03-12 Bloom Energy Corporation Processing of powders of a refractory metal based alloy for high densification
AT11555U1 (en) 2009-03-12 2010-12-15 Plansee Se INTERCONNECTOR OF A FIXED ELECTROLYTE HIGH TEMPERATURE FUEL CELL
CN104419857A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and preparation method thereof
CN104419858A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and preparation method thereof
CN104419856A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and manufacturing method thereof
KR101691916B1 (en) * 2014-10-20 2017-01-04 한국원자력연구원 Cr-Al binary alloy having excellent corrosion resistance and the method for manufacturing thereof
CN113430398B (en) * 2021-05-17 2022-11-01 攀钢集团攀枝花钢铁研究院有限公司 JCr 98-grade metallic chromium containing vanadium element and preparation method thereof
CN114032349B (en) * 2021-11-17 2022-08-12 齐鲁工业大学 Alterant for high-chromium cast iron and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299027B1 (en) * 1987-01-28 1991-10-02 Metallwerk Plansee Gesellschaft M.B.H. Creep-resistant alloy of refractory metals and its production process

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017265A (en) * 1959-09-25 1962-01-16 Gen Electric Oxidation resistant iron-chromium alloy
US3027252A (en) * 1959-09-29 1962-03-27 Gen Electric Oxidation resistant iron-chromium alloy
US3174853A (en) * 1962-03-15 1965-03-23 Gen Electric Chromium base alloys
US3138457A (en) * 1963-02-11 1964-06-23 Commw Of Australia Chromium-tungsten-tantalum alloys
US3227548A (en) * 1963-02-18 1966-01-04 Gen Electric Chromium base alloy
US3347667A (en) * 1964-05-21 1967-10-17 Gen Electric Chromium base alloy
DE1608116A1 (en) * 1967-12-14 1970-12-10 Schmid Geb Reiniger Dipl Ing S Chromium-based alloys for electrodes, especially spark plug electrodes
US3591362A (en) * 1968-03-01 1971-07-06 Int Nickel Co Composite metal powder
US3787202A (en) * 1970-11-18 1974-01-22 Cyclops Corp High temperature chromium-nickel alloy
DE2105750C3 (en) * 1971-02-08 1975-04-24 Battelle-Institut E.V., 6000 Frankfurt Use of a chromium-based alloy for the production of investment castings or shaped cast grains
US3874938A (en) * 1971-04-06 1975-04-01 Int Nickel Co Hot working of dispersion-strengthened heat resistant alloys and the product thereof
DE2221220C3 (en) * 1971-05-12 1974-01-17 Gebrueder Sulzer Ag, Winterthur (Schweiz) Use of a chrome-based alloy as mold material
BE794801A (en) * 1972-01-31 1973-07-31 Int Nickel Ltd ANALYZING PROCESS IN ALLOY ZONES
US3999985A (en) * 1972-09-15 1976-12-28 The British Non-Ferrous Metals Research Association Chromium alloys
US3841847A (en) * 1972-09-15 1974-10-15 British Non Ferrous Metals Res Chromium alloys containing y{11 o{11 {11 and aluminium or silicon or both
US3909309A (en) * 1973-09-11 1975-09-30 Int Nickel Co Post working of mechanically alloyed products
JPS5855502A (en) * 1981-09-28 1983-04-01 Toyo Soda Mfg Co Ltd Preparation of metal chromium plate
JPH0832942B2 (en) * 1989-03-30 1996-03-29 株式会社クボタ Composite sintered alloy, heat resistant member and steel support member in heating furnace
US5126106A (en) * 1990-05-22 1992-06-30 Tosoh Corporation Chromium-based weld material and rolled article and process for producing the rolled article
JPH0747793B2 (en) * 1991-04-26 1995-05-24 株式会社クボタ Oxide dispersion strengthened heat resistant sintered alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299027B1 (en) * 1987-01-28 1991-10-02 Metallwerk Plansee Gesellschaft M.B.H. Creep-resistant alloy of refractory metals and its production process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Week 9048, Derwent Publications Ltd., London, GB; AN 90-358316 & JP-A-2 258 946 (KUBOTA CORPORATION) 19.Oktober 1990 * Zusammenfassung* * Beispiel 2 * *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214464A1 (en) * 2013-07-24 2015-01-29 Johannes Eyl Method for producing a chromium-containing alloy and chromium-containing alloy
DE102013214464A9 (en) * 2013-07-24 2015-05-21 Johannes Eyl Method for producing a chromium-containing alloy and chromium-containing alloy

Also Published As

Publication number Publication date
AU3864393A (en) 1993-11-18
AT399165B (en) 1995-03-27
ES2090843T3 (en) 1996-10-16
ATA98192A (en) 1994-08-15
DE59303350D1 (en) 1996-09-05
EP0570072A3 (en) 1994-01-12
ATE140981T1 (en) 1996-08-15
EP0570072A2 (en) 1993-11-18
US5608174A (en) 1997-03-04
AU681577B2 (en) 1997-09-04
JPH0633180A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
DE69628786T2 (en) Iron aluminide for electrical resistance heating elements
EP0455005B1 (en) High temperature alloy for engine components, based on modified titanium aluminide
EP0513407B1 (en) Method of manufacture of a turbine blade
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
DE3029658C2 (en)
EP3775308B1 (en) Use of a nickel-chromium-iron-aluminium alloy
EP0570072B1 (en) Method of producing a chromium-base alloy
DE3926289A1 (en) OBJECT OF A NICKEL BASE ALLOY, ALLOY AND METHOD FOR PRODUCING THEM RESISTING TO GROWTH OF FATIGUE CRACKS
DE2445462B2 (en) Use of a nickel alloy
DE102020116868A1 (en) Nickel-cobalt alloy powder and method of manufacturing the powder
DE19756354B4 (en) Shovel and method of making the blade
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
EP0574727A1 (en) Method for the production of a high temperature-resistant element from two different materials
EP0396185B1 (en) Process for preparing semi-finished creep resistant products from high melting metal
DE2421680A1 (en) NICKEL-COBALT-IRON CAST ALLOY WITH LOW COEFFICIENT OF EXTENSION AND HIGH YIELD LIMIT
DE2049546C3 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body
DE2324937A1 (en) DURABLE DISPERSION HARDENED NICKEL-IRON-CHROME ALLOY
DE1922314A1 (en) Process for tempering alloys
EP0709478B1 (en) Alloy based of silicides and further containing chromium and molybdenum
EP1647606A1 (en) High hardness and wear resistant nickel based alloy for use as high temperature tooling
DE3736350C2 (en)
DE2539002B2 (en) USE OF ALLOYS TO MAKE MAGNETIC HEADS
DE3720605C2 (en)
EP0172852A1 (en) High temperature resistant molybdenum alloy.
EP2031080B1 (en) High temperature alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19931201

17Q First examination report despatched

Effective date: 19940210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 140981

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REF Corresponds to:

Ref document number: 59303350

Country of ref document: DE

Date of ref document: 19960905

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090843

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090843

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120523

Year of fee payment: 20

Ref country code: DE

Payment date: 20120523

Year of fee payment: 20

Ref country code: NL

Payment date: 20120531

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120524

Year of fee payment: 20

Ref country code: GB

Payment date: 20120522

Year of fee payment: 20

Ref country code: FR

Payment date: 20120601

Year of fee payment: 20

Ref country code: SE

Payment date: 20120522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120529

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120511

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59303350

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130510

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130509

BE20 Be: patent expired

Owner name: *PLANSEE A.G.

Effective date: 20130510

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 140981

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130509

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130511