EP1970473A2 - Electropolishing method for titanium - Google Patents

Electropolishing method for titanium Download PDF

Info

Publication number
EP1970473A2
EP1970473A2 EP08003975A EP08003975A EP1970473A2 EP 1970473 A2 EP1970473 A2 EP 1970473A2 EP 08003975 A EP08003975 A EP 08003975A EP 08003975 A EP08003975 A EP 08003975A EP 1970473 A2 EP1970473 A2 EP 1970473A2
Authority
EP
European Patent Office
Prior art keywords
titanium
electrolyte
electropolishing
acids
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08003975A
Other languages
German (de)
French (fr)
Other versions
EP1970473B1 (en
EP1970473A3 (en
Inventor
Olaf BÖHME
Siegfried Pießlinger-Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat GmbH
Original Assignee
Poligrat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poligrat GmbH filed Critical Poligrat GmbH
Publication of EP1970473A2 publication Critical patent/EP1970473A2/en
Publication of EP1970473A3 publication Critical patent/EP1970473A3/en
Application granted granted Critical
Publication of EP1970473B1 publication Critical patent/EP1970473B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/26Polishing of heavy metals of refractory metals

Definitions

  • the present invention relates to a process for the electrochemical polishing of surfaces of titanium or titanium-containing alloys. This method is particularly useful for alloys having a titanium content of at least about 50 mole percent, such as the nickel-titanium alloy nitinol.
  • an electrolyte is used which comprises methanesulfonic acid and one or more, optionally substituted alkanediphosphonic acids.
  • the present invention also relates to the use of such an electrolyte for electropolishing surfaces of titanium and / or titanium-containing alloys, such as nitinol.
  • Electrochemical polishing or electropolishing, as well as the glazing and deburring of metal surfaces is a technique commonly used in the art to treat the surfaces of metal workpieces and articles. Such a treatment serves to improve the surface quality, for example by removing burrs on edges and surfaces, by smoothing, cleaning and glazing, both for decorative and technical purposes. Furthermore, by the electropolishing stresses in the outer material layers can be removed.
  • the workpieces to be machined are arranged on suitable, electrically conductive holding devices, or in baskets or drums of electrically conductive material. These workpieces are immersed in a polishing bath containing an electrolyte and connected anodically, applying a direct current. As a result of the action of the current and of the electrolyte, metal is removed from the material surface, whereby the surface is smoothed and deburred. The workpiece is then removed from the polishing bath and rinsed off.
  • EP 1 354 986 A2 For example, there is described an apparatus and method for electropolishing titanium and titanium alloys (Titanium Grade 1 to 10) using an electrolyte of sulfuric acid and alcohols.
  • this method has the further disadvantage that due to the easy flammability of this electrolyte requires a complex cooling of the electrolyte to temperatures below 15 ° C. is, in conjunction with automatic extinguishing systems for fire protection.
  • the patent application DE 100 37 337 A1 describes a method and fixture for electropolishing bodies of titanium alloys or nickel-titanium alloys such as Nitinol, wherein the electrolyte comprises formamide and sulfamic acid.
  • the present invention is an electropolishing process for the electrochemical smoothing and / or deburring of surfaces of titanium or titanium-containing alloys, which does not have the aforementioned disadvantages. These methods are based on the use of an electrolyte comprising methanesulfonic acid and one or more alkanediphosphonic acids, wherein the one or more alkanediphosphonic acids may optionally be substituted with one or more hydroxy and / or amino groups.
  • the concentration of methanesulfonic acid in the electrolyte is at least 95% by weight, based on the total weight of the electrolyte.
  • concentrated methanesulfonic acid with a content of at least 98% by weight for example methanesulfonic acid with a content of more than 99% by weight, is used, to which the one or more alkanediphosphonic acids are added as pure substance (s).
  • a particularly suitable alkane diphosphonic acid for use in the processes described herein is 1-hydroxyethane-1,1-diphosphonic acid (HEDP, also referred to as etidronic acid).
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • electrolyte used in the process described herein HEDP may be used alone or in combination with other alkane diphosphonic acids in concentrated methanesulfonic acid as previously defined.
  • the concentration of the one or more alkanediphosphonic acids in the electrolyte is preferably between 1 and 50 g / kg of electrolyte, for example between 3 and 25 g / kg of electrolyte.
  • the one or more alkane diphosphonic acids be used between 5 and 20 g / kg of electrolyte.
  • the electrolyte consists essentially of methanesulfonic acid and one or more alkane diphosphonic acids This means that no other substances are added and such other substances only in small amounts, for example less than 3 wt .-%, are present, such as by impurities of methanesulfonic acid or alkanediphosphonic, or due to the operation in the course of electropolishing (for example ablated ions).
  • the electrolyte used in accordance with the present process contains no or only minor amounts of water.
  • the water content of the electrolyte is therefore preferably at most 2 wt .-%, more preferably below 1 wt .-%, based on the total weight of the electrolyte.
  • the electropolishing is preferably carried out at a temperature in the range of 20 ° C to 70 ° C, for example between room temperature and 60 ° C, and in particular at a temperature between 25 ° C and 50 ° C.
  • the anodic current density at which the workpieces are electropolished can be chosen from a wide range. This is preferably in the range from 2 to 50 A / dm 2 , in particular between 5 and 30 A / dm 2 .
  • the applied voltage can often be in the range of 10 to 35 volts.
  • the duration of the electropolishing process of course depends on the particular roughness of the workpiece to be machined and the desired smoothing or deburring.
  • the optimum exposure time can be determined by the average person skilled in the art within the scope of routine experiments as a function of the current density used, the temperature, the electrolyte and the device used without any particular effort. As a rule, a treatment of the workpiece is sufficient for a few minutes.
  • the machined workpiece is removed from the electropolishing bath and rinsed with water, preferably deionized water. It is not crucial that the workpiece is immediately freed from the electrolyte.
  • the electrolyte described here does not attack the machined surface, which facilitates the processing and makes no further demands on the equipment used.
  • This electrolyte described here can be used both for pure titanium and for titanium-containing alloys.
  • These titanium-containing alloys may in particular comprise titanium in a proportion of at least 50 mol%.
  • An important such alloy comprising titanium at a level of about 50 mole percent is the nickel-titanium alloy nitinol, also referred to as a "memory alloy".
  • nitinol also referred to as a "memory alloy
  • an electrolyte comprising methanesulfonic acid and one or more alkanediphosphonic acids to electropolish surfaces of titanium, titanium-containing alloys, and nickel-titanium alloys, such as nitinol, is also an aspect of the invention described herein.
  • electrolytes require in their use - in contrast to the electrolytes used in the prior art - no technically complex facilities, but can in conventional industrial electropolishing, as used for example for the treatment of stainless steel, are used.
  • an electrolyte as used in accordance with the present invention is nonflammable, not very corrosive, and easy to handle. With normal handling, there is no increased risk for the people who operate the electropolishing system or work in the vicinity of this system, as well as for the environment. In particular, the electrolyte described herein releases no harmful gases or vapors.
  • the methods and electrolytes described herein are not only easier to handle in the treatment of titanium-containing surfaces, but also make it possible to achieve a smoothening or de-burring of the surfaces as described in the prior art. at least equal, if not superior in many cases.
  • a sheet measuring 50 ⁇ 50 ⁇ 1.0 mm with a ground surface and a roughness of Ra 0.8 ⁇ m was used in an electrolyte consisting of 990 g of methanesulfonic acid 100% and 10 g of 1-hydroxyethyl-1,1-diphosphonic acid electropolished.
  • the sheet was degreased before treatment, rinsed with water and dried. After electropolishing, the sheet was removed from the electrolyte and rinsed in deionized water after a waiting time of 5 minutes and dried.
  • the edges were smooth and burr-free.
  • a 0.8 mm diameter nitinol wire was electropolished in an electrolyte according to Example 1.
  • the wire was pretreated and post-treated according to Example 1.
  • the result was a high gloss and smooth surface without etching attack on the microstructure.

Abstract

Method for electropolishing and/or electrochemical deburring of surfaces made from titanium or titanium-containing alloys comprises using an electrolyte made from methane sulfonic acid or one or more alkane diphosphonic acids.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum elektrochemischen Polieren von Oberflächen aus Titan oder Titan-haltigen Legierungen. Dieses Verfahren eignet sich besonders für Legierungen, die einen Gehalt an Titan von mindestens etwa 50 Mol-% aufweisen, beispielsweise die Nickel-Titan-Legierung Nitinol. Hierfür wird ein Elektrolyt verwendet, der Methansulfonsäure sowie eine oder mehrere, gegebenenfalls substituierte Alkandiphosphonsäuren umfasst. Die vorliegende Erfindung betrifft ebenfalls die Verwendung eines solchen Elektrolyten zum Elektropolieren von Oberflächen aus Titan und/oder Titan-haltigen Legierungen, wie etwa Nitinol.The present invention relates to a process for the electrochemical polishing of surfaces of titanium or titanium-containing alloys. This method is particularly useful for alloys having a titanium content of at least about 50 mole percent, such as the nickel-titanium alloy nitinol. For this purpose, an electrolyte is used which comprises methanesulfonic acid and one or more, optionally substituted alkanediphosphonic acids. The present invention also relates to the use of such an electrolyte for electropolishing surfaces of titanium and / or titanium-containing alloys, such as nitinol.

Hintergrund der ErfindungBackground of the invention

Das elektrochemische Polieren oder Elektropolieren, wie auch das Glänzen und Entgraten von Metalloberflächen, ist ein häufig in der Technik angewendetes Verfahren, um die Oberflächen von Werkstücken und Gegenständen aus Metall zu behandeln. Eine solche Behandlung dient der Verbesserung der Oberflächenqualität, etwa durch die Entfernung von Graten an Kanten und Flächen, durch Glätten, Reinigen und Glänzen, sowohl für dekorative als auch für technische Zwecke. Weiterhin können durch das Elektropolieren Spannungen in den äußeren Werkstoffschichten abgetragen werden.Electrochemical polishing or electropolishing, as well as the glazing and deburring of metal surfaces, is a technique commonly used in the art to treat the surfaces of metal workpieces and articles. Such a treatment serves to improve the surface quality, for example by removing burrs on edges and surfaces, by smoothing, cleaning and glazing, both for decorative and technical purposes. Furthermore, by the electropolishing stresses in the outer material layers can be removed.

Die zu bearbeitenden Werkstücke werden dabei an geeigneten, elektrisch leitenden Haltevorrichtungen angeordnet, oder auch in Körben oder Trommeln aus elektrisch leitendem Material. Diese mit den Werkstücken versehenen Vorrichtungen werden in ein Polierbad getaucht, das einen Elektrolyten enthält, und anodisch geschaltet, wobei ein Gleichstrom angelegt wird. Durch die Einwirkung des Stroms und des Elektrolyten wird Metall von der Werkstoffoberfläche abgetragen, wodurch die Oberfläche geglättet und entgratet wird. Anschließend wird das Werkstück wieder aus dem Polierbad genommen und abgespült.The workpieces to be machined are arranged on suitable, electrically conductive holding devices, or in baskets or drums of electrically conductive material. These workpieces are immersed in a polishing bath containing an electrolyte and connected anodically, applying a direct current. As a result of the action of the current and of the electrolyte, metal is removed from the material surface, whereby the surface is smoothed and deburred. The workpiece is then removed from the polishing bath and rinsed off.

Im bisherigen Stand der Technik werden zur Behandlung von Titan und Titanlegierungen folgende Gemische eingesetzt:

  1. 1. Perchlorsäure und Essigsäureanhydrid;
  2. 2. Flusssäure, Schwefelsäure und Essigsäure;
  3. 3. Flusssäure, Schwefelsäure und Essigsäureanhydrid;
  4. 4. Schwefelsäure, Flusssäure, Phosphorsäure und Ethylenglykol;
  5. 5. Schwefelsäure, Ammoniumdifluorid und Hydroxycarbonsäuren.
Beispiele hierfür sind etwa in WO 01/00906 A1 und DE 103 20 909 A1 beschrieben.In the prior art, the following mixtures are used for the treatment of titanium and titanium alloys:
  1. 1. perchloric acid and acetic anhydride;
  2. 2. hydrofluoric acid, sulfuric acid and acetic acid;
  3. 3. hydrofluoric acid, sulfuric acid and acetic anhydride;
  4. 4. sulfuric acid, hydrofluoric acid, phosphoric acid and ethylene glycol;
  5. 5. sulfuric acid, ammonium difluoride and hydroxycarboxylic acids.
Examples of this are about in WO 01/00906 A1 and DE 103 20 909 A1 described.

All diese Elektrolyte sind zwar in der Lage, befriedigende Elektropolierergebnisse auf Oberflächen aus reinem Titan und einer Auswahl von Titanlegierungen zu erzielen, sie sind jedoch nur teilweise in der Lage, Nitinol, eine Nickel-Titan-Legierung, die aus etwa 50 Mol-% Ni und etwa 50 Mol-% Ti besteht und häufig auch als "Memory-Legierung" bezeichnet wird, in befriedigender Qualität zu elektropolieren.While all of these electrolytes are capable of achieving satisfactory electropolishing results on pure titanium surfaces and a range of titanium alloys, they are only partially capable of producing nitinol, a nickel-titanium alloy consisting of about 50 mole percent Ni and about 50 mol% Ti and is often referred to as "memory alloy", electropolishing in satisfactory quality.

Außerdem haftet all diesen Elektrolyten der Nachteil an, dass ihr Einsatz mit erheblichen technischen und gesundheitlichen Risiken verbunden ist. So besteht etwa bei der Elektrolytmischung gemäß Nr. 1 bei unsachgemäßer Handhabung Explosionsgefahr, während die übrigen Elektrolyte insbesondere durch ihren Gehalt an Fluoriden stark gesundheitsgefährdend sind.In addition, all these electrolytes have the disadvantage that their use is associated with considerable technical and health risks. For example, in the case of improper handling, there is a risk of explosion in the case of the electrolyte mixture according to No. 1, while the other electrolytes are particularly harmful to health because of their content of fluorides.

Die Verwendung dieser Elektrolyte und Verfahren, in denen diese Elektrolyte eingesetzt werden, im industriellen Rahmen erfordert aufwendige und teure Einrichtungen und Vorkehrungen zur Einhaltung von Verfahrensparametern, sowie zum Arbeits- und Umweltschutz. Meist erfordert die Durchführung dieser Elektropolierverfahren zudem ein aufwendiges Kühlsystem, damit die meist sehr niedrigen Arbeitstemperaturen eingehalten werden können und, bei Verwendung von Fluorid-haltigen Elektrolyten, eine Kapselung der Elektropolieranlagen, sowie eine Abluftreinigung.The use of these electrolytes and methods in which these electrolytes are used, in an industrial context requires complex and expensive equipment and provisions for compliance with process parameters, as well as for occupational and environmental protection. In most cases, the implementation of these electropolishing method also requires a complex cooling system, so that the usually very low operating temperatures can be maintained and, when using fluoride-containing electrolyte, encapsulation of the electropolishing, and an exhaust air purification.

In EP 1 354 986 A2 ist eine Vorrichtung und ein Verfahren zum Elektropolieren von Titan und Titanlegierungen (Titan Grad 1 bis 10) beschrieben, das einen Elektrolyten aus Schwefelsäure und Alkoholen verwendet. Neben der Gesundheitsgefährdung durch die offenbar bevorzugte Verwendung von Methanol und die damit verbundene Entstehung von hochgiftigem und krebserregendem Dimethylsulfat während des Prozesses, besitzt dieses Verfahren den weiteren Nachteil, dass aufgrund der leichten Entflammbarkeit dieses Elektrolyten eine aufwendige Kühlung des Elektrolyten auf Temperaturen unter 15°C erforderlich ist, in Verbindung mit automatischen Löschanlagen zum Feuerschutz.In EP 1 354 986 A2 For example, there is described an apparatus and method for electropolishing titanium and titanium alloys (Titanium Grade 1 to 10) using an electrolyte of sulfuric acid and alcohols. In addition to the health hazard due to the apparently preferred use of methanol and the associated formation of highly toxic and carcinogenic dimethyl sulfate during the process, this method has the further disadvantage that due to the easy flammability of this electrolyte requires a complex cooling of the electrolyte to temperatures below 15 ° C. is, in conjunction with automatic extinguishing systems for fire protection.

Die Patentanmeldung DE 100 37 337 A1 beschreibt ein Verfahren und eine Halterung zum Elektropolieren von Körpern aus Titanlegierungen oder Nickel-Titan-Legierungen wie Nitinol, wobei der Elektrolyt Formamid und Sulfaminsäure umfasst.The patent application DE 100 37 337 A1 describes a method and fixture for electropolishing bodies of titanium alloys or nickel-titanium alloys such as Nitinol, wherein the electrolyte comprises formamide and sulfamic acid.

Es besteht daher ein erheblicher Bedarf an einem Elektropolierverfahren, mit dem Titan und Titan-haltige Legierungen wie etwa Nitinol effizient und mit hoher Qualität geglättet und entgratet werden können, ohne dass dabei größere Belastungen bzw. Gefährdungen für Mensch und Umwelt auftreten, und wobei auf kostspielige Kühlanlagen und Sicherheitsvorkehrungen verzichtet werden kann.Thus, there is a significant need for an electropolishing process that can efficiently and high-quality smooth and deburr titanium and titanium-containing alloys, such as Nitinol, without posing major hazards to man and the environment, and to expensive ones Refrigeration systems and safety precautions can be dispensed with.

Beschreibung der ErfindungDescription of the invention

Gegenstand der vorliegenden Erfindung ist ein Elektropolierverfahren zum elektrochemischen Glätten und/oder Entgraten von Oberflächen aus Titan oder Titan-haltigen Legierungen, das die vorgenannten Nachteile nicht aufweist. Diese Verfahren basieren auf der Verwendung eines Elektrolyten, der Methansulfonsäure und eine oder mehrere Alkandiphoshonsäuren umfasst, wobei die eine oder mehreren Alkandiphosphonsäuren gegebenenfalls mit einer oder mehreren Hydroxy- und/oder Aminogruppen substituiert sein können.The present invention is an electropolishing process for the electrochemical smoothing and / or deburring of surfaces of titanium or titanium-containing alloys, which does not have the aforementioned disadvantages. These methods are based on the use of an electrolyte comprising methanesulfonic acid and one or more alkanediphosphonic acids, wherein the one or more alkanediphosphonic acids may optionally be substituted with one or more hydroxy and / or amino groups.

In einer bevorzugten Ausführungsform des Verfahrens dieser Erfindung beträgt die Konzentration an Methansulfonsäure im Elektrolyten mindestens 95 Gew.-%, bezogen auf das Gesamtgewicht des Elektrolyten. In der Regel wird daher konzentrierte Methansulfonsäure mit einem Gehalt von mindestens 98 Gew.-%, beispielsweise Methansulfonsäure mit einem Gehalt von mehr als 99 Gew.-%, eingesetzt, der die eine oder die mehreren Alkandiphosphonsäuren als Reinstoff(e) zugegeben werden.In a preferred embodiment of the process of this invention, the concentration of methanesulfonic acid in the electrolyte is at least 95% by weight, based on the total weight of the electrolyte. As a rule, concentrated methanesulfonic acid with a content of at least 98% by weight, for example methanesulfonic acid with a content of more than 99% by weight, is used, to which the one or more alkanediphosphonic acids are added as pure substance (s).

Eine besonders geeignete Alkandiphosphonsäure zur Verwendung in den hier beschriebenen Verfahren ist 1-Hydroxyethan-1,1-diphosphonsäure (HEDP, auch als Etidronsäure bezeichnet). So kann als Elektrolyt, der in dem hier beschriebenen Verfahren verwendet wird, HEDP alleine oder in Kombination mit anderen Alkandiphosphonsäuren in konzentrierter Methansulfonsäure, wie zuvor definiert, eingesetzt werden.A particularly suitable alkane diphosphonic acid for use in the processes described herein is 1-hydroxyethane-1,1-diphosphonic acid (HEDP, also referred to as etidronic acid). Thus, as the electrolyte used in the process described herein, HEDP may be used alone or in combination with other alkane diphosphonic acids in concentrated methanesulfonic acid as previously defined.

Die Konzentration der einen oder mehreren Alkandiphosphonsäuren im Elektrolyten beträgt vorzugsweise zwischen 1 und 50 g/kg Elektrolyt, beispielsweise zwischen 3 und 25 g/kg Elektrolyt. Insbesondere wird bevorzugt, dass die eine oder mehreren Alkandiphosphonsäuren zwischen 5 und 20 g/kg Elektrolyt eingesetzt werden.The concentration of the one or more alkanediphosphonic acids in the electrolyte is preferably between 1 and 50 g / kg of electrolyte, for example between 3 and 25 g / kg of electrolyte. In particular, it is preferred that the one or more alkane diphosphonic acids be used between 5 and 20 g / kg of electrolyte.

In einer Ausführungsform der vorliegenden Erfindung besteht der Elektrolyt im Wesentlichen aus Methansulfonsäure und einer oder mehreren Alkandiphosphonsäuren Dies bedeutet, dass keine sonstigen Substanzen zugegeben werden und solche sonstigen Substanzen nur in geringen Mengen, beispielsweise von weniger als 3 Gew.-%, vorliegen, etwa durch Verunreinigungen der Methansulfonsäure bzw. der Alkandiphosphonsäuren, oder aufgrund des Betriebs im Zuge des Elektropolierens (beispielsweise abgetragene Ionen). So wird auch bevorzugt, dass der Elektrolyt, der gemäß dem vorliegenden Verfahren eingesetzt wird, kein oder nur geringe Mengen an Wasser enthält. Der Wassergehalt des Elektrolyten liegt daher vorzugsweise bei höchstens 2 Gew.-%, noch besser unterhalb von 1 Gew.-%, bezogen auf das Gesamtgewicht des Elektrolyten.In one embodiment of the present invention, the electrolyte consists essentially of methanesulfonic acid and one or more alkane diphosphonic acids This means that no other substances are added and such other substances only in small amounts, for example less than 3 wt .-%, are present, such as by impurities of methanesulfonic acid or alkanediphosphonic, or due to the operation in the course of electropolishing (for example ablated ions). Thus, it is also preferred that the electrolyte used in accordance with the present process contains no or only minor amounts of water. The water content of the electrolyte is therefore preferably at most 2 wt .-%, more preferably below 1 wt .-%, based on the total weight of the electrolyte.

Bei der Durchführung eines Verfahrens gemäß der vorliegenden Erfindung erfolgt das Elektropolieren vorzugsweise bei einer Temperatur im Bereich von 20°C bis 70°C, beispielsweise zwischen Raumtemperatur und 60°C, und insbesondere bei einer Temperatur zwischen 25°C und 50°C. Die anodische Stromdichte, bei der die Werkstücke elektropoliert werden, können aus einem weiten Bereich gewählt werden. Dieser liegt vorzugsweise im Bereich von 2 bis 50 A/dm2, insbesondere zwischen 5 und 30 A/dm2. Die angelegte Spannung kann dabei häufig im Bereich von 10 bis 35 V liegen.In carrying out a method according to the present invention, the electropolishing is preferably carried out at a temperature in the range of 20 ° C to 70 ° C, for example between room temperature and 60 ° C, and in particular at a temperature between 25 ° C and 50 ° C. The anodic current density at which the workpieces are electropolished can be chosen from a wide range. This is preferably in the range from 2 to 50 A / dm 2 , in particular between 5 and 30 A / dm 2 . The applied voltage can often be in the range of 10 to 35 volts.

Die Dauer des Elektropoliervorgangs richtet sich natürlich nach der jeweiligen Rauheit des zu bearbeitenden Werkstücks und der gewünschten Glättung bzw. Entgratung. Die optimale Einwirkzeit kann der Durchschnittsfachmann im Rahmen von Routineexperimenten in Abhängigkeit von der eingesetzten Stromdichte, der Temperatur, dem Elektrolyten und der eingesetzten Vorrichtung ohne sonderlichen Aufwand ermitteln. In der Regel genügt eine Behandlung des Werkstücks für wenige Minuten.The duration of the electropolishing process of course depends on the particular roughness of the workpiece to be machined and the desired smoothing or deburring. The optimum exposure time can be determined by the average person skilled in the art within the scope of routine experiments as a function of the current density used, the temperature, the electrolyte and the device used without any particular effort. As a rule, a treatment of the workpiece is sufficient for a few minutes.

Im Anschluss an den Elektropoliervorgang wird das bearbeitete Werkstück aus dem Elektropolierbad entnommen und mit Wasser, vorzugsweise entionisiertem Wasser gespült. Dabei ist es nicht entscheidend, dass das Werkstück sofort vom Elektrolyten befreit wird. Der hier beschriebene Elektrolyt greift die bearbeitete Oberfläche nicht an, was die Bearbeitung erleichtert und keine weiteren Anforderungen an die eingesetzten Apparaturen stellt.Following the electropolishing process, the machined workpiece is removed from the electropolishing bath and rinsed with water, preferably deionized water. It is not crucial that the workpiece is immediately freed from the electrolyte. The electrolyte described here does not attack the machined surface, which facilitates the processing and makes no further demands on the equipment used.

Dieser hier beschriebene Elektrolyt kann sowohl für Reintitan als auch für Titan-haltige Legierungen verwendet werden. Diese Titan-haltigen Legierungen können insbesondere Titan in einem Anteil von mindestens 50 Mol-% umfassen. Eine wichtige solche Legierung, die Titan in einem Anteil von etwa 50 Mol-% umfasst, ist die Nickel-Titan-Legierung Nitinol, die auch als "Memory-Legierung" bezeichnet wird. Bei Versuchen mit dem hier beschriebenen Elektrolyten stellte sich heraus, dass insbesondere auch Werkstücke aus Nitinol mit einem Verfahren gemäß der vorliegenden Erfindung effizient und mit gutem Ergebnis elektropoliert werden können. Die Verwendung eines Elektrolyten, der Methansulfonsäure und eine oder mehrere Alkandiphosphonsäuren umfasst, zum Elektropolieren von Oberflächen aus Titan, Titan-haltigen Legierungen und Nickel-Titan-Legierungen, wie etwa Nitinol, ist ebenfalls ein Aspekt der hier beschriebenen Erfindung.This electrolyte described here can be used both for pure titanium and for titanium-containing alloys. These titanium-containing alloys may in particular comprise titanium in a proportion of at least 50 mol%. An important such alloy comprising titanium at a level of about 50 mole percent is the nickel-titanium alloy nitinol, also referred to as a "memory alloy". at Experiments with the electrolyte described here have shown that in particular also workpieces made of nitinol can be electro-polished efficiently and with good results by a process according to the present invention. The use of an electrolyte comprising methanesulfonic acid and one or more alkanediphosphonic acids to electropolish surfaces of titanium, titanium-containing alloys, and nickel-titanium alloys, such as nitinol, is also an aspect of the invention described herein.

Diese Elektrolyte erfordern bei ihrer Verwendung - im Gegensatz zu den Elektrolyten, die im bisherigen Stand der Technik verwendet wurden - keine technisch aufwendigen Einrichtungen, sondern können in üblichen industriellen Elektropolieranlagen, wie sie beispielsweise auch zur Behandlung von Edelstahl verwendet werden, eingesetzt werden. Insbesondere ist ein Elektrolyt, wie er gemäß der vorliegenden Erfindung verwendet wird, nicht brennbar, nicht besonders korrosiv und einfach zu handhaben. Bei einer normalen Handhabung besteht sowohl für die Menschen, die die Elektropolieranlage bedienen bzw. in der Nähe dieser Anlage arbeiten, als auch für die Umwelt keine erhöhte Gefährdung. Insbesondere setzt der hier beschriebene Elektrolyt keine schädlichen Gase oder Dämpfe frei.These electrolytes require in their use - in contrast to the electrolytes used in the prior art - no technically complex facilities, but can in conventional industrial electropolishing, as used for example for the treatment of stainless steel, are used. In particular, an electrolyte as used in accordance with the present invention is nonflammable, not very corrosive, and easy to handle. With normal handling, there is no increased risk for the people who operate the electropolishing system or work in the vicinity of this system, as well as for the environment. In particular, the electrolyte described herein releases no harmful gases or vapors.

Die hier beschriebenen Verfahren und Elektrolyte sind bei der Behandlung von Titan-haltigen Oberflächen nicht nur einfacher zu bedienen, sondern sie ermöglichen es auch, eine Glättung bzw. Entgratung der Oberflächen zu erzielen, die den Verfahren, wie sie im Stand der Technik beschrieben sind, zumindest ebenbürtig, wenn nicht in vielen Fällen sogar überlegen sind.The methods and electrolytes described herein are not only easier to handle in the treatment of titanium-containing surfaces, but also make it possible to achieve a smoothening or de-burring of the surfaces as described in the prior art. at least equal, if not superior in many cases.

Die Erfindung wird in den folgenden Beispielen näher erläutert. Diese Beispiele stellen jedoch nur mögliche Ausführungsformen des hier beschriebenen Elektropolierverfahrens dar und sollen in keiner Weise eine Beschränkung auf die hier verwendeten Bedingungen implizieren.The invention is explained in more detail in the following examples. However, these examples are only possible embodiments of the electropolishing method described herein and are not intended to imply any limitation to the conditions used herein.

BeispieleExamples Beispiel 1: Titanlegierung TiAIV4Example 1: Titanium alloy TiAIV4

Ein Blech der Abmessung 50 x 50 x 1,0 mm mit geschliffener Oberfläche und einer Rauhigkeit von Ra = 0,8 µm wurde in einem Elektrolyten, bestehend aus 990 g Methansulfonsäure 100%-ig und 10 g 1-Hydroxyethyl-1,1-diphosphonsäure elektropoliert.A sheet measuring 50 × 50 × 1.0 mm with a ground surface and a roughness of Ra = 0.8 μm was used in an electrolyte consisting of 990 g of methanesulfonic acid 100% and 10 g of 1-hydroxyethyl-1,1-diphosphonic acid electropolished.

Die dabei verwendeten Arbeitsdaten waren wie folgt:

  • Temperatur: 30°C
  • Stromdichte: 20 A/dm2
  • Polierzeit: 7 min
The working data used were as follows:
  • Temperature: 30 ° C
  • Current density: 20 A / dm 2
  • Polishing time: 7 min

Das Blech wurde vor der Behandlung entfettet, mit Wasser gespült und getrocknet. Nach dem Elektropolieren wurde das Blech aus dem Elektrolyten genommen und nach einer Wartezeit von 5 min in entionisiertem Wasser gespült und getrocknet. Die Oberflächen waren hochglänzend, ohne Ätzangriff und wiesen eine Rauheit von Ra = 0,3 µm auf. Die Kanten waren glatt und gratfrei.The sheet was degreased before treatment, rinsed with water and dried. After electropolishing, the sheet was removed from the electrolyte and rinsed in deionized water after a waiting time of 5 minutes and dried. The surfaces were high gloss, no etching attack and had a roughness of Ra = 0.3 μm. The edges were smooth and burr-free.

Beispiel 2: NitinolExample 2: Nitinol

Ein Draht aus Nitinol mit einem Durchmesser von 0,8 mm wurde in einem Elektrolyten gemäß Beispiel 1 elektropoliert.A 0.8 mm diameter nitinol wire was electropolished in an electrolyte according to Example 1.

Die dabei verwendeten Arbeitsdaten waren wie folgt:

  • Temperatur: 25°C
  • Stromdichte: 10 A/dm2
  • Polierzeit: 4 min
The working data used were as follows:
  • Temperature: 25 ° C
  • Current density: 10 A / dm 2
  • Polishing time: 4 min

Der Draht wurde gemäß Beispiel 1 vor- und nachbehandelt.The wire was pretreated and post-treated according to Example 1.

Das Ergebnis war eine hochglänzende und glatte Oberfläche ohne Ätzangriff auf das Gefüge.The result was a high gloss and smooth surface without etching attack on the microstructure.

Claims (13)

Verfahren zum Elektropolieren und/oder elektrochemischen Entgraten von Oberflächen aus Titan oder Titan-haltigen Legierungen, dadurch gekennzeichnet, dass der dabei verwendete Elektrolyt Methansulfonsäure und eine oder mehrere Alkandiphosphonsäuren umfasst, wobei die eine oder mehreren Alkandiphosphonsäuren gegebenenfalls mit Hydroxy- und/oder Aminogruppen substituiert sein können.Process for electropolishing and / or electrochemical deburring of surfaces of titanium or titanium-containing alloys, characterized in that the electrolyte used comprises methanesulfonic acid and one or more alkanediphosphonic acids, wherein the one or more alkanediphosphonic acids are optionally substituted by hydroxyl and / or amino groups can. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Konzentration der Methansulfonsäure im Elektrolyten mindestens 95 Gew.-% beträgt, bezogen auf das Gesamtgewicht des Elektrolyten.A method according to claim 1, characterized in that the concentration of methanesulfonic acid in the electrolyte is at least 95 wt .-%, based on the total weight of the electrolyte. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die eine oder mehreren Alkandiphosphonsäuren 1-Hydroxyethan-1,1-diphosphonsäure umfassen.Process according to any one of the preceding claims, characterized in that the one or more alkane diphosphonic acids comprise 1-hydroxyethane-1,1-diphosphonic acid. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der einen oder mehreren Alkandiphosphonsäuren zwischen 1 und 50 g/kg Elektrolyt liegt.Process according to any one of the preceding claims, characterized in that the concentration of the one or more alkane diphosphonic acids is between 1 and 50 g / kg of electrolyte. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Konzentration der einen oder mehreren Alkandiphosphonsäuren zwischen 5 und 20 g/kg Elektrolyt liegt.Process according to any one of Claims 1 to 3, characterized in that the concentration of the one or more alkane diphosphonic acids is between 5 and 20 g / kg of electrolyte. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektrolyt im Wesentlichen aus Methansulfonsäure und einer oder mehreren Alkandiphosphonsäuren besteht.Method according to one of the preceding claims, characterized in that the electrolyte consists essentially of methanesulfonic acid and one or more alkanediphosphonic acids. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es bei einer Temperatur zwischen 20°C und 70°C durchgeführt wird.Method according to one of the preceding claims, characterized in that it is carried out at a temperature between 20 ° C and 70 ° C. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren bei einer anodischen Stromdichte von 2-50 A/dm2 durchgeführt wird.Method according to one of the preceding claims, characterized in that the method is carried out at an anodic current density of 2-50 A / dm 2 . Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Verfahren bei einer anodischen Stromstärke von 5-30 A/dm2 durchgeführt wird.Method according to one of claims 1 to 7, characterized in that the method is carried out at an anodic current of 5-30 A / dm 2 . Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Titan-haltigen Legierungen Titan in einem Anteil von mindestens etwa 50 Mol-% umfassen.A method according to any one of the preceding claims, characterized in that the titanium-containing alloys comprise titanium in a proportion of at least about 50 mol%. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass die Titan-haltige Legierung Nitinol ist.A method according to claim 10, characterized in that the titanium-containing alloy is nitinol. Verwendung eines Elektrolyten gemäß einem der Ansprüche 1 bis 6 zum Elektropolieren von Oberflächen aus Titan und/oder Titan-haltigen Legierungen.Use of an electrolyte according to one of claims 1 to 6 for electropolishing surfaces of titanium and / or titanium-containing alloys. Verwendung gemäß Anspruch 12, dadurch gekennzeichnet, dass die Titan-haltige Legierung Nitinol ist.Use according to claim 12, characterized in that the titanium-containing alloy is nitinol.
EP08003975A 2007-03-09 2008-03-04 Electropolishing method for titanium Active EP1970473B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007011632A DE102007011632B3 (en) 2007-03-09 2007-03-09 Method for electropolishing and/or electrochemical deburring of surfaces made from titanium or titanium-containing alloys comprises using an electrolyte made from methane sulfonic acid or one or more alkane diphosphonic acids

Publications (3)

Publication Number Publication Date
EP1970473A2 true EP1970473A2 (en) 2008-09-17
EP1970473A3 EP1970473A3 (en) 2010-08-25
EP1970473B1 EP1970473B1 (en) 2011-08-31

Family

ID=39365667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08003975A Active EP1970473B1 (en) 2007-03-09 2008-03-04 Electropolishing method for titanium

Country Status (6)

Country Link
US (1) US20080217186A1 (en)
EP (1) EP1970473B1 (en)
JP (1) JP5145083B2 (en)
AT (1) ATE522642T1 (en)
DE (1) DE102007011632B3 (en)
ES (1) ES2369942T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668677A (en) * 2013-12-02 2015-06-03 天津大学 Non-water-based electrolyte used for titanium alloy electrolytic machining and preparation method of non-water-based electrolyte

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010321725B2 (en) * 2009-11-23 2015-11-05 Metcon Technologies, Llc Electrolyte solution and electropolishing methods
US8580103B2 (en) 2010-11-22 2013-11-12 Metcon, Llc Electrolyte solution and electrochemical surface modification methods
WO2014087414A1 (en) 2012-12-03 2014-06-12 Amrita Vishwa Vidya Peetham University Metallic titanium -based cardiovascular stent with nano - structured surface and method of manufacturing thereof
EP2878713A1 (en) * 2013-11-28 2015-06-03 Abbott Laboratories Vascular Enterprises Limited Electrolyte composition and method for the electropolishing treatment of Nickel-Titanium alloys and/or other metal substrates including tungsten, niob and tantal alloys
ES2604830B1 (en) 2016-04-28 2017-12-18 Drylyte, S.L. Process for smoothing and polishing metals by ionic transport by means of free solid bodies, and solid bodies to carry out said process.
JP6752626B2 (en) * 2016-05-31 2020-09-09 株式会社カネカ Method for manufacturing electropolishing liquid and electropolished metal molded product
JP2017214614A (en) * 2016-05-31 2017-12-07 株式会社カネカ Method for producing electrolytically polished metal compact
EP3551786B1 (en) 2016-12-09 2021-04-07 RENA Technologies Austria GmbH Electropolishing method and electrolyte for same
AT520365B1 (en) * 2017-08-29 2019-10-15 Hirtenberger Eng Surfaces Gmbh ELECTROLYTE FOR ELECTROPOLISHING METAL SURFACES
ES2734499B2 (en) * 2018-11-12 2020-06-03 Drylyte Sl Use of sulfonic acids in dry electrolytes to polish metal surfaces through ion transport
US11492723B2 (en) * 2019-11-05 2022-11-08 Cilag Gmbh International Electrolyte solutions for electropolishing of nitinol needles
DE102021120263A1 (en) * 2021-08-04 2023-02-09 Bayerische Motoren Werke Aktiengesellschaft Process and device for producing a coated structural component
WO2023157410A1 (en) * 2022-02-15 2023-08-24 日本軽金属株式会社 Surface-smoothened metal member and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000906A1 (en) 1999-06-25 2001-01-04 Organisation Europeenne Pour La Recherche Nucleaire (Cern) Bath composition for electropolishing of titanium and method for using same
DE10037337A1 (en) 2000-03-14 2001-09-20 Nmi Univ Tuebingen Electropolishing of titanium alloy and nickel-titanium alloy articles, especially Nitinol stents, is carried out in anhydrous electrolyte, preferably sulfamic acid in formamide, with article as anode
EP1354986A2 (en) 2002-04-09 2003-10-22 Olivier Piotrowski Process and apparatus for electropolishing titanium surfaces
DE10320909A1 (en) 2003-05-09 2004-11-18 Poligrat Holding Gmbh Electrolyte for the electrochemical polishing of metal surfaces

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249650B1 (en) * 1986-06-20 1989-12-13 Poligrat Gmbh Electrolyte for electrochemically polishing metal surfaces
JPH0762280B2 (en) * 1990-07-11 1995-07-05 山口県 Electrolytic polishing of titanium or titanium alloy
GB9022996D0 (en) * 1990-10-23 1990-12-05 Leonard Ian Prosthesis and methods and apparatus for making same
SE511209C2 (en) * 1994-12-12 1999-08-23 Sandvik Ab Method for obtaining well-defined oak gradients on inserts with electropolishing technology
US6332970B1 (en) * 1999-10-22 2001-12-25 Barry W. Coffey Electrolytic method of and compositions for stripping electroless nickel
SG87194A1 (en) * 2000-08-17 2002-03-19 Samsung Techwin Co Ltd Lead frame and method of manufacturing the lead frame
US7316603B2 (en) * 2002-01-22 2008-01-08 Cabot Microelectronics Corporation Compositions and methods for tantalum CMP
EP1386985B1 (en) * 2002-07-17 2008-08-20 Maillefer Instruments Holding S.A.R.L. Process for electrolytic polishing of dental instruments made of nickel-titanium alloys
CA2525064C (en) * 2003-05-12 2013-01-08 Arkema Inc. High purity electrolytic sulfonic acid solutions
US7510641B2 (en) * 2003-07-21 2009-03-31 Los Alamos National Security, Llc High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors
US20060163083A1 (en) * 2005-01-21 2006-07-27 International Business Machines Corporation Method and composition for electro-chemical-mechanical polishing
DE102005037563B3 (en) * 2005-08-09 2006-09-28 Poligrat Gmbh Process for electrochemical polishing of alloy steels useful for for electropolishing of steel, especially stainless steel involves using chromium-free electrolyte containing phosphoric acid and sulfuric acids
US7776189B2 (en) * 2006-03-07 2010-08-17 Abbott Laboratories Method and apparatus for electropolishing metallic stents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000906A1 (en) 1999-06-25 2001-01-04 Organisation Europeenne Pour La Recherche Nucleaire (Cern) Bath composition for electropolishing of titanium and method for using same
DE10037337A1 (en) 2000-03-14 2001-09-20 Nmi Univ Tuebingen Electropolishing of titanium alloy and nickel-titanium alloy articles, especially Nitinol stents, is carried out in anhydrous electrolyte, preferably sulfamic acid in formamide, with article as anode
EP1354986A2 (en) 2002-04-09 2003-10-22 Olivier Piotrowski Process and apparatus for electropolishing titanium surfaces
DE10320909A1 (en) 2003-05-09 2004-11-18 Poligrat Holding Gmbh Electrolyte for the electrochemical polishing of metal surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668677A (en) * 2013-12-02 2015-06-03 天津大学 Non-water-based electrolyte used for titanium alloy electrolytic machining and preparation method of non-water-based electrolyte

Also Published As

Publication number Publication date
DE102007011632B3 (en) 2008-06-26
JP5145083B2 (en) 2013-02-13
JP2008223139A (en) 2008-09-25
EP1970473B1 (en) 2011-08-31
US20080217186A1 (en) 2008-09-11
ES2369942T3 (en) 2011-12-09
ATE522642T1 (en) 2011-09-15
EP1970473A3 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP1970473B1 (en) Electropolishing method for titanium
EP1923490B1 (en) Electropolishing method
EP1911862B1 (en) Electropolishing method for niobium and tantalum
EP0700340B1 (en) Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating
EP1903132B1 (en) Electropolishing method for cobalt and cobalt alloys
DE10207632B4 (en) Process for plasma polishing of articles of metal and metal alloys
EP1625246B1 (en) Electrolyte for electrochemically polishing metallic surfaces
DE3020012C2 (en) Method of exposing the silicon crystals on the surface of a body made of an aluminum alloy with a high silicon content
DE3706711A1 (en) METHOD FOR CLEANING SURFACES OF AN ALUMINUM OBJECT
EP1664391B1 (en) Electropolishing method
EP1913181B1 (en) Electropolishing method
EP3201281B1 (en) Method for the wet chemical polishing and deburring of moulded parts made of zinc
DE10043148B4 (en) A method for increasing the corrosion resistance of a titanium or titanium alloy workpiece and use of the method
DE1109478B (en) Process for descaling objects made of titanium or titanium alloys
DE3701728A1 (en) METHOD FOR APPLYING OXALATUE COATINGS ON STAINLESS STEEL
DE10309888B4 (en) Machining fluid for surface treatment of aluminum or an aluminum alloy and corresponding surface treatment method
DE3217145A1 (en) Method for cleaning, degreasing and activating metal surfaces
DE885333C (en) Process for the electrochemical treatment of metal bodies for the purpose of removing surface layers
EP1138793A2 (en) Aluminium alloy for good machinability and to produce coatings by anodizing which are extremely corrosion resistant
WO2019115628A1 (en) Pickling method for profiles, rolled strips, and sheets made of aluminium alloys
DE19924589A1 (en) Hard material layers stripping from hard metal substrates, e.g. tool and machine component scrap, involves using a solution of an oxidizing mineral acid and a hydrogen halide compound
EP4144468A1 (en) Manufacturing device for electrochemical machining of a component, in particular a turbine component, method for electrochemical processing of a component and component
DE1187884B (en) Process for anodic descaling and simultaneous metal removal from titanium or titanium alloys
DE1521075A1 (en) Electrolytic nickel plating of titanium
DE1122177B (en) Process for the production of roughened electrodes, in particular aluminum electrodes for electrolytic capacitors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20110203

RIC1 Information provided on ipc code assigned before grant

Ipc: C25F 3/26 20060101AFI20110224BHEP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004632

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2369942

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111209

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111231

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012638

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004632

Country of ref document: DE

Effective date: 20120601

BERE Be: lapsed

Owner name: POLIGRAT G.M.B.H.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008004632

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008004632

Country of ref document: DE

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: POLIGRAT GMBH, 81829 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: POLIGRAT GMBH, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: POLIGRAT DEUTSCHLAND GMBH

Effective date: 20190919

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: POLIGRAT DEUTSCHLAND GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: POLIGRAT GMBH

Effective date: 20191010

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): SCHLAEFER LASZLO, DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER(S): POLIGRAT GMBH, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 522642

Country of ref document: AT

Kind code of ref document: T

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Effective date: 20191202

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200213 AND 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20220322

Year of fee payment: 15

Ref country code: HU

Payment date: 20220227

Year of fee payment: 15

Ref country code: GB

Payment date: 20220202

Year of fee payment: 15

Ref country code: CH

Payment date: 20220316

Year of fee payment: 15

Ref country code: AT

Payment date: 20220316

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220202

Year of fee payment: 15

Ref country code: FR

Payment date: 20220202

Year of fee payment: 15

Ref country code: CZ

Payment date: 20220225

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220331

Year of fee payment: 15

Ref country code: ES

Payment date: 20220420

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230328

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 522642

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304