EP1923490B1 - Electropolishing method - Google Patents

Electropolishing method Download PDF

Info

Publication number
EP1923490B1
EP1923490B1 EP07018327.2A EP07018327A EP1923490B1 EP 1923490 B1 EP1923490 B1 EP 1923490B1 EP 07018327 A EP07018327 A EP 07018327A EP 1923490 B1 EP1923490 B1 EP 1923490B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
alloy
general formula
electropolishing
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07018327.2A
Other languages
German (de)
French (fr)
Other versions
EP1923490A2 (en
EP1923490A3 (en
Inventor
Siegfried Pießlinger-Schweiger
Olaf BÖHME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat GmbH
Original Assignee
Poligrat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poligrat GmbH filed Critical Poligrat GmbH
Publication of EP1923490A2 publication Critical patent/EP1923490A2/en
Publication of EP1923490A3 publication Critical patent/EP1923490A3/en
Application granted granted Critical
Publication of EP1923490B1 publication Critical patent/EP1923490B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • C25F3/20Polishing of light metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/26Polishing of heavy metals of refractory metals

Definitions

  • the present invention relates to a method for electrochemically polishing surfaces of metals and metal alloys.
  • the electrolyte used includes methanesulfonic acid and at least one alcoholic compound selected from aliphatic diols and alicyclic alcohols. This method is suitable for metal surfaces consisting of iron, tungsten, magnesium, aluminum or an alloy of these metals.
  • the process of electrochemical polishing or electropolishing serves to produce metal surfaces of high purity, to smooth and deburr metal surfaces. Smoothing in the micro range can also bring about a gleaming of the surfaces treated in this way. In addition, by electropolishing any stresses in the outer material layers can be removed.
  • electropolishing processes that can be used to process various metals or metal alloys.
  • these methods are based on the use of electrolytes comprising a concentrated mineral acid such as phosphoric acid or sulfuric acid or a mixture of concentrated mineral acids, to which additives are often added to further enhance the effect of the electrolytes and thus smoother and more lustrous metal surfaces receive.
  • additives are, for example, chromic acid, hydrofluoric acid, amine fluorides or organic additives, such as, for example, alcohols, amines, glycerol, etc.
  • electrolytes commonly used herein are often hazardous materials that are subject to special requirements and regulations in terms of their respective toxicity, flammability and / or hazard class with regard to their storage and use, and that require appropriate environmental and occupational safety precautions. This in turn causes a considerable effort and associated costs.
  • An electrolyte has long been known from the prior art, which largely meets the requirements for universal usability. It is a mixture of perchloric acid and acetic anhydride. However, due to the risk of explosion associated with its use, this mixture is frequently not industrially applicable, or can be used only with considerable safety expense.
  • the patent application WO 01/71068 A1 discloses electrolytic polishing processes which apparently can be used for a wide range of metals or metal alloys. These electropolishing processes use, inter alia, an electrolyte of methanesulfonic acid and methanol. However, this electrolyte has the serious disadvantage that it is hazardous to health, fire and explosive due to its high content of more than 80% of volatile methanol. Therefore, such a method can be operated usually only at very low temperatures, for example of at most 10 ° C, or with a complex system for safe capture and discharge of the resulting vapors. In addition, a suitability of this method for carbon steels, magnesium, magnesium alloys or aluminum-silicon alloys is not disclosed.
  • the electrolyte used contains at least 75 wt .-% of an alkylene glycol, the remainder of a chloride salt of the alkali and / or alkaline earth metals.
  • the subject of the present invention is an electropolishing process which can be applied to a wide range of metals and metal alloys with good success and is largely harmless in terms of occupational safety and environmental protection.
  • the method is suitable for electropolishing surfaces of metals as different as iron, tungsten, magnesium and aluminum, as well as surfaces of alloys of these metals.
  • it is suitable for surfaces of iron or an iron alloy, such as nickel iron, stainless steel (stainless steels) or carbon steel, which can be electropolished in both hardened and uncured form according to the present process; tungsten or a tungsten alloy, magnesium, a magnesium alloy, aluminum or an aluminum alloy, such as an aluminum-silicon alloy.
  • An alloy of a certain metal is understood to mean alloys in which this metal is the main constituent of the alloy, based on the weight of the constituents of the alloy. Frequently, this metal (or these metals) comprises more than 50% by weight of the alloy.
  • all carbon atoms can form the ring structure, as in cyclopentanol, cyclohexanol, cycloheptanol and cyclooctanol; but it is also possible that one or more carbon atoms form a hydroxyalkyl and / or one or more alkyl side chain (s).
  • Particularly preferred are electrolyte solutions comprising cyclohexanol.
  • the electrolyte according to the electropolishing method of the present invention comprises a mixture consisting of 5-93% methanesulfonic acid and 95-7% of the at least one alcoholic compound.
  • the electrolyte consists of 10-80% methanesulfonic acid and 90-20% of the at least one alcoholic compound.
  • the electrolyte may comprise 20-50% methanesulfonic acid and 50-80% of the at least one alcoholic compound.
  • the method for electropolishing according to the present invention is characterized in that in addition to methanesulfonic acid and alcoholic compounds, no further additives for the electrolyte are needed.
  • the electrolyte used in this process contains neither chromic acid or chromates, nor perchloric acid or salts thereof.
  • the process does not use any volatile additives such as methanol, ethanol or esters, whose high vapor pressure presents a particular challenge to occupational safety in terms of both flammability and toxicity.
  • the electrolyte contains no hydrofluoric acid and is also for this reason considerably less problematic in operation.
  • the electrolyte used in the processes according to the present invention contains no or only small amounts of water.
  • the water content of the electrolyte should not exceed a proportion of 10% water.
  • the electrolyte does not require the addition of salts for Leitwerterhöhung.
  • the process is carried out at a temperature between 60 ° C and 100 ° C. Since the electrolyte of the present process contains no volatile constituents, such higher temperatures, for example temperatures up to 80 ° C, up to 90 ° C, up to 100 ° C or even higher, can be used without special precautions, for example for safe collection and discharge incurred vapors are necessary.
  • the possibility that the method can also be carried out at relatively high temperatures, on the one hand allows the electropolishing process to be carried out in a relatively short time if required, and on the other hand makes it unnecessary to dissipate the heat released in the process of electropolishing.
  • a complex cooling largely or even completely be dispensed with. If a cooling system is used, it does not have to meet any higher performance requirements.
  • the anodic current density of the method presented here is, depending on the respective metals, at values between 3 and 40 A / dm 2 of the surface to be polished, preferably at 5-30 A / dm 2 .
  • tungsten or tungsten alloys allow the use of higher anodic current densities of, for example, about 30-40 A / dm 2 .
  • the other materials described here can be successfully electropolished at higher anodic current densities. For iron, aluminum and magnesium-containing surfaces, however, anodic current densities of about 5-20 A / dm 2 are usually sufficient.
  • the duration of the electropolishing process depends on the metal being worked, the roughness of the workpiece to be polished, the desired removal rate and the desired smoothing of the surfaces of the workpiece, as well as the temperature and the current density.
  • the process according to the invention has further significant advantages over conventional electropolishing processes.
  • the electrolyte used is chemically non-aggressive and therefore behaves after switching off the electropolishing, as well as during the subsequent rinsing processes the electro-polished surfaces largely inert.
  • the surfaces are not chemically attacked and etched, so the quality of the Electropolished surfaces are maintained and no special precautions are required to remove the electrolyte as quickly as possible from the machined workpiece. This is especially important in the machining of workpieces with low corrosion resistance, as they have about normal steel, magnesium, aluminum and their alloys.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum elektrochemischen Polieren von Oberflächen von Metallen und Metalllegierungen. Der dabei verwendete Elektrolyt umfasst Methansulfonsäure sowie mindestens eine alkoholische Verbindung, die ausgewählt ist aus aliphatischen Diolen und alicyclischen Alkoholen. Dieses Verfahren eignet sich für Metalloberflächen, die aus Eisen, Wolfram, Magnesium, Aluminium oder einer Legierung dieser Metalle bestehen.The present invention relates to a method for electrochemically polishing surfaces of metals and metal alloys. The electrolyte used includes methanesulfonic acid and at least one alcoholic compound selected from aliphatic diols and alicyclic alcohols. This method is suitable for metal surfaces consisting of iron, tungsten, magnesium, aluminum or an alloy of these metals.

Hintergrund der ErfindungBackground of the invention

Das Verfahren des elektrochemischen Polierens oder Elektropolierens dient dazu, Metalloberflächen hoher Reinheit zu erzeugen, die Metalloberflächen zu glätten und zu entgraten. Durch ein Glätten im Mikrobereich kann auch ein Glänzen der so behandelten Oberflächen bewirkt werden. Darüber hinaus können durch das Elektropolieren etwaige Spannungen in den äußeren Werkstoffschichten abgetragen werden.The process of electrochemical polishing or electropolishing serves to produce metal surfaces of high purity, to smooth and deburr metal surfaces. Smoothing in the micro range can also bring about a gleaming of the surfaces treated in this way. In addition, by electropolishing any stresses in the outer material layers can be removed.

Es gibt eine Vielzahl unterschiedlicher Elektropolierverfahren, die zur Bearbeitung verschiedener Metalle bzw. Metalllegierungen verwendet werden können. In der Regel basieren diese Verfahren auf der Verwendung von Elektrolyten, die eine konzentrierte Mineralsäure wie etwa Phosphorsäure oder Schwefelsäure bzw. ein Gemisch konzentrierter Mineralsäuren umfassen, denen häufig Zusätze beigemischt werden, um die Wirkung der Elektrolyte weiter zu verbessern und so glattere und glänzendere Metalloberflächen zu erhalten. Beispiele für solche Zusätze sind etwa Chromsäure, Flusssäure, Aminfluoride oder organische Additive, wie beispielsweise Alkohole, Amine, Glyzerin, usw.There are a variety of different electropolishing processes that can be used to process various metals or metal alloys. In general, these methods are based on the use of electrolytes comprising a concentrated mineral acid such as phosphoric acid or sulfuric acid or a mixture of concentrated mineral acids, to which additives are often added to further enhance the effect of the electrolytes and thus smoother and more lustrous metal surfaces receive. Examples of such additives are, for example, chromic acid, hydrofluoric acid, amine fluorides or organic additives, such as, for example, alcohols, amines, glycerol, etc.

All diesen herkömmlichen, vielfach industriell eingesetzten Elektrolyten ist jedoch gemein, dass sie nur für bestimmte Metalle und/oder Legierungen erfolgreich verwendet werden können und somit ein sehr begrenztes Einsatzprofil aufweisen. Zur Bearbeitung unterschiedlicher Metalle oder Legierungen ist es daher häufig notwendig, eine entsprechende Anzahl unterschiedlicher Elektrolyte bereitzuhalten. Dabei müssen die einzelnen Elektrolyte häufig streng getrennt voneinander gehalten werden und dürfen insbesondere nicht vermischt werden, da sie durch etwaige Vermischungen beschädigt und somit unbrauchbar werden könnten. Gelegentlich kann dies sogar dazu führen, dass gewisse Bestandteile der Elektrolyte miteinander reagieren und beispielsweise gesundheitsschädliche oder gefährliche Substanzen freisetzen. Darüber hinaus sind die Anforderungen an die Ausführung des Verfahrens und die Ausstattung der Elektropolieranlagen aufgrund der verschiedenen Elektrolyte oft auch sehr unterschiedlich, so dass für unterschiedliche Werkstoffe mehrere Anlagen bereitgehalten werden müssen.However, all these conventional, often industrially used electrolytes have in common that they can be used successfully only for certain metals and / or alloys and thus have a very limited use profile. For processing different metals or alloys, it is therefore often necessary to have available a corresponding number of different electrolytes. In this case, the individual electrolytes often have to be kept strictly separate from one another and in particular must not be mixed, since they could be damaged by possible mixing and thus become unusable. Occasionally, this may even cause certain components of the electrolytes to react with each other and, for example, release harmful or dangerous substances. In addition, the requirements for the execution of the process and the equipment of the electropolishing often also very different due to the different electrolytes, so that several facilities must be kept for different materials.

Bei den Elektrolyten die hierbei für gewöhnlich verwendet werden, handelt es sich häufig um Gefahrstoffe, die entsprechend ihrer jeweiligen Toxizität, Brennbarkeit und/oder Gefährdungsklasse hinsichtlich ihrer Lagerung und Verwendung speziellen Anforderungen und Vorschriften unterliegen und entsprechende Vorkehrungen hinsichtlich Umweltschutz und Arbeitssicherheit erfordern. Dies verursacht wiederum einen nicht unerheblichen Aufwand und damit verbundene Kosten.The electrolytes commonly used herein are often hazardous materials that are subject to special requirements and regulations in terms of their respective toxicity, flammability and / or hazard class with regard to their storage and use, and that require appropriate environmental and occupational safety precautions. This in turn causes a considerable effort and associated costs.

Die ideale Lösung für diese Probleme wäre ein Elektropolierverfahren, das sich zur Bearbeitung aller Metalle und Metalllegierungen gleichermaßen eignet und weitgehend unbedenklich hinsichtlich der damit verbundenen Umweltgefährdung und Arbeitssicherheit ist.The ideal solution to these problems would be an electropolishing process that is equally suitable for processing all metals and metal alloys and is largely harmless with regard to the associated environmental hazard and occupational safety.

Aus dem Stand der Technik ist seit langem ein Elektrolyt bekannt, der den Anforderungen für eine universelle Verwendbarkeit weitgehend entspricht. Dabei handelt es sich um ein Gemisch aus Perchlorsäure und Essigsäureanhydrid. Dieses Gemisch ist jedoch aufgrund der mit seiner Verwendung verbundenen Explosionsgefahr häufig industriell nicht einsetzbar, bzw. nur unter erheblichem sicherheitstechnischem Aufwand verwendbar.An electrolyte has long been known from the prior art, which largely meets the requirements for universal usability. It is a mixture of perchloric acid and acetic anhydride. However, due to the risk of explosion associated with its use, this mixture is frequently not industrially applicable, or can be used only with considerable safety expense.

Die Patentanmeldung WO 01/71068 A1 offenbart elektrolytische Polierverfahren, die offenbar für ein breites Spektrum an Metallen bzw. Metalllegierungen eingesetzt werden können. Diese Elektropolierverfahren verwenden unter anderem einen Elektrolyten aus Methansulfonsäure und Methanol. Dieser Elektrolyt hat jedoch den gravierenden Nachteil, dass er aufgrund seines hohen Anteils von über 80% an leicht flüchtigem Methanol gesundheitsgefährdend, feuer- und explosionsgefährlich ist. Daher kann ein solches Verfahren in der Regel nur bei sehr niedrigen Temperaturen, beispielsweise von höchstens 10°C, oder mit einem aufwendigen System zum sicheren Auffangen und Ableiten der entstehenden Dämpfe betrieben werden. Darüber hinaus ist eine Eignung dieses Verfahrens für Kohlenstoffstähle, Magnesium, Magnesiumlegierungen bzw. Aluminium-Silizium-Legierungen nicht offenbart.The patent application WO 01/71068 A1 discloses electrolytic polishing processes which apparently can be used for a wide range of metals or metal alloys. These electropolishing processes use, inter alia, an electrolyte of methanesulfonic acid and methanol. However, this electrolyte has the serious disadvantage that it is hazardous to health, fire and explosive due to its high content of more than 80% of volatile methanol. Therefore, such a method can be operated usually only at very low temperatures, for example of at most 10 ° C, or with a complex system for safe capture and discharge of the resulting vapors. In addition, a suitability of this method for carbon steels, magnesium, magnesium alloys or aluminum-silicon alloys is not disclosed.

Ein relativ breites Anwendungsspektrum scheint auch das in der Patentanmeldung US 2005/0045491 A1 offenbarte Verfahren aufzuweisen, das jedoch ebenfalls keine Eignung für Magnesium-haltige Metalloberflächen oder solche aus Aluminium-Silizium-Legierungen offenbart. Der dabei verwendete Elektrolyt enthält mindestens 75 Gew.-% eines Alkylenglykols, wobei der Rest aus einem Chloridsalz der Alkali- und/oder Erdalkalimetalle besteht.A relatively wide range of applications also appears in the patent application US 2005/0045491 A1 disclosed methods, but also does not disclose suitability for magnesium-containing metal surfaces or those of aluminum-silicon alloys. The electrolyte used contains at least 75 wt .-% of an alkylene glycol, the remainder of a chloride salt of the alkali and / or alkaline earth metals.

Gegenstand der ErfindungSubject of the invention

Gegenstand der hier vorliegenden Erfindung ist ein Elektropolierverfahren, das auf eine breite Palette von Metallen und Metalllegierungen mit gutem Erfolg angewendet werden kann und dabei weitestgehend unbedenklich hinsichtlich Arbeitssicherheit und Umweltschutz ist. Das Verfahren eignet sich zum Elektropolieren von Oberflächen aus so unterschiedlichen Metallen wie Eisen, Wolfram, Magnesium und Aluminium, sowie von Oberflächen aus Legierungen dieser Metalle. Insbesondere eignet es sich für Oberflächen aus Eisen oder einer Eisenlegierung, wie Nickeleisen, Edelstahl (nichtrostende Stähle) oder Kohlenstoffstahl, der sowohl in gehärteter als auch in ungehärteter Form gemäß dem vorliegenden Verfahren elektropoliert werden kann; aus Wolfram oder eine Wolframlegierung, aus Magnesium, einer Magnesiumlegierung, Aluminium oder einer Aluminiumlegierung, etwa auch einer Aluminium-Silizium-Legierung. Unter einer Legierung eines bestimmten Metalls werden Legierungen verstanden, in denen dieses Metall der Hauptbestandteil der Legierung ist, bezogen auf das Gewicht der Bestandteile der Legierung. Häufig umfasst dieses Metall (bzw. diese Metalle) mehr als 50 Gew.-% der Legierung.The subject of the present invention is an electropolishing process which can be applied to a wide range of metals and metal alloys with good success and is largely harmless in terms of occupational safety and environmental protection. The method is suitable for electropolishing surfaces of metals as different as iron, tungsten, magnesium and aluminum, as well as surfaces of alloys of these metals. In particular, it is suitable for surfaces of iron or an iron alloy, such as nickel iron, stainless steel (stainless steels) or carbon steel, which can be electropolished in both hardened and uncured form according to the present process; tungsten or a tungsten alloy, magnesium, a magnesium alloy, aluminum or an aluminum alloy, such as an aluminum-silicon alloy. An alloy of a certain metal is understood to mean alloys in which this metal is the main constituent of the alloy, based on the weight of the constituents of the alloy. Frequently, this metal (or these metals) comprises more than 50% by weight of the alloy.

Das Elektropolierverfahren gemäß der vorliegenden Erfindung verwendet dabei als Elektrolyten eine Lösung, die Methansulfonsäure und mindestens eine alkoholische Verbindung umfasst, wobei die mindestens eine alkoholische Verbindung ausgewählt ist aus der Gruppe bestehend aus aliphatischen Diolen der allgemeinen Formel CnH2n(OH)2 mit n = 3-6 und alicyclischen Alkoholen der allgemeinen Formel CmH2m-1OH mit m = 5-8. Insbesondere kann die alkoholische Verbindung mindestens ein aliphatisches Diol der allgemeinen Formel CnH2n(OH)2 umfassen, wobei n = 3, 4, 5 oder 6 ist. Dabei können sämtliche Isomere dieser aliphatischen Diole eingesetzt werden, solange die beiden Hydroxylgruppen an verschiedene Kohlenstoffatome gebunden sind. Beispiele hierfür sind etwa die Verbindungen 1,2-Propandiol, 1,2-Butandiol oder 1,4-Butandiol.The electropolishing method according to the present invention uses as electrolytes a solution comprising methanesulfonic acid and at least one alcoholic compound, wherein the at least one alcoholic compound is selected from the group consisting of aliphatic diols of the general formula C n H 2n (OH) 2 with n = 3-6 and alicyclic alcohols of the general formula C m H 2m-1 OH with m = 5-8. In particular, the alcoholic compound may comprise at least one aliphatic diol of the general formula C n H 2n (OH) 2 , where n = 3, 4, 5 or 6. All isomers of these aliphatic diols can be used as long as the two hydroxyl groups are bonded to different carbon atoms. Examples of these are, for example, the compounds 1,2-propanediol, 1,2-butanediol or 1,4-butanediol.

In einer speziellen Ausführungsform enthält der Elektrolyt als alkoholische Verbindungen sowohl mindestens ein aliphatisches Diol der allgemeinen Formel CnH2n(OH)2 als auch mindestens einen alicyclischen Alkohol der allgemeinen Formel CmH2m-1OH, wobei n = 3-6 und m = 5-8 sind.In a specific embodiment, the electrolyte contains as alcoholic compounds both at least one aliphatic diol of the general formula C n H 2n (OH) 2 and at least one alicyclic alcohol of the general formula C m H 2m-1 OH, where n = 3-6 and m = 5-8.

Die alicyclischen Alkohole der vorliegenden Erfindung umfassen ebenfalls sämtliche Isomere, die der allgemeinen Formel CmH2m-1OH mit m = 5-8 genügen. Dabei können sämtliche Kohlenstoffatome die Ringstruktur bilden, wie in Cyclopentanol, Cyclohexanol, Cycloheptanol und Cyclooktanol; es ist aber ebenfalls möglich, dass ein oder mehrere Kohlenstoffatome eine Hydroxyalkyl- und/oder eine oder mehrere Alkyl-Seitenkette(n) bilden. Insbesondere bevorzugt sind Elektrolytlösungen die Cyclohexanol umfassen.The alicyclic alcohols of the present invention also include all isomers satisfying the general formula C m H 2m-1 OH with m = 5-8. In this case, all carbon atoms can form the ring structure, as in cyclopentanol, cyclohexanol, cycloheptanol and cyclooctanol; but it is also possible that one or more carbon atoms form a hydroxyalkyl and / or one or more alkyl side chain (s). Particularly preferred are electrolyte solutions comprising cyclohexanol.

In einer bevorzugten Ausführungsform umfasst der Elektrolyt gemäß dem Verfahren zum Elektropolieren der vorliegenden Erfindung ein Gemisch, das aus 5-93% Methansulfonsäure und 95-7% der mindestens einen alkoholischen Verbindung besteht. Diese Prozentangaben, wie auch alle weiteren in der vorliegenden Anmeldung beziehen sich, soweit nichts Gegenteiliges angegeben ist, auf das Gewicht der jeweiligen Substanzen und Lösungen. Insbesondere bevorzugt ist, dass der Elektrolyt aus 10-80% Methansulfonsäure und 90-20% der mindestens einen alkoholischen Verbindung besteht. So kann der Elektrolyt beispielsweise 20-50 % Methansulfonsäure und 50-80% der mindestens einen alkoholischen Verbindung umfassen.In a preferred embodiment, the electrolyte according to the electropolishing method of the present invention comprises a mixture consisting of 5-93% methanesulfonic acid and 95-7% of the at least one alcoholic compound. These percentages, as well as all others in the present application, unless otherwise stated, relate to the weight of the respective substances and solutions. It is particularly preferred that the electrolyte consists of 10-80% methanesulfonic acid and 90-20% of the at least one alcoholic compound. For example, the electrolyte may comprise 20-50% methanesulfonic acid and 50-80% of the at least one alcoholic compound.

Insbesondere zeichnet sich das Verfahren zum Elektropolieren gemäß der vorliegenden Erfindung dadurch aus, dass neben Methansulfonsäure und alkoholischen Verbindungen keine weiteren Zusatzstoffe für den Elektrolyten benötigt werden. Dabei ist insbesondere zu erwähnen, dass der in diesem Verfahren verwendete Elektrolyt weder Chromsäure oder Chromate enthält, noch Perchlorsäure bzw. deren Salze. Auch verwendet das Verfahren keine leicht flüchtigen Zusatzsstoffe wie Methanol, Ethanol oder Ester, deren hoher Dampfdruck eine besondere Herausforderung für die Arbeitssicherheit sowohl hinsichtlich ihrer Brennbarkeit als auch ihrer Toxizität darstellt. Zudem enthält der Elektrolyt auch keine Flusssäure und ist auch aus diesem Grund erheblich unproblematischer im Betrieb.In particular, the method for electropolishing according to the present invention is characterized in that in addition to methanesulfonic acid and alcoholic compounds, no further additives for the electrolyte are needed. It should be mentioned in particular that the electrolyte used in this process contains neither chromic acid or chromates, nor perchloric acid or salts thereof. Also, the process does not use any volatile additives such as methanol, ethanol or esters, whose high vapor pressure presents a particular challenge to occupational safety in terms of both flammability and toxicity. In addition, the electrolyte contains no hydrofluoric acid and is also for this reason considerably less problematic in operation.

Vorzugsweise enthält der in den Verfahren gemäß der vorliegenden Erfindung verwendete Elektrolyt kein oder nur geringe Mengen an Wasser. So sollte der Wassergehalt des Elektrolyten einen Anteil von 10% Wasser nicht überschreiten. Darüber hinaus benötigt der Elektrolyt auch keinen Zusatz von Salzen zur Leitwerterhöhung.Preferably, the electrolyte used in the processes according to the present invention contains no or only small amounts of water. Thus, the water content of the electrolyte should not exceed a proportion of 10% water. In addition, the electrolyte does not require the addition of salts for Leitwerterhöhung.

Gemäß der vorliegenden Erfindung wird das Verfahren bei einer Temperatur zwischen 60°C und 100°C durchgeführt. Da der Elektrolyt des vorliegenden Verfahrens keine leicht flüchtigen Bestandteile enthält, können solche höheren Temperaturen, beispielsweise Temperaturen bis 80°C, bis 90°C, bis 100°C oder sogar darüber verwendet werden, ohne dass spezielle Vorkehrungen, beispielsweise zum sicheren Auffangen und Ableiten entstehender Dämpfe notwendig sind. Die Möglichkeit, dass das Verfahren auch bei höheren Temperaturen durchgeführt werden kann, gestattet einerseits, dass das Elektropolierverfahren bei Bedarf in relativ kurzer Zeit durchgeführt werden kann, andererseits ermöglicht es, die beim Prozess des Elektropolierens freigesetzte Wärme nicht aufwendig abführen zu müssen. Somit kann auf eine aufwendige Kühlung weitgehend oder sogar ganz verzichtet werden. Sollte eine Kühlung verwendet werden muss diese daher auch keinen höheren Anforderungen an die Leistungsfähigkeit genügen.According to the present invention, the process is carried out at a temperature between 60 ° C and 100 ° C. Since the electrolyte of the present process contains no volatile constituents, such higher temperatures, for example temperatures up to 80 ° C, up to 90 ° C, up to 100 ° C or even higher, can be used without special precautions, for example for safe collection and discharge incurred vapors are necessary. The possibility that the method can also be carried out at relatively high temperatures, on the one hand allows the electropolishing process to be carried out in a relatively short time if required, and on the other hand makes it unnecessary to dissipate the heat released in the process of electropolishing. Thus, a complex cooling largely or even completely be dispensed with. If a cooling system is used, it does not have to meet any higher performance requirements.

Die anodische Stromdichte des hier vorgestellten Verfahrens liegt in Abhängigkeit der jeweiligen Metalle bei Werten zwischen 3 und 40 A/dm2 der zu polierenden Oberfläche, bevorzugt bei 5-30 A/dm2. Insbesondere Wolfram oder Wolframlegierungen erlauben die Verwendung höherer anodischer Stromdichten von beispielsweise etwa 30-40 A/dm2. Aber auch die anderen hier beschriebenen Werkstoffe können erfolgreich bei höheren anodischen Stromdichten elektropoliert werden. Für Eisen-, Aluminium- und Magnesium-haltige Oberflächen reichen jedoch meistens anodische Stromdichten von etwa 5-20 A/dm2 völlig aus.The anodic current density of the method presented here is, depending on the respective metals, at values between 3 and 40 A / dm 2 of the surface to be polished, preferably at 5-30 A / dm 2 . In particular, tungsten or tungsten alloys allow the use of higher anodic current densities of, for example, about 30-40 A / dm 2 . But the other materials described here can be successfully electropolished at higher anodic current densities. For iron, aluminum and magnesium-containing surfaces, however, anodic current densities of about 5-20 A / dm 2 are usually sufficient.

Die Dauer des Elektropoliervorgangs richtet sich natürlich jeweils nach dem bearbeiteten Metall, der Rauheit des zu polierenden Werkstücks, der gewünschten Abtragsmenge und der gewünschten Glättung der Oberflächen des Werkstücks, sowie der Temperatur und der Stromdichte.Of course, the duration of the electropolishing process depends on the metal being worked, the roughness of the workpiece to be polished, the desired removal rate and the desired smoothing of the surfaces of the workpiece, as well as the temperature and the current density.

Neben der breiten Anwendbarkeit besitzt das erfindungsgemäße Verfahren gegenüber herkömmlichen Elektropolierverfahren weitere wesentliche Vorteile. So ist der verwendete Elektrolyt chemisch nicht aggressiv und verhält sich daher nach dem Abschalten des Elektropolierstroms, wie auch während der nachfolgenden Spülprozesse den elektropolierten Oberflächen gegenüber weitestgehend inert. Die Oberflächen werden nicht chemisch angegriffen und verätzt, so dass die Qualität der elektropolierten Oberflächen erhalten bleibt und keine speziellen Vorkehrungen erforderlich sind, den Elektrolyten so schnell als möglich von dem bearbeiteten Werkstück zu entfernen. Dies ist vor allem bei der Bearbeitung von Werkstücken mit geringer Korrosionsbeständigkeit von Bedeutung, wie sie etwa Normalstahl, Magnesium, Aluminium und deren Legierungen aufweisen.In addition to its broad applicability, the process according to the invention has further significant advantages over conventional electropolishing processes. Thus, the electrolyte used is chemically non-aggressive and therefore behaves after switching off the electropolishing, as well as during the subsequent rinsing processes the electro-polished surfaces largely inert. The surfaces are not chemically attacked and etched, so the quality of the Electropolished surfaces are maintained and no special precautions are required to remove the electrolyte as quickly as possible from the machined workpiece. This is especially important in the machining of workpieces with low corrosion resistance, as they have about normal steel, magnesium, aluminum and their alloys.

Neben dem Verfahren selbst in all seinen dargelegten Aspekten, richtet sich ein weiterer Aspekt der vorliegenden Erfindung auf Elektrolyte gemäß Anspruch 5.In addition to the process itself in all its aspects set forth, another aspect of the present invention is directed to electrolytes according to claim 5.

Die Erfindung wird in den folgenden Beispielen näher erläutert. Diese Beispiele stellen lediglich mögliche Ausführungsformen des hier beschriebenen Elektropolierverfahrens und der dabei verwendeten Elektrolyte dar und sollen in keiner Weise eine Beschränkung auf die hier verwendeten Bedingungen implizieren.The invention is explained in more detail in the following examples. These examples are merely possible embodiments of the electropolishing process described herein and the electrolytes used herein, and are not intended to imply any limitation to the conditions used herein.

BeispieleExamples

  • 1.
    Behandelte Oberfläche: Edelstahl Wst. Nr. 1.4301
    Elektrolyt: 37% Methansulfonsäure + 63% 1,2-Propandiol
    Temperatur: 80°C
    Anodische Stromdichte: 10 A/dm2
    Dauer: 15 min
    Ergebnis: Spiegelglanz
    1.
    Treated surface: stainless steel Wst. Nr. 1.4301
    Electrolyte: 37% methanesulfonic acid + 63% 1,2-propanediol
    Temperature: 80 ° C
    Anodic current density: 10 A / dm 2
    Duration: 15 min
    Result: mirror gloss
  • 2.
    Behandelte Oberfläche: Werkzeugstahl (Kohlenstoffstahl)
    Elektrolyt: 37% Methansulfonsäure + 63% 1,2-Pentandiol
    Temperatur: 80°C
    Anodische Stromdichte: 20 A/dm2
    Dauer: 10 min
    Ergebnis: Hochglanz
    Second
    Treated surface: tool steel (carbon steel)
    Electrolyte: 37% methanesulfonic acid + 63% 1,2-pentanediol
    Temperature: 80 ° C
    Anodic current density: 20 A / dm 2
    Duration: 10 min
    Result: high gloss
  • 3.
    Behandelte Oberfläche: Wolfram
    Elektrolyt: 50% Methansulfonsäure + 50% 1,2-Propandiol
    Temperatur: 80°C
    Anodische Stromdichte: 40 A/dm2
    Ergebnis: Hochglanz
    Third
    Treated surface: tungsten
    Electrolyte: 50% methanesulfonic acid + 50% 1,2-propanediol
    Temperature: 80 ° C
    Anodic current density: 40 A / dm 2
    Result: high gloss
  • 4.
    Behandelte Oberfläche: Magnesium
    Elektrolyt: 20% Methansulfonsäure + 40% 1,2-Propandiol + 40% Cyclohexanol Temperatur: 60°C
    Anodische Stromdichte: 10 A/dm2
    Dauer: 8 Minuten
    Ergebnis: Hochglanz
    4th
    Treated surface: magnesium
    Electrolyte: 20% methanesulfonic acid + 40% 1,2-propanediol + 40% cyclohexanol Temperature: 60 ° C
    Anodic current density: 10 A / dm 2
    Duration: 8 minutes
    Result: high gloss
  • 5.
    Behandelte Oberfläche: Aluminium-Silizium-Legierung AlSi2O
    Elektrolyt: 20% Methansulfonsäure + 80% 1,2-Butandiol
    Temperatur: 80°C
    Anodische Stromdichte: 10 A/dm2
    Dauer: 12 min
    Ergebnis: Hochglanz
    5th
    Treated surface: aluminum-silicon AlSi 2 O alloy
    Electrolyte: 20% methanesulfonic acid + 80% 1,2-butanediol
    Temperature: 80 ° C
    Anodic current density: 10 A / dm 2
    Duration: 12 min
    Result: high gloss
  • 6.
    Behandelte Oberfläche: Aluminium-Magnesium-Legierung AlMg1
    Elektrolyt: 50% Methansulfonsäure + 50% 1,2-Propandiol
    Temperatur: 80°C
    Anodische Stromdichte: 10 A/dm2
    Dauer: 10 min
    Ergebnis: Hochglanz
    6th
    Treated surface: aluminum-magnesium alloy AlMg 1
    Electrolyte: 50% methanesulfonic acid + 50% 1,2-propanediol
    Temperature: 80 ° C
    Anodic current density: 10 A / dm 2
    Duration: 10 min
    Result: high gloss

Claims (5)

  1. A method for electro polishing of surfaces of metals, which are selected from iron or an iron alloy,
    tungsten or an tungsten alloy,
    magnesium or a magnesium alloy, and
    aluminum or an aluminum alloy;
    with an electrolyte, comprising
    - 10-80 percent by weight methane sulfonic acid and
    - 90-20 percent by weight of at least one alcoholic compound selected from the group consisting of aliphatic diols of general formula CnH2n(OH)2 with n = 3-6 and alicyclic alcohols of general formula CmH2m-1OH with m = 5-8,
    wherein the method is carried out at a temperature between 60 and 100 °C and an anodic current density of 3-40 A/dm2.
  2. The method of claim 1, characterized in that the aliphatic diol comprises 1,2-propanediol and/or 1,2-butanediol.
  3. The method of claim 1 or 2, characterized in that the alicyclic alcohol comprises cyclohexanol.
  4. The method of anyone of the preceding claims, characterized in that the electrolyte does not contain any chromic acid or chromate.
  5. An electrolyte for carrying out the method according to anyone of the preceding claims, characterized in that the electrolyte consists of 10 to 80 percent by weight of methane sulfonic acid and 90 to 20 percent by weight of at least one alcoholic compound, selected from the group, consisting of aliphatic diols of the general formula CnH2n(OH)2 with n=3-6 and alicyclic alcohols of the general formula CmH2m-1OH with m=5-8.
EP07018327.2A 2006-11-14 2007-09-18 Electropolishing method Active EP1923490B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006053586A DE102006053586B3 (en) 2006-11-14 2006-11-14 Electropolishing the surface of metals comprises using an electrolye comprising methanesulfonic acid and an alkanediol or cycloalkanol

Publications (3)

Publication Number Publication Date
EP1923490A2 EP1923490A2 (en) 2008-05-21
EP1923490A3 EP1923490A3 (en) 2010-08-25
EP1923490B1 true EP1923490B1 (en) 2015-03-11

Family

ID=38984297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07018327.2A Active EP1923490B1 (en) 2006-11-14 2007-09-18 Electropolishing method

Country Status (6)

Country Link
US (1) US20080121530A1 (en)
EP (1) EP1923490B1 (en)
JP (1) JP2008121118A (en)
CA (1) CA2614783C (en)
DE (1) DE102006053586B3 (en)
ES (1) ES2534429T3 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110210011A1 (en) * 2010-03-01 2011-09-01 Chih-Feng Ho Method for cleaning surface of stainless steel
CN104032363A (en) * 2014-06-19 2014-09-10 南昌航空大学 Phosphoric-acid-free electrochemical polishing process for siliceous aluminum alloy
JP6532152B2 (en) * 2015-01-23 2019-06-19 福岡県 Electropolishing liquid
US10399166B2 (en) 2015-10-30 2019-09-03 General Electric Company System and method for machining workpiece of lattice structure and article machined therefrom
AT520365B1 (en) * 2017-08-29 2019-10-15 Hirtenberger Eng Surfaces Gmbh ELECTROLYTE FOR ELECTROPOLISHING METAL SURFACES
EP3551786B1 (en) 2016-12-09 2021-04-07 RENA Technologies Austria GmbH Electropolishing method and electrolyte for same
JP6945233B2 (en) * 2017-11-15 2021-10-06 日本表面化学株式会社 Manufacturing method of electrolytic polishing liquid and processed metal
ES2734499B2 (en) * 2018-11-12 2020-06-03 Drylyte Sl Use of sulfonic acids in dry electrolytes to polish metal surfaces through ion transport
EP3923872A4 (en) * 2019-02-13 2023-01-11 Flex Memory Ventures Pty Ltd Implantable objects fabricated by additive manufacturing and methods of fabricating the same
EP4073294B1 (en) 2019-12-10 2024-01-03 Biotronik Ag Novel electrolyte for electropolishing titanium alloys
CN113201738B (en) * 2021-05-10 2022-09-30 哈尔滨工业大学 Electrochemical surface treatment method for selectively laser melting AlSi10Mg formed workpiece

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH409192A (en) * 1960-01-12 1966-03-15 Sandoz Ag Process for the production of pigment dyes
JPS56152999A (en) * 1980-04-25 1981-11-26 Kinki Yakuhin Kogyo Kk Electrolytic polishing liqid of co-cr-type alloy
DE3302011C1 (en) * 1983-01-21 1984-06-20 Kraftwerk Union AG, 4330 Mülheim Process for electrolytically polishing the surfaces of finished parts made of zirconium and/or zirconium alloys
US5322904A (en) * 1988-09-28 1994-06-21 Exfluor Research Corporation Liquid-phase fluorination
DE19809487A1 (en) * 1998-03-06 1999-09-09 Greising Electroplating and electrolytic cleaning of restricted area especially of metal, e.g. on construction site
US6352636B1 (en) * 1999-10-18 2002-03-05 General Electric Company Electrochemical system and process for stripping metallic coatings
NL1014727C2 (en) * 2000-03-23 2001-09-25 Univ Eindhoven Tech A method for electrolytically polishing a metal in the presence of an electrolyte composition, as well as a molded article obtained by such a method.
JP4698904B2 (en) * 2001-09-20 2011-06-08 株式会社大和化成研究所 Tin or tin-based alloy plating bath, tin salt and acid or complexing agent solution for building bath, maintenance or replenishment of the plating bath, and electric / electronic parts manufactured using the plating bath
US6835300B2 (en) * 2002-09-13 2004-12-28 General Electric Company Electropolishing solution and methods for its use and recovery
US20060163083A1 (en) * 2005-01-21 2006-07-27 International Business Machines Corporation Method and composition for electro-chemical-mechanical polishing

Also Published As

Publication number Publication date
EP1923490A2 (en) 2008-05-21
EP1923490A3 (en) 2010-08-25
US20080121530A1 (en) 2008-05-29
ES2534429T3 (en) 2015-04-22
CA2614783C (en) 2014-09-23
CA2614783A1 (en) 2008-05-14
JP2008121118A (en) 2008-05-29
DE102006053586B3 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
EP1923490B1 (en) Electropolishing method
EP1970473B1 (en) Electropolishing method for titanium
EP1911862B1 (en) Electropolishing method for niobium and tantalum
DE3048083C2 (en) Process for the chemical removal of oxide layers from objects made of titanium or titanium alloys
EP2147131B1 (en) Method for the thermochemical passivation of stainless steel
EP3684959B1 (en) Hot dip coated steel strip having an improved surface appearance and method for production thereof
DE102005055768A1 (en) Method and means for the electrolytic cleaning and descaling of a metallic workpiece
DE4315813A1 (en) Process for the production of printing rollers from a metallic core cylinder and a copper or copper alloy coating
EP1625246B1 (en) Electrolyte for electrochemically polishing metallic surfaces
DE3020012C2 (en) Method of exposing the silicon crystals on the surface of a body made of an aluminum alloy with a high silicon content
EP1664391B1 (en) Electropolishing method
DE3027600A1 (en) METHOD FOR PRODUCING A LITHOGRAPHIC PLATE CONSTRUCTING AN ALUMINUM ALLOY
DE102005037563B3 (en) Process for electrochemical polishing of alloy steels useful for for electropolishing of steel, especially stainless steel involves using chromium-free electrolyte containing phosphoric acid and sulfuric acids
DE3208124A1 (en) STRIPPER
EP3201281B1 (en) Method for the wet chemical polishing and deburring of moulded parts made of zinc
DE714056C (en) Process for removing stubborn oxide layers from medium and high-alloy steels
EP3875550B1 (en) Paint stripping agent and method for stripping paint from objects
WO2019115628A1 (en) Pickling method for profiles, rolled strips, and sheets made of aluminium alloys
EP2975162B1 (en) Method for providing a workpiece with a protective coating
EP3456864A1 (en) Two stage pre-treatment of aluminium, in particular aluminium casting alloys, comprising a pickle and a conversion treatment
WO2021148318A1 (en) Composition in the form of an electrolyte for dissolving and/or separating metals, metal oxides, and/or metal alloys, and uses of said composition
DE632623C (en) Process for the electrolytic production of fluoride layers on light metals and their alloys
EP0795627B1 (en) Etchant for stainless steel
EP3724371A1 (en) Boric acid-free composition for removing deposits containing cryolite
DE2100178A1 (en) Process for electrolytic polishing of metal objects ^

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20110209

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 715396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2534429

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013775

Country of ref document: DE

Effective date: 20150423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150612

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013775

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E024828

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

26N No opposition filed

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150918

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007013775

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007013775

Country of ref document: DE

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: POLIGRAT GMBH, 81829 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: POLIGRAT GMBH, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: POLIGRAT DEUTSCHLAND GMBH

Effective date: 20190919

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: POLIGRAT DEUTSCHLAND GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: POLIGRAT GMBH

Effective date: 20191010

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): IFJ. SZENTPETERI ADAM, SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER(S): POLIGRAT GMBH, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 715396

Country of ref document: AT

Kind code of ref document: T

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Effective date: 20191202

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200213 AND 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20220919

Year of fee payment: 16

Ref country code: GB

Payment date: 20220726

Year of fee payment: 16

Ref country code: CZ

Payment date: 20220905

Year of fee payment: 16

Ref country code: AT

Payment date: 20220919

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20220905

Year of fee payment: 16

Ref country code: FR

Payment date: 20220726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220930

Year of fee payment: 16

Ref country code: ES

Payment date: 20221018

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220920

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230927

Year of fee payment: 17